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Abstract We consider a class of semilinear elliptic equations of the form

−�u(x, y, z)+ a(x)W ′(u(x, y, z)) = 0, (x, y, z) ∈ R
3, (0.1)

where a : R → R is a periodic, positive, even function and, in the simplest case, W : R → R

is a double well even potential. Under non degeneracy conditions on the set of minimal
solutions to the one dimensional heteroclinic problem

−q̈(x)+ a(x)W ′(q(x)) = 0, x ∈ R, q(x) → ±1 as x → ±∞,

we show, via variational methods the existence of infinitely many geometrically distinct solu-
tions u of (0.1) verifying u(x, y, z) → ±1 as x → ±∞ uniformly with respect to (y, z) ∈ R

2

and such that ∂yu �≡ 0, ∂zu �≡ 0 in R
3.

Mathematics Subject Classification (2000) 35J60 · 35B05 · 35B40 · 35J20 · 34C37

1 Introduction

In this article we deal with a class of semilinear elliptic equations of the form

−�u(x)+ a(x)W ′(u(x)) = 0, x ∈ R
n, (1.1)

where, briefly, we assume that a(x) is a continuous, positive, periodic function and W (s)
is modeled on the double well Ginzburg–Landau potential W (s) = (s2 − 1)2 or to the
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592 F. Alessio, P. Montecchiari

Sine-Gordon potential, W (s) = 1+cos(πs). Potentials of this kind are widely used in phase
transitions and condensed state Physics. The introduction of an oscillatory factor a(x) can
be used to study inhomogeneous materials.

The problem of existence and multiplicity of entire bounded solutions of (1.1) has been
intensively investigated in the last years. In particular a long standing problem concern-
ing (1.1) in the case in which a(x) is constant, is to characterize the set of the solutions
u ∈ C2(Rn) of (1.1) with n ≥ 2, satisfying |u(x)| ≤ 1 and ∂x1 u(x) > 0 in R

n . This problem
was pointed out by Ennio De Giorgi in [24], where he conjectured that if a(x) = a0 > 0,
when n ≤ 8 and W (s) = (s2 − 1)2, the whole set of these solutions of (1.1) can be obtained
by the action of the group of space roto-translations on the solutions of the one dimensional
heteroclinic problem {−q̈(x)+ a0W ′(q(x)) = 0, x ∈ R,

lim
x→±∞ q(x) = ±1, (1.2)

The conjecture has been firstly proved in the planar case by Ghoussoub and Gui in [37] also
for a general (not necessarily even) double well potential W (s). We refer also to [16,17,31]
where studying a weaker version of the De Giorgi conjecture, known as Gibbons conjecture,
the same conclusion is obtained in all the dimensions n for solutions of (1.1) satisfying the
asymptotic condition

lim
x1→±∞ u(x) = ±1, uniformly w.r.t. (x2, x3, . . . , xn) ∈ R

n−1. (1.3)

The De Giorgi’s conjecture has been proved for a general potential W (s) in dimension n = 3
in [14] (see also [2]), and for the Ginzburg–Landau potential in dimension n ≤ 8 in [52,53],
assuming that the solutions satisfy (1.3) pointwise with respect to (x2, x3, . . . , xn) ∈ R

n−1

(see [32,33,35] for further developments and references). In [27,30] a counterexample is
given in dimension n > 8.

Note that when a(x) is constant, the set of solutions of (1.2) is a continuum homeomorphic
to R, being constituted by the translations of a single heteroclinic solution. These results tell
us in particular that for autonomous equations the set of the solutions to (1.1) satisfying (1.3)
reduces, modulo space translation, to this unique one dimensional solution and the problem
is in fact one dimensional.

On the other hand, if a(x) is not constant and periodic the solutions can exhibit different
(and more complicated) asymptotic behaviour in different directions of R

n . Indeed the oscil-
lations of the function a(x) allows the existence of “gaps” in the ordered families of minimal
entire solutions of the problem and under these gap conditions different families of solutions
do exist (e.g. heteroclinic, multibump, multitransition, slope changing and mountain pass
type solutions), see [9,15,18,19,25,42,45,47–50] and the recent comprehensive monograph
[51].

In particular, as showed in [4,6,8], when a(x) is not constant and periodic, the one dimen-
sional symmetry of the problem generically disappears even if the potential depends only
on the single variable x1 (see also [5] for the case a(x) almost periodic and [1,55] for
related results in the case of systems of autonomous Allen–Cahn equations). Indeed, in these
papers, under a discreteness assumption on the set of minimal one dimensional solutions, it
is obtained the existence of infinitely many entire solutions on R

2 to (1.1)–(1.3) exhibiting
different behaviours with respect to x2 (periodic, of the homoclinic or heteroclinic type).

In other words the oscillation of the potential in the x1 variable generically implies the
existence of complex classes of two-dimensional entire solutions of (1.1)–(1.3). A natural
problem in this setting is to understand when the oscillation of the potential in the x1 variable
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Layered solutions with multiple asymptotes 593

can imply the existence of entire solutions of (1.1)–(1.3) which depends in a non trivial way
on more than two variables.

In this article we tackle this problem studying the existence of entire solutions of (1.1)–
(1.3) in R

3 assuming that the positive even function a(x) depends periodically on the single
variable x1 in such a way that the minimal set of one dimensional solutions satisfies suitable
discreteness and non degeneracy conditions. Under such assumptions we prove the existence
of infinitely many geometrically distinct bounded solutions depending in a non trivial way
on all the variables.

To be more precise, we assume

(H1) a : R → R is Hölder continuous, 1-periodic, even, not constant and positive,
(H2) W ∈ C3(R,R) is even and satisfies W (s) ≥ 0 for all s ∈ R,W (s) > 0 for all

s ∈ (−1, 1),W (±1) = W ′(±1) = 0 and W ′′(±1) > 0,

and we consider the one dimensional problem{−q̈(x)+ a(x)W ′(q(x)) = 0, x ∈ R,

lim
x→±∞ q(x) = ±1. (1.4)

In particular we are interested in the structure of the minimal set of the Action

ϕ(q) =
∫
R

1
2 |q̇(x)|2 + a(x)W (q(x)) dx

on the class

H = p0 + H1(R)

where p0 ∈ C∞(R) is a fixed odd and increasing function such that |p0(x)| = 1 for all
|x | ≥ 1. We define

m = inf
H
ϕ and M = {q ∈ H / ϕ(q) = m},

recalling that M is a non empty and ordered set, consisting of solutions to (1.4).
We first assume that the following discreteness condition holds

(∗) for all q ∈ M there results q(0) �= 0.

Since M is an ordered set, making use of the terminology in [51], condition (∗) implies
the existence of a gap pair in M around the origin. More precisely there exist two adjacent
members q± ∈ M, such that

q−(0) < 0 < q+(0)

and for every q ∈ M \ {q±} there results either, q(x) < q−(x) or q(x) > q+(x) for all
x ∈ R. The symmetry of the problem allows us also to show that q− and q+ are related one
to the other by the symmetry relation q−(x) = −q+(−x).

On this extremal solutions q± we furthermore require that they are not degenerate, i.e.,
we assume

(∗∗) there exists ω∗ > 0 such that

ϕ′′(q±)h · h =
∫
R

ḣ2 + a(x)W ′′(q±)h2 dx ≥ ω∗‖h‖2
L2 , ∀h ∈ H1(R).
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We remark that the assumptions (∗)–(∗∗) excludes the autonomous case. On the other
hand, Melnikov–Poincaré methods (see [11–13] and the references therein) allows to con-
struct examples in which (∗) and (∗∗) hold true in cases in which a(x) is a small periodic
perturbation of a positive constant. We refer moreover to [8] where, following [7], (∗) is ver-
ified when a(x) is a slowly oscillating function (or equivalently for the singularly perturbed
equation) with a maximum in the origin. In particular, using the argument in [39], (∗) and
(∗∗) can be verified when ε > 0 is small enough, for the singularly perturbed equation

−ε2q̈(x)+ a(x)W ′(q(x)) = 0, x ∈ R,

when a(x) has not degenerate critical points and assumes maximum value in 0.
The genericity of the existence of “gaps” in M is proved in a more general setting in [51],

see Proposition 3.56 and Theorem 4.58. In this respect we have to note that our assumption (∗)
requires not only the existence of a gap in M but also that this gap exists in correspondence
of a symmetry point of the function a.

We can now state our main result

Theorem 1.1 Assume (H1)–(H2) and (∗)–(∗∗). Then, there exist infinitely many solutions
of the problem{−�v(x, y, z)+ a(x)W ′(v(x, y, z)) = 0, (x, y, z) ∈ R

3,

lim
x→±∞ v(x, y, z) = ±1 uniformly w.r.t. (y, z) ∈ R

2.
(1.5)

More precisely, for every j ∈ N, j ≥ 2 there exists a solution v j ∈ C2(R3) of (1.5) such
that, denoting ṽ j (x, ρ, θ) = v j (x, ρ cos θ, ρ sin θ), it satisfies

(i) q−(x) ≤ v j (x, y, z) ≤ q+(x) on R
3,

(ii) ṽ j is periodic in θ with period 2π
j ,

(iii) limρ→+∞ ṽ j (x, ρ,
π
2 + π

j (
1
2 + k)) =

{
q+(x), if k is odd,
q−(x), if k is even,

uniformly w.r.t. x ∈ R.

Note that, by (iii), the solution ṽ j (x, ρ, θ) is asymptotic asρ → +∞ to q+ or q− whenever
the angle θ is respectively equal to π

2 + π
j (

1
2 + k) with k ∈ {0, . . . , 2 j − 1} odd or even.

Then, Theorem 1.1 provides the existence of infinitely many geometrically distinct bounded
solutions of (1.5), all depending in a non trivial way on both the variables y, z ∈ R.

Moreover, we remark that the property (iii) characterizes the function v j as being asymp-
totic in 2 j directions, orthogonal to the x-axes, to one dimensional solutions to the problem.
The existence of solutions asymptotic in different directions to other prescribed solutions has
been recently study in different papers. In particular in [28] (see also [41]) the existence of
multiple end solutions on R

2 for the Allen–Cahn equation was given. Multiple end solutions
for Allen–Cahn equation, again in the planar case, are also the saddle solutions found in [23]
and the saddle type solutions found in [10] (see also [21,22,38,40,54]). Entire solutions with
prescribed asymptotes in different direction are moreover found in [43,44] and then in [29]
in the case of Nonlinear Schrödinger equations (we refer also to [26] for a survey on the
topic). Accordingly with these results we can say that Theorem 1.1 states the existence and
multiplicity of multiple end solutions for non autonomous Allen–Cahn equations in R

3.
Following a strategy already used in [10] (see also [3]), the proof of Theorem 1.1 uses

variational methods to study an auxiliary problem. Indeed, given j ∈ N, j ≥ 2, setting
z̄ = tan( π2 j )z, we consider the infinite prism

P j = {(x, y, z) ∈ R
3 | (x, y) ∈ R × (−z̄, z̄), z ≥ 0},
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Layered solutions with multiple asymptotes 595

Fig. 1 The asymptotes of v j for j = 2 and j = 3

and we look for a minimal (with respect to C∞
0 (R

3) perturbations) solution of⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−�v(x, y, z)+ a(x)W ′(v(x, y, z)) = 0, (x, y, z) ∈ P j ,

lim
z→+∞v(x, z̄, z) = q+(x) uniformly w.r.t x ∈ R

v(x, y, z) = −v(−x,−y, z), (x, y, z) ∈ P j ,

∂νv(x, y, z) = 0 (x, y, z) ∈ ∂P j ,

limx→±∞ v(x, y, z) = ±1, uniformly w.r.t. (y, z).

(1.6)

If v solves (1.6) then as z → +∞ we have

v(x,−z̄, z) = −v(−x, z̄, z) → −q+(−x) = q−(x).

Then the entire solution v j on R
3 is obtained from v by recursive reflections of the prism P j

about its faces (see Fig. 1).
To solve (1.6) we build up a renormalized variational procedure which takes into account

the informations we have on the lower dimensional problems. More precisely, solutions of
(1.6) are found as minima of the double renormalized functional

ϕ3, j (u) =
+∞∫
0

⎡
⎣ z̄∫

−z̄

⎡
⎣∫

R

1
2 |∇u(x, y, z)|2 + a(x)W (u(x, y, z)) dx − m

⎤
⎦ dy − m2,z̄

⎤
⎦ dz

on the class

Z j = {u ∈ H1
loc(P j ) | u(x, y, z) = −u(−x,−y, z) for a.e. (x, y, z) ∈ P j }.

In the definition of ϕ3, j enter the two renormalizing terms m and m2,z̄, where m is the
minimum of ϕ on H, while, for a fixed z > 0,

m2,z = inf
Xz

z∫
−z

∫
R

1
2 |∇u(x, y)|2 + a(x)W (u(x, y)) dx − m dy

where, setting Sz = R × (−z, z),

Xz = {u ∈ H1
loc(Sz) / u(x, y) = −u(−x,−y) for a.e.(x, y) ∈ Sz}.

As a preliminary step in studying ϕ3, j on Z j , in Sects. 3 and 4 we need to provide the exis-
tence and a variational characterization of the heteroclinic type and periodic bidimensional
solutions of (1.5), studying the asymptotic properties of the minimal values m2,z .

This global variational approach allows us to directly control the asymptotes as z → +∞
of the minima of ϕ3, j on Z j . Indeed, if v is such a minimum then (up to (x, y) reflection)
v(x, y, z) → v+(x, y) as z → +∞ uniformly w.r.t. (x, y) ∈ Sz̄, where v+ is the unique
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596 F. Alessio, P. Montecchiari

antisymmetric planar solution of (1.5) such that v+(x, y) → q±(x) as y → ±∞ uniformly
w.r.t x ∈ R.

We finally remark that even if the solution v j is obtained by recursive reflections of a
minimal solution of (1.6), the solution v j is no more minimal for the action with respect to
C∞

0 (R
3) perturbations. Indeed, since we know that ∂yv j �≡ 0 and ∂zv j �≡ 0, by Theorem 9

and Corollary 10 in [34], the minimality of v j would imply that ∂yv j and ∂zv j are strictly
positive or negative on R

3, while, by (ii) and (iii) in Theorem 1.1, we recognize that both the
derivatives have to change their sign.

This article is organized as follows. After recalling in Sect. 2 variational properties of
the minimal solutions of (1.4), in Sects. 3 and 4 we consider heteroclinic type and periodic
bidimensional solutions of (1.5), studying the asymptotic properties of the minimal values
m2,z . The double renormalized functional ϕ3, j is introduced and studied in Sect. 5, where
we finally prove Theorem 1.1.

2 One dimensional solutions

In this section we consider the one dimensional problem⎧⎨
⎩

−q̈(x)+ a(x)W ′(q(x)) = 0, x ∈ R,

lim
x→±∞q(x) = ±1,

(P1)

recalling some well known results and displaying some consequences of the assumptions (∗)
and (∗∗).
Remark 2.1 We note that, by (H2), there exists δ ∈ (0, 1

4 ) and w > w > 0 such that

w ≥ W ′′(s) ≥ w for every |s| ∈ [1 − 2δ, 1 + 2δ]. (2.1)

Fixed an increasing function p0 ∈ C∞(R) such that |p0(x)| = 1 for all |x | ≥ 1,we consider
on the space

H = p0 + H1(R),

the functional

ϕ(q) = 1

2
‖q̇‖2

L2(R)
+

∫
R

a(x)W (q(x)) dx .

Remark 2.2 Endowing H with the hilbertian structure induced by the map p ∈ H1(R) �→
p0 + p ∈ H, it is classical to prove that ϕ ∈ C2(H) with Frechet differential

ϕ′(q)h =< q̇, ḣ >L2(R) +
∫
R

a(x)W ′(q(x))h(x) dx, q ∈ H, h ∈ H1(R),

and that critical points of ϕ are classical solutions to (P1).

We are interested in the minimal properties of ϕ on H and we set

m = inf
H
ϕ and M = {q ∈ H / ϕ(q) = m}.

We note that ϕ is weakly lower semicontinuous with respect to the H1
loc(R) convergence. In

particular there results (see e.g. Lemma 2.1 in [4])
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Layered solutions with multiple asymptotes 597

Lemma 2.1 If (qn)n∈N ⊂ H and ϕ(qn) ≤ m +λ0 for all n ∈ N and some λ0 > 0, then there
exists q ∈ H1

loc(R) such that, along a subsequence, qn → q weakly in H1
loc(R), q̇n → q̇

weakly in L2(R) and moreover ϕ(q) ≤ lim infn→∞ ϕ(qn).

On H is well defined with value in R the function

X (q) = sup{x ∈ R | q(x) = 0},
which associates to every function q ∈ H the supremum of the zero-set of q . As in Lemma
2.3 in [8], we can prove that if (qn)n∈N is a minimizing sequence of ϕ with X (qn) bounded,
then (qn)n∈N is precompact with respect to the H1(R) topology. Precisely

Lemma 2.2 Let (qn)n∈N ⊂ H with X (qn) → X0 and ϕ(qn) → m as n → +∞. Then,
there exists q ∈ M such that X (q) = X0 and, up to a subsequence, ‖qn − q‖H1 → 0 as
n → +∞.

Since the problem (P1) is invariant under integer translations, given any minimizing sequence
(qn)n∈N of ϕ, translating it if necessary, we can always assume that X (qn) is bounded, obtain-
ing by Lemma 2.2 that M �= ∅. Moreover, by Remark 2.2, if q ∈ M then q ∈ C2(R) is a
classical solution to (P1) and since q minimizes ϕ we have ‖q‖L∞ ≤ 1.

Again using Lemma 2.2 we obtain that if ϕ(qn) → m then inf q̄∈M ‖qn − q̄‖H1(R) → 0
as n → +∞. Hence, we can say that for all d > 0 there exists νd > 0 such that

if q ∈ H is such that inf
q̄∈M

‖q − q̄‖H1(R) ≥ d then ϕ(q) ≥ m + νd . (2.2)

Another remarkable property of the functions q ∈ M is that they are uniformly exponentially
asymptotic to the points ±1 (see e.g. Proposition 2.2 in [10])

Lemma 2.3 There exist ω, 
 > 0 and K > 0 such that if q ∈ M, then

0 ≤ 1 − q(x − X (q)) ≤ K e−√
ωx , ∀x ≥ X (q)+ 
 and

0 ≤ 1 + q(x − X (q)) ≤ K e
√
ωx , ∀x ≤ X (q)− 


The minimality of the functions q ∈ M implies moreover that M is an ordered set.

Lemma 2.4 If q1, q2 ∈ M then, either q1(x) > q2(x), q1(x) < q2(x) or q1(x) = q2(x) for
all x ∈ R.

Proof The proof is based on the fact that since the functions in M are minima of the action ϕ
on H, then if q1 �= q2 ∈ M their graphs cannot intersect. Indeed if there exist x0 ∈ R such that
q1(x0) = q2(x0) then we can compare the values m1 = ϕ(−∞,x0)(q1) and m2 = ϕ(−∞,x0)(q2).
We can simply exclude the case m1 �= m2 since in this situation we would have that, defined

q̃(x) =
{

q1(x) x ≤ x0

q2(x) x > x0
if m1 < m2 or q̃(x) =

{
q2(x) x ≤ x0

q1(x) x > x0
if m1 > m2,

then q̃ ∈ H but ϕ(q̃) < m = minH ϕ, a contradiction. Then m1 = m2 and hence the function

q̃(x) =
{

q1(x), x ≤ x0,

q2(x), x < x0,

belongs to M and solves (P1). By uniqueness of the solution of the Cauchy problem, we
must have that q̃ ≡ q1 and q̃ ≡ q2 and hence q1 ≡ q2. ��
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Remark 2.3 Arguing as in the proof of the previous Lemma, one can show that if q0 ∈ M
then for every (eventually unbouded) interval I ⊂ R, setting

ϕI (q) = 1
2‖q̇‖2

L2(I ) +
∫
I

a(x)W (q(x)) dx,

q0 is also a minimum for ϕI on the set {q ∈ H1
loc(I ) | q(∂ I ) = q0(∂ I )}. In particular we

derive that if q ∈ H and q0 ∈ M are such that q(∂ I ) = q0(∂ I ) for some interval I ⊂ R,

then, defining

q̂(x) =
{

q(x) if x �∈ I ,
q0(x) if x ∈ I ,

there results q̂ ∈ H and ϕ(q̂) ≤ ϕ(q).

We finally discuss some consequences of the assumptions (∗) and (∗∗). Recall first our
discreteness assumption (∗) on M:

(∗) for all q ∈ M there results q(0) �= 0.

We note that assumption (∗) is equivalent to require that there are not odd function in M.
Indeed, note that by the symmetric assumptions on the potential, if q ∈ H, setting

q∗(x) = −q(−x), x ∈ R,

there results q∗ ∈ H and ϕ(q) = ϕ(q∗). Therefore if q ∈ M is such that q(0) = 0, then
q∗ ∈ M and q∗(0) = 0. Hence, by the ordering property given by Lemma 2.4, q ≡ q∗, i.e.,
q is an odd function.

By condition (∗) we clearly have X (q) �= 0 for all q ∈ M and so, using Lemmas 2.2 and
2.4, we obtain

Lemma 2.5 There exist q± ∈ M such that q− = (q+)∗, q−(0) < 0 < q+(0) and for every
q ∈ M \ {q±} there results either q(x) < q−(x) or q(x) > q+(x) for all x ∈ R.

Proof Since X (q) �= 0 for all q ∈ M, by Lemma 2.2 we obtain that there exists δ > 0 such
that |X (q)| > δ for all q ∈ M. By Lemma 2.2, there exists q+ ∈ M such that X (q+) =
max{X (q) < 0 | q ∈ M}. By Lemma 2.4 we have 0 < q+(0) = min{q(0) > 0 | q ∈ M}.
By symmetry, letting q− = (q+)∗ we obtain q− ∈ M, X (q−) = min{X (q) > 0 | q ∈ M}
and max{q(0) < 0 | q ∈ M} = q−(0) < 0. Then, by Lemma 2.4, the lemma follows.

Remark 2.4 By Lemma 2.4, we have q−(x) < q+(x) for all x ∈ R and we set

‖q+ − q−‖L2 = 2d0 > 0. (2.3)

Moreover note that if q ∈ H is such that q− ≤ q ≤ q+ in R, then

inf
q̄∈M

‖q − q̄‖H1 = inf
q̄=q±

‖q − q̄‖H1 .

The assumption (∗∗) requires that the extremal functions q± given by Lemma 2.5 satisfy the
following non degenerate condition

(∗∗) there exist ω∗ > 0 such that

ϕ′′(q±)h · h =
∫
R

|ḣ(x)|2 + a(x)W ′′(q±(x))|h(x)|2 dx ≥ ω∗‖h‖2
L2 ∀h ∈ H1(R).
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Layered solutions with multiple asymptotes 599

As consequence we obtain

Lemma 2.6 There exists ν∗ > 0 such that if q ∈ H is such that q−(x) ≤ q(x) ≤ q+(x) for
a.e. x ∈ R and ϕ(q) ≤ m + ν∗ then

ϕ(q)− m ≥ ω∗

4
inf

q̄∈M
‖q − q̄‖2

L2 .

Proof Setting W = 1
6 maxs∈[−1,1] |W ′′′(s)|, note first that by the compactness property of

Lemma 2.2 there exists ν∗ > 0 such that if q ∈ H, q−(x) ≤ q(x) ≤ q+(x) for a.e. x ∈ R

and ϕ(q) ≤ m + ν∗ then

inf
q̄=q±

‖q − q̄‖H1 ≤ ω∗

4aW c0
, (2.4)

where c0 is the immersion constant H1(R) → L∞(R) and a = maxR a(x). Now, assuming
that inf q̄=q± ‖q − q̄‖H1 = ‖q − q+‖H1 , using the Taylor Formula, we infer that

ϕ(q)− ϕ(q+) = ϕ′(q+)(q − q+)+ 1

2
ϕ′′(q+)(q − q+)(q − q+)

+
∫
R

a(x)(W (q)− W (q+)−W ′(q+)(q − q+)− 1

2
W ′′(q+)(q − q+)2) dx

≥ ω∗

2
‖q − q+‖2

L2 − aW‖q − q+‖3
L3

≥
(
ω∗

2
− aW c0‖q − q+‖H1

)
‖q − q+‖2

L2 .

Then the lemma follows using (2.4). ��

3 Two dimensional heteroclinic type solutions

In this section we display some results concerning the solutions of the two dimensional
problem {−�v(x, y)+ a(x)W ′(v(x, y)) = 0, (x, y) ∈ R

2

lim
x→±∞ v(x, y) = ±1, uniformly w.r.t. y ∈ R, (P2)

which are asymptotic as y → ±∞ to the functions q− and q+. Some of the results in this
section are known or can be recovered from the general ones concerning the minimality and
the asymptotic behaviour described in Sect. 2 in [51]. However, since the technical setting is
different, for the sake of clarity and completeness we give here most of the details.

Let us consider the renormalized functional

ϕ2(v) =
∫
R

⎛
⎝∫

R

1
2 |∇v(x, y)|2 + a(x)W (v(x, y)) dx − m

⎞
⎠ dy

=
∫
R

1
2‖∂yv(·, y)‖2

L2 + ϕ(v(·, y))− m dy

which is well defined on the space

X = {v ∈ H1
loc(R

2) | v(·, y) ∈ H for a.e. y ∈ R}.
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Note that ϕ2(v) ≥ 0 for all v ∈ X and if q ∈ M, then the function v(x, y) = q(x) belongs
to X and ϕ2(v) = 0, i.e., the minimal solutions of (P1) are global minima of ϕ2 on X .

We will look for bidimensional solutions of (P2) as minima of ϕ2 on suitable subspaces of
X . We recall (see e.g. [8]) that ϕ2 is weakly lower semicontinuous on X with respect to the
H1

loc(R
2). Concerning the coerciveness of ϕ2, we display here below some basic estimates

which will be useful to characterize the compactness properties of sublevels of ϕ2.
First we note that if v ∈ X then ϕ(v(·, y)) ≥ m for a.e. y ∈ R and so

‖∂yv‖2
L2(R2)

≤ 2ϕ2(v) ∀v ∈ X . (3.1)

Moreover, if v ∈ X then v(x, ·) ∈ H1
loc(R) for a.e. x ∈ R. Therefore, if y1 < y2 ∈ R then

v(x, y2)− v(x, y1) = ∫ y2
y1
∂yv(x, y) dy holds for all v ∈ X and a.e. x ∈ R. So, if v ∈ X , by

(3.1), for y1 < y2 ∈ R we obtain

‖v(·, y2)− v(·, y1)‖2
L2 =

∫
R

∣∣∣∣∣∣
y2∫

y1

∂yv(x, y) dy

∣∣∣∣∣∣
2

dx ≤ |y2 − y1

∣∣∣∣∣∣
∫
R

∫
R

|∂yv(x, y)

∣∣∣∣∣∣
2

dy dx

≤ 2ϕ2(v)|y2 − y1|. (3.2)

Given any interval I ⊂ R, let us denote

ϕI,2(v) =
∫
I

1
2‖v(·, y)‖2

L2 + ϕ(v(·, y))− m dy, v ∈ X .

By (2.2), if (y1, y2) ⊂ R and v ∈ X are such that infq∈M ‖v(·, y) − q‖H1(R) ≥ d > 0 for
a.e. y ∈ (y1, y2), then there exists νd > 0 such that

ϕ2(v) ≥ ϕ(y1,y2),2(v) ≥
y2∫

y1

1
2

∫
R

|∂yv(x, y)|2 dx dy + νd(y2 − y1)

≥ 1
2(y2−y1)

∫
R

⎛
⎝ y2∫

y1

|∂yv(x, y)| dy

⎞
⎠

2

dx + νd(y2 − y1)

≥ 1
2(y2−y1)

‖v(·, y1)− v(·, y2)‖2
L2 + νd(y2 − y1) ≥ √

2νd‖v(·, y1)− v(·, y2)‖L2 .

(3.3)

As consequence of (3.2) and (3.3) we get information on the asymptotic behavior as y → ±∞
of the functions in the sublevels of ϕ2. More precisely we have

Lemma 3.1 If v ∈ X and ϕ2(v) < +∞, then dL2(v(·, y),M) → 0 as y → ±∞.

Proof We only sketch the proof (see Lemma 3.3 in [8] for more details). First of all note that
since ϕ2(v) < +∞, we have lim inf y→±∞ ϕ(v(·, y))− m = 0, and so by (2.2) we obtain

lim inf
y→±∞ dL2(v(·, y),M) = 0.

Considering the case y → +∞ we assume that lim supy→+∞ dL2(v(·, y),M) > 0. Then,
by (3.2) the path y → v(·, y) crosses infinitely many times an annulus of positive thickness
d > 0 around M in the L2 metric. This allows us to use (3.3) to conclude that ϕ2(u) = +∞,

a contradiction. ��
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We are interested in solutions of (P2) which connect q± as y → ±∞, in particular on the
minima of ϕ2 on the symmetric classes

H−
2 = {v ∈ X | lim

y→±∞ ‖v(·, y)− q∓‖L2 = 0},
H+

2 = {v ∈ X | lim
y→±∞ ‖v(·, y)− q±‖L2 = 0}.

Note that if v ∈ X , setting v∗(x, y) = −v(−x, y), we get ‖v∗(·, y)− q±‖L2 = ‖v(·, y)−
q∓‖L2 hence, if v ∈ H+

2 then v∗ ∈ H−
2 and viceversa. Moreover, by the symmetric assump-

tions on the functions a and W, ϕ2(v) = ϕ2(v
∗) and we derive

m2 ≡ inf
v∈H+

2

ϕ2(v) = inf
v∈H−

2

ϕ2(v).

Using suitable test functions one plainly see that m2 < +∞. Moreover we have

Lemma 3.2 For every v ∈ H±
2 there exists v̂ ∈ H±

2 such that ϕ2(v̂) ≤ ϕ2(v) and

q−(x) ≤ v̂(x, y) ≤ q+(x) for a.e. (x, y) ∈ R
2.

Proof Let v ∈ H+
2 and setting

v̂(x, y) = max{min{v(x, y); q+(x)}; q−(x)},
note that v̂ ∈ H+

2 and q−(x) ≤ v̂(x, y) ≤ q+(x) for a.e. (x, y) ∈ R
2. We claim that

ϕ2(v̂) ≤ ϕ2(v).
First note that if y ∈ R is such that v(·, y) ∈ H and v(x0, y) > q+(x0) for some x0 ∈ R,

by continuity, there exists an interval I (eventually unbounded) such that v(x, y) > q+(x)
for all x ∈ I and v(∂ I, y) = q+(∂ I ). Hence, setting B+(y) = {x ∈ R | v(x, y) > q+(x)},
we have that B+(y) = ∪α∈A Iα with Iα disjoint intervals such that v(∂ Iα, y) = q+(∂ Iα).
Then, setting v(x, y) = min{v(x, y); q+(x)}, we have

v(x, y) =
{
v(x, y) if x �∈ B+(y),
q+(x) if x ∈ B+(y),

and, by Remark 2.3, we obtain ϕ(v(·, y)) ≤ ϕ(v(·, y)). This holds true for almost every
y ∈ R and so we deduce that∫

R

ϕ(v(·, y))− m dy ≤
∫
R

ϕ(v(·, y))− m dy.

Moreover, see e.g. Lemma 7.6 in [36], for a.e. y ∈ R there results

∂yv(x, y) =
{
∂yv(x, y) if x �∈ B+(y),
0 if x ∈ B+(y),

and hence ‖∂yv(·, y)‖2
L2(R2)

≤ ‖∂yv(·, y)‖2
L2(R2)

. We conclude that ϕ2(v) ≤ ϕ2(v) and

v(x, y) ≤ q+(x) for a.e. (x, y) ∈ R
2. Finally, since v̂(x, y) = max{v(x, y); q−(x)}, we

obtain analogously that ϕ2(v̂) ≤ ϕ2(v) ≤ ϕ2(v) and q−(x) ≤ v̂(x, y) ≤ v(x, y) ≤ q+(x)
for a.e. (x, y) ∈ R

2. ��
By Lemma 3.2, to find a minimum of ϕ2 in H±

2 , we can restrict ourselves to consider
minimizing sequences (vn)n∈N which satisfy the condition q−(x) ≤ vn(x, y) ≤ q+(x) for
a.e. (x, y) ∈ R

2. We have the following first compactness property.
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Lemma 3.3 Let (vn)n∈N ⊂ H±
2 be such that q−(x) ≤ vn(x, y) ≤ q+(x) a.e. R

2 and
ϕ2(vn) ≤ C for all n ∈ N and some C > 0.
Then, there exist v ∈ X and a subsequence of (vn)n∈N (still denoted by vn), such that
vn − v → 0 weakly in H1(R × [−L , L]) for all L ∈ N.
Moreover, ‖v(·, y)− q±‖L2 ≤ lim infn→∞ ‖vn(·, y)− q±‖L2 for a.e. y ∈ R.

Proof We first show that there exists v ∈ H1
loc(R

2) such that, along a subsequence, vn− p0 →
v − p0 weakly in H1(R × [−L , L]) for any L ∈ N. This will imply also that v ∈ X . To this
aim, note that since q− ≤ vn ≤ q+ a.e. in R

2, we have that supy∈R
‖vn(·, y) − q+‖L2 ≤

‖q− − q+‖L2 = 2d0, for every n ∈ N. Then, ‖vn − q+‖2
L2(R×[−L ,L]) ≤ 8Ld2

0 for any n ∈ N

and L ∈ N. Since moreover ‖∇vn‖2
L2(R×[−L ,L]) ≤ 2(ϕ2(vn) + 2Lm) we conclude that the

sequence (vn − q+)n∈N, and so the sequence (vn − p0)n∈N, is bounded in H1(R ×[−L , L])
for any L ∈ N. Then, a diagonal argument implies the existence of a function v ∈ H1

loc(R
2)

and a subsequence (vn j ) j∈N, such that vn j − v → 0 weakly in H1(R × [−L , L]) for all
L ∈ N.

To conclude the proof note that since vn j → v in L2
loc(R

2) there exists A ⊂ R with
meas(A) = 0 such that ‖vn j (·, y)− v(·, y)‖L2(−M,M) → 0 for every M > 0 and y ∈ R \ A.
Then for all M > 0 and y ∈ R \ A

‖v(·, y)− q±‖L2(−M,M) ≤ o(1)+ ‖vn j (·, y)− q±‖L2(−M,M) ≤ o(1)+ ‖vn j (·, y)− q±‖L2

and the lemma follows.

Moreover we have the following concentration result.

Lemma 3.4 There exist δ0 ∈ (0, d0
2 ) and λ̄ > 0 such that if v ∈ H+

2 , q−(x) ≤ v(x, y) ≤
q+(x) for a.e. (x, y) ∈ R

2 and ϕ2(v) ≤ m2 + λ̄ then

(i) if ‖v(·, y0)− q−‖H1 ≤ δ0 then ‖v(·, y)− q−‖L2 ≤ d0 for a.e. y ≤ y0,

(ii) if ‖v(·, y0)− q+‖H1 ≤ δ0 then ‖v(·, y)− q+‖L2 ≤ d0 for a.e. y ≥ y0.

Proof We set λ̄ = d0
4

√
ν0
2 , where ν0 is given by (3.3) corresponding to d = d0

2 , and let

δ0 ∈ (0,min{ d0
2 ,

√
2λ̄}) be such that

sup{ϕ(q) | ‖q − q−‖H1(R) ≤ δ0} ≤ m + λ̄.

Let v ∈ H+
2 be such that q−(x) ≤ v(x, y) ≤ q+(x) for a.e. (x, y) ∈ R

2, ϕ2(u) ≤ m2 + λ̄

and assume that y0 ∈ R is such that ‖v(·, y0)− q−‖H1(R) ≤ δ0. We define

v̂(x, y) =
⎧⎨
⎩

q−(x) if y ≤ y0 − 1,
v(x, y0)(y − y0 + 1)+ q−(x)(y0 − y) if y0 − 1 ≤ y ≤ y0,

v(x, y) if y ≥ y0.

We have v̂ ∈ H+
2 and so ϕ2(v̂) ≥ m2. Then, we obtain

m2 ≤ ϕ2(v̂) = ϕ2(u)− ϕ(−∞,y0),2(v)+
y0∫

y0−1

1
2

∫
R

|v(x, y0)− q−(x)|2dx dy +

+
y0∫

y0−1

ϕ(v(x, y0)(y − y0 + 1)+ q−(x)(y0 − y))− m dy

≤ ϕ2(v)− ϕ(−∞,y0),2(v)+ 1
2 δ

2
0 + λ̄ ≤ ϕ2(v)− ϕ(−∞,y0),2(v)+ 2λ̄
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from which, since ϕ2(u) ≤ m2 + λ̄ we conclude that ϕ(−∞,y0),2(v) ≤ 3λ̄. Assume by
contradiction that there exists y1 < y0 such that ‖v(·, y1) − q−‖L2 ≥ d0. Then by (3.2)
there exists (y′

1, y′
0) ⊂ (y1, y0) such that ‖v(·, y′

1) − v(·, y′
0)‖L2 ≥ d0

2 and, for any y ∈
(y′

1, y′
0), ‖v(·, y)− q−‖L2 ∈ ( d0

2 , d0). In particular, since q−(x) ≤ v(x, y) ≤ q+(x) for a.e.
(x, y) ∈ R

2, we get that

inf
q∈M

‖v(·, y)− q‖H1(R) = ‖v(·, y)− q−‖L2 ≥ d0

2

for a.e. y ∈ (y′
1, y′

0) and using (3.3) we get the contradiction 3λ̄ ≥ ϕ(−∞,y0),2(v) ≥
√
ν0
2 d0 =

4λ̄.
Similarly one can show that if ‖v(·, y0) − q+‖H1 ≤ δ0 then ‖u(·, y) − q+‖L2 ≤ d0 for all
y ≥ y0. ��
Lemma 3.4 has the following key consequence.

Lemma 3.5 There exists 
̄ > 0 such that if v ∈ H+
2 , q−(x) ≤ v(x, y) ≤ q+(x) for a.e.

(x, y) ∈ R
2, ϕ2(v) ≤ m2 + λ̄ and minq=q± ‖v(·, 0)− q‖L2 ≥ d0

2 then

‖v(·, y)− q−‖L2 ≤ d0 for y ≤ −
̄ and ‖v(·, y)− q+‖L2 ≤ d0 for y ≥ 
̄.

Proof Considering δ0 as defined in Lemma 3.4, by (3.3) we can fix 
̄ > 0 such that if I is any
real interval with length greater than or equal to 
̄ and v ∈ X is such that infq∈M ‖v(·, y)−
q‖H1 > δ0 for a.e. y ∈ I then ϕ2(v) ≥ m2 + 2λ̄. Since minq=q± ‖v(·, 0)− q‖L2 ≥ d0

2 , we
derive that infq∈M ‖v(·, 0)− q‖H1 > δ0 and since ϕ2(v) ≤ m2 + λ̄, by definition of 
̄ there
exist y− ∈ (−
̄, 0) and y+ ∈ (0, 
̄) such that infq∈M ‖v(·, y±)−q‖H1 < δ0. By Lemma 3.4,
since v ∈ H+

2 and q−(x) ≤ v(x, y) ≤ q+(x) for a.e. (x, y) ∈ R
2, we derive that necessarily

‖v(·, y−)−q−‖H1 ≤ δ0 and ‖v(·, y+)−q+‖H1 ≤ δ0 and the lemma follows applying again
Lemma 3.4. ��
Lemma 3.5 together with Lemma 3.3 allow us to use the direct method of the Calculus of
Variation to show that the functional ϕ2 admits a minimum in the class H±

2 . Setting

M±
2 = {v ∈ H±

2 / ϕ2(v) = m2}
we have

Proposition 3.1 There exists v± ∈ M±
2 such that q−(x) ≤ v±(x, y) ≤ q+(x), for all

(x, y) ∈ R
2.

Proof By symmetry, it is sufficient to prove that there exists v ∈ M+
2 . Let (vn)n∈N be a

minimizing sequence for ϕ2 in H+
2 which, by Lemma 3.2, we can assume such that q−(x) ≤

vn(x, y) ≤ q+(x) for a.e. (x, y) ∈ R
2. Since vn ∈ H+

2 we know that limy→±∞ ‖vn(·, 0) −
q±‖L2 = 0 and so, since ‖q+ −q−‖L2 = 2d0 and since by (3.2) the map y �→ vn(·, y) ∈ H+

2
is continuous with respect to the L2 metric, we deduce that there exists y0,n ∈ R such that
minq=q± ‖vn(·, y0,n)− q‖L2 ≥ d0

2 . By y-translation invariance we can assume that y0,n = 0

so that minq=q± ‖vn(·, 0)− q‖L2 ≥ d0
2 holds true for all n ∈ N. Hence, by Lemma 3.5, there

exists 
̄ > 0 such that for all n ∈ N

‖vn(·, y)− q−‖L2 ≤ d0 for a.e. y ≤ −
̄ and ‖vn(·, y)− q+‖L2 ≤ d0 for a.e. y ≥ 
̄.
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Now, by Lemma 3.3, there exists v ∈ X such that, along a subsequence, vn → v weakly in
H1

loc(R
2). By semicontinuity we have ϕ2(v) ≤ m2 and moreover, again by Lemma 3.3,

‖v(·, y)− q−‖L2 ≤ d0 for a.e. y ≤ −
̄ and ‖v(·, y)− q+‖L2 ≤ d0 for a.e. y ≥ 
̄.

Then, since by pointwise convergence q−(x) ≤ v(x, y) ≤ q+(x) for a.e. (x, y) ∈ R
2, by

Lemma 3.1 and the previous estimate we obtain ‖v(·, y)− q±‖L2 → 0 as y → ±∞. Hence
v ∈ H+

2 and ϕ2(v) = m2 follows. ��
Remark 3.1 Since v± are minima of ϕ2 on H±

2 , it is classical to prove that they are C2 solu-
tion of −�v + aW ′(v) = 0 on R

2. Since moreover q−(x) ≤ v±(x, y) ≤ q+(x), for all
(x, y) ∈ R

2, we obtain that v±(x, y) → ±1 as x → ±∞ uniformly with respect to y ∈ R

and so that v± are classical solutions to (P2).

Using the maximum principle as in [45,47], we prove that M±
2 are ordered sets and that

every v ∈ M±
2 is strictly monotone w.r.t. y ∈ R.

Lemma 3.6 If v1, v2 ∈ M±
2 , then either v1 > v2, v1 < v2 or v1 ≡ v2 in R

2. Moreover, if
v ∈ M+

2 , then v(x, y1) < v(x, y2) for all x ∈ R, y1 < y2.

Proof Given v1, v2 ∈ M+
2 , to prove the Lemma it is sufficient to show that if v1(x0, y0) =

v2(x0, y0) for some (x0, y0) ∈ R
2, then v1(x, y) = v2(x, y) for all (x, y) ∈ R

2.
We define v̄(x, y) = max{v1(x, y), v2(x, y)} and v(x, y) = min{v1(x, y), v2(x, y)}.

Then q+(x) ≥ v̄(x0, y0) ≥ v(x0, y0) ≥ q−(x) and v̄, v ∈ H+
2 . Then

2m2 ≤ ϕ2(v̄)+ ϕ2(v) = ϕ2(v1)+ ϕ2(v2) = 2m2

and we derive ϕ2(v̄) = ϕ2(v) = m2. Hence v̄, v ∈ M+
2 and, by Remark 3.1, they are clas-

sical solution of −�v + aW ′(v) = 0 on R
2. Setting V = v̄ − v we obtain that V (x, y) ≥ 0

on R
2, V (x0, y0) = 0 and V is a solution of the linear elliptic equation −�V + A(x)V = 0

on R
2 where

A(x) =
{

a(x)W ′(v̄(x,y))−W ′(v(x,y))
v̄(x,y)−v(x,y) , if v̄(x, y) > v(x, y)

a(x)W ′′(v̄(x, y)) if v̄(x, y) = v(x, y)

Then, −�V +max{A(x), 0}V ≥ 0 and the maximum principle implies V ≡ 0, that is v̄ ≡ v

and so v1 ≡ v2.
To prove the monotonicity property let us consider a function v ∈ M+

2 . Given y1 < y2,

by y-translations invariance, setting v1(x, y) = v(x, y + y1) and v2(x, y) = v(x, y + y2),

we have v1, v2 ∈ M+
2 . Assuming by contradiction that v(x, y1) = v(x, y2) for some x ∈ R,

we get v1(x, 0) = v2(x, 0) and hence, as proved above, v1 ≡ v2 in R
2, i.e., v(x, y + y1) =

v(x, y + y2) for all (x, y) ∈ R
2. This implies that v(x, y + y2 − y1) = v(x, y), i.e., v(x, y)

is periodic in y of period y2 − y1, in contradiction with the fact that for a.e. x ∈ R we have

lim
y→+∞ v(x, y) = q+(x) �= q−(x) = lim

y→−∞ v(x, y).

��
Remark 3.2 By Lemma 3.6 we have that every v ∈ M±

2 is monotone with respect to the y
variable. Since v(·, y) is asymptotic to q± as |y| → +∞ we deduce that if v ∈ M±

2 then the
condition q−(x) ≤ v(x, y) ≤ q+(x) holds true for a.e. (x, y) ∈ R

2.

By definition, since v± ∈ M±
2 , we have v+(·, y) → q± and v−(·, y) → q∓ as y → ±∞

with respect to the L2 metric. We can in fact say more
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Lemma 3.7 If v± ∈ M±
2 then

‖v+(·, y)− q±‖L∞(R) → 0 and ‖v−(·, y)− q∓‖L∞(R) → 0 as y → ±∞.

Proof Letting v+ ∈ M+
2 we know that v+ solves (P2) and by Remark 3.2 that |v+(x, y)| ≤

1 on R
2. Then, by Schauder estimates, we have ‖v+‖C2(R2) < +∞. If by contradiction

lim supy→+∞ ‖v+(·, y)− q±‖L∞(R) ≥ 2ρ0 > 0 then there exists a sequence (xn, yn) ∈ R
2

with yn → +∞ such that |v+(xn, yn) − q±(xn)| ≥ ρ0. Then, since ‖v+‖C2(R2) < +∞,

there exists r0 > 0 such that |v+(x, yn)−q±(x)| ≥ ρ0/2 whenever |x − xn | ≤ r0 and n ∈ N.
Then ‖v+(·, yn)− q±‖2

L2(R)
≥ r0ρ

2
0/2 for all n ∈ N, a contradiction. ��

We now prove that all the functions in M±
2 are odd in R

2 modulo y-translation. In fact,
setting

X̃ = {v ∈ X / v(−x,−y) = −v(x, y)}
we have

Lemma 3.8 For all v ∈ M±
2 there exists y0 ∈ R such that ṽ ≡ v(·, · + y0) ∈ M±

2 ∩ X̃ .

Proof By symmetry, it is enough to prove the statement for a given v ∈ M+
2 . Since v(0, y) →

q±(0) as y → ±∞ and since by definition q−(0) < 0 < q+(0), there exists y0 ∈ R such that
v(0, y0) = 0. By y-translation invariance we have that ṽ = v(·, ·+ y0) ∈ M+

2 and moreover
ṽ(0, 0) = 0. Considering ṽ∗(x, y) = −ṽ(−x,−y) we have ṽ∗ ∈ H±

2 and, by the symmetric
assumption on the functions a and W we have ϕ2(ṽ

∗) = ϕ2(ṽ) = m2. Hence, ṽ, ṽ∗ ∈ M+
2

with ṽ(0, 0) = 0 = ṽ∗(0, 0) and by Lemma 3.6 we conclude ṽ ≡ ṽ∗, i.e., ṽ ∈ X̃ . ��
Collecting the results above obtained we can conclude.

Proposition 3.2 There exists a unique function ṽ+ ∈ M+
2 ∩ X̃ . It is a classical solution to

problem (P2), it is monotone increasing w.r.t. y ∈ R, it satisfies q−(x) ≤ ṽ+(x, y) ≤ q+(x)
for all (x, y) ∈ R

2 and the asymptotic conditions ṽ+(x, y) → q±(x) as y → ±∞ uniformly
on R. Moreover, M+

2 = {ṽ+(·, · + y0) | y0 ∈ R}.
Proof By Lemma 3.8 we know that M+

2 ∩ X̃ �= ∅. To prove the uniqueness just note that by
the antisymmetric condition we have that if v1, v2 ∈ M+

2 ∩ X̃ , then v1(0, 0) = 0 = v2(0, 0).
Hence, since v1, v2 ∈ M+

2 , by Lemma 3.6 we get v1(x, y) = v2(x, y) for all (x, y) ∈ R
2.

The other assertions follow directly by the results above proved. ��
Remark 3.3 By Proposition 3.2 we obtain a symmetric analogous statement for the function
ṽ−(x, y) = ṽ+(x,−y) = −ṽ+(−x, y), the unique element in M−

2 ∩ X̃ . In the sequel we
will denote m̃2,∞ = m2 = ϕ2(ṽ

±).

As last step in this section we use condition (∗∗) to obtain L2 compactness of the minimizing
sequences in H̃±

2 = H±
2 ∩ X̃ .

Remark 3.4 We note that if v ∈ H̃±
2 and q−(x) ≤ v(x, y) ≤ q+(x) for a.e. (x, y) ∈ R

2,

then

inf
q∈M

‖v(·, 0)− q‖L2 ≥ d0.

Indeed if v ∈ H̃±
2 then the function x �→ v(x, 0) is odd. Moreover since q−(x) ≤ v(x, 0) ≤

q+(x) we have that infq∈M ‖v(·, 0) − q‖L2 = minq=q± ‖v(·, 0) − q‖L2 . Since q−(x) =
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−q+(−x), we get 4d2
0 = ‖q+ − q−‖2

L2 = 2
∫ +∞

0 |q±(−x)+ q±(x)|2 dx and since v(x, 0)

is odd we obtain ‖v(·, 0)− q±‖2
L2 = ∫ +∞

0 |v(x, 0)− q±(x)|2 + |v(x, 0)+ q±(−x)|2 dx ≥
1
2

∫ +∞
0 |q±(−x)+ q±(x)|2 dx = d2

0 .
Moreover, note that by Lemma 3.5, if v ∈ H̃+

2 , q−(x) ≤ v(x, y) ≤ q+(x) for a.e.
(x, y) ∈ R

2 and ϕ2(v) ≤ m̃2,∞ + λ̄ then ‖v(·, y)− q+‖L2 ≤ d0 for a.e. y ≥ 
̄.

Lemma 3.9 Let (vn)n∈N ⊂ H̃±
2 be a minimizing sequence for ϕ2 such that q−(x) ≤

vn(x, y) ≤ q+(x) for a.e. (x, y) ∈ R
2 and every n ∈ N. Then ‖vn − ṽ±‖L2(R2) → 0

as n → +∞.

Proof Let (vn) ⊂ H̃+
2 be such that ϕ2(vn) → m̃2,∞ and q−(x) ≤ vn(x, y) ≤ q+(x) for a.e.

(x, y) ∈ R
2 and all n ∈ N. Assuming ϕ2(vn) ≤ m̃2,∞ + λ̄, by Remark 3.4 we have

‖vn(·, y)− q+‖L2 ≤ d0 for all n ∈ N and y ≥ 
̄. (3.4)

Then, arguing as in the proof of Lemma 3.3 and Proposition 3.1, given any subsequence,
we can extract a sub-subsequence, denoted again by (vn), such that vn − ṽ+ → 0 weakly
in H1(SL) for any L ∈ N, where SL = R × [−L , L]. Since |vn(x, y) − ṽ+(x, y)| ≤
q+(x) − q−(x) and since vn − ṽ+ → 0 weakly in H1(SL) for any L ∈ N, we have that
vn − ṽ+ → 0 strongly in L2(SL) for any L ∈ N. To conclude the proof it remains to show
that

∀ ε > 0 ∃ Lε > 0, n̄ ∈ N such that ‖vn − ṽ+‖L2(R2\SLε )
≤ ε, ∀ n ≥ n̄. (3.5)

First note that, by semicontinuity, given any L > 0, we have

+∞∫
L

ϕ(vn(·, y))− m dy →
+∞∫
L

ϕ(ṽ+(·, y))− m dy. (3.6)

Indeed
∫ +∞

L ϕ(vn(·, y)) − m dy = ϕ2(vn) − 1
2‖∂yvn‖2

L2(R2)
− ∫ L

0 ϕ(vn(·, y)) − m dy.

By semicontinuity ‖∂y ṽ
+‖L2(R2) ≤ lim inf ‖∂yvn‖L2(R2) and

∫ L
0 ϕ(ṽ+(·, y)) − m dy ≤

lim inf
∫ L

0 ϕ(vn(·, y))− m dy. Since ϕ2(ṽ
+) = lim ϕ2(vn) we deduce

lim sup

+∞∫
L

ϕ(vn(·, y))− m dy ≤
+∞∫
L

ϕ(ṽ+(·, y))− m dy

and (3.6) follows.
Then, given any ε > 0, we fix Lε ≥ 
̄ such that

∫ +∞
Lε

ϕ(ṽ+(·, y)) − m dy < ε
2 and, by

(3.6), we fix also nε ∈ N such that

+∞∫
Lε

ϕ(vn(·, y))− m dy < ε for all n ≥ nε. (3.7)

Then, letting ν∗ > 0 be given by Lemma 2.6 and setting

An = {y > Lε / ϕ(vn(·, y))− m > ν∗},
by (3.7), we obtain meas (An) ≤ ε

ν∗ for any n ≥ nε. Since Lε ≥ 
̄, by (3.4) we get∫
An

‖vn(·, y)− q+‖2
L2 dy ≤ εd0

ν∗ for any n ≥ nε. (3.8)
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Then we note that if y ∈ (Lε,+∞) \ An, by definition we have ϕ(vn(·, y)) − m ≤ ν∗.
Hence, by Lemma 2.6, noting that by (3.4) infq∈M ‖vn(·, y) − q‖L2 = ‖vn(·, y) − q+‖L2

for y > Lε, we recover that

‖vn(·, y)− q+‖2
L2 ≤ 4

ω∗ (ϕ(vn(·, y))− m) for y ∈ (Lε,+∞) \ An and n ≥ nε. (3.9)

Then, integrating (3.9) on (Lε,+∞) \ An, by (3.7) we conclude that∫
(Lε,+∞)\An

‖vn(·, y)− q+‖2
L2 dy ≤ 4ε

ω∗ for any n ≥ nε. (3.10)

By (3.8) and (3.10) for every n ≥ nε we recover∫
(Lε,+∞)

‖vn(·, y)− q+‖2
L2 dy ≤ ε

(
4

ω∗ + d0

ν∗

)

and, by semicontinuity, the same estimate holds with ṽ+ instead of vn . Therefore we conclude∫
(Lε,+∞)

‖vn(·, y)− ṽ+(·, y)‖2
L2 dy ≤ 4ε

(
4

ω∗ + d0

ν∗

)
.

Sincevn and ṽ+ are odd functions the same holds true for
∫
(−∞,−Lε)

‖vn(·, y)−ṽ+(·, y)‖2
L2 dy

and (3.5) follows. Since the original subsequence of vn was arbitrary, the Lemma
follows. ��

4 Two dimensional periodic solutions

A second series of observations on the two dimensional problem regards, given L > 0, some
variational properties of the solutions to the problem⎧⎨

⎩
−�v(x, y)+ a(x)W ′(v(x, y)) = 0, (x, y) ∈ SL ,

v(x, y) = −v(−x,−y), (x, y) ∈ SL

∂yv(x,±L) = 0, x ∈ R

(P̃L ,2)

where SL = R × [−L , L]. Given L > 0 we consider on the space

X̃L = {v|SL | v ∈ X̃ },
the functional

ϕ[−L ,L],2(v) =
L∫

−L

1
2‖v(·, y)‖2

L2 + ϕ(v(·, y))− m dy.

We look for minima of ϕ[−L ,L],2 on X̃L and we set

m̃2,L = inf
X̃L

ϕ[−L ,L],2 and M̃2,L = {v ∈ X̃L |ϕ[−L ,L],2(v) = m̃2,L }.

Remark 4.1 Note that the map L �→ m̃2,L is not decreasing and m̃2,L ≤ m̃2,∞ ≡ m2 for all
L > 0. Indeed, let ṽ+ ∈ M̃+

2 be given by Lemma 3.8. Then ṽ+
L = ṽ|SL ∈ X̃L and

m̃2,L ≤ ϕ[−L ,L],2(ṽ+
L ) ≤ ϕ2(ṽ

+) = m̃2,∞
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The application of the direct method of the calculus of variation allows us to show that M̃2,L

is not empty for every L > 0.

Proposition 4.1 For every L > 0, there exists v ∈ M̃2,L with q−(x) ≤ v(x, y) ≤ q+(x)
for a.e. (x, y) ∈ SL .

Proof Fixed L > 0, let (vn)n∈N ⊂ X̃L be such that ϕ[−L ,L],2(vn) → m̃2,L and note that,
arguing as in Lemma 3.2, it is not restrictive to assume that q−(x) ≤ vn(x, y) ≤ q+(x) for
a.e. (x, y) ∈ SL and all n ∈ N. Then, arguing as in Lemma 3.3, we have that there exists
v ∈ X such that, up to a subsequence, vn → v weakly in H1(SL). Moreover, by pointwise
convergence we have that q−(x) ≤ v(x, y) ≤ q+(x) for a.e. (x, y) ∈ SL and v ∈ X̃ , i.e.
v ∈ X̃L . Then, by semicontinuity, we conclude ϕ[−L ,L],2(v) = m̃2,L . ��
Arguing as in Lemma 3.3 in [10] (a similar argument is used also in the proof of Lemma 5.2
below), we have

Lemma 4.1 If v ∈ M̃2,L then v ∈ C2(SL) and it is a classical solution to (P̃L ,2).

From every function v ∈ M̃2,L we can recover a two dimensional periodic solution of (P̃2).
Indeed, if v ∈ M̃2,L , reflecting with respect to the axes y = ±L and then continuing by peri-
odicity in the y-direction we obtain a solution on R

2, that we again denote with v, which is
y-periodic of period 4L and which satisfies ∂yv(x,±L) = 0 for all x ∈ R. Since ‖v‖L∞ ≤ 1
for all v ∈ M̃2,L , by Schauder estimates we obtain the existence of a constant C > 0 such
that

‖v‖C2(R2) ≤ C for all v ∈ M̃2,L and L > 0. (4.1)

Remark 4.2 We recall that considered δ0 as defined in Lemma 3.4, 
̄ was correspondingly
fixed in the proof of Lemma 3.5 such that if v ∈ X , infq∈M ‖v(·, y)− q‖H1 > δ0 for a.e. y
in an interval I ⊂ R of length 
̄ then by (3.3) we have ϕI,2(v) ≥ m̃2,∞ + λ̄ with λ̄ given by
Lemma 3.4.

We can use these observations to say in particular that if L ≥ 
̄, v ∈ X̃L andϕ[−L ,L],2(v) <
m̃2,L + λ̄ then there exists y0 ∈ (0, 
̄) such that infq∈M ‖v(·, y0)− q‖H1 ≤ δ0.

Then the argument in the proof of Lemma 3.4 applies here to recover that if L > 
̄ and v ∈
X̃L is such that q−(x) ≤ v(x, y) ≤ q+(x) for a.e. (x, y) ∈ SL and ϕ[−L ,L],2(v) ≤ m̃2,L + λ̄,
then either

‖v(·, y)− q+‖L2 ≤ d0 for all y ∈ [
̄, L] or ‖v(·, y)− q−‖L2 ≤ d0 for all y ∈ [
̄, L].
For L ≥ 
̄, we will denote

X̃±
L = {v ∈ X̃L | ‖v(·, y)− q±‖L2 ≤ d0, ∀y ∈ [
̄, L]}

and note that if v ∈ X̃+
L then the symmetric function v∗(x, y) = −v(−x, y) belongs to X̃−

L
and viceversa. By Remark 4.2, we have that for every L ≥ 
̄ there results M̃2,L ⊂ X̃+

L ∪ X̃−
L .

We use again Remark 4.2 to prove the following concentration property.

Lemma 4.2 (Concentration: L∞ estimate) For all ε > 0 there exists Lε > 
̄ such that if
L > Lε and v ∈ M̃2,L ∩ X̃+

L is such that q−(x) ≤ v(x, y) ≤ q+(x) for a.e. (x, y) ∈ SL ,

then

‖v(·, y)− q+‖L∞ < ε, ∀y ∈ (Lε, L].
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Proof To prove the lemma, we argue by contradiction assuming that there exist ε0 ∈
(0,min{ 1

2 ; d0}), two increasing sequences 0 < 
̄ < yn ≤ Ln such that yn → +∞ and a
sequence (vn) ⊂ M̃2,Ln ∩ X̃+

Ln
such that for every n ∈ N there results ‖vn(·, yn)−q+‖L∞ >

2ε0.
First, by (4.1), note that supn∈N

‖vn − q+‖C1(SLn )
< +∞ and so

∃ y0 ∈ (0, y1 − 
̄) such that ‖vn(·, y)− q+‖L∞ > ε0 for all y ∈ (yn − y0, yn).

Again by (4.1) we then recover that there exists η0 > 0 such that

‖vn(·, y)− q+‖L2 > η0 for all y ∈ (yn − y0, yn).

Since vn ∈ X̃+
Ln

we then have dL2(vn(·, y),M) = ‖vn(·, y) − q+‖L2 > η0 for all y ∈
(yn − y0, yn) and so by the compactness property (2.2) we obtain that there exists ν̄ > 0 such
that for all n ∈ N there results ϕ(vn(·, y))− m ≥ ν̄,∀ y ∈ (yn − y0, yn). Then we conclude

ϕ(yn−y0,yn),2(vn) ≥ ν̄y0 for all n ≥ n̄. (4.2)

On the other hand, since ϕ(
̄,yn−y0),2(vn) ≤ m̃2,Ln ≤ m̃2,∞ for all n ∈ N,we obtain that there

exists ȳn ∈ (
̄, yn − y0) for which ϕ(vn(·, ȳn)) → m and so by the compactness property
in Lemma 2.2, since ‖vn(·, ȳn) − q+‖L2 ≤ d0, we derive ‖vn(·, ȳn) − q+‖H1 → 0. Now,
setting

v̄n(x, y) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

q+(x) y ≥ ȳn + 1,
(ȳn + 1 − y)vn(x, ȳn)+ (y − ȳn)q+(x) ȳn ≤ y ≤ ȳn + 1
vn(x, y), −ȳn ≤ y ≤ ȳn

(ȳn + 1 + y)vn(x,−ȳn)+ (−y − ȳn)q−(x) −ȳn ≥ y ≥ −ȳn − 1
q−(x) y ≤ −ȳn − 1,

for all (x, y) ∈ SLn ,we recognize that v̄n ∈ X̃Ln and so ϕ(−Ln ,Ln),2(v̄n) ≥ m̃2,Ln . Moreover,
since ‖vn(·, ȳn)− q+‖H1 → 0, we derive that

‖v̄n(·, y)− q+‖H1 → 0 and ‖∂y v̄n(·, y)‖L2 → 0,

uniformly w.r.t. y ∈ (ȳn, ȳn + 1) as n → +∞. Hence also ϕ(v̄n(·, y)) → m uniformly w.r.t.
y ∈ (ȳn, ȳn + 1) and we conclude

ϕ(ȳn ,ȳn+1),2(v̄n) =
ȳn+1∫
ȳn

1
2‖∂y v̄n(·, y)‖2

L2 + (ϕ(v̄n(·, y))− m) dy → 0.

Finally, since ϕ(ȳn+1,Ln),2(v̄n) = 0 for all n ∈ N, by symmetry, we derive that as n → +∞
there results
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ϕ(−ȳn ,ȳn),2(vn) = ϕ(−ȳn ,ȳn),2(v̄n) = ϕ(−Ln ,Ln),2(v̄n)− 2ϕ(ȳn ,ȳn+1),2(v̄n)

≥ m̃2,Ln + o(1),

and so, by (4.2), we reach the contradiction

m̃2,Ln = ϕ(−Ln ,Ln),2(vn) ≥ ϕ(−ȳn ,ȳn),2(vn)+ ϕ(yn−y0,yn),2(vn)

≥ m̃2,Ln + o(1)+ ν̄y0.

��
Remark 4.3 If v ∈ M̃2,L ∩ X̃+

L , since v and q+ solves (P2) on SL we can use Lemma 4.2
to derive via the Schauder estimates that, for every ε > 0 there exists Lε > 
̄ such that for
L > Lε we have

if v ∈ M̃2,L ∩ X̃+
L then ‖v(·, y)− q+‖C2(R) < ε, ∀y ∈ (Lε, L]. (4.3)

Here below we use (∗∗) and Lemma 2.3 to give a refined version of (4.3).
We set ω̃ = min{√ω∗,

√
ω}, where ω∗ is given by (∗∗) and ω by Lemma 2.3.

Lemma 4.3 (Exponential decay) There exist L̃ ≥ 
̄ and a constant C > 0 such that if
L > L̃, v ∈ M̃2,L ∩ X̃+

L and q−(x) ≤ v(x, y) ≤ q+(x) for all (x, y) ∈ SL then

‖v(·, y)− q+‖L2 ≤ C e− ω̃
2 y for all y ∈ [L̃, L] (4.4)

and

‖v(·, y)− q+‖H1 ≤ C 4
√

y e− ω̃
2 y for all y ∈ [L̃, L]. (4.5)

Proof Given v ∈ M̃2,L ∩ X̃+
L , with abuse of notation, we denote again with v the corre-

sponding periodic prolongation in R
2. Consider the function φ(y) = ‖v(·, y) − q+‖2

L2 for

y > 0. Since q−(x) ≤ v(x, y) ≤ q+(x), we obtain φ(y) ≤ ‖q+ − q−‖2
L2 = 4d2

0 for all y.

Moreover, we have that φ ∈ C2((0,+∞)) and denoted by 〈·, ·〉 the bracket symbol for the
scalar product in L2(R), for every y > 0 we obtain

φ̈(y) = 2‖∂yv(·, y)‖2
L2 + 2〈v(·, y)− q+, ∂yyu(·, y)〉 ≥ 2〈v(·, y)− q+, ∂yyv(·, y)〉

(4.6)

Now, to estimate 〈v(·, y) − q+, ∂yyv(·, y)〉, note that using the L∞-concentration estimate
given by Lemma 4.2, we can choose L̃ ≥ 
̄ such that for any y ∈ [L̃, L] and for any x ∈ R

there results

W ′(v(x, y))− W ′(q+(x)) = W ′′(q+(x))(v(x, y)− q+(x))+ r(x, y)

with |r(x, y)| ≤ ω∗
4 |v(x, y) − q+(x)|. Then, since v and q+ solve −�u + aW ′(u) = 0 on

R
2, for all y ∈ [L̃, L] we have

〈v(·, y)− q+, ∂yyv(·, y)〉 = 〈v(·, y)− q+,−∂xx (v(·, y)− q+)
+aW ′(v(·, y))− aW ′(q+)〉

≥ 〈v(·, y)− q+,−∂xx (v(·, y)− q+)+ aW ′′(q+)(v(·, y)− q+)〉 − ω∗
4 ‖v(·, y)− q+‖2

L2

= ϕ′′(q+)(v(·, y)− q+) · (v(·, y)− q+)− ω∗
4 ‖v(·, y)− q+‖2

L2 .

and by (∗∗) we obtain

〈v(·, y)− q+, ∂yyv(·, y)〉 ≥ ω∗
2 ‖v(·, y)− q+‖2

L2 (4.7)
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Then, by (4.6) and (4.7), since by definition ω̃ ≤ √
ω∗, we obtain that

φ̈(y) ≥ ω∗φ(y) ≥ ω̃2φ(y) for all y ∈ [L̃, L]. (4.8)

By symmetry, we have that the function φ verifies φ(L̃) = φ(2L − L̃) ≤ 4d2
0 and moreover

that (4.8) holds true also for all y ∈ (L̃, 2L − L̃). Setting

ψ(y) = 4d2
0

cosh(ω̃(L − y))

cosh(ω̃(L − L̃))

we get that ψ̈(y) = ω̃2ψ(y) and ψ(L̃) = ψ(2L − L̃) = 4d2
0 . Hence, by the maximum

principle, we obtain that φ(y) ≤ ψ(y) for all y ∈ [L̃, 2L − L̃], that is

‖v(·, y)− q+‖2
L2 ≤ δ̄

cosh(ω̃(L − y))

cosh(ω̃(L − L̃))
∀y ∈ [L̃, L].

Since for y ∈ [L̃, L] we have cosh(ω̃(L − y)) ≤ eω̃(L−y) and 2 cosh(ω̃(L − L̃)) ≥ eω̃(L−L̃),

we conclude

‖v(·, y)− q+‖2
L2 ≤ 8d2

0
eω̃(L−y)

eω̃(L−L̃)
= 8d2

0 eω̃(L̃−y) ∀y ∈ [L̃, L]

which proves (4.4).
To recover the estimate in H1(R) we set φy(x) = v(x, y) − q+(x) and note that since

φy(x) → 0 as |x | → +∞ we have

‖∂xφy‖2
L2 =

∫
R

∂x (φy∂xφy) dx −
∫
R

φy∂
2
xφy dx = −

∫
R

φy∂
2
xφy dx .

Now, since by the Schauder estimates |∂2
x v(x, y) − q̈+(x)| ≤ C on R

2 for some constant
C > 0 and since, by Lemma 2.3, choosing L̃ bigger if necessary, for |x | > L̃ we have
|q+(x)− q−(x)| ≤ 2K e−√

ω|x |, using (4.4) we obtain

−
∫
R

φy∂
2
xφy dx =

y∫
−y

(v(x, y)− q+(x))(∂2
x v(x, y)− q̈+(x))dx

+
∫

|x |>y

(v(x, y)− q+(x))(∂2
x v(x, y)− q̈+(x))dx

≤ C
√

2y‖v(·, y)− q+‖L2 + C
∫

|x |>y

|q+(x)− q−(x)|dx

≤ C
√

2y
√

2δ̄ eω̃(L̃−y) + 4
C K√
ω

e−√
ωy ≤ C̃

√
2y e−ω̃y .

from which (4.5) follows. ��
Thanks to (4.5) we can now estimate the asymptotic behaviour of m̃2,L as L → +∞.

Lemma 4.4 (Asymptotic behaviour of m̃2,L ) There exists a constant C > 0 such that for all
L ≥ L̃ there results

m̃2,∞ − m̃2,L ≤ C
√

L e− ω̃
2 L . (4.9)
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Proof Letting u ∈ M̃2,L ∩ X̃+
L , we define

v(x, y) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

q+(x) y ≥ L + 1,
(L + 1 − y)u(x, L)+ (y − L)q+(x) L ≤ y ≤ L + 1
u(x, y), −L ≤ y ≤ L
(L + 1 + y)u(x,−L)+ (−y − L)q−(x) −L ≥ y ≥ −L − 1
q−(x) y ≤ −L − 1,

We recognize that v ∈ H̃+
2 and so ϕ2(v) ≥ m̃2,∞. Hence, since ϕ2(v) = m̃2,L +

2ϕ(L ,L+1),2(v), we get

m̃2,∞ − m̃2,L ≤ 2ϕ(L ,L+1),2(v) = 2

L+1∫
L

1
2‖∂yv(·, y)‖2

L2 + ϕ(v(·, y))− m dy. (4.10)

To evaluate ϕ(L ,L+1),2(v) we use (4.4). First observe that by (4.4) there exists a constant
C1 > 0 such that for every L ≥ L̃ and y ∈ (L , L + 1) there results

‖∂yv(·, y)‖2
L2 = ‖u(·, L)− q+‖2

L2 ≤ C1 e−ω̃L . (4.11)

To estimate the term ϕ(v(·, y))− m = ϕ(v(·, y))− ϕ(q+), note that for all y ∈ (L , L + 1)
we have

||∂xv(x, y)|2 − |q̇+(x)|2| = ||(L + 1 − y)∂x u(x, L)+ (y − L)q̇+(x)|2 − |q̇+(x)|2|
= ||q̇+(x)+ (L + 1 − y)(∂x u(x, L)− q̇+(x))|2 − |q̇+(x)|2|
≤ (L + 1 − y)2|∂x u(x, L)− q̇+(x)|2 + 2(L + 1 − y)|∂x u(x, L)− q̇+(x)||q̇+(x)|
≤ |∂x u(x, L)− q̇+(x)|2 + 2|∂x u(x, L)− q̇+(x)||q̇+(x)|

then, by (4.5), there exists C2 > 0 such that for all y ∈ (L , L + 1) we have

|‖∂xv(·, y)‖2
L2 − ‖q̇+‖2

L2 | ≤ ‖∂x u(·, L)− q̇+‖2
L2 + 2‖∂x u(·, L)− q̇+‖L2‖q̇+‖L2

≤ C2(
√

Le−ω̃L + 4
√

Le− ω̃
2 L)

Moreover, setting w̃ = sups∈[−1,1] W ′(s), we get for all y ∈ (L , L + 1)

|W (v(x, y))− W (q+(x))| = |W ((L + 1 − y)u(x, L)+ (y − L)q+(x))− W (q+(x))|
≤ w̃|(L + 1 − y)u(x, L)+ (y − L)q+(x)− q+(x)|
= w̃(L + 1 − y)|u(x, L)− q+(x)| ≤ w̃|u(x, L)− q+(x)|

and so, by (4.4) and since, by Lemma 2.3, for |x | > L , |u(x, L)−q+(x)| ≤ |q−(x)−q+(x)| ≤
2K e−√

ω|x | ≤ 2K e−ω̃|x | , we obtain for all y ∈ (L , L + 1)∫
R

a(x)W (v(x, y)) − a(x)W (q+(x))dx ≤ w̃ā
∫
R

|u(x, L)− q+(x)|dx

≤ w̃ā

⎛
⎜⎝

L∫
−L

|u(x, L)− q+(x)|dx +
∫

|x |>L

|u(x, L)− q+(x)|dx

⎞
⎟⎠

≤ w̃ā

⎛
⎜⎝√

2L‖u(·, L)− q+‖L2 +
∫

|x |>L

|q−(x)− q+(x)|dx

⎞
⎟⎠
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≤ w̃ā

(√
2Le− ω̃

2 L + 2
K

ω̃
e−ω̃L

)

≤ C3(
√

Le− ω̃
2 L + e− ω̃

2 L).

Gathering the above estimates, for every y ∈ (L , L + 1) there results

ϕ(u(·, y))− m ≤ C2

2
(
√

Le−ω̃L + 4
√

Le− ω̃
2 L)+ C3(

√
Le− ω̃

2 L + e− ω̃
2 L) ≤ C4

√
Le− ω̃

2 L

and hence using (4.11) we conclude

m̃2,∞ − m̃2,L ≤ 2ϕ(L ,L+1),2(v) ≤ C1e− ω̃
2 L + 2C4

√
Le− ω̃

2 L

and the Lemma follows. ��
As final property in this section we state a compactness property which will be useful in the
construction of the three dimensional solutions.

Lemma 4.5 Let Ln → +∞ and vn ∈ X̃+
Ln

with q−(x) ≤ vn(x, y) ≤ q+(x) on SLn be such
that ϕ(−Ln ,Ln),2(vn)− m̃2,Ln → 0 as n → ∞. Then, for all L > 0

‖vn − ṽ+‖L2(SL )
→ 0.

Moreover, if L̄n ∈ (0, Ln) is such that L̄n → +∞ then ‖vn(·, L̄n)− q+‖L2(R) → 0.

Proof Since m̃2,Ln → m̃2,∞ and ϕ(−Ln ,Ln),2(vn)− m̃2,Ln → 0 as n → ∞,we have that the
sequence (ϕ(−Ln ,Ln),2(vn))n∈N is bounded. Then, letting L̄n ∈ (0, Ln) such that L̄n → +∞,

we have that (ϕ(L̄n/2,L̄n),2(vn))n∈N is bounded too and since L̄n → +∞ we recover that there

exists yn ∈ (L̄n/2, L̄n − 1) such that ϕ(vn(·, yn)) → m. By Lemma 2.2, since vn ∈ X̃+
Ln

we
obtain that, up to a subsequence, ‖vn(·, yn)− q+‖H1 → 0. Defining

v̄n(x, y) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

q+(x) y ≥ yn + 1,
(yn + 1 − y)vn(x, yn)+ (y − yn)q+(x) yn ≤ y ≤ yn + 1
vn(x, y) −yn ≤ y ≤ yn

(yn + 1 + y)vn(x,−yn)+ (−y − yn)q−(x) −yn ≥ y ≥ −yn − 1
q−(x) y ≤ −yn − 1,

we recognize that

(i) v̄n ∈ H̃+
2 and q−(x) ≤ v̄n(x, y) ≤ q+(x) on R

2,

(ii) v̄n ∈ X̃+
Ln

(with abuse of notation) and so ϕ(−Ln ,Ln),2(v̄n) ≥ m̃2,Ln .
Arguing as in the proof of Lemma 4.2, we recover that

(iii) ϕ(yn ,yn+1),2(v̄n) → 0 as n → +∞.

Since ϕ(yn+1,Ln),2(v̄n) = ϕ(yn+1,Ln),2(q+) = 0, by (iii) there results

ϕ2(v̄n) = ϕ(−yn ,yn),2(v̄n)+ 2ϕ(yn ,yn+1),2(v̄n) = ϕ(−yn ,yn),2(v̄n)+ o(1). (4.12)

Moreover by (ii) and (iii)

ϕ(−yn ,yn),2(v̄n) ≥ ϕ(−Ln ,Ln),2(v̄n)− 2ϕ(yn ,yn+1),2(v̄n) ≥ m̃2,Ln + o(1),

and since

o(1) = ϕ(−Ln ,Ln),2(vn)− m̃2,Ln ≥ ϕ(−yn ,yn),2(vn)− m̃2,Ln = ϕ(−yn ,yn),2(v̄n)− m̃2,Ln ,

we conclude that ϕ(−yn ,yn),2(v̄n) − m̃2,Ln → 0. Since m̃2,Ln → m̃2,∞ by (4.12) we finally
obtain
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ϕ2(v̄n) → m̃2,∞ as n → ∞.

By Lemma 3.9 we conclude that ‖v̄n − ṽ+‖L2(R2) → 0 and so since v̄n(x, y) = vn(x, y) on
Syn we derive ‖vn − ṽ+‖L2(Syn )

→ 0 and so, since yn → +∞ that ‖vn − ṽ+‖L2(SL )
→ 0

for any L > 0.
To conclude the proof note that if ‖vn(·, L̄n) − q+‖L2(R) �→ 0 then there exists

δ ∈ (0, d0/2) and a subsequence of (L̄n), denoted again with L̄n, such that ‖vn(·, L̄n) −
q+‖L2(R) ≥ 2δ. Since vn ∈ X+

Ln
we deduce infq∈M ‖vn(·, L̄n) − q‖L2(R) ≥ 2δ and since

‖vn(·, yn)−q+‖L2(R) → 0 we recover by (3.2) that there exists (σn, τn) ⊂ (yn, L̄n) such that
‖vn(·, τn)− vn(·, σn)‖L2(R) = δ and infq∈M ‖vn(·, y)− q‖L2(R) ≥ δ for a.e. y ∈ (σn, τn).
Then by (2.2) there exists ν > 0 such that ϕ(vn(·, y)) ≥ m + ν for a.e. y ∈ (σn, τn) and by
(3.3) we conclude ϕ(σn ,τn),2(vn) ≥ √

2δν > 0 for any n ∈ N. This is in contradiction with
the fact that, as proved above,

ϕ(σn ,τn),2(vn) ≤ ϕ(yn ,Ln),2(vn) = 1
2 (ϕ(−Ln ,Ln),2(vn)− ϕ(−yn ,yn),2(vn)) → 0

and the lemma follows. ��
Remark 4.4 Clearly by Lemma 4.5 we symmetrically obtain that if Ln → +∞ and un ∈ X̃−

Ln
with q−(x) ≤ vn(x, y) ≤ q+(x) on SLn are such that ϕ(−Ln ,Ln),2(vn) − m̃2,Ln → 0 as
n → ∞, then, for all L > 0 there results

‖vn − ṽ−‖L2(SL )
→ 0.

We then conclude that if Ln → +∞ and vn ∈ X̃Ln are such that q−(x) ≤ vn(x, y) ≤ q+(x)
on SLn and ϕ(−Ln ,Ln),2(vn) − m̃2,Ln → 0 as n → ∞, then, for all L > 0 there exists a
subsequence (vn j ) j∈N ⊂ (vn)n∈N such that

‖vn j − ṽ−‖L2(SL )
→ 0 or ‖vn j − ṽ+‖L2(SL )

→ 0.

In particular we obtain that there exists L̄ > L̃ such that for all δ > 0 there exists μδ > 0
such that

if v ∈ X̃L , L ≥ L̄, inf
v̄=ṽ± ‖v − v̄‖L2(SL )

> δ then ϕ(−L ,L),2(v) ≥ m̃2,L + μδ. (4.13)

5 Three dimensional solutions

In this section we will complete the proof of Theorem 1.1.
First, fixed θ ∈ (0, π4 ] and denoted z̄ = z tan θ, we consider the infinite prism

Pθ = {(x, y, z) ∈ R
3 | (x, y) ∈ Sz̄, z ≥ 0}

and the existence of solutions to the problem⎧⎪⎪⎨
⎪⎪⎩

−�v(x, y, z)+ a(x)W ′(v(x, y, z)) = 0, (x, y, z) ∈ Pθ ,
v(x, y, z) = −v(−x,−y, z), (x, y, z) ∈ Pθ
∂νv(x, y, z) = 0 (x, y, z) ∈ ∂Pθ

lim
x→±∞ v(x, y, z) = ±1, uniformly w.r.t. (y, z)

(P̃3,θ )

To this aim let us consider the space

Zθ = {u ∈ H1
loc(Pθ ) | u(·, ·, z) ∈ X̃z̄ for a.e. z ∈ (0,+∞)}
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on which we will look for a minima of the functional

ϕ3(u) =
+∞∫
0

z̄∫
−z̄

∫
R

1
2 |∇u(x, y, z)|2 + a(x)W (u(x, y, z)) dx − m dy − m̃2,z̄ dz

=
+∞∫
0

1

2
‖∂zu(·, ·, z)‖2

L2(Sz)
+ ϕ(−z̄,z̄),2(u(·, ·, z))− m̃2,z̄ dz.

Note that if u ∈ Zθ then u(·, ·, z) ∈ X̃z̄ for a.e. z > 0 and then ϕ(−z̄,z̄),2(u(·, ·, z)) ≥ m̃2,z̄ for
a.e. z > 0. Hence we recover that ϕ3 is well defined on Zθ and non negative. It is standard to
show that ϕ3 is weakly lower semicontinuous with respect to the H1

loc(Pθ ) topology. We set

m̃3(θ) = inf
u∈Zθ

ϕ3(u).

Remark 5.1 The problem is well posed since m̃3(θ) < +∞. Indeed, the functionv(x, y, z) =
ṽ+
|Pθ
(x, y) ∈ Zθ and by (4.9) there results

ϕ3(v) =
+∞∫
0

ϕ(−z̄,z̄),2(ṽ
+)− m̃2,z̄ dz

≤
+∞∫
0

m̃2,∞ − m̃2,z̄ dz ≤ C

+∞∫
0

√
tan θ z e− ν̃

2 tan θ z dz < +∞.

An important remark for our construction, is an estimate concerning the functional ϕ3, anal-
ogous to the one we gave in (3.3) for the two dimensional functional ϕ2.

First we note that if u ∈ Zθ then ϕ(−z̄,z̄),2(v(·, ·, z)) ≥ m̃2,z̄ for a.e. z > 0 and so

‖∂zu‖2
L2(Pθ )

≤ 2ϕ3(u) ∀u ∈ Zθ . (5.1)

Therefore, as in (3.2), note that if u ∈ Zθ then u(x, y, ·) ∈ H1
loc(z,+∞) for a.e. (x, y) ∈ Sz̄

and hence, if 0 < z1 < z2, then u(x, y, z2)− u(x, y, z1) = ∫ z2
z1
∂zu(x, y, z) dz holds for all

u ∈ Zθ and a.e. (x, y) ∈ Sz̄1 . So, if u ∈ Zθ , by (5.1), for z1 < z2 ∈ R
+, we obtain that

‖u(·, ·, z2)− u(·, ·, z1)‖2
L2(Sz̄1 )

=
∫

Sz̄1

∣∣∣∣
z2∫

z1

∂zu(x, y, z) dz |2dx dy

≤ |z2 − z1

∣∣∣∣
∫

Sz̄1

∫
R+

|∂zu(x, y, z)|2 dz dx dy

≤ 2ϕ3(u)|z2 − z1|. (5.2)

Finally, given an interval I ⊂ R+ and u ∈ Zθ we set

ϕI,3(u) =
∫
I

‖∂zu(·, ·, z)‖2
L2(Sz̄)

+ (ϕ(−z̄,z̄),2(u(·, ·, z))− m̃2,z̄) dz.

and note that if u ∈ Zθ is such that ϕ(−z̄,z̄),2(u(·, ·, z))− m̃2,z̄ ≥ ν > 0 for a.e. z ∈ (σ, τ ) ⊂
R

+, then
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ϕ(σ,τ),3(u) ≥ 1

2(τ − σ)
‖u(·, ·, τ )− u(·, ·, σ )‖2

L2(Sσ̄ )
+ ν(τ − σ)

≥ √
2ν‖u(·, ·, τ )− u(·, ·, σ )‖L2(Sσ̄ ). (5.3)

Remark 5.2 Arguing as in Lemma 3.2 we can prove that if u ∈ Zθ then, setting

û(x, y, z) = max{min{u(x, y, z); q+(x)}; q−(x)},
we have û ∈ Zθ , q−(x) ≤ û(x, y, z) ≤ q+(x) for a.e. (x, y, z) ∈ Pθ and ϕ3(û) ≤ ϕ3(u).

As in Lemma 3.1, the estimate (5.3), together with Lemma 4.5, allow us to characterize
the asymptotic behaviour, as z → +∞, of the functions u ∈ Zθ such that ϕ3(u) < +∞.
Precisely, we have

Lemma 5.1 If u ∈ Zθ is such that q−(x) ≤ u(x, y, z) ≤ q+(x) for a.e. (x, y, z) ∈ Pθ and
ϕ3(u) < +∞ then, fixed any L > 0, we have either

‖u(·, ·, z)− ṽ+‖L2(SL )
→ 0 or ‖u(·, ·, z)− ṽ−‖L2(SL )

→ 0 as z → +∞.

Proof Assume u ∈ Zθ and ϕ3(u) < +∞. Since ϕ(−z̄,z̄),2(u(·, ·, z)) − m̃2,z̄ ≥ 0 for a.e.
z > 0, we plainly derive that there exists an increasing sequence zn → +∞ such that
ϕ(−z̄n ,z̄n),2(u(·, ·, zn))− m̃2,z̄n → 0.

Fixed any L > 0, by Remark 4.4, we obtain that there exists an increasing subsequence
(znk ) ⊂ (zn) with zn1 ≥ L̃ such that ‖u(·, ·, znk ) − ṽ+‖L2(SL )

→ 0 or ‖u(·, ·, znk ) −
ṽ−‖L2(SL )

→ 0 as k → +∞. Possibly considering the function u∗(x, y, z) = u(x,−y, z),
it is not restrictive to assume that ‖u(·, ·, znk )− ṽ+‖L2(SL )

→ 0 as k → +∞. We claim that
in fact ‖u(·, ·, z)− ṽ+‖L2(SL )

→ 0 as z → +∞.
Indeed, arguing by contradiction, setting 4δ0 = ‖ṽ− − ṽ+‖L2(R2), by (5.2) we obtain the

existence of a sequence of intervals (σk, τk) ⊂ R
+, a positive number δ ∈ (0, δ0) for which

(i) σk+1 > τk → +∞,

(ii) ‖u(·, ·, τk)− u(·, ·, σk)‖L2(SL )
= δ,

(iii) 2δ ≥ ‖u(·, ·, z)− ṽ+‖L2(SL )
≥ δ, for every z ∈ (σk, τk).

By (4.13) and (iii) we recover that there exists μ > 0 and k̄ ∈ N such that ϕ(−z̄,z̄),2
(u(·, ·, z)) − m̃2,z̄ ≥ μ for all z ∈ (σk, τk) and k ≥ k̄. Using now (5.3) and (ii) we
obtain ϕ(σk ,τk ),3(u) ≥ √

2μδ > 0 for all k ≥ k̄ and so, by (i), we conclude ϕ3(u) ≥∑
k≥k̄ ϕ(σk ,τk ),3(u) = +∞, a contradiction. ��

We are now able to prove the existence of a minimum of ϕ3 on Zθ .

Proposition 5.1 For all θ ∈ (0, π4 ], there exist u±
θ ∈ Zθ such that ϕ3(u

±
θ ) = m̃3(θ) and

q−(x) ≤ u±
θ (x, y, z) ≤ q+(x) a.e. on Pθ . Moreover, u−

θ (x, y, z) = u+
θ (x,−y, z) a.e. on Pθ

and for every L > 0

‖u±
θ (·, ·, z)− ṽ±‖L2(SL )

→ 0 as z → +∞.

Proof Let (un)n∈N ⊂ Zθ be a minimizing sequence for ϕ3 which, by Remark 5.2, can be
assumed such that q−(x) ≤ un(x, y, z) ≤ q+(x) for a.e. (x, y, z) ∈ Pθ , n ∈ N. It is not
difficult to recognize that, fixed any r > 0, if Tr = Pθ ∩{z < r}, then (un − p0) is a bounded
sequence on H1(Tr ). Indeed, since q−(x) ≤ un(x, y, z) ≤ q+(x) a.e. in Pθ for every n ∈ N

we have ‖un − p0‖L2(Tr )
< +∞ for any n ∈ N. Moreover
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‖∇un‖2
L2(Tr )

=
r∫

0

z̄∫
−z̄

∫
R

|∇un(x, y, z)|2 dx dy dz

≤ 2ϕ3(un)+ 2

r∫
0

m̃2,z̄ dz + 2

r∫
0

z̄∫
−z̄

m dy dz

≤ 2ϕ3(un)+ 2rm̃2,∞ + 2mr2 tan θ = 2(m̃3(θ)+ rm̃2,∞ + mr2 tan θ)+ o(1)

and our claim follows.
Thus, by a classical diagonal argument, there exists u ∈ p0 + ∩r>0 H1(Tr ) and a subse-

quence of (un), still denoted (un), such that un − u → 0 weakly in H1(Tr ) for any r > 0
and for a.e. (x, y, z) ∈ Pθ .

Note that, by pointwise convergence, we have q−(x) ≤ u(x, y, z) ≤ q+(x) a.e. on Pθ .
Moreover since u − p0 ∈ ∩r>0 H1(Tr ) we have that u(·, y, z) ∈ p0 + H1(R) = H a.e. on
{(y, z) / z > 0, y ∈ (−z̄, z̄)}. Finally, since un(x, y, z) = −un(−x,−y, z), by the point-
wise convergence, there results also that u(x, y, z) = −u(−x,−y, z) for a.e. (x, y, z) ∈ Pθ .
This proves that u ∈ Zθ and by semicontinuity we recover that ϕ3(u) = m̃3(θ). By Lemma
5.1, it follows that fixed any L > 0, we have either

‖u(·, ·, z)− ṽ+‖L2(SL )
→ 0 or ‖u(·, ·, z)− ṽ−‖L2(SL )

→ 0 as z → +∞.

If the first case occurs we set u+(x, y, z) = u(x, y, z), otherwise u+(x, y, z) = u(x,−y, z).
Finally, setting u−(x, y, z) = u+(x,−y, z), the Lemma follows. ��

By Lemma 5.1 we have that if ψ ∈ C∞
0 (R

3) verifies ψ(x, y, z) = −ψ(−x,−y, z) then
ϕ3(u± + ψ) ≥ ϕ3(u±). From this we derive that in fact u± are weak solution on Pθ of the
equation −�u + a(x)W ′(u) = 0 satisfying Neumann boundary condition on ∂Pθ . Indeed
we have

Lemma 5.2 If u is a minimum of ϕ3 on Zθ then we have∫
Pθ

∇u · ∇ψ + a(x)W ′(u)ψ dx dy dz = 0 for all ψ ∈ C∞
0 (R

3)

Proof Given any ψ ∈ C∞
0 (R

3), we set ψo(x, y, z) = 1
2 (ψ(x, y, z) − ψ(−x,−y, z)),

ψe(x, y, z) = 1
2 (ψ(x, y, z) + ψ(−x,−y, z)). Since ψo(x, y, z) = −ψo(−x,−y, z) we

have ϕ3(u + tψo) ≥ ϕ3(u) and so

ϕ3(u + tψ)− ϕ3(u) ≥ ϕ3(u + tψ)− ϕ3(u + tψo).

Observing that the functions ∇u · ∇ψe and ∇ψo · ∇ψe change sign under the transformation
(x, y, z) → (−x,−y, z), we recover

ϕ3(u + tψ)− ϕ3(u + tψo) =
∫
Pθ

t2

2 |∇ψe|2 + a(x)(W (u + tψ)− W (u + tψo)) dx dy dz.

Finally, since W ′(u(x, y, z))ψe(x, y, z) = −W ′(u(−x,−y, z))ψe(−x,−y, z), we
conclude
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∫
Pθ

∇u · ∇ψ + a(x)W ′(u)ψ dx dy dz = lim
t→0+

1
t (ϕ3(u + tψ)− ϕ3(u))

≥ lim
t→0+

∫
Pθ

a(x)W (u+tψ)−W (u)
t + a(x)W (u)−W (u+tψo)

t dx dy dz

=
∫
Pθ

a(x)W ′(u)ψe dx dy dz = 0.

This proves that
∫

Pθ
∇u · ∇ψ + a(x)W ′(u)ψ dx dy dz ≥ 0 for all ψ ∈ C∞

0 (R
3), which is

actually equivalent to our statement. ��

By Proposition 5.1 and Lemma 5.2, by classical arguments, we obtain in particular that for
every θ ∈ (0, π4 ] there exist at least two solution u±

θ ∈ Zθ of problem (P̃3,θ ). Since u±
θ are

classical solutions to (P̃3,θ ) and since |u±
θ (x, y, z)| ≤ 1 on Pθ by Schauder estimates we

obtain the existence of a constant C > 0 such that

‖u±
θ ‖C2(Pθ )

≤ C for any θ ∈ (0, π/4]. (5.4)

This can be used to prove the following asymptotic property of the functions u±
θ .

Lemma 5.3 There results ‖u±
θ (·, ·, z)− ṽ±‖L∞(Sz̄) → 0 as z → +∞.

Proof Assume by contradiction that there exists ρ0 > 0 and (xn, yn, zn) ∈ Pθ with zn →
+∞ such that |u+

θ (xn, yn, zn) − v+(xn, yn)| ≥ 4ρ0. By (5.4) we obtain that there exists
r0 > 0 such that if n ∈ N and (x, y, z) ∈ Pθ is such that |x − xn |, |y − yn |, |z − zn | ≤ r0 then
|u+
θ (x, y, z)−v+(x, y)| ≥ 2ρ0. Since by Proposition 5.1 we have ‖u+

θ (·, ·, z)−v+‖L2(SL )
→

0 as z → +∞ for every L > 0, we recover that |yn | → +∞. By symmetry we can assume
that yn → +∞. Since by Lemma 3.7 we know that v+(·, y) → q+ as y → +∞ uniformly
on R, we deduce that there exists n̄ > 0 such that if n ≥ n̄ and (x, y, z) ∈ Pθ is such that
|x − xn |, |y − yn |, |z − zn | ≤ r0 then |u+

θ (x, y, z)− q+(x)| ≥ ρ0. In particular this implies
that if n ≥ n̄, |z − zn | ≤ r0, y ∈ [yn − r0,min{yn + r0, z̄}], then

‖u+
θ (·, y, z)− q+‖L2(R) ≥ √

2r0ρ0. (5.5)

Denoting A = ∪n≥n̄[zn − r0, zn + r0], since ϕ3(u
+
θ ) < +∞ we recover in particular

that
∫

A ϕ(−z̄,z̄),2(u
+
θ (·, ·, z)) − m̃z̄,2 dz < +∞. This implies that there exists a sequence

ξ j → +∞, ξ j ∈ A, such that ϕ(−ξ̄ j ,ξ̄ j ),2(u
+
θ (·, ·, ξ j )) − m̃ ξ̄ j ,2 → 0. By (5.5), if ξ j ∈

[zn − r0, zn + r0] for a certain n ∈ N we can pick a η j ∈ [yn − r0,min{yn + r0, ξ j tan θ}]
such that

‖u+
θ (·, η j , ξ j )− q+‖L2(R) ≥ √

2r0ρ0. (5.6)

Note that 0 < η j < ξ j and η j → +∞.
Since ϕ(−ξ̄ j ,ξ̄ j ),2(u

+
θ (·, ·, ξ j )) − m̃ ξ̄ j ,2 → 0, we have that there exists j0 ∈ N such that

ϕ(−ξ̄ j ,ξ̄ j ),2(u
+
θ (·, ·, ξ j )) ≤ m̃ ξ̄ j ,2 + λ̄ for every j ≥ j0. By Remark 4.2 we deduce that for

every j ≥ j0 we have either

‖u+
θ (·, y, ξ j )− q+‖L2 ≤ d0 or ‖u+

θ (·, y, ξ j )− q−‖L2 ≤ d0, ∀y ∈ [
̄, ξ j tan θ ].
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Fig. 2 The family {Pk, j | k = 0, . . . , 2 j − 1} for j = 3

Since by Proposition 5.1 we know that for every L > 0 we have ‖u+
θ (·, ·, ξ j )−ṽ+‖L2(SL )

→ 0
as j → +∞, we deduce that the first case occurs for j ≥ j0 (taking j0 bigger if necessary),
resulting that

u+
θ (·, ·, ξ j ) ∈ X̃+

ξ̄ j
for all j ≥ j0 and ϕ(−ξ̄ j ,ξ̄ j ),2(u

+
θ (·, ·, ξ j ))− m̃ ξ̄ j ,2 → 0.

Since η j → +∞ and 0 < η j < ξ j , we can then apply Lemma 4.5 to conclude that
‖u+
θ (·, η j , ξ j )− q+‖L2(R) → 0, in contradiction with (5.6). ��

Now, choosing θ j = π
2 j , j ∈ N, j ≥ 2, from the corresponding solutions u±

θ j
: Pθ j →

R given by Proposition 5.1, we can construct an entire solution v j : R
3 → R to

(1.5) just recursively reflecting u±
θ j

with respect to the faces of Pθ j . In this way we

will obtain solutions which depends in a non trivial way on (y, z) ∈ R
2 as stated in

Theorem 1.1.
Fixed j ∈ N, j ≥ 2, consider the rotation matrix

A j =
∥∥∥∥∥∥

1 0 0
0 cos πj sin π

j
0 − sin π

j cos πj

∥∥∥∥∥∥
Setting Pk, j = Ak

jP π
2 j
, for every k = 0, . . . , 2 j − 1, we have R

3 = ∪2 j−1
k=0 Pk, j and that if

k1 �= k2 then int (Pk1, j ) ∩ int (Pk2, j ) = ∅ (Fig. 2).
Now considering the minimum u±

j given in Proposition 5.1 corresponding to θ = π
2 j ,

recalling that u−
j (x, y, z) = u+

j (x,−y, z) for all (x, y, z) ∈ P π
2 j
, since A−k

j Pk, j = P π
2 j
, for

(x, y, z) ∈ Pk, j , k = 0, . . . , 2 j − 1, we define

v j (x, y, z) = u+
j (A

−k
j (x, (−1)k y, z))

{
= u+

j (A
−k
j (x, y, z)), if k is even,

u−
j (A

−k
j (x, y, z)), if k is odd.

As one can recognize, we have that v j |P1, j is the reflection of v j |P0, j = u+
j w.r.t. the plane

which separates P0, j = P π
2 j

from P1, j and, in general, for every k ∈ {1, . . . , 2 j − 1} we
have that v j |Pk, j is the reflection of v j |Pk−1, j w.r.t. the plane separating Pk−1, j from Pk, j .
Then, since u±

j ∈ H1
loc(P π

2 j
), we recover that v j ∈ H1

loc(R
3) (see e.g. [20, Lemma IX.2]).

Moreover, note that ifψ ∈ C∞
0 (R

3) and k ∈ {1, . . . , 2 j −1} then, trivially,ψ◦ Ak
j ∈ C∞

0 (R
3)
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and so by Lemma 5.2, we obtain∫
Pk, j

∇v j (x, y, z) · ∇ψ(x, y, z)+ a(x)W ′(v j (x, y, z))ψ(x, y, z) dx dy dz

=
∫

P π
2 j

∇u+
j (x, (−1)k y, z) · ∇ψ ◦ Ak

j (x, (−1)k y, z)

+a(x)W ′(u+
j (x, (−1)k y, z))ψ ◦ Ak

j (x, (−1)k y, z) dx dy dz = 0.

Hence, for any ψ ∈ C∞
0 (R

3), we recover

∫
R3

∇v j · ∇ψ + a(x)W ′(v j )ψ dx dy =
2 j−1∑
k=0

∫
Pk, j

∇v j · ∇ψ + a(x)W ′(v j )ψ dx dy = 0,

i.e., v j is a weak and so, by standard bootstrap arguments, a classical solution of −�v +
a(x)W ′(v) = 0 on R

3. Moreover, by definition and Proposition 5.1, we have that every v j

satisfies the conditions:

(i) q−(x) ≤ v j (x, y, z) ≤ q+(x) on R
3 and so v j (x, y, z) → ±1 as x → ±∞ uniformly

w.r.t. (y, z) ∈ R
2,

(ii) v j (x, y, z)− ṽ+(x, y) → 0 as z → +∞ for all (x, y) ∈ R
2.

Moreover, denoting ṽ j (x, ρ, θ) = v j (x, ρ cos θ, ρ sin θ), by construction and Lemma
5.3 we recover that

(iii) ṽ j is periodic in θ with period 2π
j

(iv) limρ→+∞ ṽ j (x, ρ,
π
2 + π

j (
1
2 + k)) =

{
q+(x) if k is odd
q−(x) if k is even

uniformly for x ∈ R.

Finally, since u±
j (0, 0, z) = 0, every v j |x=0 has 2 j nodal lines being that

(v) v j (0, ρ cos( π2 + kπ
j ), ρ sin( π2 + kπ

j )) = 0 for ρ ≥ 0, k = 0, . . . , 2 j − 1.
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