Radial solutions of Neumann problems involving mean extrinsic curvature and periodic nonlinearities

Cristian Bereanu · Petru Jebelean · Jean Mawhin

Received: 15 October 2010 / Accepted: 10 November 2011 / Published online: 29 November 2011 © Springer-Verlag 2011

Abstract We show that if $A \subset \mathbb{R}^N$ is an annulus or a ball centered at zero, the homogeneous Neumann problem on *A* for the equation with continuous data

$$
\nabla \cdot \left(\frac{\nabla v}{\sqrt{1 - |\nabla v|^2}}\right) = g(|x|, v) + h(|x|)
$$

has at least one radial solution when $g(|x|, \cdot)$ has a periodic indefinite integral and $\int_{\mathcal{A}} h(|x|) dx = 0$. The proof is based upon the direct method of the calculus of variations, variational inequalities and degree theory.

Mathematics Subject Classification (2000) 35J20 · 35J60 · 35J93 · 35J87

1 Introduction

The study of quasilinear differential equations involving φ-Laplacian differential operators

 $[\phi(u')]' = f(x, u, u')$

Communicated by A. Malchiodi.

C. Bereanu

Institute of Mathematics "Simion Stoilow", Romanian Academy, 21, Calea Grivitei, Sector 1, 010702 Bucharest, Romania e-mail: cristian.bereanu@imar.ro

P. Jebelean

Department of Mathematics, West University of Timişoara, 4, Boulevard V. Parvan, 300223 Timişoara, Romania e-mail: jebelean@math.uvt.ro

J. Mawhin (\boxtimes) Mathématique et Physique, Université Catholique de Louvain, 2, Chemin du Cyclotron, 1348 Louvain-la-Neuve, Belgique e-mail: jean.mawhin@uclouvain.be

submitted to various boundary conditions has been the source of many contributions. Most of them deal with the case where $\phi : \mathbb{R} \to \mathbb{R}$ is an increasing homeomorphism and the paradigm is the *p*-Laplacian associated to $\phi(s) = |s|^{p-2} s$ with $p > 1$. References can be found in [\[15](#page-9-0)]. Another class of problems, motivated by the curvature operator associated to $\phi(s) = s/\sqrt{1+s^2}$, corresponds to homeomorphisms $\phi : \mathbb{R} \to (-a, a)$. One can consult for example the papers $[2,3,12,9,8,14]$ $[2,3,12,9,8,14]$ $[2,3,12,9,8,14]$ $[2,3,12,9,8,14]$ $[2,3,12,9,8,14]$ $[2,3,12,9,8,14]$ $[2,3,12,9,8,14]$ and their references. Finally, the class of ϕ we shall deal with here is that of homeomorphisms ϕ : ($-a$, *a*) $\rightarrow \mathbb{R}$ motivated by the relativistic acceleration, for which $\phi(s) = s/\sqrt{1 - s^2}$. This class already appears in [\[11](#page-8-5)], where nonlinearities depending upon the derivative are treated, and in [\[7\]](#page-8-6) in the general case and Neumann boundary conditions. Slightly more general classes of equations, corresponding to the radial solutions on a ball or an annulus of quasilinear partial differential equations associated to the mean extrinsic curvature in Minkowski space [\[1\]](#page-8-7), have been first considered in [\[4](#page-8-8)].

In a recent paper [\[6](#page-8-9)], the authors have used topological degree techniques to obtain existence and multiplicity results for the radial solutions of the Neumann problem

$$
\nabla \cdot \left(\frac{\nabla v}{\sqrt{1 - |\nabla v|^2}}\right) + \mu \sin v = h(|x|) \text{ in } \mathcal{A}, \quad \partial_v v = 0 \text{ on } \partial \mathcal{A}, \tag{1}
$$

on the ball or annulus

$$
\mathcal{A} = \{x \in \mathbb{R}^N : R_1 \le |x| \le R_2\} \quad (0 \le R_1 < R_2)
$$

i.e., for the equivalent one-dimensional problem

$$
\left(r^{N-1}\frac{u'}{\sqrt{1-u'^2}}\right)' + r^{N-1}\mu\sin u = r^{N-1}h(r), \quad u'(R_1) = 0 = u'(R_2).
$$

They have proved the existence of at least two radial solutions not differing by a multiple of 2π when

$$
2(R_2 - R_1) < \pi \quad \text{and} \quad \left| \frac{N}{R_2^N - R_1^N} \int\limits_{R_1}^{R_2} h(r) \, r^{N-1} \, \mathrm{d}r \right| < \mu \cos(R_2 - R_1),
$$

and the existence of at least one radial solution when $2(R_2 - R_1) = \pi$ and

$$
\int_{R_1}^{R_2} h(r) r^{N-1} dr = 0.
$$
\n(2)

Condition (2) is easily seen to be necessary for the existence of a radial solution to (1) for any $\mu > 0$ and a natural question is to know if condition

$$
2(R_2 - R_1) \le \pi \tag{3}
$$

can be dropped.

In the analogous problem of the forced pendulum equation

$$
u'' + \mu \sin u = h(t)
$$

with periodic or Neumann homogeneous boundary conditions on [0, *T*], it has been shown that the corresponding necessary condition

$$
\int_{0}^{T} h(t) dt = 0
$$
\n(4)

is also sufficient for the existence of at least two solutions not differing by a multiple of 2π . But, in this case, all the known proofs are of variational or symplectic nature (see e.g., the survey $[13]$ $[13]$).

Recently, it has been proved in [\[10\]](#page-8-10) that the "relativistic forced pendulum equation"

$$
\left(\frac{u'}{\sqrt{1-u'^2}}\right)' + \mu \sin u = h(t)
$$

has at least one *T*-periodic solution for any $\mu > 0$ when the (necessary) condition [\(4\)](#page-2-0) is satisfied. The approach is essentially variational, but combined with some topological arguments. The aim of this paper is to adapt the methodology introduced in [\[10](#page-8-10)] to the radial Neumann problem for (1) and prove that, for the existence part, condition (3) can be dropped.

The results are stated and proved, like in [\[10\]](#page-8-10) but in a slightly different functional framework, for the more general class of equations of the form

$$
[r^{N-1}\phi(u')] = r^{N-1}[g(r, u) + h(r)], \quad u'(R_1) = 0 = u'(R_2)
$$
 (5)

where $\phi : (-a, a) \rightarrow \mathbb{R}$ is a suitable homeomorphism and *g* belongs to some class of functions 2π -periodic with respect to its second variable.

2 Hypotheses and function spaces

In what follows, we assume that Φ : $[-a, a] \rightarrow \mathbb{R}$ satisfies the following hypothesis:

(**H**_Φ) Φ is continuous, of class *C*¹ on (−*a*, *a*), *with* $\phi := \Phi'$: (−*a*, *a*) → R an increasing homeomorphism such that $\phi(0) = 0$.

Consequently, $\Phi : [-a, a] \rightarrow \mathbb{R}$ is strictly convex.

Given $0 \leq R_1 \lt R_2$, the function $g : [R_1, R_2] \times \mathbb{R} \to \mathbb{R}$ satisfies the following hypothesis:

 (\mathbf{H}_{g}) *g* is continuous and its indefinite integral

$$
G(r, x) := \int\limits_0^x g(r, \xi) d\xi, \quad (r, x) \in [R_1, R_2] \times \mathbb{R}
$$

is 2π –periodic for each $r \in [R_1, R_2]$.

We set $C:= C[R_1, R_2], L^1 := L^1(R_1, R_2), L^\infty := L^\infty(R_1, R_2)$ and $W^{1,\infty} :=$ $W^{1,\infty}(R_1, R_2)$. The usual norm $\|\cdot\|_{\infty}$ is considered on L^{∞} and $W^{1,\infty}$ is endowed with the norm

$$
||v|| = ||v||_{\infty} + ||v'||_{\infty} \quad (v \in W^{1,\infty}).
$$

 $\circled{2}$ Springer

Each $v \in L^1$ can be written $v(r) = \overline{v} + \tilde{v}(r)$, with

$$
\overline{v} := \frac{N}{R_2^N - R_1^N} \int_{R_1}^{R_2} v(r) r^{N-1} dr, \quad \int_{R_1}^{R_2} \tilde{v}(r) r^{N-1} dr = 0.
$$

If $v \in W^{1,\infty}$ then \tilde{v} vanishes at some $r_0 \in (R_1, R_2)$ and

$$
|\tilde{v}(r)| = |\tilde{v}(r) - \tilde{v}(r_0)| \le \int_{R_1}^{R_2} |v'(t)| dt \le (R_2 - R_1) ||v'||_{\infty}.
$$
 (6)

We set

$$
K = \{ v \in W^{1,\infty} : ||v'||_{\infty} \le a \}.
$$

K is closed and convex.

Lemma 1 *If* $\{u_n\} \subset K$ *and* $u \in C$ *are such that* $u_n(r) \to u(r)$ *for all* $r \in [R_1, R_2]$ *, then*

 (i) $u \in K$; (ii) $u_n' \to u'$ *in the* w^* –*topology* $\sigma(L^\infty, L^1)$ *.*

Proof From the relation

$$
|u_n(r_1) - u_n(r_2)| = \left| \int_{r_2}^{r_1} u'_n(r) dr \right| \le a |r_1 - r_2|,
$$

letting $n \to \infty$, we get

$$
|u(r_1) - u(r_2)| \le a|r_1 - r_2| \quad (r_1, r_2 \in [R_1, R_2]),
$$

which yields $u \in K$.

Next, we show that that if $\{u'_{k}\}\$ is a subsequence of $\{u'_{n}\}\$ with $u'_{k} \to v \in L^{\infty}$ in the w^* –topology $\sigma(L^\infty, L^1)$ then

$$
v = u' \quad \text{a.e. on } [R_1, R_2]. \tag{7}
$$

Indeed, as

$$
\int_{R_1}^{R_2} u'_k(r) f(r) dr \rightarrow \int_{R_1}^{R_2} v(r) f(r) dr \text{ for all } f \in L^1,
$$

taking $f \equiv \chi_{r_1,r_2}$, the characteristic function of the interval having the endpoints $r_1, r_2 \in$ $[R_1, R_2]$, it follows

$$
\int_{r_1}^{r_2} u'_{k}(r) dr \to \int_{r_1}^{r_2} v(r) dr \quad (r_1, r_2 \in [R_1, R_2]).
$$

Then, letting $k \to \infty$ in

$$
u_k(r_2) - u_k(r_1) = \int_{r_1}^{r_2} u'_k(r) dr
$$

² Springer

we obtain

$$
u(r_2) - u(r_1) = \int_{r_1}^{r_2} v(r) dr \quad (r_1, r_2 \in [R_1, R_2])
$$

which, clearly implies [\(7\)](#page-3-0).

Now, to prove (ii) it suffices to show that if $\{u'_{j}\}$ is an arbitrary subsequence of $\{u'_{n}\}\$, then it contains itself a subsequence $\{u'_{k}\}\$ such that $u'_{k} \to u'$ in the w^* -topology $\sigma(L^{\infty}, L^{1})$. Since L^1 is separable and $\{u'_j\}$ is bounded in $L^\infty = (L^1)^*$, we know that it has a subsequence $\{u'_{k}\}$ convergent to some $v \in L^{\infty}$ in the w^* —topology $\sigma(L^{\infty}, L^{1})$. Then, as shown before (see [\(7\)](#page-3-0)), we have $v = u'$. .

3 A minimization problem

Let $h \in C$ and $\mathcal{F}: K \to \mathbb{R}$ be given by

$$
\mathcal{F}(v) = \int_{R_1}^{R_2} \{ \Phi[v'(r)] + G(r, v(r)) + h(r)v(r) \} r^{N-1} dr \quad (v \in K).
$$

On account of hypotheses (H_{Φ}) and (H_g) the functional $\mathcal F$ is well defined.

Proposition 1 *If* $\overline{h} = 0$ *then F has a minimum over K*.

Proof Step I. We prove that if $\{u_n\} \subset K$ is a sequence which converges uniformly on $[R_1, R_2]$ to some $u \in K$, then

$$
\liminf_{n \to \infty} \int_{R_1}^{R_2} \Phi[u'_n(r)] \, r^{N-1} \mathrm{d}r \ge \int_{R_1}^{R_2} \Phi[u'(r)] \, r^{N-1} \mathrm{d}r. \tag{8}
$$

By virtue of (H_0) the function Φ is convex, hence for all $y \in [-a, a]$ and $z \in (-a, a)$ one has

$$
\Phi(y) - \Phi(z) \ge \phi(z)(y - z). \tag{9}
$$

This implies that for any $\lambda \in [0, 1)$ it holds

$$
\int_{R_1}^{R_2} \Phi[u'_n(r)] r^{N-1} dr \ge \int_{R_1}^{R_2} \Phi[\lambda u'(r)] r^{N-1} dr + \int_{R_1}^{R_2} \phi[\lambda u'(r)][u'_n(r) - \lambda u'(r)] r^{N-1} dr.
$$
\n(10)

 \mathcal{D} Springer

From Lemma [1](#page-3-1) we have that $u_n' \to u'$ in the w^{*}-topology $\sigma(L^{\infty}, L^1)$. Since the map $r \mapsto r^{N-1}\phi[\lambda u'(r)]$ belongs to $L^{\infty} \subset L^{1}$, using [\(10\)](#page-4-0) we infer that

$$
\liminf_{n \to \infty} \int_{R_1}^{R_2} \Phi[u'_n(r)] r^{N-1} dr \ge \int_{R_1}^{R_2} \Phi[\lambda u'(r)] r^{N-1} dr
$$

+
$$
(1 - \lambda) \int_{R_1}^{R_2} \phi[\lambda u'(r)] u'(r) r^{N-1} dr.
$$

As $\phi(t)t \geq 0$, for all $t \in (-a, a)$, we get

$$
\liminf_{n\to\infty}\int\limits_{R_1}^{R_2}\Phi[u'_n(r)]\,r^{N-1}\mathrm{d}r\geq \int\limits_{R_1}^{R_2}\Phi[\lambda u'(r)]\,r^{N-1}\mathrm{d}r,
$$

which, using Lebesgue's dominated convergence theorem, gives [\(8\)](#page-4-1) by letting $\lambda \rightarrow 1$.

Step II. Due to the 2π -periodicity of $G(r, \cdot)$ (see (H_g)) and because of $h = 0$, we have

$$
\mathcal{F}(v+2\pi) = \mathcal{F}(v), \quad \forall v \in K.
$$

Therefore, if *u* minimizes *F* over *K*, then the same is true for $u + 2k\pi$ for any $k \in \mathbb{Z}$. This means that we can search, without loss of generality, a minimizer $u \in K$ with $\overline{u} \in [0, 2\pi]$. Thus, the problem reduces to minimize F over

$$
\hat{K} = \{ v \in K \; : \; \overline{v} \in [0, 2\pi] \}.
$$

If $v \in \hat{K}$ then, using [\(6\)](#page-3-2) we obtain

$$
|v(r)| \leq |\overline{v}| + |\tilde{v}(r)| \leq 2\pi + (R_2 - R_1)a.
$$

This, together with $||v'||_{\infty} \le a$ shows that \hat{K} is bounded in $W^{1,\infty}$ and, by the compactness of the embedding $W^{1,\infty} \subset C$, the set \hat{K} is relatively compact in *C*. Let $\{u_n\} \subset \hat{K}$ be a minimizing sequence for F . Passing to a subsequence if necessary and using Lemma [1,](#page-3-1) we may assume that $\{u_n\}$ converges uniformly to some $u \in K$. It is easily seen that actually $u \in K$. By *Step I* we obtain

$$
\inf_{\hat{K}} \mathcal{F} = \lim_{n \to \infty} \mathcal{F}(u_n) \ge \mathcal{F}(u),
$$

showing that *u* minimizes $\mathcal F$ over $\hat K$.

Remark 1 If $\{u_n\} \subset K$ and $u \in C$ are such that $u_n(r) \to u(r)$ for all $r \in [R_1, R_2]$, then by Lemma [1](#page-3-1) and the reasoning in *Step I* of the above proof we have that $u \in K$ and [\(8\)](#page-4-1) still holds true.

Lemma 2 *If u minimizes F over K then u satisfies the variational inequality*

$$
\int_{R_1}^{R_2} \left(\Phi[v'(r)] - \Phi[u'(r)] + \{ g[r, u(r)] + h(r) \} [v(r) - u(r)] \right) r^{N-1} dr \ge 0
$$

for all $v \in K$.

Proof The argument is standard. See for example Lemma 2 in [\[10](#page-8-10)]. □

4 An existence result

We show that the minimizers of F provide classical solutions for the Neumann boundary value problem

$$
[r^{N-1}\phi(u')] = r^{N-1}[g(r, u) + h(r)], \quad u'(R_1) = 0 = u'(R_2),\tag{11}
$$

under the basic assumptions (H_{Φ}) and (H_{ρ}) . Recall that by a *solution* of [\(11\)](#page-6-0) we mean a function $u \in C^1[R_1, R_2]$, such that $||u'||_{\infty} < a, \phi(u')$ is differentiable and [\(11\)](#page-6-0) is satisfied.

Let us begin with the simpler problem

$$
[r^{N-1}\phi(u')] = r^{N-1}[u + f(r)], \quad u'(R_1) = 0 = u'(R_2). \tag{12}
$$

Proposition 2 *For any* $f \in C$ *, problem* [\(12\)](#page-6-1) *has a unique solution* \hat{u}_f *and* \hat{u}_f *satisfies the variational inequality*

$$
\int_{R_1}^{R_2} \left(\Phi[v'(r)] - \Phi[\hat{u}'_f(r)] + \{\hat{u}_f(r) + f(r)\}[v(r) - \hat{u}_f(r)] \right) r^{N-1} dr \ge 0 \tag{13}
$$

for all $v \in K$.

Proof The existence part follows from Corollary 2.4 in [\[5\]](#page-8-11). If *u* and *v* are two solutions of [\(12\)](#page-6-1), then

$$
\int_{R_1}^{R_2} \{r^{N-1}[\phi(u'(r)) - \phi(v'(r))] \}^{\prime} [u(r) - v(r)] \, \mathrm{d}r = \int_{R_1}^{R_2} [u(r) - v(r)]^2 \, r^{N-1} \mathrm{d}r
$$

and hence, integrating the first term by parts and using the boundary conditions we obtain

$$
\int_{R_1}^{R_2} \{ [\phi(u'(r)) - \phi(v'(r))] [u'(r) - v'(r)] + [u(r) - v(r)]^2 \} r^{N-1} dr = 0.
$$

The monotonicity of ϕ yields $u = v$.

From [\(9\)](#page-4-2) we have

$$
\int_{R_1}^{R_2} {\{\Phi[v'(r)] - \Phi[\hat{u}'_f(r)]\} r^{N-1} dr}
$$
\n
$$
\geq \int_{R_1}^{R_2} {\phi[\hat{u}'_f(r)][v'(r) - \hat{u}'_f(r)] r^{N-1} dr}
$$
\n
$$
= -\int_{R_1}^{R_2} {r^{N-1} \phi[\hat{u}'_f(r)]}'[v(r) - \hat{u}_f(r)] dr
$$
\n
$$
= -\int_{R_1}^{R_2} [\hat{u}_f(r) + f(r)][v(r) - \hat{u}_f(r)] r^{N-1} dr,
$$

showing that [\(13\)](#page-6-2) holds for all $v \in K$.

Theorem 1 *If hypotheses* (H_{Φ}) *and* (H_g) *hold true, then, for any h* \in *C with* $\overline{h} = 0$ *, problem* [\(11\)](#page-6-0) *has at least one solution which minimizes F over K .*

Proof For any $w \in K$ we set

$$
f_w := g(\cdot, w) + h - w \in C.
$$

By Proposition [2,](#page-6-3) the unique solution \hat{u}_{f_w} of problem [\(12\)](#page-6-1) with $f = f_w$ satisfies the variational inequality

$$
\int_{R_1}^{R_2} {\{\Phi[v'(r)] - \Phi[\widehat{u}_{f_w}'(r)] + [\widehat{u}_{f_w}(r) + f_w(r)][v(r) - \widehat{u}_{f_w}(r)]\} \, r^{N-1} \mathrm{d}r \ge 0 \tag{14}
$$

for all $v \in K$. Let $u \in K$ be a minimizer of $\mathcal F$ over K ; we know that it exists by Proposition [1.](#page-4-3) From Lemma [2,](#page-5-0) *u* satisfies the variational inequality

$$
\int_{R_1}^{R_2} {\{\Phi[v'(r)] - \Phi[u'(r)] + [u(r) + f_u(r)][v(r) - u(r)]\} r^{N-1} dr} \ge 0
$$
\n(15)

for all $v \in K$. Taking $v = \hat{u}_{f_u}$ in [\(15\)](#page-7-0) and $w = v = u$ in [\(14\)](#page-7-1) and adding the resulting inequalities, we get

$$
\int_{R_1}^{R_2} [u(r) - \widehat{u}_{f_u}(r)]^2 r^{N-1} dr \le 0.
$$

It follows that $u = \hat{u}_{f_u}$. Consequently, the minimizer *u* solves [\(11\)](#page-6-0).

Corollary 1 *For any* $\mu \in \mathbb{R}$ *and* $h \in C$ *with* $\overline{h} = 0$ *the problem*

$$
\left(r^{N-1}\frac{u'}{\sqrt{1-u'^2}}\right)' + r^{N-1}\mu\sin u = r^{N-1}h(r), \quad u'(R_1) = 0 = u'(R_2)
$$

has at least one solution.

Corollary 2 *For any* $\mu \in \mathbb{R}$ *and* $h \in C$ *such that*

$$
\int\limits_{\mathcal{A}} h(|x|) \, \mathrm{d}x = 0,
$$

the problem

$$
\nabla \cdot \left(\frac{\nabla v}{\sqrt{1 - |\nabla v|^2}}\right) + \mu \sin v = h(|x|) \quad \text{in} \quad \mathcal{A}, \quad \partial_v v = 0 \quad \text{on} \quad \partial \mathcal{A}
$$

has at least one classical radial solution.

Proof Indeed, going to spherical coordinates, we have

$$
\int_{\mathcal{A}} h(|x|) dx = \frac{2\pi^{n/2}}{\Gamma(n/2)} \int_{R_1}^{R_2} h(r) r^{N-1} dr.
$$

 \Box

Remark 2 If D is a bounded domain with sufficiently smooth boundary, a necessary condition for the existence of at least one solution to the Neumann problem

$$
\nabla \cdot \left(\frac{\nabla v}{\sqrt{1 - |\nabla v|^2}}\right) + \mu \sin v = h(x) \text{ in } \mathcal{D}, \quad \partial_v v = 0 \text{ on } \partial \mathcal{D}
$$
 (16)

for any $\mu > 0$ is that condition

$$
\int_{\mathcal{D}} h(x) dx = 0 \tag{17}
$$

holds, as it is easily seen by integrating both members of [\(16\)](#page-8-12) over *D* and using divergence theorem and the boundary conditions. It is an open problem to know if condition [\(17\)](#page-8-13) is sufficient. A proof of the existence of a minimum for the functional

$$
\mathcal{G}(u) = \int\limits_{D} \left[-\sqrt{1 - |\nabla v(x)|^2} + \mu \cos v(x) + h(x)v(x) \right] dx
$$

on the closed convex set

$$
K := \{ v \in W^{1,\infty}(\mathcal{D}) : |\nabla v(x)| \le 1 \text{ a.e. on } \mathcal{D} \}
$$

can be done following the lines of the proof of Proposition [1,](#page-4-3) but our way to go from the variational inequality to the differential equation seems to be specific to a one-dimensional situation, i.e., to the radial case.

Acknowledgements Support of C. Bereanu from the Romanian Ministry of Education, Research and Innovation (PN II Program, CNCSIS code RP 3/2008) is gratefully acknowledged.

References

- 1. Bartnik, R., Simon, L.: Spacelike hypersurfaces with prescribed boundary values and mean curvature. Commun. Math. Phys. **87**, 131–152 (1982/83)
- 2. Benevieri, P., do Ó, J.M., de Souto, E.M.: Periodic solutions for nonlinear systems with mean curvaturelike operators. Nonlinear Anal. **65**, 1462–1475 (2006)
- 3. Benevieri, P., do Ó, J.M., de Souto, E.M.: Periodic solutions for nonlinear equations with mean curvature-like operators. Appl. Math. Lett. **20**, 484–492 (2007)
- 4. Bereanu, C., Jebelean, P., Mawhin, J.: Radial solutions for some nonlinear problems involving mean curvature operators in Euclidian and Minkowski spaces. Proc. Am. Math. Soc. **137**, 161–169 (2009)
- 5. Bereanu, C., Jebelean, P., Mawhin, J.: Radial solutions for Neumann problems involving mean curvature operators in Euclidean and Minkowsi spaces. Math. Nachr. **283**, 379–391 (2010)
- 6. Bereanu, C., Jebelean, P., Mawhin, J.: Radial solutions for Neumann problems with ϕ -Laplacians and pendulum-like nonlinearities. Discret. Cont. Dynam. Syst. A **28**, 637–648 (2010)
- 7. Bereanu, C., Mawhin, J.: Nonlinear Neumann boundary value problems with φ-Laplacian operators. An. Stiint. Univ. Ovidius Constanta **12**, 73–92 (2004)
- 8. Bereanu, C., Mawhin, J.: Periodic solutions of nonlinear perturbations of φ-Laplacian with possibly bounded φ. Nonlinear Anal. **68**, 1668–1681 (2008)
- 9. Bonheure, D., Habets, P., Obersnel, F., Omari, P.: Classical and non-classical solutions of a prescribed curvature equation. J. Differ. Equ. **243**, 208–237 (2007)
- 10. Brezis, H., Mawhin, J.: Periodic solutions of the forced relativistic pendulum. Differ. Integr. Equ. **23**, 801– 810 (2010)
- 11. Girg, P.: Neumann and periodic boundary-value problems for quasilinear ordinary differential equations with a nonlinearity in the derivatives. Electron. J. Differ. Equ. **63**, 1–28 (2000)
- 12. Habets, P., Omari, P.: Multiple positive solutions of a one-dimensional prescribed mean curvature problem. Commun. Contemp. Math. **9**, 701–730 (2007)
- 13. Mawhin, J.: Global results for the forced pendulum equation. In: Cañada, A., Drábek, P., Fonda, A. (eds.) Handbook of Differential Equations. Ordinary Differential Equations, vol. 1, pp. 533–590. Elsevier, Amsterdam (2004)
- 14. Obersnel, F., Omari, P.: Existence and multiplicity results for the prescribed mean curvature equation via lower and upper solutions. Differ. Integr. Equ. **22**, 853–880 (2009)
- 15. Rachunková, I., Staněk, S., Tvrdý, M.: Solvability of Nonlinear Singular Problems for Ordinary Differential Equations. Hindawi Publishing Corporation, New York (2008)