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Abstract In this article, we introduce a new method (based on Perelman’s λ-functional) to
study the stability of compact Ricci-flat metrics. Under the assumption that all infinitesimal
Ricci-flat deformations are integrable we prove: (a) a Ricci-flat metric is a local maximizer
of λ in a C2,α-sense if and only if its Lichnerowicz Laplacian is nonpositive, (b) λ satisfies a
Łojasiewicz-Simon gradient inequality, (c) the Ricci flow does not move excessively in gauge
directions. As consequences, we obtain a rigidity result, a new proof of Sesum’s dynamical
stability theorem, and a dynamical instability theorem.
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1 Introduction

A Ricci-flat manifold is a Riemannian manifold with vanishing Ricci curvature. Compact
Ricci-flat manifolds are fairly hard to find, and their properties are of great interest (see [2,12]
for extensive information). They are the critical points of the Einstein-Hilbert functional and
the fixed points of Hamilton’s Ricci flow [10],

∂t g(t) = −2Rcg(t), g(0) = g0. (1.1)

Historically, since Ricci-flat metrics are saddle points (but not extrema) of the Einstein-Hilbert
functional and since the Ricci flow is not a gradient flow in the strict sense, the variational
interpretation of Ricci-flatness was rather obscure. However, Perelman made the remarkable
discovery that the Ricci flow can be interpreted as gradient flow of the functional

λ(g) = inf
f ∈C∞(M)∫

M e− f dVg=1

∫

M

(
Rg + |D f |2g

)
e− f dVg (1.2)
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on the space of metrics modulo diffeomorphisms. In particular, λ is nondecreasing under
the Ricci flow and the stationary points of λ are precisely the Ricci-flat metrics [18,14]. The
second variation of λ is given in terms of the Lichnerowicz Laplacian [4].

We will be concerned with the stability of compact Ricci-flat metrics gRF. To discuss this
properly, let us consider the following notions of stability:

i. (Dynamical stability) For every neighborhood V of gRF in the space of metrics there
exists a smaller neighborhood U ⊂ V such that the Ricci flow starting in U exists and
stays in V for all t ≥ 0 and converges to a Ricci-flat metric in V.1

ii. (Local maximum of λ) There exists a neighborhood U of gRF such that λ(g) ≤ 0 for
all g ∈ U with equality if and only if g is Ricci-flat.

iii. (Linear stability) All eigenvalues of the Lichnerowicz Laplacian �L
gRF

= �gRF +2RmgRF

are nonpositive.

It is easy to see that i⇒ii⇒iii. Conversely, Natasa Sesum proved that linear stability implies
dynamical stability if all infinitesimal Ricci flat deformations are integrable [21]. This was
not straightforward, but using the integrability condition she succeeded in finding a good
sequence of new reference metrics for the Ricci-DeTurck flow. In particular, she proved the
dynamical stability of the K3 surface, which already had been conjectured and partly proven
by Guenther–Isenberg–Knopf [7]. Additional interesting results about the dynamical stabil-
ity of the Ricci flow can be found in [1,13,15–17,23,24,32], and the Kähler case has also
been studied by various authors. The proofs are mainly based on the Ricci-DeTurck flow, its
linearization and parabolic estimates.

In this article, we introduce a new method inspired by the work of Leon Simon [22] and
the work of Dai–Wang–Wei [5], see also [3,4,19,28]. We use the λ-functional to study sta-
bility and instability. With this method we obtain a new proof of Sesum’s dynamical stability
result (Theorem E) and a number of new results: In particular, we prove a Łojasiewicz-Simon
gradient inequality for the λ-functional (Theorem B), and a transversality estimate (Theorem
C). Moreover, we prove a local analogue of the positive mass theorem for some compact
Ricci-flat metrics (Theorem A), and the corresponding rigidity result (Corollary D). We also
prove that unstable Ricci-flat metrics give rise to nontrivial ancient Ricci flows emerging from
them (Theorem F). In addition to these results, which we hope are of independent interest,
the focus is on methods and proofs. We believe that it is important to understand stability in
terms of the λ-functional and not just in terms of PDEs and that our proofs shed new light
on the variational structure of Ricci-flat metrics and the role of the gauge group.

The logical structure is that we have three general theorems (A,B,C) and three conse-
quences (D,E,F). To state them, let us fix the following assumption for the whole paper:

Assumption Let (M, gRF) be a compact, Ricci-flat manifold and assume that all infinitesi-
mal Ricci-flat deformations of gRF are integrable.

The integrability condition means that for every symmetric 2-tensor h in the kernel of the
linearization of Ricci, we can find a curve of Ricci-flat metrics with initial velocity h (see
[2, Sec. 12] and Sect. 3 for details, and the discussion after Theorem C for applicability and
context).

1 This notion of stability was called weak dynamical stability in [21]. However, it is the strongest possible
notion of stability for dynamical systems with non-isolated critical points where one can only hope to prove
convergence to some critical point close to the specified one. Since Ricci-flat metrics are always non-isolated
critical points in the space of metrics modulo diffeomorphisms, we decided to simply drop the word weak.
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To set the stage for Theorem A, recall that at a Ricci-flat metric λ(gRF) = 0, Dλ(gRF) = 0
and [4]

D2λ(gRF)[h, h] = 1
2

∫

M
〈h,�L

gRF
h〉gRF dVgRF , h ∈ ker divgRF , (1.3)

where �L
gRF

hi j = �hi j + 2Ripjq h pq . Thus, as mentioned above, local maxima of λ are
linearly stable. In the integrable case, we can prove the converse implication:

Theorem A (Local maxima of λ) If the Lichnerowicz Laplacian �L
gRF

= �gRF + 2RmgRF

is nonpositive, then there exists a C2,α-neighborhood U ⊂ M(M) of gRF in the space of
metrics on M, such that λ(g) ≤ 0 for all g ∈ U . Moreover, equality holds if and only if g is
Ricci-flat.

Theorem A is nontrivial for the following three reasons: D2λ vanishes on Lie-derivatives,
�L always has a kernel, and it is difficult to estimate the error term in the Taylor-expansion
coming from the third variation of λ.

Next, let us state our Łojasiewicz-Simon gradient inequality for the λ-functional (with
optimal Łojasiewicz exponent 1/2 due to integrability):

Theorem B (Łojasiewicz inequality for λ) There exists a C2,α-neighborhood U ⊂ M(M)

of gRF and a constant c = c(M, gRF) > 0 such that

‖Rcg + Hessg fg‖L2 ≥ c|λ(g)|1/2 (1.4)

for all g ∈ U, where fg is the minimizer in (1.2).

For the interpretation of (1.4) as a gradient inequality note that Rcg + Hessg fg is the
(negative) L2(M, e− fg dVg)-gradient of λ by Perelman’s first variation formula

Dλ(g)[h] = −
∫

M

〈h, Rcg + Hessg fg〉ge− fg dVg. (1.5)

Theorem B is interesting, since it can be used as a general tool to prove convergence and to
draw further dynamical conclusions. More precisely, we will always apply it in combination
with the following theorem:

Theorem C (Transversality) There exists a C2,α-neighborhood U ⊂ M(M) of gRF and a
constant c = c(M, gRF) > 0 such that

‖Rcg + Hessg fg‖L2 ≥ c‖Rcg‖L2 (1.6)

for all g ∈ U, where fg is the minimizer in (1.2).

Theorem C is a quantitative generalization of the fact that compact steady solitons are
Ricci-flat. Since div f (Rc + Hess f ) = 0 [14, Eq. 10.11], it shows that the Ricci flow does
not move excessively in gauge directions.

Before turning to the applications, let us discuss what is currently known and unknown:
All known compact Ricci-flat manifolds satisfy the integrability assumption and �L ≤ 0
(they have special holonomy, so this follows from the results in [5,12,26,27,29,31]), but it is
a major open question what the true landscape of all compact Ricci-flat manifolds looks like.
One main open problem is to construct a compact Ricci-flat manifold with holonomy full
SOn (see e.g. [2, Sec. 0.I]). Another related open question (called the positive mass problem
for Ricci flat manifolds in [4]) is if unstable compact Ricci-flat metrics exist. Finally, one can
ask if there is a Ricci-flat metric with nonintegrable deformations.
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Given the difficulty of the above questions and that our picture of compact Ricci-flat
metrics already has been drastically changed twice due to Yau and Joyce, we find it very
interesting to discuss all cases. First, as an immediate consequence of Theorem A we obtain
(compare with [5]):

Corollary D (Rigidity of Ricci-flat metrics) If �L
gRF

≤ 0, then every small deformation of
gRF with nonnegative scalar curvature is Ricci-flat.

The reader might wish to compare Corollary D with the following rigidity case of the positive
mass theorem [25,30]: Every compact deformation of the flat metric on R

n with nonnegative
scalar curvature is flat. More generally, Theorem A can be thought of as the positive mass
theorem for linearly stable, integrable, compact Ricci-flat metrics.

Second, as mentioned before, we have a new proof of Sesum’s dynamical stability theorem:

Theorem E (Dynamical stability) If k ≥ 3 and �L
gRF

≤ 0, then for every Ck-neighborhood

V of gRF there exists a Ck+2-neighborhood U ⊂ V of gRF such that the Ricci flow starting in
U exists and stays in V for all t ≥ 0 and converges exponentially to a Ricci-flat metric in V.

Our proof is based on Theorem A, B and C, and shows that the energy controls the distance
(Lemma 5.1).

Third, using Theorem B and C we obtain:

Theorem F (Dynamical instability) If �L
gRF

� 0, then there exists a nontrivial ancient solu-
tion emerging from gRF, i.e. a nontrivial Ricci flow g(t), t ∈ (−∞, T ) with limt→−∞ g(t) =
gRF.

Note that the statement of Theorem F is much sharper than just some sort of instability/non-
convergence of flows starting nearby. Together with Theorem E it gives a quite complete
picture of what could happen in the compact integrable case.

It should be straightforward to generalize Theorem F and our proof based on the
Łojasiewicz inequality to other flows. A generalization to the noncompact case would be
very interesting, since for example the Riemannian Schwarzschild metric is linearly unstable
[8, Sec. 5].

There are various further applications of Theorem B and C. For example, the reader might
wish to prove a dichotomy theorem in the case where λ is not a local maximum, i.e. the flow
starting near such a Ricci-flat metric either converges or runs away (compare with [22, Thm.
2]). Finally, the nonintegrable case is discussed in Remark 5.5.

Remark 1.1 It suffices to check the condition �L ≤ 0 on TT, i.e. on transverse traceless
symmetric 2-tensors, since �L is always nonpositive on the other components [7].

Technical aspects of the proofs We take care of the gauge directions using the Ebin-Palais
slice theorem and of the kernel of �L using the integrability assumption. The main technical
step in the proof of Theorem A, is the estimate

∣
∣
∣ d3

dε3 |0λ(g + εh)

∣
∣
∣ ≤ C‖h‖C2,α‖h‖2

H1 (1.7)

uniformly in a C2,α-neighborhood of gRF (Proposition 2.2). This allows us to conclude that
λ is indeed maximal, since

D2λ(gRF)[h, h] ≤ −c‖h‖2
H1 (1.8)

on the space normal to the flat directions.
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Regarding Theorem B, C and E, let us just emphasize that it was not at all straightforward
to adapt Leon Simon’s methods to the Ricci flow. For the numerous technical problems and
their solutions we refer the reader to Sects. 4 and 5. In particular, with Theorem C we find a
way to handle the Hessg fg-term, a term that is the source of many difficulties. The technical
heart consists of Lemmas 4.4 and 4.5.

Finally, the Ricci flow in Theorem F is constructed by a suitable limiting process, and the
main step is to prove that this limit is nontrivial.

This article is organized as follows: In Sect. 2, we analyze the variational structure of
λ, in particular, we prove (1.7). In Sect. 3, we recall some facts about the Ebin-Palais slice
theorem and integrability. In Sect. 4, we prove A, B, C and D. Finally, as a consequence, we
obtain the stability and instabilty results E and F in Sect. 5.

2 The variational structure

We will analyze the variational structure of λ using eigenvalue perturbation theory [20, Sec.
XII].
Let (M, g) be a compact Riemannian manifold. Substituting w = e− f/2 in (1.2), we see that
λ(g) is the smallest eigenvalue of the Schrödinger operator Hg = −4�g + Rg. The spec-
trum of Hg consists only of real eigenvalues of finite multiplicity λ(g) = λ1(g) < λ2(g) ≤
λ3(g) ≤ . . . tending to infinity and the smallest eigenvalue is simple. From the minimax
characterization

λk(g) = min
W⊂C∞(M)

dim W=k

max
w∈W
w �=0

∫
M

(
4|Dw|2g + Rgw

2
)

dVg
∫

M w2dVg
, (2.1)

we see that λk :M(M) → R is continuous with respect to the C2-topology on the space of
metrics on M. Along a variation, g(ε) = g + εh, the smallest eigenvalue λ(g(ε)) depends
analytically on ε [14, Sec. 7.I.2.2]. To analyze this ε-dependence, it is convenient to study
the resolvent (λ − Hg(ε))

−1, defined for complex λ outside the spectrum. Observe that

Pg(ε) = 1
2π i

∮

|λ−λ(g)|=r

(λ − Hg(ε))
−1dλ (2.2)

is the projection to the one-dimensional λ(g(ε))-eigenspace of Hg(ε). Here, r is assumed to be
large enough to encircle λ(g(ε)), but small enough to stay away from the other eigenvalues.
Thus

Hg(ε) Pg(ε)wg = λ(g(ε))Pg(ε)wg, (2.3)

where wg, called the ground-state in the following, is the unique positive L2(M, dVg)-nor-
malized eigenfunction of Hg with eigenvalue λ(g). Thus, for small ε, we obtain

λ(g(ε)) = λ(g) + 〈wg, (Hg(ε) − Hg)Pg(ε)wg〉L2(M,dVg)

〈wg, Pg(ε)wg〉L2(M,dVg)

. (2.4)

Lemma 2.1 Let (M, g) be a compact Riemannian manifold and h a symmetric 2-tensor. Then
the smallest eigenvalue λ(g + εh) of the operator Hg+εh = −4�g+εh + Rg+εh depends
analytically on ε and the first three derivatives are given by the following formulas:
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d
dε

|0λ(g + εh) = 〈w, H ′[h]w〉, (2.5)

d2

dε2 |0λ(g + εh) = 〈w, H ′′[h, h]w〉 + 2
2π i

∮
〈w, H ′[h](λ − H)−1 H ′[h]w〉 dλ

λ−λ(g)
,

(2.6)
d3

dε3 |0λ(g + εh) = 〈w, H ′′′[h, h, h]w〉
+ 6

2π i

∮
〈w, H ′[h](λ − H)−1 H ′[h](λ − H)−1 H ′[h]w〉 dλ

λ−λ(g)

+ 3
2π i

∮
〈w, H ′[h](λ − H)−1 H ′′[h, h]w〉 dλ

λ−λ(g)

+ 3
2π i

∮
〈w, H ′′[h, h](λ − H)−1 H ′[h]w〉 dλ

λ−λ(g)

−〈w, H ′[h]w〉 6
2π i

∮
〈w, H ′[h](λ − H)−1 H ′[h]w〉 dλ

(λ−λ(g))2 . (2.7)

Here w = wg is the ground state of H = Hg = − 4�g + Rg and H (k)[h, . . . , h]= dk

dεk |0
(−4�g+εh + Rg+εh). The complex integrals are over a small circle around λ(g) and 〈 , 〉
denotes the L2(M, dVg) inner product.

The proof of Lemma 2.1 can be found in Appendix A, but let us illustrate here, where
(2.6) comes from. We differentiate (2.4) twice. To get a nonzero contribution when evaluated
at ε = 0 the derivative has to hit Hg(ε) at least once, thus

d2

dε2 |0λ(g + εh) = 〈w, H ′′[h, h]w〉 + 2〈w, H ′[h]P ′[h]w〉 − 2〈w, H ′[h]w〉〈w, P ′[h]w〉,
(2.8)

where we also used Pgwg = wg and 〈wg, wg〉L2(M,dVg) = 1. Differentiating (2.2) and taking
care of the operator ordering, we obtain

P ′[h] = 1
2π i

∮

|λ−λ(g)|=r

(λ − H)−1 H ′[h](λ − H)−1dλ. (2.9)

Using (λ − H)−1w = (λ − λ(g))−1w and the fact that H is symmetric with respect to
the L2 inner product, Eq. 2.6 follows. In particular, observe that 〈w, P ′[h]w〉 vanishes, since∮
(λ−λ(g))−2dλ = 0. The computation for (2.5) and (2.7) is similar and the differentiability

and convergence can be justified, see Appendix A for details.
From the usual formulas for the variation of the Laplacian and the scalar curvature (see

e.g. [2, Sec. 1.K]), we obtain

H ′[h] = 4h : D2 + 4divh : D − 2Dtrh : D − 〈h, Rc〉 + divdivh − �trh. (2.10)

Inserting this in (2.5), substituting w = e− f/2 and using partial integration gives Perelman’s
first variation formula

Dλ(g)[h] = −
∫

M

〈h, Rcg + Hessg fg〉ge− fg dVg, (2.11)

where fg is the minimizer in (1.2). Due to diffeomorphism invariance, Dλ(g) vanishes on
Lie-derivatives, in particular

∫

M

〈Hessg fg, Rcg + Hessg fg〉ge− fg dVg = 0. (2.12)
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The stationary points of λ are precisely the Ricci-flat metrics (compactness is crucial here).
At a Ricci-flat metric gRF we have λ(gRF) = 0, Dλ(gRF) = 0 and (compare with [4])

D2λ(gRF)[h, h] =
{ 1

2VolgRF (M)

∫

M
〈h,�L

gRF
h〉gRF dVgRF h ∈ ker divgRF ,

0 h ∈ im div∗
gRF

.
(2.13)

This can also be computed using (2.6) (see Appendix B).

Proposition 2.2 (Third variation of λ) Let (M, g0) be a compact Riemannian manifold. Then
there exists a C2,α-neighborhood Ug0 ⊂ M(M) of g0 in the space of metrics on M and a
constant C < ∞ such that

∣
∣
∣ d3

dε3 |0λ(g + εh)

∣
∣
∣ ≤ C‖h‖C2,α‖h‖2

H1 (2.14)

for all g ∈ Ug0 and all h ∈ C∞(S2T ∗M).

Proof We have C2,α-bounds for the ground-state wg of Hg, which we will often use in the
following. Let us estimate (2.7) term by term. The first term has the schematic form

〈w, H ′′′[h, h, h]w〉 = 〈w, (Rmhhh + hh Dh D + h Dh Dh + hhh D2 + hh D2h)w〉.
(2.15)

Since M is compact, we get the estimate

|〈wg, H ′′′
g [h, h, h]wg〉| ≤ C‖h‖C2‖h‖2

H1 . (2.16)

Let us continue with the second term,
∮

|λ−λ(g)|=r

〈wg, H ′
g[h](λ − Hg)

−1 H ′
g[h](λ − Hg)

−1 H ′
g[h]wg〉 dλ

λ−λ(g)
. (2.17)

Recall that for |λ−λ(g)| = r the operator λ− Hg : C∞(M) → C∞(M) is indeed invertible
and that Hg is symmetric with respect to the L2(M, dVg)-inner product. Let us insert the left
and right

H ′[h] = Rc h + Dh D + h D2 + D2h (2.18)

in (2.17). By partial integration, it can be brought into the form
∮

|λ−λ(g)|=r

〈vλ̄[h], H ′[h]vλ[h]〉 dλ
λ−λ(g)

, (2.19)

where

vλ[h] = (λ − Hg)
−1 (

Rc wh + DwDh + D2wh + wD2h
)
. (2.20)

We have the elliptic estimate

‖vλ[h]‖L2 ≤ C‖h‖L2 . (2.21)

Indeed (λ − Hg)
−1 : H−2(M) → L2(M) is well defined and continuous, since it is the dual

of the continuous map (λ− Hg)
−1 : L2(M) → H2(M). The constant in (2.21) can be chosen

uniformly for all λ on the circle around λ(g), since we have a lower bound for the distance
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between this circle and the spectrum of Hg. Finally, we insert the middle H ′[h] and take care
of h D2 by partial integration. Putting everything together, we obtain

∣
∣
∣
∣

∮
〈w, H ′[h](λ − H)−1 H ′[h](λ − H)−1 H ′[h]w〉 dλ

λ−λ(g)

∣
∣
∣
∣ ≤ C‖h‖C2‖h‖2

H1 . (2.22)

To continue, inserting (2.18) and

H ′′[h, h] = Rmhh + hh D2 + h Dh D + h D2h + Dh Dh (2.23)

and using partial integration, the third and the fourth term can be brought into the form
∮

〈Rmwhh + D2whh + Dwh Dh + wh D2h + wh Dh D, vλ or λ̄[h]〉 dλ
λ−λ(g)

. (2.24)

With the L2-estimates, this can be bounded by C‖h‖C2‖h‖2
H1 .

For the last term, note that

|〈w, H ′[h]w〉| ≤ C‖h‖C2 . (2.25)

Inserting H ′[h] and taking care of h D2 + D2h by partial integration the last integral can be
estimated by

∣
∣
∣
∣

∮
〈w, H ′[h]vλ[h]〉 dλ

(λ−λ(g))2

∣
∣
∣
∣ ≤ C‖h‖2

H1 . (2.26)

Finally, by Lemma 2.3 below, we have ‖wg‖C2,α ≤ C uniformly for all g in a C2,α-neighbor-
hood Ug0 ⊂ M(M) of g0. This uniform bound and the continuity of eigenvalues discussed
at the beginning of Sect. 2 show that all the above estimates go through uniformly in a small
enough neighborhood Ug0 of g0. ��

Lemma 2.3 Let (M, g0) be a compact Riemannian manifold. Then there exists a C2,α-neigh-
borhood Ug0 ⊂ M(M) of g0 and a constant C < ∞ such that

‖wg‖C2,α ≤ C (2.27)

for all g ∈ Ug0 , where wg denotes the ground state of Hg = −4�g + Rg.

Proof By definition of the ground state,

(−4�g + Rg − λ(g))wg = 0, ‖wg‖L2(M,dVg) = 1. (2.28)

By DeGiorgi-Nash-Moser and Schauder estimates [9, Thm. 8.17, Thm. 6.2]

‖wg‖C2,α ≤ C‖wg‖L2 ≤ C. (2.29)

Here, for definiteness, we define the norms using the background metric g0. The constants
λ(g) are uniformly bounded by the continuity of eigenvalues and we also have a uniform
C0,α-bound for the coefficient Rg and good control over �g. Thus, the estimates are uniform
in a C2,α-neighborhood of g0. ��
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3 The Ebin-Palais slice theorem and integrability

Let us recall some facts from [6]. Fix a compact manifold M. The group of diffeomorphisms
D(M) acts on the space of metrics M(M) ⊂ C∞(S2T ∗M) by pullback. Fix g0 ∈ M(M).

Since div∗
g0

is over determined elliptic we have the L2-orthogonal decomposition:

C∞(S2T ∗M) = ker divg0 ⊕ im div∗
g0

. (3.1)

Let Og0 ⊂ M(M) be the orbit of g0 under the action of D(M). By the Ebin-Palais slice
theorem, there exists a slice Sg0 for the action of D(M) on M(M). In particular, M(M) ∼=loc

Sg0 × Og0 is locally a product near g0 (in the sense of inverse limit Banach manifolds) and
the induced decomposition of Tg0M(M) = C∞(S2T ∗M) is given by (3.1). We will only
use the following part of the theorem.

Theorem 3.1 (Ebin-Palais [6]) Let M be a compact manifold and M(M) the space of metrics
on M.

Then for every metric g0 ∈ M(M), there exists a C2,α-neighborhood Ug0 ⊂ M(M) of
g0, such that every metric g ∈ Ug0 can be written as g = ϕ∗ĝ for some diffeomorphism
ϕ ∈ D(M) and some metric ĝ ∈ Sg0 = (g0 + ker divg0) ∩ Ug0 .

Remark 3.2 Ebin uses Sobolev spaces, Palais uses Hölder spaces. Moreover, Ebin uses
the exponential map Expg of the L2-metric on M(M) to construct his slice. Palais uses
the map Eg(h) = g + h and thus gets an affine slice Sg0 ⊂ (g0 + ker divg0) ∩ M(M) (the
crucial property for constructing the slice is that the exponential map is equivariant, i.e.
ϕ∗(Expgh) = Expϕ∗gϕ

∗h, which is true for the ‘exponential map’ E, since the action is
linear).

Let us now discuss our integrability assumption, following [2, Sec. 12].

Definition 3.3 Let M be compact and gRF ∈ M(M) Ricci-flat. We call

IgRF = {h ∈ ker divgRF ; DRc(gRF)[h] = 0} (3.2)

the space of infinitesimal Ricci-flat deformations of gRF and

PgRF = {ḡ ∈ SgRF ; Rcḡ = 0} (3.3)

the premoduli space of Ricci-flat metrics near gRF (the true moduli space is modeled on
PgRF/IsomgRF ).

Lemma 3.6 Let (M, gRF) compact, Ricci-flat. Then IgRF = RgRF ⊕ KgRF , where

KgRF = {h ∈ C∞(S2T ∗M); divgRF h = 0, trgRF h = 0, �L
gRF

h = 0}. (3.4)

Proof On transverse symmetric 2-tensors, the linearization of Ricci is proportional to �L +
D2 ◦ tr. Thus for h ∈ IgRF , we have �L h + D2tr h = 0. Taking the trace, we get �tr h = 0,

thus tr h = c and �L h = 0. Therefore

h = c
n gRF + (h − c

n gRF) ∈ RgRF ⊕ KgRF . (3.5)

The converse inclusion is clear. ��
Definition 3.5 (Integrability) Let M be compact and gRF ∈ M(M) be Ricci-flat. We say
that all infinitesimal Ricci-flat deformations of gRF are integrable if there is a smooth famil-
iy gh(t) ∈ M(M) of Ricci-flat metrics with gh(0) = gRF and ġh(0) = h, defined for all
h ∈ IgRF with norm less then one and all t ∈ (−ε, ε).
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Proposition 3.6 Let M be compact and gRF ∈ M(M) be Ricci-flat. If all infinitesimal Ric-
ci-flat deformations of gRF are integrable, then PgRF is a manifold near gRF with TgRFPgRF =
IgRF .

Proof As in the proof of Koiso’s theorem, we construct a manifold ZgRF ⊂ SgRF near gRF

that contains PgRF and satisfies TgRF ZgRF = IgRF . Possibly after passing to smaller neighbor-
hoods, we have PgRF = ZgRF due to integrability (see [2, Thm. 12.49] for details). ��

4 Local maxima, gradient inequality and transversality

In this section, we prove A, B, C and D.

Proof of Theorem A. Let UgRF ⊃ SgRF ⊃ PgRF be as in Sect. 3. We divide the proof of the
theorem into the following three steps, whose detailed proofs can be found below:

i. For ker divgRF = TgRF PgRF ⊕ NgRF , where

NgRF = {h ∈ ker divgRF ; 〈h, k〉L2
gRF

= 0 for all k ∈ TgRF PgRF }, (4.1)

the second variation D2λ(gRF) vanishes on the first summand and is strictly negative on
the second one.

ii. By Taylor expansion with careful estimate of the error term, possibly after passing to
smaller neighborhoods, λ is nonpositive on SgRF and vanishes only on PgRF .

iii. The assertion of the theorem follows from the Ebin-Palais slice theorem and the diffeo-
morphism invariance of λ.

Proof of i. Since gRF is Ricci-flat, we have the L2-orthogonal, �L
gRF

-invariant decomposition
[7, Sec. 4],

ker divgRF = RgRF ⊕ im(CgRF ) ⊕ T TgRF , (4.2)

where RgRF describes scaling, CgRF u = (�gRF u)gRF − HessgRF u describes the other con-
formal transformations (projected on ker divgRF ) and

T TgRF = {h ∈ C∞(S2T ∗M); divgRF h = 0, trgRF h = 0} (4.3)

denotes the space of transverse, traceless, symmetric 2-tensors.
Let us analyse the spectrum. The Lichnerowicz Laplacian �L

gRF
vanishes on RgRF. It is

strictly negative on im(C), since �LCu = C�u. Indeed, taking the trace shows that the
elements of the kernel of C are harmonic and thus constant functions (the theorem is triv-
ial in one dimension, where every metric is flat and λ vanishes identically). So, given the
eigenvalue equation,

�LCu = αCu, Cu �= 0, (4.4)

by adding a constant, we can assume without loss of generality
∫

M u = 0. Now

C(�u − αu) = �LCu − αCu = 0, (4.5)

so �u − αu is constant and by integration this constant is seen to be zero. Thus α ≤ 0. If α

were zero, then u would be constant and Cu = 0, a contradiction. Finally, �L is nonpositive
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on T T by the hypothesis of the theorem (more precisely, by the weaker hypothesis �L ≤ 0
on TT). The kernel

KgRF = {h ∈ T TgRF ; �L
gRF

h = 0} (4.6)

is finite dimensional and �L is strictly negative on T TgRF � KgRF .

By Lemma 3.6 and Proposition 3.6, TgRF PgRF = RgRF ⊕ KgRF . Now claim i. follows from
(2.13). More precisely, there exists a constant c > 0, such that

〈h,�L
gRF

h〉L2
gRF

≤ −c〈h, h〉L2
gRF

for all h ∈ NgRF . (4.7)

��
Proof of ii. For small ε > 0, by continuity,

〈h,�L
ḡ h〉L2

ḡ
= −ε〈Dh, Dh〉L2

ḡ
+ (1 − ε)〈h,�ḡh + 2

1−ε
Rmḡ :h〉L2

ḡ

≤ −c‖h‖2
H1 for all ḡ ∈ PgRF , h ∈ NgRF (4.8)

for some new constant c > 0, possibly after passing to smaller neighborhoods. Now ḡ ∈
PgRF is Ricci-flat, so λ(ḡ) = 0 and Dλ(ḡ) = 0. Thus,

λ(ḡ + h) ≤ −c‖h‖2
H1 + |R(ḡ, h)|. (4.9)

Here we used the formula

λ(ḡ + h) = λ(ḡ) + d
dt |0λ(ḡ + th) + 1

2
d2

dt2 |0λ(ḡ + th) + R(ḡ, h), (4.10)

R(ḡ, h) =
1∫

0

( 1
2 − t + 1

2 t2) d3

dt3 λ(ḡ + th)dt. (4.11)

By Proposition 2.2 we have the uniform estimate

|R(ḡ, h)| ≤ C‖h‖C2,α‖h‖2
H1 (4.12)

for the remainder, if ḡ − gRF and h are C2,α-small. For sufficiently small C2,α-norm, the
negative term in (4.9) dominates. Finally, the ‘exponential map’

E : PgRF × NgRF → gRF + ker divgRF , E(ḡ, h) = ḡ + h (4.13)

maps a C2,α-neighborhood of (gRF, 0) onto a C2,α-neighborhood of gRF. Here, to apply the
inverse function theorem, we temporarily enlarge the involved spaces to C2,α-spaces. Since
the kernel of �L

gRF
is smooth by elliptic regularity, the proof of Proposition 3.6 shows that

PgRF only consists of smooth elements also after passing to C2,α-spaces. Thus E(ḡ, h) is
smooth if and only if h is smooth. This finishes the proof of Claim ii. ��
Proof of iii. By the Ebin-Palais slice theorem, every g ∈ UgRF can be written as g = ϕ∗ĝ for
some ϕ ∈ D(M), ĝ ∈ SgRF . Since λ is diffeomorphism invariant

λ(g) = λ(ĝ) ≤ 0 (4.14)

by step ii. If λ(g) = 0, then ĝ ∈ PgRF , so Rcĝ = 0 and thus Rcg = 0. ��
This finishes the proof of Theorem A. ��

Proof of Corollary D. Let UgRF be as in Theorem A and g ∈ UgRF . If Rg ≥ 0, then λ(g) ≥ 0.

Thus λ(g) = 0 and Rcg = 0 by the equality case of Theorem A. ��
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We will now estimate the motion in the gauge directions. Namely, we have to deal with
the minimizer fg from (1.2) appearing in e− fg dVg and more importantly in Rcg + Hessg fg

in (2.11). We start with the following refinement of Lemma 2.3.

Lemma 4.1 Let (M, gRF) be compact, Ricci-flat and ε > 0. Then there exists a C2,α-neigh-
borhood UgRF of gRF such that

‖ fg − log VolgRF (M)‖C2,α < ε (4.15)

for all g ∈ UgRF , where fg is the minimizer in (1.2).

Proof Assume the volume is normalized, then

fgRF = log VolgRF (M) = 0. (4.16)

Write wg = e− fg/2. There is some ε̃ > 0, such that

‖wg − 1‖C2,α < ε̃ ⇒ ‖ fg‖C2,α < ε (4.17)

We will prove ‖wg − 1‖C2,α < ε̃ for g near gRF using the implicit function theorem. Let

X = {g ∈ C2,α(S2T ∗M); g positive definite}, (4.18)

Y = {u ∈ C2,α(M);
∫

M

u dVgRF = 0}, (4.19)

Z = {l ∈ C0,α(M);
∫

M

l dVgRF = 0}. (4.20)

Define F : X × Y → Z by

F(g, u) = (−4�g + Rg − λ(g))(1 + u) −
∫

M

(−4�g + Rg − λ(g))(1 + u) dVgRF .

(4.21)

From Sect. 2, we know that F is C1. Observe that F(gRF, 0) = 0 and

F(g, u) = 0 ⇔ (−4�g + Rg)(1 + u) = λ(g)(1 + u). (4.22)

Indeed, F(g, u) = 0 implies (−4�g +Rg −λ(g))(1+u) = c and by the Fredholm alternative∫
M cwgdVg = 0. Thus c = 0, since wg is positive. Now

DF(gRF, 0)|Y = −4�gRF : Y → Z (4.23)

is indeed an isomorphism. By the implicit function theorem there exists a C2,α-neighborhood
of gRF such that (4.22) can be solved for u = u(g) with the estimate ‖u(g)‖C2,α < ε̃/100.

Since

wg =
⎛

⎝
∫

M

(1 + u(g))2dVg

⎞

⎠

− 1
2

(1 + u(g)) (4.24)

we obtain ‖wg − 1‖C2,α < ε̃ in a small enough C2,α-neighborhood. ��
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Let g ∈ gRF + ker divgRF , g = ḡ + h, ḡ ∈ PgRF , h ∈ NgRF as in the proof of Theorem A. In
the following four lemmas, we will show

Rcg + Hessg fg = − 1
2�L

gRF
h + O1(h ∗ h) + O2((ḡ − gRF) ∗ h) (4.25)

in a C2,α-neighborhood of gRF with estimates for O1 and O2.

Lemma 4.2 Let (M, gRF) be compact Ricci-flat and h ∈ ker divgRF . Then

d
dt |0 fgRF+th = 1

2 trgRF h (4.26)
d
dt |0

(
RcgRF+th + HessgRF+th fgRF+th

) = − 1
2�L

gRF
h. (4.27)

Proof Since fgRF = log VolgRF (M) is a constant function, many terms will drop out in the
following computation. From Sect. 2, we know that t �→ fgRF+th is analytic. Differentiating
the equations

(−4�gRF+th + RgRF+th − λ(gRF + th)
)

e− 1
2 fgRF+th = 0, (4.28)

∫

M

e− fgRF+th dVgRF+th = 1 (4.29)

at t = 0, we obtain

�gRF

( d
dt |0 fgRF+th − 1

2 trgRF h
) = 0, (4.30)

∫

M

( d
dt |0 fgRF+th − 1

2 trgRF h
)

dVgRF = 0, (4.31)

and Eq. 4.26 follows. Equation 4.27 follows from

d
dt |0RcgRF+th = − 1

2

(
�L

gRF
h + HessgRF trgRF h

)
(4.32)

and d
dt |0

(
HessgRF+th fgRF+th

) = HessgRF
d
dt |0 fgRF+th . ��

Lemma 4.2 Let F(s, t) be a C2-function on 0 ≤ s, t ≤ 1 with values in a Frechet-space.
Then

F(1, 1) = F(1, 0) + d
dt |0 F(0, t) +

1∫

0

(1 − t) d2

dt2 F(0, t)dt +
1∫

0

1∫

0

∂2

∂s∂t F(s, t)dsdt.

(4.33)

Proof By the Hahn-Banach theorem, it suffices to prove the lemma for real valued F and this
follows from

1∫

0

(1 − t) d2

dt2 F(0, t)dt = − d
dt |0 F(0, t) +

1∫

0

d
dt F(0, t)dt

︸ ︷︷ ︸
=F(0,1)−F(0,0)

, (4.34)

1∫

0

1∫

0

∂2

∂s∂t F(s, t)dsdt = F(1, 1) + F(0, 0) − F(1, 0) − F(0, 1). (4.35)

��
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Lemma 4.4 Let g ∈ gRF + ker divgRF , g = ḡ + h, ḡ ∈ PgRF , h ∈ NgRF as in the proof of
Theorem A. Then, in a C2,α-neighborhood of gRF in gRF + ker divgRF , we have the equality

Rcg + Hessg fg = − 1
2�L

gRF
h + O1 + O2 (4.36)

with

O1 =
1∫

0

(1 − t) d2

dt2

(
RcgRF+th + HessgRF+th fgRF+th

)
dt, (4.37)

O2 =
1∫

0

1∫

0

∂2

∂s∂t

(
RcgRF+s(ḡ−gRF)+th + HessgRF+s(ḡ−gRF)+th fgRF+s(ḡ−gRF)+th

)
dsdt.

(4.38)

Proof Use Lemma 4.2 with

F(s, t) = RcgRF+s(ḡ−gRF)+th + HessgRF+s(ḡ−gRF)+th fgRF+s(ḡ−gRF)+th . (4.39)

Note that F(1, 0) = Rcḡ + Hessḡ fḡ = 0 and use (4.27). ��
Lemma 4.5 Let g ∈ gRF + ker divgRF , g = ḡ + h, ḡ ∈ PgRF , h ∈ NgRF as in the proof of
Theorem A. Then, there exists a C2,α-neighborhood of gRF in gRF +ker divgRF and a constant
C < ∞ such that the inequalities

‖O1‖L2 ≤ C‖h‖C2,α‖h‖H2 , (4.40)

‖O2‖L2 ≤ C‖ḡ − gRF‖C2,α‖h‖H2 (4.41)

hold in this neighborhood.

Proof The estimate is clear for the part of Oi coming from Rc (since it contains at most
second derivatives). The part coming from Hess f is more tricky. Let h, k be symmetric
2-tensors. We will show

‖ ∂2

∂s∂t |(0,0)Hessg+sk+th fg+sk+th‖L2 ≤ C‖k‖C2,α‖h‖H2 (4.42)

uniformly for all g in a C2,α-neighborhood. We differentiate:

∂2

∂s∂t |(0,0)Hessg+sk+th fg+sk+th = ˙Hess
′
f + Hess′ ḟ + ˙Hess f ′ + Hess ḟ ′. (4.43)

The first term has the schematic form

˙Hess
′
f = k Dh D f + h Dk D f, (4.44)

thus

‖ ˙Hess
′
f ‖L2 ≤ C‖k‖C1‖h‖H1 ≤ C‖k‖C2,α‖h‖H2 (4.45)

by Lemma 4.1 (we will use Lemma 4.1 frequently below without mentioning it again). To
control the other three terms, we will differentiate the equation

2�g+sk+th fg+sk+th − |D fg+sk+th |2g+sk+th + Rg+sk+th = λ(g + sk + th) (4.46)

and use elliptic estimates. Differentiating with respect to t gives the linear elliptic equation

Pg ḟ = Fg[h], (4.47)
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where Pg = �g − gi j Di fg D j and F has the schematic form

Fg[h] = λ̇ + D2h + Dh D f + h D2 f + h D f D f + hRc. (4.48)

By the maximum principle, only constant functions are in the kernel of P. Thus ḟ − ¯̇f is
L2-orthogonal to ker P (the bar denotes the average). Since it also solves the equation

Pg( ḟ − ¯̇f ) = Fg[h], (4.49)

we get the estimate

‖ ḟ − ¯̇f ‖H2 ≤ C‖Fg[h]‖L2 ≤ C‖h‖H2 . (4.50)

In the last step, we used the estimate (cf. Sect. 2),

|λ̇| ≤ C‖h‖H2 . (4.51)

Thus

‖Hess′ ḟ ‖L2 ≤ C‖Dk D ḟ ‖L2 ≤ C‖k‖C1‖ ḟ − ¯̇f ‖H1 ≤ C‖k‖C2,α‖h‖H2 . (4.52)

Next, we will estimate ˙Hess f ′. Similar as above, we obtain:

Pg( f ′ − f̄ ′) = Fg[k] (4.53)

‖ f ′ − f̄ ′‖H2 ≤ C‖k‖H2 . (4.54)

From (4.53), by DeGiorgi-Nash-Moser and Schauder estimates we get

‖ f ′ − f̄ ′‖C2,α ≤ C
(‖Fg[k]‖C0,α + ‖ f ′ − f̄ ′‖L2

) ≤ C‖k‖C2,α , (4.55)

where we used (4.54) and |λ′| ≤ C‖k‖C2,α . Thus

‖ ˙Hess f ′‖L2 ≤ C‖Dh D f ′‖L2 ≤ C‖k‖C2,α‖h‖H2 . (4.56)

Finally, let us estimate Hess ḟ ′. Differentiating (4.46) twice gives the linear elliptic equation

Pg ḟ ′ = Gg[h, k], (4.57)

where G has the schematic form,

Gg[h, k] = λ̇′ + D ḟ D f ′ + (
h D2 f ′ + Dh D f ′ + h D f ′ D f

)

+ (
k D2 ḟ + Dk D ḟ + k D ḟ D f

)

+ (
k D2h + h D2k + Dh Dk + h Dk D f + k Dh D f

+ hk D f D f + hk D2 f + hkRm
)
. (4.58)

Similar as before, we get the estimate

‖Hess ḟ ′‖H2 ≤ C‖ ḟ ′ − ¯̇f ′‖H2 ≤ C‖Gg[h, k]‖L2 ≤ C‖k‖C2,α‖h‖H2 , (4.59)

where the last inequality is obtained as follows: The expression (4.58) for G consists of five
terms. The inequality is clear for the fifth term, for the fourth term it follows from (4.50),
for the third term from (4.55) and for the second term from (4.50) and (4.55). Finally, from
Sect. 2, we know

|λ̇′| ≤ C‖k‖C2,α‖h‖H2 , (4.60)
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and this yields the inequality for the first term. Indeed, from (2.6) by polarization

∂2

∂s∂t |(0,0)λ(g + sk + th) = 〈w, Ḣ ′[h, k]w〉 (4.61)

+ 1
2π i

∮
〈w, Ḣ [h](λ − H)−1 H ′[k]w〉 dλ

λ−λ(g)

+ 1
2π i

∮
〈w, H ′[k](λ − H)−1 Ḣ [h]w〉 dλ

λ−λ(g)

and this can be estimated using the same methods as in the proof of Proposition 2.2. All the
above estimates are uniform in a C2,α-neighborhood. This finishes the proof of the lemma.

��
Proof of Theorem C. We can assume g ∈ gRF +ker divgRF , g = ḡ +h, ḡ ∈ PgRF , h ∈ NgRF .

This reduction is justified using the Ebin-Palais slice theorem and integrability as in the
proof of Theorem A. In particular, note that ϕ∗ fg = fϕ∗g and that the different L2-norms
are uniformly equivalent.
Since

‖Rcg‖L2 ≤ C‖h‖H2 , (4.62)

it suffices to show

‖Rcg + Hessg fg‖2
L2 ≥ c‖h‖2

H2 (4.63)

for some c > 0. To see this, using Lemma 4.4, note that

‖Rcg + Hessg fg‖2
L2 = 1

4‖�L
gRF

h‖2
L2 − 〈O1 + O2,�

L
gRF

h〉 + ‖O1 + O2‖2
L2

≥ 2c‖h‖2
H2 − C(‖O1‖L2 + ‖O2‖L2)‖h‖H2 (4.64)

for some c > 0, since �L
gRF

|NgRF
is injective. Together with Lemma 4.5, this proves (4.63)

in a C2,α-neighborhood and the theorem follows. ��
Remark 4.6 The reverse inequality,

‖Rcg + Hessg fg‖L2(M,e− fg dVg) ≤ ‖Rcg‖L2(M,e− fg dVg) (4.65)

follows immediatly from the L2(M, e− fg dVg)-orthogonality of Rc+Hess f and Hess f (see
(2.12)).

Proof of Theorem B. We can assume g ∈ gRF + ker divgRF , g = ḡ + h, ḡ ∈ PgRF , h ∈ NgRF ,

arguing as in the proof of Theorem C. Then, always working in a small enough C2,α-neigh-
borhood,

|λ(g)| ≤ C‖h‖2
H2 . (4.66)

This estimate follows from λ(ḡ)= 0, Dλ(ḡ)= 0 and (2.6). Together with (4.63), the theorem
follows. ��
Remark 4.7 To show convergence of a parabolic gradient flow, d

dt g = ∇λ(g), starting near
a local maximizer gmax of its energy λ, an inequality of the form ‖∇λ(g)‖L2 ≥ c|λ(g) −
λ(gmax)|1−θ for some θ ∈ (0, 1

2 ] is sufficient [22]. Let us also remark that from Perelman’s
evolution inequality dλ

dt ≥ 2
n λ2 we only get the inequality for θ = 0.
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5 Stability and Instability under Ricci flow

Let (Mn, gRF) be compact Ricci-flat. Assume all infinitesimal Ricci-flat deformations of gRF

are integrable and �L
gRF

≤ 0 on TT. Let k ≥ 3.

By the Theorems A, B, C and Lemma 4.1, there exist constants ε0 > 0 and C1, C2 < ∞
such that for all g with ‖g − gRF‖Ck

gRF
< ε0:

λ(g) ≤ 0 and λ(g) = 0 ⇔ Rcg = 0 (5.1)

|λ(g)|1/2 ≤ C1‖Rcg + Hessg fg‖L2
fg

(5.2)

‖Rcg‖L2
g

≤ C2‖Rcg + Hessg fg‖L2
fg

(5.3)

Here, we define the Ck-norm using gRF and the L2
f -norm using the metric g and the measure

e− fg dVg.

Lemma 5.1 (Energy controls the distance) Let (Mn, gRF) and k, ε0, C1, C2 as above. Let
0 ≤ t1 < t2 < T and g(t) a Ricci flow (1.1) with ‖g(t) − gRF‖Ck

gRF
< ε0 for all t ∈ [0, T ).

Then

t2∫

t1

‖Rcg(t)‖L2
g(t)

dt ≤ C1C2

(

|λ(g(t1))|
1
2 − |λ(g(t2))|

1
2

)

. (5.4)

Proof Without loss of generality, we can assume the inequality in (5.1) is strict, i.e. λ(g(t)) <

0 for all t ∈ [0, T ). By Perelman’s monotonicity formula λ = −|λ| is increasing along the
flow, more precisely,

− d
dt |λ(g(t))|1/2 = 1

2 |λ(g(t))|−1/2 d
dt λ(g(t))

= |λ(g(t))|−1/2〈Rcg(t) + Hessg(t) fg(t), Rcg(t)〉L2
fg(t)

= |λ(g(t))|−1/2‖Rcg(t) + Hessg(t) fg(t)‖2
L2

fg(t)

≥ 1
C1C2

‖Rcg(t)‖L2
g(t)

(5.5)

where we used (2.11), (2.12), (5.2) and (5.3). This proves the lemma. ��
Lemma 5.2 (Estimates for t ≤ 1) Let (Mn, gRF) be compact, Ricci-flat, k ≥ 3, ε > 0. Then
there exists a δ1 = δ1(Mn, gRF, ε, k) > 0 such that: If ‖g0 − gRF‖Ck+2

gRF
< δ1 then the Ricci

flow starting at g0 exists on [0, 1] and satisfies

‖g(t) − gRF‖Ck
gRF

< ε ∀t ∈ [0, 1]. (5.6)

Proof From ∂t Rm = �Rm + Rm ∗ Rm and ∂t Rc = �Rc + Rm ∗ Rc, we get the evolution
inequalities

∂t |Di Rm|2 ≤ �|Di Rm|2 +
i∑

j=0

Ci j |Di− j Rm||D j Rm||Di Rm|, (5.7)

∂t |Di Rc|2 ≤ �|Di Rc|2 +
i∑

j=0

Ci j |Di− j Rm||D j Rc||Di Rc|. (5.8)
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From (5.7), by the maximum principle, there exists a K̃ = K̃ (K , n, k) < ∞ such that if g(t)
is a Ricci flow on [0,T] with T ≤ 1 and

|Rm(x, t)| ≤ K , |Di Rm(x, 0)| ≤ K , ∀x ∈ M, t ∈ [0, T ], i ≤ k (5.9)

then

|Di Rm(x, t)| ≤ K̃ ∀x ∈ M, t ∈ [0, T ], i ≤ k. (5.10)

From (5.8), by the maximum principle, for every ε̃ > 0, there exists a δ̃ = δ̃(K̃ , ε̃, n, k) > 0
such that for g(t) as above:

|Di Rc(x, 0)| ≤ δ̃ ∀x ∈ M, i ≤ k

⇒ |Di Rc(x, t)| ≤ ε̃ ∀x ∈ M, t ∈ [0, T ], i ≤ k. (5.11)

Finally, as long as the Ck-norms defined via gRF and g(t) differ at most by a factor 2,

d
dt ‖g(t) − gRF‖Ck

gRF
≤ ‖2Rcg(t)‖Ck

gRF
≤ 4

k∑

i=0

sup
x∈M

|Di Rc(x, t)|. (5.12)

Now, we put the above facts together: Without loss of generality, assume ε > 0 is small
enough that the Ck-norms defined via gRF and via g with ‖g − gRF‖Ck

gRF
≤ ε differ at most

by a factor 2. Pick some small enough δ̄ > 0. Define

K := sup{|Rmg(x)|; ‖g − gRF‖Ck
gRF

≤ ε, x ∈ M}
+ sup{|Di Rmg(x)|; ‖g − gRF‖Ck+2

gRF
≤ δ̄, x ∈ M, i ≤ k} < ∞. (5.13)

Let K̃ := K̃ (K , n, k), δ̃ := δ̃(K̃ , ε
16(k+1)

, n, k) and let δ1 < δ̄ be so small that

‖g − gRF‖Ck+2
gRF

≤ δ1 ⇒ sup
x∈M, i≤k

|Di Rcg(x)| ≤ δ̃, ‖g − gRF‖Ck
gRF

≤ ε
4 . (5.14)

Let ‖g0 − gRF‖Ck+2
gRF

< δ1. Let T ∈ (0,∞] be the maximal time such that the Ricci flow

starting at g0 exists on [0,T) and satisfies

‖g(t) − gRF‖Ck
gRF

< ε ∀t ∈ [0, T ). (5.15)

Suppose, towards a contradiction, T ≤ 1. Then

‖g(t) − gRF‖Ck
gRF

≤ ‖g0 − gRF‖Ck
gRF

+ 4(k + 1) sup
x∈M, i≤k
t∈[0,T ]

|Di Rc(x, t)| ≤ ε
2 . (5.16)

for all t ∈ [0, T ]. This contradicts the maximality in the definition of T and proves the
lemma. ��

Lemma 5.3 (Estimates for t ≥ 1) Let (Mn, ḡ) be compact and ε > 0 small enough. Then
there exist constants Ci = Ci (Mn, ḡ, ε, i) < ∞ such that if g(t) is a Ricci flow with ‖g(t) −
ḡ‖C2

ḡ
< ε for all t ∈ [0, T ) then

‖Rcg(t)‖Ci
g(t)

≤ Ci‖Rcg(t−1/2)‖L2
g(t−1/2)

∀t ∈ [1, T ). (5.17)

123



Perelman’s lambda-functional and the stability of Ricci-flat metrics

Proof Since ε is small enough, we have uniform curvature bounds and a uniform bound for
the Sobolev constant. Thus, from the evolution inequality

∂t |Rc|2 ≤ �|Rc|2 + C K |Rc|2, (5.18)

by Moser iteration (see e.g. [32]), there exists K̃ = K̃ (M, ḡ, ε) < ∞ such that

sup
x∈M

|Rc(x, t)| ≤ K̃‖Rcg(t−1/4)‖L2
g(t−1/4)

. (5.19)

Note that usually a space time integral appears on the right hand side, however one can get
rid of the time integral using

d
dt

∫

M

|Rc|2dV ≤ C̃ K
∫

M

|Rc|2dV . (5.20)

From the evolution equation of Rm, by Bando-Bernstein-Shi estimates (see e.g. [11]), one
gets uniform bounds for the derivatives of Rm let’s say on [ 3

4 , T ). Using these bounds in the
evolution equation of Rc, again by Bando–Bernstein–Shi type estimates, we get constants
K̄i = K̄i (M, ḡ, ε, i) < ∞ such that

sup
x∈M, j≤i

|D j Rc(x, t)| ≤ K̄i sup
x∈M

|Rc(x, t − 1
4 )| ∀t ∈ [1, T ). (5.21)

This proves the lemma. ��
Let us restate Theorem E in the following equivalent form.

Theorem E (Dynamical stability) Let (Mn, gRF) be compact, Ricci-flat and k ≥ 3. Assume
that all infinitesimal Ricci-flat deformations of gRF are integrable and �L

gRF
≤ 0 on TT.

Then for every ε > 0 there exists a δ = δ(Mn, gRF, ε, k) > 0 such that if ‖g0−gRF‖Ck+2
gRF

< δ,

then the Ricci flow starting at g0 exists on [0,∞), satisfies ‖g(t) − gRF‖Ck
gRF

< ε for all t ∈
[0,∞) and g(t) → g∞ exponentially as t → ∞, with Rcg∞ = 0 and ‖g∞ − gRF‖Ck

gRF
< ε.

Proof of Theorem E Without loss of generality, assume ε is small enough that the previous
lemmas apply and that the Ck-norms defined via g and gRF with ‖g − gRF‖Ck

gRF
< ε differ at

most by a factor 2. Let δ := min{δ1, δ2}, where δ1 = δ1(M, gRF, ε
4 , k) > 0 is from Lemma

5.2 and δ2 = δ2(M, gRF, ε, k) > 0 is such that ‖g0 − gRF‖Ck+2
gRF

< δ2 implies

4C1C2Ck |λ(g0)|1/2 ≤ ε
4 (5.22)

where Ck = Ck(Mn, gRF, ε, k) is from Lemma 5.3 and C1, C2 are from the beginning of
Sect. 5. Let ‖g0 − gRF‖Ck+2

gRF
< δ and T ∈ (1,∞] be the maximal time such that the Ricci

flow starting at g0 satisfies

‖g(t) − gRF‖Ck
gRF

< ε ∀t ∈ [0, T ). (5.23)

Without loss of generality, assume the inequality λ(g(t)) ≤ 0 is strict for all t ∈ [0, T ).

Suppose towards a contradiction T < ∞. Then for all t ∈ [1, T )

d
dt ‖g(t) − g(1)‖Ck

gRF
≤ 4‖Rcg(t)‖Ck

g(t)
≤ 4Ck‖Rcg(t−1/2)‖L2

g(t−1/2)
(5.24)

by Lemma 5.3, and thus by Lemmas 5.2 and 5.1

‖g(t) − gRF‖Ck
gRF

≤ ‖g(1) − gRF‖Ck
gRF

+ 4C1C2Ck |λ(g0)|1/2 ≤ ε
2 (5.25)

for all t ∈ [1, T ). This contradicts the maximality in the definition of T, thus T = ∞ and

123



R. Haslhofer

‖g(t) − gRF‖Ck
gRF

< ε, t ∈ [0,∞) (5.26)

∞∫

0

‖ġ(t)‖Ck
gRF

dt < ∞. (5.27)

Thus g(t) → g∞ in Ck
gRF

for t → ∞ (since g(t) is a Ricci flow with smooth initial metric,
the convergence is in fact smooth). Along the flow, we have

− d
dt |λ| = 2‖Rc + Hess f ‖2

L2
f

≥ 2
C2

1
|λ| (5.28)

⇒ |λ(g(t2))| ≤ e−2(t2−t1)/C2
1 |λ(g(t1))|. (5.29)

Thus λ(g∞) = 0, Rcg∞ = 0 and, using in particular Lemmas 5.1 and 5.3, we see that the
convergence is exponential (the exponential convergence is a consequence of the optimal
Łojasiewicz exponent 1

2 ). This proves the theorem.

Remark 5.4 Since the Ricci flow is not strictly parabolic, we mostly worked with the evolu-
tion equations of the curvatures. This is the reason for the loss of two derivatives in Theorem E.
For the Ricci-DeTurck flow one of course gets optimal regularity. However, when translating
back to the Ricci flow, one also loses two derivatives.

Proof of Theorem F. Pick a sequence of metrics g0
i → gRF in C∞ with λ(g0

i ) > 0. Let
g̃i (t) be the Ricci flows starting at g0

i . Since λ(g0
i ) > 0, by Perelman’s evolution inequality

dλ
dt ≥ 2

n λ2, the flows become singular in finite time. Since g0
i → gRF in C∞, the flows exist

and stay inside a small ball for longer and longer times. Let ε > 0 be small enough. Let ti
be the first time when dC∞(g̃i (t), gRF) = ε. Then ti → ∞ and, always assuming i is large
enough,

ε
2 ≤ dC∞(g̃i (ti ), g̃i (1)) ≤ Cλ(g̃i (ti ))

1/2, (5.30)

by the Łojasiewicz inequality, the gauge estimate and parabolic estimates. Thus λ(g̃i (ti )) ≥
c > 0, which will be used to exclude trivial solutions.
Shifting time, we obtain a family of Ricci flows gi (t) := g̃i (t + ti ), t ∈ [−ti , T ),−ti →
−∞, T > 0 with

dC∞(gi (t), gRF) ≤ 2ε ∀t ∈ [−ti , T ), (5.31)

λ(gi (0)) ≥ c > 0, (5.32)

gi (−ti ) = g0
i → gRF in C∞. (5.33)

From (5.31) and the Ricci flow equation, we have C∞ space-time bounds. Thus, after pass-
ing to a subsequence, gi converges to an ancient Ricci flow g in C∞

loc(M × (−∞, T )) with
λ(g(0)) ≥ c > 0. In particular, this implies that g is nontrivial and becomes singular in finite
time. Moreover, λ(g(t)) ≥ 0 for all t ∈ (−∞, T ). Finally, for −ti ≤ t,

dC∞(gRF, g(t)) ≤ dC∞(gRF, g0
i ) + dC∞(gi (−ti ), gi (t)) + dC∞(gi (t), g(t))

≤ dC∞(gRF, g0
i ) + Cλ(gi (t))

1/2 + dC∞(gi (t), g(t)) (5.34)

by the Łojasiewicz inequality, the gauge estimate and parabolic estimates. Since λ(gi (t)) is
bounded up to time zero and dλ

dt ≥ 2
n λ2, we see that λ(gi (t)) is very small for very negative

t. Thus g(t) → gRF in C∞ as t → −∞ and this finishes the proof of the theorem. ��
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Remark 5.5 In general, Łojasiewicz type inequalities find their truest applications in the non-
integrable case. In fact, the conclusions of Theorem E and F hold under the slightly weaker
assumption that λ is maximal respectively nonmaximal and gRF satisfies the Łojasiewicz
type inequalities

‖Rcg + Hessg fg‖L2 ≥ c|λ(g)|1−θ1 (5.35)

‖Rcg + Hessg fg‖θ2
L2 ≥ c‖Rcg‖L2 (5.36)

for θ1 ∈ (0, 1
2 ], θ2 ∈ (0, 1] with

2θ1 + θ2 − θ1θ2 > 1. (5.37)

The estimates (5.35) and (5.36) should be the natural generalizations of Theorem B and C to
the nonintegrable case. It is an interesting problem to prove them using Lyapunov-Schmidt
reduction, the finite-dimensional Łojasiewicz inequalities and the estimates for the error terms
developed in this article. Note however, that the condition (5.37) is essentially uncheckable,
so a new way of dealing with the gauge problem should be found.

Acknowledgements I would like to thank Tom Ilmanen for many interesting discussions, in particular for
suggesting the Łojasiewicz-Simon type argument. Moreover, I would like to thank Michael Struwe for his
support, Richard Bamler and Reto Müller for detailed comments on a preliminary version of this paper, and
the Swiss National Science Foundation for partial financial support.

Appendix A: Proof of Lemma 2.1

We expand

Hg(ε) = H + εH ′[h] + ε2

2 H ′′[h, h] + ε3

6 H ′′′[h, h, h] + O(ε4), (A.1)

and

(λ − Hg(ε))
−1 = (λ − H)−1 + ε(λ − H)−1 H ′[h](λ − H)−1 (A.2)

+ ε2

2

(
(λ − H)−1 H ′′[h, h] + 2

(
(λ − H)−1 H ′[h])2

)
(λ − H)−1 + O(ε3).

We insert this in (2.2), use (λ − H)−1w = (λ − λ(g))−1w, use that H is symmetric with
respect to the L2-inner product and that w is normalized. Thus

1

〈w, Pg(ε)w〉 = 1 − ε2 1
2π i

∮
〈w, H ′[h](λ − H)−1 H ′[h]w〉 dλ

(λ−λ(g))2 + O(ε3),

〈w, (Hg(ε) − H)Pg(ε)w〉 = ε〈w, H ′[h]w〉
+ ε2

2

(

〈w, H ′′[h, h]w〉 + 2
2π i

∮
〈w, H ′[h](λ − H)−1 H ′[h]w〉 dλ

λ−λ(g)

)

+ ε3

6 〈w, H ′′′[h, h, h]w〉
+ ε3

6
6

2π i

∮
〈w, H ′[h](λ − H)−1 H ′[h](λ − H)−1 H ′[h]w〉 dλ

λ−λ(g)

+ ε3

6
3

2π i

∮
〈w, H ′[h](λ − H)−1 H ′′[h, h]w〉 dλ

λ−λ(g)

+ ε3

6
3

2π i

∮
〈w, H ′′[h](λ − H)−1 H ′[h]w〉 dλ

λ−λ(g)
+ O(ε4), (A.3)

and the formulas in the lemma follow from (2.4).
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Let us now justify convergence and analyticity. We have a family of closed operators

H(ε) = −4�g+εh + Rg+εh : H2(M) ⊂ L2(M, dVg) → L2(M, dVg). (A.4)

For every u ∈ L2(M, dVg) and v ∈ H2(M), the L2(M, dVg)-inner product 〈u, H(ε)v〉
depends analytically on ε. Since every weakly analytic function is strongly analytic, for
every v ∈ H2(M), ε �→ H(ε)v is an L2(M, dVg)-valued analytic function. By the above,
H(ε) is an analytic family of type (A) and thus an analytic family in the sense of Kato [20,
Sec. XII.2]. Therefore, the smallest eigenvalue λ(g(ε)) is an analytic function of ε by the
Kato-Rellich theorem [20, Thm. XII.8]. Finally, by [20, Thm. XII.7] the function

(λ, ε) �→ (λ − H(ε))−1 (A.5)

is an L(L2(M, dVg))-valued analytic function of two variables defined on an open set, say on
{(λ, ε) ∈ C

2 : r −δ < |λ−λ(g)| < r +δ, |ε| < δ}, and this justifies the above computations.

Appendix B: The second variation

Let (M, gRF) be compact, Ricci-flat, h ∈ ker divgRF . We would like to evaluate (2.6). Since
w is constant, there are some simplifications. To get H ′′[h, h] we compute

d2

dε2 |0 Rg(ε) = d
dε

|0gi j gkl(−hik R jl + Di Dkh jl − Di D j hkl). (B.1)

There are contributions from the derivative of g−1 (first line), Rc (second line) and D (third
line) respectively. Using divh = 0, Rc = 0, which implies in particular −Di Dkhil =
Rkplq h pq , we obtain

d2

dε2 |0 Rg(ε) = hi j�hi j + Ripjq hi j h pq + hi j Di D j trh

+ 1
2 hi j�hi j + Ripjq hi j h pq + 1

2 hi j Di D j trh

+|Dh|2 − 1
2 |Dtrh|2 − Di h jk Dkhi j + 1

2 Di (h jk Di h jk + hi j D j trh)

= 2〈h,�h〉 + 3
2 |Dh|2 − 1

2 |Dtrh|2 + 2〈h, D2trh〉
+2Ripjq hi j h pq − Di h jk Dkhi j . (B.2)

Together with d2

dε2 |0�g(ε)1 = 0, after partial integration, commuting the derivatives in
Di Dkhi j and using divh = 0 again, we get

〈1, H ′′[h, h]1〉 = 1
2

∫

M

(
〈h,�L h〉 + trh�trh

)
dV . (B.3)

The other term contributing to the second variation is proportional to

2
2π i

∮

|λ|=r

〈1, H ′[h](λ − H)−1 H ′[h]1〉 dλ
λ

. (B.4)
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Now, we insert H ′[h] from (2.10). Since Rc = 0, divh = 0 and D1=0, many terms vanish.
After a partial integration, even more terms vanish and we obtain

2
2π i

∮

|λ|=r

〈1, H ′[h](λ − H)−1 H ′[h]1〉 dλ
λ

= − 2
2π i

∮

|λ|=r

〈trh,�(λ + 4�)−1�trh〉 dλ
λ

= − 1
2

∫

M

trh�trh dV . (B.5)

To justify the last step, note that �(λ + 4�)−1 converges to 1
4 as λ tends to zero. Finally,

w = Vol(M)−1/2, gRF is a critical point of λ, and λ is invariant under diffeomorphism. This
proves (2.13).
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