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Abstract We show that if A ⊂ R
N is an annulus or a ball centered at zero, the homoge-

neous Neumann problem on A for the equation with continuous data

∇ ·
(

∇v√
1 − |∇v|2

)
= g(|x |, v) + h(|x |)

has at least one radial solution when g(|x |, ·) has a periodic indefinite integral and∫
A h(|x |) dx = 0. The proof is based upon the direct method of the calculus of variations,

variational inequalities and degree theory.
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1 Introduction

The study of quasilinear differential equations involving φ-Laplacian differential operators

[φ(u′)]′ = f (x, u, u′)
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114 C. Bereanu et al.

submitted to various boundary conditions has been the source of many contributions. Most
of them deal with the case where φ : R → R is an increasing homeomorphism and the
paradigm is the p-Laplacian associated to φ(s) = |s|p−2s with p > 1. References can be
found in [15]. Another class of problems, motivated by the curvature operator associated to
φ(s) = s/

√
1 + s2, corresponds to homeomorphisms φ : R → (−a, a). One can consult

for example the papers [2,3,12,9,8,14] and their references. Finally, the class of φ we shall
deal with here is that of homeomorphisms φ : (−a, a) → R motivated by the relativistic
acceleration, for which φ(s) = s/

√
1 − s2. This class already appears in [11], where nonlin-

earities depending upon the derivative are treated, and in [7] in the general case and Neumann
boundary conditions. Slightly more general classes of equations, corresponding to the radial
solutions on a ball or an annulus of quasilinear partial differential equations associated to the
mean extrinsic curvature in Minkowski space [1], have been first considered in [4].

In a recent paper [6], the authors have used topological degree techniques to obtain exis-
tence and multiplicity results for the radial solutions of the Neumann problem

∇ ·
(

∇v√
1 − |∇v|2

)
+ μ sin v = h(|x |) in A, ∂νv = 0 on ∂A, (1)

on the ball or annulus

A = {x ∈ R
N : R1 ≤ |x | ≤ R2} (0 ≤ R1 < R2)

i.e., for the equivalent one-dimensional problem(
r N−1 u′√

1 − u′2

)
′ + r N−1μ sin u = r N−1h(r), u′(R1) = 0 = u′(R2).

They have proved the existence of at least two radial solutions not differing by a multiple of
2π when

2(R2 − R1) < π and

∣∣∣∣∣∣∣
N

RN
2 − RN

1

R2∫
R1

h(r) r N−1dr

∣∣∣∣∣∣∣ < μ cos(R2 − R1),

and the existence of at least one radial solution when 2(R2 − R1) = π and

R2∫
R1

h(r) r N−1dr = 0. (2)

Condition (2) is easily seen to be necessary for the existence of a radial solution to (1) for
any μ > 0 and a natural question is to know if condition

2(R2 − R1) ≤ π (3)

can be dropped.
In the analogous problem of the forced pendulum equation

u′′ + μ sin u = h(t)
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Radial solutions of Neumann problems 115

with periodic or Neumann homogeneous boundary conditions on [0, T ], it has been shown
that the corresponding necessary condition

T∫
0

h(t) dt = 0 (4)

is also sufficient for the existence of at least two solutions not differing by a multiple of 2π .
But, in this case, all the known proofs are of variational or symplectic nature (see e.g., the
survey [13]).

Recently, it has been proved in [10] that the “relativistic forced pendulum equation”(
u′√

1 − u′2

)
′ + μ sin u = h(t)

has at least one T-periodic solution for any μ > 0 when the (necessary) condition (4) is satis-
fied. The approach is essentially variational, but combined with some topological arguments.
The aim of this paper is to adapt the methodology introduced in [10] to the radial Neumann
problem for (1) and prove that, for the existence part, condition (3) can be dropped.

The results are stated and proved, like in [10] but in a slightly different functional frame-
work, for the more general class of equations of the form

[r N−1φ(u′)]′ = r N−1[g(r, u) + h(r)], u′(R1) = 0 = u′(R2) (5)

where φ : (−a, a) → R is a suitable homeomorphism and g belongs to some class of
functions 2π-periodic with respect to its second variable.

2 Hypotheses and function spaces

In what follows, we assume that � : [−a, a] → R satisfies the following hypothesis:

(H�) � is continuous, of class C1 on (−a, a), with φ := �′ : (−a, a) → R an increasing
homeomorphism such that φ(0) = 0.

Consequently, � : [−a, a] → R is strictly convex.
Given 0 ≤ R1 < R2, the function g : [R1, R2] × R → R satisfies the following

hypothesis:

(Hg) g is continuous and its indefinite integral

G(r, x) :=
x∫

0

g(r, ξ)dξ, (r, x) ∈ [R1, R2] × R

is 2π–periodic for each r ∈ [R1, R2].
We set C:= C[R1, R2], L1 := L1(R1, R2), L∞ := L∞(R1, R2) and W 1,∞ :=

W 1,∞(R1, R2). The usual norm ‖ · ‖∞ is considered on L∞ and W 1,∞ is endowed with
the norm

‖v‖ = ‖v‖∞ + ‖v′‖∞ (v ∈ W 1,∞).
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Each v ∈ L1 can be written v(r) = v + ṽ(r), with

v := N

RN
2 − RN

1

R2∫
R1

v(r) r N−1dr,

R2∫
R1

ṽ(r) r N−1dr = 0.

If v ∈ W 1,∞ then ṽ vanishes at some r0 ∈ (R1, R2) and

|ṽ(r)| = |ṽ(r) − ṽ(r0)| ≤
R2∫

R1

|v′(t)|dt ≤ (R2 − R1)‖v′‖∞. (6)

We set

K = {v ∈ W 1,∞ : ‖v′‖∞ ≤ a}.
K is closed and convex.

Lemma 1 If {un} ⊂ K and u ∈ C are such that un(r) → u(r) for all r ∈ [R1, R2], then

(i) u ∈ K ;
(ii) un

′ → u′ in the w∗–topology σ(L∞, L1).

Proof From the relation

|un(r1) − un(r2)| =
∣∣∣∣∣∣

r1∫
r2

u′
n(r) dr

∣∣∣∣∣∣ ≤ a|r1 − r2|,

letting n → ∞, we get

|u(r1) − u(r2)| ≤ a|r1 − r2| (r1, r2 ∈ [R1, R2]),
which yields u ∈ K .

Next, we show that that if {u′
k} is a subsequence of {u′

n} with u′
k → v ∈ L∞ in the

w∗–topology σ(L∞, L1) then

v = u′ a.e. on [R1, R2]. (7)

Indeed, as

R2∫
R1

u′
k(r) f (r) dr →

R2∫
R1

v(r) f (r) dr for all f ∈ L1,

taking f ≡ χr1,r2 , the characteristic function of the interval having the endpoints r1, r2 ∈
[R1, R2], it follows

r2∫
r1

u′
k(r) dr →

r2∫
r1

v(r) dr (r1, r2 ∈ [R1, R2]).

Then, letting k → ∞ in

uk(r2) − uk(r1) =
r2∫

r1

u′
k(r) dr
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Radial solutions of Neumann problems 117

we obtain

u(r2) − u(r1) =
r2∫

r1

v(r) dr (r1, r2 ∈ [R1, R2])

which, clearly implies (7).
Now, to prove (ii) it suffices to show that if {u′

j } is an arbitrary subsequence of {u′
n}, then

it contains itself a subsequence {u′
k} such that u′

k → u′ in the w∗–topology σ(L∞, L1).
Since L1 is separable and {u′

j } is bounded in L∞ = (L1)∗, we know that it has a subsequence
{u′

k} convergent to some v ∈ L∞ in the w∗—topology σ(L∞, L1). Then, as shown before
(see (7)), we have v = u′. �

3 A minimization problem

Let h ∈ C and F : K → R be given by

F(v) =
R2∫

R1

{
�[v′(r)] + G(r, v(r)) + h(r)v(r)

}
r N−1dr (v ∈ K ).

On account of hypotheses (H�) and (Hg) the functional F is well defined.

Proposition 1 If h = 0 then F has a minimum over K .

Proof Step I. We prove that if {un} ⊂ K is a sequence which converges uniformly on [R1, R2]
to some u ∈ K , then

lim inf
n→∞

R2∫
R1

�[u′
n(r)] r N−1dr ≥

R2∫
R1

�[u′(r)] r N−1dr. (8)

By virtue of (H�) the function � is convex, hence for all y ∈ [−a, a] and z ∈ (−a, a) one
has

�(y) − �(z) ≥ φ(z)(y − z). (9)

This implies that for any λ ∈ [0, 1) it holds

R2∫
R1

�[u′
n(r)] r N−1dr ≥

R2∫
R1

�[λu′(r)] r N−1dr (10)

+
R2∫

R1

φ[λu′(r)][u′
n(r) − λu′(r)] r N−1dr.
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From Lemma 1 we have that un
′ → u′ in the w∗–topology σ(L∞, L1). Since the map

r �→ r N−1φ[λu′(r)] belongs to L∞ ⊂ L1, using (10) we infer that

lim inf
n→∞

R2∫
R1

�[u′
n(r)] r N−1dr ≥

R2∫
R1

�[λu′(r)] r N−1dr

+ (1 − λ)

R2∫
R1

φ[λu′(r)]u′(r) r N−1dr.

As φ(t)t ≥ 0, for all t ∈ (−a, a), we get

lim inf
n→∞

R2∫
R1

�[u′
n(r)] r N−1dr ≥

R2∫
R1

�[λu′(r)] r N−1dr,

which, using Lebesgue’s dominated convergence theorem, gives (8) by letting λ → 1.
Step II. Due to the 2π–periodicity of G(r, ·) (see (Hg)) and because of h = 0, we have

F(v + 2π) = F(v), ∀v ∈ K .

Therefore, if u minimizes F over K , then the same is true for u + 2kπ for any k ∈ Z. This
means that we can search, without loss of generality, a minimizer u ∈ K with u ∈ [0, 2π].
Thus, the problem reduces to minimize F over

K̂ = {v ∈ K : v ∈ [0, 2π]} .

If v ∈ K̂ then, using (6) we obtain

|v(r)| ≤ |v| + |ṽ(r)| ≤ 2π + (R2 − R1)a.

This, together with ‖v′‖∞ ≤ a shows that K̂ is bounded in W 1,∞ and, by the compactness
of the embedding W 1,∞ ⊂ C , the set K̂ is relatively compact in C . Let {un} ⊂ K̂ be a
minimizing sequence for F . Passing to a subsequence if necessary and using Lemma 1, we
may assume that {un} converges uniformly to some u ∈ K . It is easily seen that actually
u ∈ K̂ . By Step I we obtain

inf
K̂

F = lim
n→∞ F(un) ≥ F(u),

showing that u minimizes F over K̂ . �
Remark 1 If {un} ⊂ K and u ∈ C are such that un(r) → u(r) for all r ∈ [R1, R2], then
by Lemma 1 and the reasoning in Step I of the above proof we have that u ∈ K and (8) still
holds true.

Lemma 2 If u minimizes F over K then u satisfies the variational inequality

R2∫
R1

(
�[v′(r)] − �[u′(r)] + {g[r, u(r)] + h(r)}[v(r) − u(r)]) r N−1dr ≥ 0

for all v ∈ K .

Proof The argument is standard. See for example Lemma 2 in [10]. �
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Radial solutions of Neumann problems 119

4 An existence result

We show that the minimizers of F provide classical solutions for the Neumann boundary
value problem

[r N−1φ(u′)]′ = r N−1[g(r, u) + h(r)], u′(R1) = 0 = u′(R2), (11)

under the basic assumptions (H�) and (Hg). Recall that by a solution of (11) we mean a
function u ∈ C1[R1, R2], such that ‖u′‖∞ < a, φ(u′) is differentiable and (11) is satisfied.

Let us begin with the simpler problem

[r N−1φ(u′)]′ = r N−1[u + f (r)], u′(R1) = 0 = u′(R2). (12)

Proposition 2 For any f ∈ C, problem (12) has a unique solution û f and û f satisfies the
variational inequality

R2∫
R1

(
�[v′(r)] − �[̂u′

f (r)] + {̂u f (r) + f (r)}[v(r) − û f (r)]) r N−1dr ≥ 0 (13)

for all v ∈ K .

Proof The existence part follows from Corollary 2.4 in [5]. If u and v are two solutions of
(12), then

R2∫
R1

{r N−1[φ(u′(r)) − φ(v′(r))]}′[u(r) − v(r)] dr =
R2∫

R1

[u(r) − v(r)]2 r N−1dr

and hence, integrating the first term by parts and using the boundary conditions we obtain

R2∫
R1

{[φ(u′(r)) − φ(v′(r))][u′(r) − v′(r)] + [u(r) − v(r)]2} r N−1dr = 0.

The monotonicity of φ yields u = v.
From (9) we have

R2∫
R1

{�[v′(r)] − �[̂u′
f (r)]} r N−1dr

≥
R2∫

R1

φ [̂u′
f (r)][v′(r) − û′

f (r)] r N−1dr

= −
R2∫

R1

{r N−1φ [̂u′
f (r)]}′[v(r) − û f (r)] dr

= −
R2∫

R1

[̂u f (r) + f (r)][v(r) − û f (r)] r N−1dr,

showing that (13) holds for all v ∈ K . �
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Theorem 1 If hypotheses (H�) and (Hg) hold true, then, for any h ∈ C with h = 0, problem
(11) has at least one solution which minimizes F over K .

Proof For any w ∈ K we set

fw := g(·, w) + h − w ∈ C.

By Proposition 2, the unique solution û fw of problem (12) with f = fw satisfies the varia-
tional inequality

R2∫
R1

{�[v′(r)] − �[̂u fw
′(r)] + [̂u fw (r) + fw(r)][v(r) − û fw (r)]} r N−1dr ≥ 0 (14)

for all v ∈ K . Let u ∈ K be a minimizer of F over K ; we know that it exists by Proposition
1. From Lemma 2, u satisfies the variational inequality

R2∫
R1

{�[v′(r)] − �[u′(r)] + [u(r) + fu(r)][v(r) − u(r)]} r N−1dr ≥ 0 (15)

for all v ∈ K . Taking v = û fu in (15) and w = v = u in (14) and adding the resulting
inequalities, we get

R2∫
R1

[u(r) − û fu (r)]2 r N−1dr ≤ 0.

It follows that u = û fu . Consequently, the minimizer u solves (11). �
Corollary 1 For any μ ∈ R and h ∈ C with h = 0 the problem(

r N−1 u′√
1 − u′2

)
′ + r N−1μ sin u = r N−1h(r), u′(R1) = 0 = u′(R2)

has at least one solution.

Corollary 2 For any μ ∈ R and h ∈ C such that∫
A

h(|x |) dx = 0,

the problem

∇ ·
(

∇v√
1 − |∇v|2

)
+ μ sin v = h(|x |) in A, ∂νv = 0 on ∂A

has at least one classical radial solution.

Proof Indeed, going to spherical coordinates, we have

∫
A

h(|x |) dx = 2πn/2

�(n/2)

R2∫
R1

h(r) r N−1dr.

�
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Radial solutions of Neumann problems 121

Remark 2 If D is a bounded domain with sufficiently smooth boundary, a necessary condition
for the existence of at least one solution to the Neumann problem

∇ ·
(

∇v√
1 − |∇v|2

)
+ μ sin v = h(x) in D, ∂νv = 0 on ∂D (16)

for any μ > 0 is that condition ∫
D

h(x) dx = 0 (17)

holds, as it is easily seen by integrating both members of (16) over D and using divergence
theorem and the boundary conditions. It is an open problem to know if condition (17) is
sufficient. A proof of the existence of a minimum for the functional

G(u) =
∫
D

[
−

√
1 − |∇v(x)|2 + μ cos v(x) + h(x)v(x)

]
dx

on the closed convex set

K := {v ∈ W 1,∞(D) : |∇v(x)| ≤ 1 a.e. on D}
can be done following the lines of the proof of Proposition 1, but our way to go from the
variational inequality to the differential equation seems to be specific to a one-dimensional
situation, i.e., to the radial case.
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