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Abstract In present work, we first establish the corresponding Sobolev inequality and
Poincaré inequality on the cone Sobolev spaces, and then, as an application of such inequali-
ties, we prove the existence of non-trivial weak solution for Dirichlet boundary value problem
for a class of non-linear elliptic equation on manifolds with conical singularities.

Mathematics Subject Classification (2000) 35J20 · 58J05

1 Introduction and preliminaries

Let X be a closed, compact, C∞ manifold, and set

X� = (R+ × X)/({0} × X)

this local model interpreted as a cone with the base X . Since the analysis is formulated off
the singularity it makes sense to pass to

X∧ = R+ × X

the open stretched cone with the base X .
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464 H. Chen et al.

A finite dimensional manifold B with conical singularities is a topological space with
a finite subset B0 = {b1, . . . , bM } ⊂ B of conical singularities, with the following two
properties:

1. B \ B0 is a C∞ manifold.
2. Every b ∈ B0 has an open neighhourhood U in B, such that there is a homeomorphism
ϕ : U → X� for some closed compact C∞ manifold X = X (b), and ϕ restricts to a
diffeomorphism ϕ′ : U \ {b} → X∧.

Example 1.1 Let X̃ be an arbitrary closed compact C∞ manifold, then there is an integer N
and a C∞ submanifold X of SN−1 = {x ∈ R

N : |x| = 1} which is diffeomorphism to X̃ .
The set B := {x ∈ R

N \ {0} : x
|x| ∈ X} ∪ {0} is an infinite cone with the base X and the

conical point {0}.
From now on, we assume that the manifold B is paracompact and of dimension n + 1.

By this assumption we can define the stretched manifold B, associated with B, as a C∞
manifold with compact C∞ boundary ∂B ∼= ⋃

b∈B0
X (b), such that there is a diffeomo-

phism B\B0 ∼= B\∂B := intB, the restriction of which to U1\B0 ∼= V1\∂B for an open
neighbourhood U1 ⊂ B near the points of B0 and a collar neighbourhood V1 ⊂ B with
V1 ∼= ⋃

b∈B0
{[0, 1)× Xb}.

The typical differential operators on a manifold with conical singularities, are called Fuchs
type, if the operators in a neighbourhood of t = 0 are of the following form

A = t−m
m∑

k=0

ak(t)

(

−t
∂

∂t

)k

(1.1)

with (t,x) ∈ R+ × X = X∧, ak(t) ∈ C∞(R+,Diffm−k(X)). Examples of that kind of
operators are as follows.

Example 1.2 Let gX (t) be an t-dependent family of Riemannian metrics on a closed compact
C∞ manifold X, which is infinitely differentiable in t ∈ R+. Then

g := dt2 + t2gX (t)

is a Riemannian metric on X∧. The Laplace–Beltrami operators corresponding to the
metric g are then of the form

� = t−2
2∑

k=0

ak(t)

(

−t
∂

∂t

)k

with ak(t) ∈ C∞(R+,Diff2−k(X)).

Example 1.3 Let gX (t, y) be an (t, y)-dependent family of Riemannian metrics on a closed
compact C∞ manifold X, which is infinitely differentiable in (t, y) ∈ R+ ×�. Then

g := dt2 + t2gX (t, y)+ dy2

is a Riemannian metric on X∧ ×�. The Laplace–Beltrami operators related to the metric g
are then of the form

� = t−2
2∑

k=0

ak(t, y)(−t
∂

∂t
)k +

q∑

j=1

∂2

∂y2
j

with ak(t, y) ∈ C∞(R+ ×�,Diff2−k(X)) and q = dim�.
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Cone Sobolev inequality and Dirichlet problem for nonlinear elliptic equations 465

The differentiation t∂t in Fuchs type operators motivates us to employ the Mellin trans-
form.

Definition 1.1 Let u(t) ∈ C∞
0 (R+), z ∈ C, then the Mellin transform is defined by the

formula

Mu(z) =
+∞∫

0

t zu(t)
dt

t
,

and

M : C∞
0 (R+) → A(C),

where A(C) denotes the space of entire functions.

Proposition 1.1 (cf. [12]) The Mellin transform satisfies the following identities,

(1) M((−t∂t )u)(z) = zM(z),
(2) M(t−pu)(z) = (Mu)(z − p),
(3) M((logt)u)(z) = (∂z Mu)(z),
(4) M(u(tβ))(z) = β−1(Mu)(β−1z),

for t ∈ R+, z, p ∈ C, β ∈ R \ {0}, and u ∈ C∞
0 (R+).

To extend M to more general distribution spaces on R+, we introduce the weighted Mellin
transform. The so-called weight line �β is defined as �β = {z ∈ C : Re z = β}. Then we
define the weighted Mellin transform with weight data γ as follows

Mγ u := Mu|� 1
2 −γ =

+∞∫

0

t1/2−γ+iτu(t)
dt

t
,

and the inverse weighted Mellin transform is defined as

(M−1
γ g)(t) = 1

2π i

∫

� 1
2 −γ

t−zg(z)dz.

For u(t) ∈ C∞
0 (R+), set Sγ u(r) = e−( 1

2 −γ )r u(e−r ), then we have

(Mγ u)

(
1

2
− γ + iτ

)

= (F Sγ u)(τ ), (1.2)

where F is the 1-dimensional Fourier transform corresponding to t . In fact, by changing
variables t = e−r and set z = 1

2 − γ + iτ ∈ C, it is easy to see

(F Sγ u
)
(τ ) =

+∞∫

−∞
e−irτ e

−
(

1
2 −γ

)
r
u(e−r )dr =

+∞∫

−∞
e
−
(

1
2 −γ+iτ

)
r
u(e−r )dr (1.3)

=
+∞∫

0

t zu(t)
dt

t
= (

Mγ u
)
(

1

2
− γ + iτ

)

. (1.4)

Accordingly, we have the following result.
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466 H. Chen et al.

Proposition 1.2 (cf. [12]) The operator Mγ : C∞
0 (R+) → S(� 1

2 −γ ) extends by continuity

to an isomorphism

Mγ : Lγ2 (R+) → L2
(
� 1

2 −γ
)

for all γ ∈ R and Lγ2 (R+) = tγ L2(R+), where

‖ u ‖Lγ2 (R+)= (2π)−
1
2 ‖ Mγ u ‖

L2

(

� 1
2 −γ

) (1.5)

The so-called weighted Mellin Sobolev spaces can be defined by using the property (1.5)
as follows.

Definition 1.2 For s, γ ∈ R, we denote by Hs,γ
2 (Rn+1+ ) the space of all u ∈ D′(Rn+1+ ) such

that

1

2π i

∫

� n+1
2 −γ

∫

Rn

(
1 + |z|2 + |ξ |2)s |

(
Mγ− n+1

2 ,t→zFx→ξu
)
(z, ξ)|2dzdξ < +∞,

where Mγ− n+1
2

is the weighted Mellin transform and Fx→ξ the n-dimensional Fourier trans-

form. Naturally, the space Hs,γ
2 (Rn+1+ ) admits a norm

‖u‖Hs,γ
2

(
R

n+1+
) =

⎧
⎪⎪⎨

⎪⎪⎩

1

2π i

∫

� n+1
2 −γ

∫

Rn

(
1+|z|2+|ξ |2)s |

(
Mγ− n+1

2 ,t→zFx→ξu
)
(z, ξ)|2dzdξ

⎫
⎪⎪⎬

⎪⎪⎭

1/2

.

Now we turn to natural scales of the weighted Mellin Sobolev space of integer smoothness.

Definition 1.3 Let L2(Rn+1+ ) be the space of square integrable functions on R
n+1+ , with

respect to dtdx, and (t,x) ∈ R+ × R
n . For m ∈ N, and γ ∈ R, we define

Hm,γ
2

(
R

n+1+
)

=
{

u ∈ D′ (
R

n+1+
)

: (t∂t )
α ∂βx u ∈ tγ− n

2 L2
(
R

n+1+ , dtdx
)}
, (1.6)

for arbitrary α ∈ N, β ∈ N
n , and |α| + |β| ≤ m. Then Hm,γ

2 (Rn+1+ ) is a Hilbert space with
the norm

‖u‖Hm,γ
2

(
R

n+1+
) =

∑

|α|+|β|≤m

⎧
⎪⎨

⎪⎩

∫

R+×Rn

|t n
2 −γ (t∂t )

α ∂βx u(t,x)|2dtdx

⎫
⎪⎬

⎪⎭

1/2

.

If we denote by L2(R
n+1+ ) the space of square integrable functions with respect to the

measure dt
t dx, we can modify (1.6) as follows:

Hm,γ
2

(
R

n+1+
)

=
{

u ∈ D′ (
R

n+1+
)

: t
n+1

2 −γ (t∂t )
α ∂βx u ∈ L2

(

R
n+1+ ,

dt

t
dx

)}

, (1.7)

for arbitrary α ∈ N, β ∈ N
n , and |α| + |β| ≤ m. Here m ∈ N is called the smoothness of

Sobolev spaces, and γ ∈ R the flatness of t-variable.
Next, we introduce a map

(
S n+1

2 ,γ u
)
(r,x) = e

−
(

n+1
2 −γ

)
r
u
(
e−r ,x

)
(1.8)
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Cone Sobolev inequality and Dirichlet problem for nonlinear elliptic equations 467

for u(t,x) ∈ C∞
0 (R

n+1+ ), which is a continuous map S n+1
2 ,γ : C∞

0 (R
n+1+ ) → C∞

0 (R
n+1).

Analogous to (1.2), we can extend (1.8) to an isomorphism

S n+1
2 ,γ : Hm,γ

2

(
R

n+1+
)

→ Hm
2

(
R

n+1) . (1.9)

In other words, we have

‖u‖Hm,γ
2

(
R

n+1+
) ≈ ‖S n+1

2 ,γ u‖Hm
2 (R

n+1)

in the sense of norm equivalence, where Hm
2 (R

n+1) denotes the distribution space for (r,x) ∈
R

n+1 such that

Hm
2

(
R

n+1) = {
v(r,x) ∈ D′ (

R
n+1) |∂αr ∂βx v(r,x) ∈ L2 (

R
n+1, drdx

)}

for α ∈ N, β ∈ N
n and |α|+ |β| ≤ m. One can obtain more details and information on Fuchs

type operators and the weighted Mellin Sobolev spaces in [5], and [12].
Next, we generalize spaces Hm,γ

2 (Rn+1+ ) to Hm,γ
p (Rn+1+ ) for 1 ≤ p < +∞, and later

on to Hm,γ
p (B) (the cone Sobolev spaces) on manifolds with conical singularities. Since the

Eq. 1.5 is only valid for p = 2, we introduce here the definition of Hs,γ
p (Rn+1+ ) for s integers.

We first modify the spaces L p(Rn+1+ , dtdx) to L p(R
n+1+ , dt

t dx).

Definition 1.4 For (t,x) ∈ R+ × R
n , we say that u(t,x) ∈ L p(R

n+1+ , dt
t dx) if

‖ u ‖L p =
⎛

⎜
⎝

∫

R+

∫

Rn

tn+1|u(t,x)|p dt

t
dx

⎞

⎟
⎠

1
p

< +∞.

Moreover, the weighted L p-spaces with weight data γ ∈ R is denoted by Lγp(R
n+1+ , dt

t dx),

namely, if u(t,x) ∈ Lγp(R
n+1+ , dt

t dx), then t−γ u(t,x) ∈ L p(R
n+1+ , dt

t dx), and

‖u‖Lγp
=
⎛

⎜
⎝

∫

R+

∫

Rn

tn+1|t−γ u(t,x)|p dt

t
dx

⎞

⎟
⎠

1
p

< +∞.

Now we can define the weighted Sobolev space for all 1 ≤ p < +∞.

Definition 1.5 For m ∈ N, and γ ∈ R, the spaces

Hm,γ
p

(
R

n+1+
)

:=
{

u ∈ D′ (
R

n+1+
)

: t
n+1

p −γ
(t∂t )

α ∂βx u ∈ L p

(

R
n+1+ ,

dt

t
dx

)}

,

for arbitrary α ∈ N, β ∈ N
n , and |α| + |β| ≤ m. In other words, if u(t,x) ∈ Hm,γ

p (Rn+1+ ),

then (t∂t )
α∂
β
x u ∈ Lγp(R

n+1+ , dt
t dx).

It is easy to see that Hm,γ
p (Rn+1+ ) is a Banach space with norm

‖u‖Hm,γ
p

(
R

n+1+
) =

∑

|α|+|β|≤m

⎛

⎜
⎜
⎝

∫∫

R
n+1+

tn+1|t−γ (t∂t )
α ∂βx u(t,x)|p dt

t
dx

⎞

⎟
⎟
⎠

1
p

.
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468 H. Chen et al.

Similarly (cf. [4]) we can define the weighted Sobolev spaces Hm,γ
p (X∧) with 1≤p<∞

on manifolds with conical singularities. Let X be a closed compact C∞ manifold, and U =
{U1, . . . ,UN } an open covering of X by coordinate neighborhoods. If we fix a subordinate
partition of unity {ϕ1, . . . , ϕN } and chartsχ j : U j → R

n, j = 1, . . . , N , then u ∈ Hm,γ
p (X∧)

if and only if u ∈ D′(X∧) with the norm

‖u‖Hm,γ
p (X∧) =

⎧
⎨

⎩

N∑

j=1

‖
(

1 × χ∗
j

)−1
ϕ j u ‖p

Hm,γ
p

(
R

n+1+
)

⎫
⎬

⎭

1
p

< +∞.

Here 1 × χ∗
j : C∞

0 (R+ × R
n) → C∞

0 (R+ × U j ) is the pull-back function with respect to

1 × χ j : R+ × U j → R+ × R
n . Denote Hm,γ

p,0 (X
∧) as the subspace of Hm,γ

p (X∧) which is
defined as the closure of C∞

0 (X
∧) with respect to the norm ‖ · ‖Hm,γ

p (X∧).

Proposition 1.3 (cf. [11]) We have Hm,γ
p (X∧) ⊂ W m,p

loc (X
∧) for all m ∈ N, γ ∈ R, where

W m,p
loc (X

∧) denotes the subspace of all u ∈ D′(X∧) such that ϕu ∈ W m,p(X∧) for every
ϕ ∈ C∞

0 (X
∧).

Let B be the stretched manifold of B, we will always denoteω(t) ∈ C∞
0 (B) as a real-valued

cut-off function which equals 1 near {0} × ∂B.

Definition 1.6 Let B be the stretched manifold to a manifold B with conical singularities.
Then Hm,γ

p (B) for m ∈ N, γ ∈ R denotes the subspace of all u ∈ W m,p
loc (intB), such that

Hm,γ
p (B) = {

u ∈ W m,p
loc (intB) | ωu ∈ Hm,γ

p
(
X∧)}

for any cut-off function ω, supported by a collar neighbourhood of [0, 1) × ∂B. Moreover,
the subspace Hm,γ

p,0 (B) of Hm,γ
p (B) is defined as follows:

Hm,γ
p,0 (B) := [ω]Hm,γ

p,0

(
X∧)+ [1 − ω]W m,p

0 (intB),

where W m,p
0 (intB) denotes the closure of C∞

0 (intB) in Sobolev spaces W m,p(X̃) when X̃ is
a closed compact C∞ manifold of dimension n + 1 that contains B as a submanifold with
boundary.

Remark 1.1 (cf. [11]) We have the following properties:

(1) Hm,γ
p (B) is Banach space for 1 ≤ p < ∞, and is Hilbert space for p = 2.

(2) Lγp(B) := H0,γ
p (B).

(3) L p(B) := H0,0
p (B).

(4) tγ1Hm,γ2
p (B) = Hm,γ1+γ2

p (B).

(5) The embedding Hm,γ
p (B) ↪→ Hm′,γ ′

p (B) is continuous if m ≥ m′, γ ≥ γ ′; and is compact
embedding if m > m′, γ > γ ′.

2 Cone Sobolev inequality

In this section we will prove the so-called cone Sobolev inequality on Hm,γ
p (Rn+1+ ). The dis-

cussion will be separated into two parts. One is for 1
p >

m
n+1 , and the other is for 1

p <
m

n+1 .
First let us recall two well-known results.
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Cone Sobolev inequality and Dirichlet problem for nonlinear elliptic equations 469

Proposition 2.1 (Gagliardo–Nirenberg–Sobolev inequality) Assume 1 ≤ p < n. There
exists a constant c, depending only on p and n, such that

‖u‖L p∗
(Rn) ≤ c‖∇u‖L p(Rn) (2.1)

for all u ∈ C1
0(R

n), with 1
p∗ = 1

p − 1
n . Here the constant c = (n−1)p

n(n−p) is the optimal constant.

Proposition 2.2 Let U be a bounded, open subset of R
n, and suppose ∂U is C1. Assume

1 ≤ p < n, and u ∈ W 1,p(U ). Then u ∈ L p∗
(U ) and we have the following Sobolev

inequality:

‖u‖L p∗
(U ) ≤ C‖u‖W 1,p(U ),

the constant C depending only on p, n, and U.

One can obtain all the details in [6]. Here we will generalize the Sobolev inequality on
the cone Sobolev spaces Hs,γ

p , namely,

Theorem 2.1 (Cone Sobolev Inequality) Assume that 1 ≤ p < n + 1, 1
p∗ = 1

p − 1
n+1 , and

γ ∈ R. Let R
n+1+ := R+ × R

n, t ∈ R+ and x = (x1, . . . ,xn) ∈ R
n. The following estimate

‖u‖
Lγ

∗
p∗
(
R

n+1+
) ≤ c1‖ (t∂t ) u‖

Lγp
(
R

n+1+
) + (c1 + c2)

n∑

i=1

‖∂xi u‖
Lγp
(
R

n+1+
)

+c2

α
‖u‖

Lγp
(
R

n+1+
) (2.2)

holds for all u ∈ C∞
0 (R

n+1+ ), where γ ∗ = γ − 1, c1 = np
(n+1)(n+1−p) , and c2 =

np|n− (γ−1)np
n+1−p | 1

n+1

(n+1−p)(n+1) , α = np
n+1−p . Moreover, if u ∈ H1,γ

p,0(R
n+1+ ), we have

‖u‖
Lγ

∗
p∗
(
R

n+1+
) ≤ c‖u‖H1,γ

p

(
R

n+1+
), (2.3)

where the constant c = c1 + c2, and c1, c2 are given in (2.2).

Proof First, we consider p = 1, and then p∗ = n+1
n . For arbitrary γ ′ ∈ R, since u(t,x) ∈

C∞
0 (R

n+1+ ), where (t,x) = (t,x1,x2, . . . ,xn) ∈ R+ × R
n , we have

|tn−γ ′
u| = |

t∫

0

(r∂r )
(

rn−γ ′
u
) dr

r
|

≤
+∞∫

0

|rn−γ ′
(r∂r ) u|dr

r
+ |n − γ ′|

+∞∫

0

|rn−γ ′
u|dr

r
.

Analogously, we get

|tn−γ ′
u| ≤

+∞∫

−∞
tn−γ ′ |∂yi u|dyi
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470 H. Chen et al.

for i = 1, 2, . . . , n. Multiplying the above n + 1 inequalities, one has

|tn−γ ′
u|n+1 ≤

+∞∫

0

|rn−γ ′
(r∂r ) u|dr

r

n∏

i=1

+∞∫

−∞
tn−γ ′ |∂yi u|dyi

+ |n − γ ′|
+∞∫

0

|rn−γ ′
u|dr

r

n∏

i=1

+∞∫

−∞
tn−γ ′ |∂yi u|dyi .

Then, we can obtain

|tn−γ ′
u| n+1

n ≤
⎡

⎣

+∞∫

0

|rn−γ ′
(r∂r ) u|dr

r

n∏

i=1

+∞∫

−∞
tn−γ ′ |∂yi u|dyi

+ |n − γ ′|
+∞∫

0

|rn−γ ′
u|dr

r

n∏

i=1

+∞∫

−∞
tn−γ ′ |∂yi u|dyi

⎤

⎦

1
n

≤
⎛

⎝

+∞∫

0

|rn−γ ′
(r∂r )u|dr

r

⎞

⎠

1
n n∏

i=1

⎛

⎝

+∞∫

−∞
tn−γ ′ |∂yi u|dyi

⎞

⎠

1
n

+ |n − γ ′| 1
n

⎛

⎝

+∞∫

0

|rn−γ ′
u|dr

r

⎞

⎠

1
n n∏

i=1

⎛

⎝

+∞∫

−∞
tn−γ ′ |∂yi u|dyi

⎞

⎠

1
n

.

Integrating both sides of the last inequality with respect to dt
t , we have

+∞∫

0

|tn−γ ′
u| n+1

n
dt

t
≤
⎛

⎝

+∞∫

0

|rn−γ ′
(r∂r ) u|dr

r

⎞

⎠

1
n +∞∫

0

n∏

i=1

⎛

⎝

+∞∫

−∞
tn−γ ′ |∂yi u|dyi

⎞

⎠

1
n

dt

t

+|n − γ ′| 1
n

⎛

⎝

+∞∫

0

|rn−γ ′
u|dr

r

⎞

⎠

1
n +∞∫

0

n∏

i=1

⎛

⎝

+∞∫

−∞
tn−γ ′ |∂yi u|dyi

⎞

⎠

1
n

dt

t
.

By Hölder inequality, it yields

+∞∫

0

|tn−γ ′
u| n+1

n
dt

t
≤
⎛

⎝

+∞∫

0

|rn−γ ′
(r∂r )u|dr

r

⎞

⎠

1
n
⎛

⎝
n∏

i=1

+∞∫

−∞

+∞∫

0

tn−γ ′ |∂yi u|dt

t
dyi

⎞

⎠

1
n

+|n − γ ′| 1
n

⎛

⎝

+∞∫

0

|rn−γ ′
u|dr

r

⎞

⎠

1
n
⎛

⎝
n∏

i=1

+∞∫

−∞

+∞∫

0

tn−γ ′ |∂yi u|dt

t
dyi

⎞

⎠

1
n

. (2.4)
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Cone Sobolev inequality and Dirichlet problem for nonlinear elliptic equations 471

Now integrating (2.4) with respect to dy1, and applying Hölder inequality again, we get

∫∫

|tn−γ ′
u| n+1

n
dt

t
dy1 ≤

(∫∫

tn−γ ′ |∂y1 u|dt

t
dy1

) 1
n
(∫∫

|rn−γ ′
(r∂r ) u|dr

r
dy1

) 1
n

×
n∏

i=2

(∫ ∫ ∫

tn−γ ′ |∂yi u|dt

t
dy1dyi

) 1
n

+|n − γ ′| 1
n

(∫∫

tn−γ ′ |∂y1 u|dt

t
dy1

) 1
n
(∫∫

|rn−γ ′
u|dr

r
dy1

) 1
n

×
n∏

i=2

(∫∫∫

tn−γ ′ |∂yi u|dt

t
dy1dyi

) 1
n

.

Integrating with respect to dy2, . . . , dyn , and using Hölder inequality, we obtain
∫

· · ·
∫

|tn−γ ′
u| n+1

n
dt

t
dy1 . . . dyn

≤
(∫

· · ·
∫

rn−γ ′ | (r∂r ) u|dr

r
dy1 . . . dyn

) 1
n

n∏

i=1

(∫

· · ·
∫

tn−γ ′ |∂yi u|dt

t
dy1 . . . dyn

) 1
n

+ |n − γ ′| 1
n

(∫

· · ·
∫

rn−γ ′ |u|dr

r
dy1 . . . dyn

) 1
n

×
n∏

i=1

(∫

· · ·
∫

tn−γ ′ |∂yi u|dt

t
dy1 . . . dyn

) 1
n

,

which means that
∫∫

|tn−γ ′
u| n+1

n
dt

t
dx ≤

(∫∫

tn−γ ′ |(t∂t )u|dt

t
dx

) 1
n

n∏

i=1

(∫∫

tn−γ ′ |∂xi u|dt

t
dx

) 1
n

+|n − γ ′| 1
n

(∫ ∫

tn−γ ′ |u|dt

t
dx

) 1
n

n∏

i=1

(∫∫

tn−γ ′ |∂xi u|dt

t
dx

) 1
n

.

Here we used the notation of integral “
∫∫

” to stand for “

+∞∫

0

∫

Rn

”.

Then, by the inequality a + b < (aα + bα)1/α for 0 < α < 1, we have
(∫∫

|tn−γ ′
u| n+1

n
dt

t
dx

) n
n+1

≤
[(∫∫

tn−γ ′ | (t∂t ) u|dt

t
dx

) 1
n

n∏

i=1

(∫∫

tn−γ ′ |∂xi u|dt

t
dx

) 1
n

+ |n − γ ′| 1
n

(∫∫

tn−γ ′ |u|dt

t
dx

) 1
n

n∏

i=1

(∫∫

tn−γ ′ |∂xi u|dt

t
dx

) 1
n
] n

n+1

≤
(∫∫

tn−γ ′ | (t∂t ) u|dt

t
dx

) 1
n+1

n∏

i=1

(∫∫

tn−γ ′ |∂xi u|dt

t
dx

) 1
n+1
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+ |n − γ ′| 1
n+1

(∫ ∫

tn−γ ′ |u|dt

t
dx

) 1
n+1

n∏

i=1

(∫∫

tn−γ ′ |∂xi u|dt

t
dx

) 1
n+1

≤ 1

n + 1

∫∫

tn−γ ′ | (t∂t ) u|dt

t
dx + 1

n + 1

n∑

i=1

∫∫

tn−γ ′ |∂xi u|dt

t
dx

+ |n − γ ′| 1
n+1

n + 1

(∫∫

tn−γ ′ |u|dt

t
dx

)

+ |n − γ ′| 1
n+1

n + 1

n∑

i=1

∫∫

tn−γ ′ |∂xi u|dt

t
dx

Set γ = γ ′ + 1, it yields

(∫∫

|tn−γ ′
u| n+1

n
dt

t
dx

) n
n+1 ≤ 1

n + 1

∫∫

tn+1−γ | (t∂t ) u|dt

t
dx

+
(

1

n + 1
+ |n + 1 − γ | 1

n+1

n + 1

)
n∑

i=1

∫∫

tn+1−γ |∂xi u|dt

t
dx

+|n + 1 − γ | 1
n+1

n + 1

(∫∫

tn+1−γ |u|dt

t
dx

)

. (2.5)

This is the estimate (2.2) for p = 1.
Now we consider the case for 1 < p < n + 1. Applying (2.5) for v = |u|α with α > 1,

and write γ = γ ′ + 1, we have

(∫∫

|tn−γ ′ (|u|α) | n+1
n

dt

t
dx

) n
n+1 ≤ 1

n + 1

∫∫

tn−γ ′ | (t∂t )
(|u|α) |dt

t
dx

+
(

1

n + 1
+ |n − γ ′| 1

n+1

n + 1

)
n∑

i=1

∫∫

tn−γ ′ |∂xi

(|u|α) |dt

t
dx

+ |n − γ ′| 1
n+1

n + 1

∫∫

tn−γ ′ |u|α dt

t
dx. (2.6)

Since |∂xi (|u|α)| = |∂xi (u
α
2 · ū

α
2 )| ≤ α|u|α−1|∂xi u|, we can rewrite (2.6) to get

(∫∫

t
(n−γ ′)(n+1)

n |u| α(n+1)
n

dt

t
dx

) n
n+1

≤ α

n + 1

∫∫

tn−γ ′ |u|α−1| (t∂t ) u|dt

t
dx

+α
(

1

n + 1
+ |n − γ ′| 1

n+1

n + 1

)
n∑

i=1

∫∫

tn−γ ′ |u|α−1|∂xi u|dt

t
dx

+ |n − γ ′| 1
n+1

n + 1

(∫∫

tn−γ ′ |u|α dt

t
dx

)

.
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Set ψ + ϕ = n − γ ′, and using Hölder inequality again, we obtain

(∫∫

t
(n−γ ′)(n+1)

n |u| α(n+1)
n

dt

t
dx

) n
n+1

≤ α

n + 1

(∫∫
(
tϕ |(t∂t )u|)p dt

t
dx

) 1
p
(∫∫

(
tψ |u|α−1)

p
p−1 dtdx

) p−1
p

+α
(

1

n + 1
+ |n − γ ′| 1

n+1

n + 1

)
n∑

i=1

(∫∫
(
tϕ |∂xi u|)p dt

t
dx

) 1
p

×
(∫∫

(
tψ |u|α−1)

p
p−1 dtdx

) p−1
p

+|n − γ ′| 1
n+1

n + 1

(∫∫
(
tϕ |u|)p dt

t
dx

) 1
p
(∫∫

(
tψ |u|α−1)

p
p−1 dtdx

) p−1
p

. (2.7)

Choose ϕ and ψ such that ϕp = n + 1 − pγ, ψ · p
p−1 = (n+1)(n−γ ′)

n , p∗γ ∗ = n + 1 −
(n+1)(n−γ ′)

n , and (α − 1) p
p−1 = p∗. Thus from ψ + ϕ = n − γ ′ and 1

p∗ = 1
p − 1

n+1 , we

can get ψ = (n+1)(n−γ ′)(p−1)
np , ϕ = (n−γ ′)(n+1−p)

np , γ ∗ = (n+1−p)γ ′
np , γ = 1 + (n+1−p)γ ′

np

and α = np
n+1−p for 1 < p < n + 1. It is easy to see that n

n+1 − p−1
p = 1

p∗ and α > 1.
Consequently, (2.7) becomes the following estimate

(∫∫

tn+1−p∗γ ∗ |u|p∗ dt

t
dx

) 1
p∗

≤ α

n + 1

(∫∫

tn+1−pγ | (t∂t ) u|p dt

t
dx

) 1
p

+α
(

1

n + 1
+ |n − γ ′| 1

n+1

n + 1

)
n∑

i=1

(∫∫

tn+1−pγ | (∂xi

)
u|p dt

t
dx

) 1
p

+ |n − γ ′| 1
n+1

n + 1

(∫∫

tn+1−pγ |u|p dt

t
dx

) 1
p

,

which means that

‖u‖
Lγ

∗
p∗

≤ c1‖ (t∂t ) u‖Lγp
+ (c1 + c2)

n∑

i=1

‖∂xi u‖Lγp
+ c2

α
‖u‖Lγp

, (2.8)

where c1 = α
n+1 c2 = α · |n− (γ−1)np

n+1−p | 1
n+1

n+1 , with α = np
n+1−p , and γ = γ ∗ + 1. ��

Remark 2.1 If we take τ = ln t , then τ → −∞ as t → 0+, and t∂t = ∂τ ,
dt
t = dτ . Thus

in case of γ = n+1
p in (2.2), then c2 = 0, c1 = np

(n+1)(n+1−p) , Lγp(R
n+1+ ) = L p(Rn+1) and

Lγ
∗

p∗ (Rn+1+ ) = L p∗
(Rn+1). Thus the cone Sobolev inequality becomes the standard Sobolev

inequality (2.1), that means the standard Sobolev inequality is the special case of the cone
Sobolev inequality here and the constants, appeared in (2.2), would be the best possible.

123



474 H. Chen et al.

Remark 2.2 There rises a natural question on whether the spaces H1, n+1
p

p,0 (Rn+1+ ) have certain

inclusion relation with W 1,p
0 (Rn+1+ ). Indeed, it is not the case. By definition, if u(t,x) ∈

H1, n+1
p

p,0 (Rn+1+ ), then

t
n+1

p − n+1
p (t∂t )

α ∂βx u ∈ L p

(

R
n+1+ ,

dt

t
dx

)

,

for α ∈ N, β ∈ N
n , and |α| + |β| ≤ 1. On the other hand, if v(t,x) ∈ W 1,p

0 (Rn+1+ ), then

∂αt ∂
β
x v ∈ L p

(
R

n+1+ , dtdx
)
,

for α ∈ N, β ∈ N
n , and |α| + |β| ≤ 1. So the spaces H1, n+1

p
p,0 (Rn+1+ ) and W 1,p

0 (Rn+1+ ) have
no inclusion relation, since the two conditions of |α| = 1, |β| = 0 and |α| = 0, |β| = 1
lead to different results. However, if we set γ = n

p , then we have the equivalent relation, i.e.

Lγp(R
n+1+ , dt

t dx) = L p(Rn+1+ , dtdx).

Theorem 2.2 Suppose 1
p − μ

n+1 > 0, m, μ ∈ N, μ < m, and γ ∈ R, then there are
continuous embedding

Hm,γ
p,0

(
R

n+1+
)
↪→ Hm′,γ ′

p′,0

(
R

n+1+
)

with 1
p′ = 1

p − μ
n+1 , m′ = m − μ, and γ ′ = γ − μ. More precisely, for u ∈ Hm,γ

p,0 (R
n+1+ ),

we have

‖u‖Hm′,γ ′
p′

≤ cμ‖u‖Hm,γ
p
, (2.9)

where c = c1 + c2 is defined as that in (2.8). In particular, if 1
p − m

n+1 > 0, then there are
continuous embedding

Hm,γ
p,0

(
R

n+1+
)
↪→ Lγ

∗
p∗
(
R

n+1+
)

with 1
p∗ = 1

p − m
n+1 and γ ∗ = γ − m, and for u ∈ Hm,γ

p,0 (R
n+1+ ), we have

‖u‖
Lγ

∗
p∗

≤ cm‖u‖Hm,γ
p
. (2.10)

Proof Since C∞
0 (R

n+1+ ) is dense in Hm,γ
p,0 (R

n+1+ ), Theorem 2.1 is valid for u(t,x) ∈ H1,γ
p,0.

Note that if u(t,x) ∈ Hm,γ
p,0 (R

n+1+ ), then Dαu = (t∂t )
α1∂α

′
x u ∈ H1,γ

p,0(R
n+1+ ) for |α| =

α1 +|α′| ≤ m −1. We can apply Theorem 2.1 iteratively to obtain the estimate of continuous
embedding (2.9) and (2.10). ��

Theorem 2.3 Let m ∈ N, 0 < α < 1, γ ≥ 1 + n
p + m−1

n+1 and m − n+1
p = α. Then there

exists a constant c, depending only on p, n and γ, such that for any u(y) ∈ Hm,γ
p,0 (R

n+1+ ),

and y1, y2 ∈ R
n+1+ , |y1 − y2| ≈ ρ for some ρ > 0 small enough, we have

|u(y1)− u(y2)| ≤ c‖u‖Hm,γ
p

|y1 − y2|α.

123



Cone Sobolev inequality and Dirichlet problem for nonlinear elliptic equations 475

Proof Since u ∈ Hm,γ
p,0 (R

n+1+ ), then (t∂t )u, ∂xi u ∈ Hm−1,γ
p,0 (Rn+1+ ), for i = 1, . . . , n. In

view of (m − 1)− n+1
p = α − 1 < 0, we have 1

p − m−1
n+1 = 1−α

n+1 > 0. Apply Theorem 2.1,

we obtain (t∂t )u, ∂xi u ∈ Lγ
∗

p∗ (Rn+1+ ), for 1
p∗ = 1

p − m−1
n+1 , and γ ∗ = γ − (m − 1). Since

γ ≥ 1 + n
p + m−1

n+1 , then γ ∗ > 0. Furthermore, we have following estimate

‖ (t∂t ) u‖
Lγ

∗
p∗

≤ c0‖u‖Hm,γ
p

(2.11)

and

‖∂xi u‖
Lγ

∗
p∗

≤ c0‖u‖Hm,γ
p
, (2.12)

with c0 = (c1 + c2)
m−1, where c1 and c2 are defined in (2.8).

Let�ρ ⊆ R
n+1+ be a (n+1)-dimensional polyhedron, with centery0 = (t0,x0), side length

ρ and the side line being parallel with the coordinate axis, such that |t − t0| ≤ √
n + 1ρ, |x−

x0| ≤ √
n + 1ρ for y = (t,x) ∈ �ρ . Here we first suppose u(y) ∈ C∞

0 (R
n+1+ ), and get

|u(y)− u(y0)| ≤
1∫

0

| d

dθ
u (t0 + θ t,x0 + θx) |dθ ≤ √

n + 1ρ

×
1∫

0

(

|∂t u (t0 + θ t,x0 + θx) | +
n∑

i=1

|∂xi u (t0 + θ t,x0 + θx) |
)

dθ.

(2.13)

Integrating (2.13) on �ρ , we obtain

1

ρn+1

∫

�ρ

u(t,x)dtdx − u (t0,x0)

≤ 1

ρn+1

∫

�ρ

|u(t,x)− u (t0,x0) |dtdx

≤
√

n + 1

ρn

∫

�ρ

1∫

0

(

|∂t u (t0 + θ t,x0 + θx) | +
n∑

i=1

|∂xi u (t0 + θ t,x0 + θx) |
)

dθdtdx.

Change the parameters t0 + θ t = t ′,x0 + θx = x′, and dt = 1
θ

dt ′, dx = 1
θn dx′ and write

t,x in the place of t ′,x′ for convenience, we get for ρ small enough,

|u(y)− u(y0)| ≤
√

n + 1

ρn

∫

�θρ

1

θn+1

1∫

0

(

|∂t u(t,x)| +
n∑

i=1

|∂xi u(t,x)|
)

dθdtdx

(2.14)

:= I1 + I2,

where

I1 =
√

n + 1

ρn

1∫

0

1

θn+1

∫

�θρ

|∂t u(t,x)|dtdxdθ,
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and

I2 =
√

n + 1

ρn

n∑

i=1

1∫

0

1

θn+1

∫

�θρ

|∂xi u(t,x)|dtdxdθ.

Consider |∂t u| = |tϕ∂t u|t−ϕ and set ϕ = n
p∗ − γ ∗ + 1. By using Hölder inequality for

1
p∗ + 1

q = 1 to estimate I1, we obtain

I1 ≤
√

n + 1

ρn

1∫

0

1

θn+1

⎛

⎜
⎝

∫

�θρ

t−ϕq dtdx

⎞

⎟
⎠

1
q
⎛

⎜
⎝

∫

�θρ

t1+(ϕ−1)p∗ | (t∂t ) u|p∗ dt

t
dx

⎞

⎟
⎠

1
p∗

dθ.

Since ϕ = n
p∗ − γ ∗ + 1, we have 1 + (ϕ − 1)p∗ = n + 1 − p∗γ ∗, and

⎛

⎜
⎝

∫

�θρ

t−ϕq dtdx

⎞

⎟
⎠

1
q

=
⎛

⎜
⎝

θρ∫

0

t−ϕqdt
∫

ωθρ

1dx

⎞

⎟
⎠

1
q

=
(

1

1 − ϕq

) 1
q

θ
n+1−ϕq

q ρ
n+1

q −ϕ
,

where �θρ = (0, θρ)× ωθρ with dimωθρ = n. Then, we can get

I1 ≤
√

n + 1

ρn

1∫

0

1

θn+1

(
1

1−ϕq

) 1
q

θ
n+1−ϕq

q ρ
n+1

q −ϕdθ

⎛

⎜
⎜
⎝

∫∫

R
n+1+

tn+1−p∗γ ∗ |(t∂t )u|p∗ dt

t
dx

⎞

⎟
⎟
⎠

1
p∗

≤ √
n + 1

(
1

1 − ϕq

) 1
q

ρ
n+1

q −ϕ−n

1∫

0

θ
−(n+1)+ n+1−ϕq

q dθ · ‖ (t∂t ) u‖
Lγ

∗
p∗
.

Since γ ≥ 1 + n
p + m−1

n+1 , then n+1
q −ϕ− n = α+ ε1, with ε1 = γ − (1 + n

p + m−1
n+1 ) ≥ 0.

Note that ρε1 ≤ 1 and
∫ 1

0 θ
−(n+1)+ n+1−ϕq

q dθ is bounded, then we have

I1 ≤ cρα‖ (t∂t ) u‖
Lγ

∗
p∗

(2.15)

for some constant c depending on p, n and γ . Analogously, we can obtain the following
estimate

I2 ≤ c′ρα‖ (∂xi

)
u‖

Lγ
∗

p∗
(2.16)

with constant c′ depending on p, n and γ .
Thus for any fixed y = (t,x), ỹ = (t̃, x̃) ∈ R

n+1+ , and |y − ỹ| ≈ ρ, we have proved that

|u(y)− u(ỹ)| ≤ c‖u‖Hm,γ
p

|y − ỹ|α,
where the constant c depends on p, n and γ .

Finally, since C∞
0 (R

n+1+ ) is dense in Hm,γ
p,0 (R

n+1+ ), the estimate above holds in case of

u ∈ Hm,γ
p,0 (R

n+1+ ). ��
Theorem 2.3 can be extended to the following result:
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Theorem 2.4 Assume m − n+1
p = k + α, k ∈ N+, 0 < α < 1, γ ≥ 1 + n

p + m−k−1
n+1 and

multi-index β = (β1, β
′), |β| = k. If we denote that Dβ = (t∂t )

β1∂
β ′
x , then we have

|Dβu(y1)− Dβu(y2)| ≤ c‖u‖Hm,γ
p

|y1 − y2|α,

where the constant c depends on p, n and γ, u(y) = u(t,x) ∈ Hm,γ
p,0 (R

n+1+ ), y1, y2 ∈ R
n+1+

and |y1 − y2| ≈ ρ for some ρ > 0 small enough.

We can also prove the corresponding Poincaré inequality, which will be useful in the next
section.

Theorem 2.5 (Poincaré inequality) Let B = (0, 1)× X be a bounded subspace in R
n+1+ with

X ⊂ R
n, and 1 < p < +∞, γ ∈ R. If u(t,x) ∈ H1,γ

p,0(B), then

‖u(t,x)‖Lγp(B)
≤ c‖∇Bu(t,x)‖Lγp(B)

, (2.17)

where ∇B = (t∂t ,x1, . . . ,xn) is the gradient operator on B, and the constant c depends only
on B and p.

Proof Set Q = {(t,x) ∈ R
n+1+ |0 < t < d, ai < xi < ai + d, i = 1, . . . , n}, where

d ∈ R should be chosen large enough such that B ⊂ Q. Now suppose u(t,x) ∈ C∞
0 (B). For

(t,x) ∈ B ⊂ Q, we have

u(t,x) =
x1∫

a1

∂x1 u (t, s,x2, . . . ,xn) ds,

and then

|u(t,x)|p ≤
⎛

⎝

x1∫

a1

|∂x1 u (t, s,x2, . . . ,xn)|ds

⎞

⎠

p

.

By Hölder inequality, we can choose q > 1 such that 1
q + 1

p = 1, and then we can get

|u(t,x)|p ≤
⎛

⎝

x1∫

a1

1qds

⎞

⎠

p
q x1∫

a1

|∂x1 u (t, s,x2, . . . ,xn)|pds

≤ d p−1

a1+d∫

a1

|∂x1 u (t, s,x2, . . . ,xn)|pds.

By the mean value theorem, we have

a1+d∫

a1

|∂x1 u (t, s,x2, . . . ,xn)|pds = d · |∂x1 u
(
t,x′

1,x2, . . . ,xn
)|p

with a1 < x′
1 < a1 + d , and then

tn+1−γ p|u(t,x)|p ≤ d p · tn+1−γ p|∂x1 u
(
t,x′

1,x2, . . . ,xn
)|p. (2.18)
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Integrating both sides of (2.18) with respect to dt
t dx on Q, we have

∫

Q

tn+1−γ p|u(t,x)|p dt

t
dx ≤ d p ·

∫

Q

tn+1−γ p|∂x1 u
(
t,x′

1,x2, . . . ,xn
)|p dt

t
dx.

By the definition of Q and u(t,x) ∈ C∞
0 (B), we can also obtain

∫

B

tn+1−γ p|u(t,x)|p dt

t
dx ≤ d p ·

∫

B

tn+1−γ p|∂x1 u
(
t,x′

1,x2, . . . ,xn
)|p dt

t
dx

≤ d p · ‖∂x1 u(t,x)‖Lγp(B)
.

Since C∞
0 (B) is dense in H1,γ

p,0(B), the estimate above implies that,

‖u(t,x)‖Lγp(B)
≤ c‖∂x1 u(t,x)‖Lγp(B)

≤ c‖∇Bu(t,x)‖Lγp(B)
,

for u(t,x) ∈ H1,γ
p,0(B), where the constant c depends only on B and p. Theorem 2.5 is

proved. ��

3 Nonlinear Dirichlet boundary value problems on manifolds with conical
singularities

Let B be a n-dimensional compact manifold with conical singularity at the point b ∈ ∂B, and
B be the stretched manifold of B, i.e. without loss of generality, we suppose B = [0, 1)×X, X
is a closed compact manifold of dimension n − 1, ∂B = {0} × X . Let �B = (x1∂x1)

2 +
∂2
x2

+ · · · + ∂2
xn

, be Fuchs Laplacian operator (cf. [8]) and defined in intB. Then we consider
the following Dirichlet problem:

{−�Bu = u|u|p − 1, for 1 < p < n+2
n−2 , x ∈ int(B)

u = 0 on ∂B.
(3.1)

We say that u(x) ∈ H1, n
2

2,0 (B) is a weak solution of (3.1) if for any ψ ∈ C∞
0 (B), we have

∫

B

∇Bu · ∇Bψ
dx1

x1
dx′ −

∫

B

u|u|p−1ψ
dx1

x1
dx′ = 0, (3.2)

where ∇B = (x1∂x1 , ∂x2 , . . . , ∂xn ), and �B = |∇B|2.
We can prove the following result:

Theorem 3.1 The Dirichlet boundary value problem (3.1) has a non-trivial weak solution

in the weighted Mellin Sobolev space H1, n
2

2,0 (B).

Remark 3.1 As an important application, the Sobolev inequality is used to prove the exis-
tence theorem for nonlinear elliptic partial differential equations (cf. [7,9]), in particular in
case of nonlinear term with critical Sobolev exponent. In this aspect, the typical example can
be found in [2]. In a forthcoming paper [3], we will apply our cone Sobolev inequality and
Poincaré inequality to prove the existence of solutions for Dirichlet problem of nonlinear
elliptic equations, defined on the conical manifold, with critical Sobolev exponent p = n+2

n−2 .

The following lemma will be used for solving our problem.
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Lemma 3.1 If p > 1 and p + 1 < 2∗ = 2n
n−2 , then the embedding H1, n

2
2,0 (B) ↪→ H0, n

p+1
p+1,0(B)

is compact.

Proof According to Definition 1.6, we can write H1, n
2

2,0 (B) and H0, n
p+1

p+1,0(B) as follows,

H1, n
2

2,0 (B) := [ω]H1, n
2

2,0

(
X∧)+ [1 − ω]H1

0 (intB),

H0, n
p+1

p+1,0(B) := [ω]H0, n
p+1

p+1,0

(
X∧)+ [1 − ω]L p+1(intB).

By using the Sobolev inequality, we know that the embedding [1 − ω]H1
0 (intB) ↪→

[1 − ω]L p+1(intB) is compact for p > 1, and p + 1 < 2∗. It is sufficient to show that the

embedding [ω]H1, n
2

2,0 (X
∧) ↪→ [ω]H0, n

p+1
p+1,0(X

∧) is compact. Similarly to (1.8) and (1.9), for
m ∈ N, γ ∈ R, and 1 < q < ∞, we define

(
S n

q ,γ
v
) (

r,x′) = e
−r
(

n
q −γ

)

v(e−r ,x′),

for v(x1,x
′) ∈ Hm,γ

q (X∧). Then S n
q ,γ

induces an isomorphism as follows,

S n
q ,γ

: [ω]Hm,γ
q

(
X∧) → [ω̃]W m,q(R × X),

with a cut-off function ω̃(r) = ω(e−r ) ∈ C∞
0 (R+). In the present case, we take γ = n

p+1 ,

and q = p + 1 for u(x1,x
′) ∈ H0, n

p+1
p+1 (X∧). Thus we have the following isomorphism

mapping

S n
p+1 ,

n
p+1

: [ω]H0, n
p+1

p+1 (X∧) → [ω̃]L p+1(R × X), (3.3)

i.e.

S n
p+1 ,

n
p+1

(
ω (x1) u

(
x1,x

′)) = ω
(
e−r ) e

−r
(

n
p+1 − n

p+1

)

u
(
e−r ,x′) = ω

(
e−r ) u

(
e−r ,x′) .

Analogously if we take γ = n
2 , q = 2 and v(x1,x

′) ∈ H1, n
2

2,0 (X
∧), then we have an isomor-

phism

S n
2 ,

n
2

: [ω]H1, n
2

2,0

(
X∧) → [ω̃]H1

0 (R × X),

i.e.

S n
2 ,

n
2

(
ω(x1)v

(
x1,x

′)) = ω
(
e−r ) e−r( n

2 − n
2 )v

(
e−r ,x′) = ω

(
e−r ) v

(
e−r ,x′) .

Moreover, S n
p+1 ,

n
p+1

induces another isomorphism. In fact, for every v(x1,x
′) ∈ H1, n

2
2,0 (X

∧),
one has

S n
p+1 ,

n
p+1

(
ω (x1) v

(
x1,x

′)) = ω
(
e−r ) e

−r
(

n
p+1 − n

p+1

)

v
(
e−r ,x′)

= ω
(
e−r ) e−r( n

2 − n
2 )er( n

2 − n
2 )e

−r
(

n
p+1 − n

p+1

)

v
(
e−r ,x′)

= ω
(
e−r ) e−r( n

2 − n
2 )v

(
e−r ,x′)

= S n
2 ,

n
2

(
ω (x1) v

(
x1,x

′)) ,

and then the mapping
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S n
p+1 ,

n
p+1

: [ω]H1, n
2

2,0

(
X∧) → [ω̃]H1

0 (R × X) (3.4)

is also an isomorphism. Since the embedding [ω̃]H1
0 (R × X) ↪→ [ω̃]L p+1(R × X) is com-

pact, then the embedding [ω]H1, n
2

2,0 (X
∧) ↪→ [ω]H0, n

p+1
p+1 (X∧) is compact by the isomorphisms

(3.3) and (3.4). ��
Corresponding to the problem (3.1), we introduce the following functional form, which

is defined on H1, n
2

2,0 (B),

J (v) = 1

2

∫

B

|∇Bv|2 dx1

x1
dx′ − 1

p + 1

∫

B

|v|p+1 dx1

x1
dx′. (3.5)

Then J (v) ∈ C1
(
H1, n

2
2,0 (B),R

)
, and the critical point of J (v) in H1, n

2
2,0 (B) is just the weak

solution of (3.1), i.e., if u ∈ H1, n
2

2,0 (B) is a weak solution of (3.1), then we have

〈J ′(u), v〉 =
∫

B

(∇Bu · ∇Bv − u|u|p−1v
) dx1

x1
dx′ = 0 (3.6)

for any v ∈ H1, n
2

2,0 (B). Here J ′(·) denotes the Fréchet differentiation. According to (3.5), for

u ∈ H1, n
2

2,0 (B), we can rewrite J as

J (u) = 1

2
‖ ∇Bu ‖2

L
n
2
2 (B)

− 1

p + 1
‖ u ‖p+1

L
n

p+1
p+1 (B)

. (3.7)

By Lemma 3.1 and Poincaré inequality (2.17), there exist two constants c, c̃ > 0, such
that the following estimates

‖u‖
L

n
p+1
p+1 (B)

= ‖u‖
H

0, n
p+1

p+1,0 (B)
≤ c‖u‖

H1, n
2

2,0 (B)
≤ c̃ ‖ ∇Bu ‖

L
n
2
2 (B)

hold. Moreover, by (3.7) we have

J (u) ≥
(

1

2
− c̃ p+1

p + 1
‖ ∇Bu ‖p−1

L
n
2
2 (B)

)

‖ ∇Bu ‖2

L
n
2
2 (B)

. (3.8)

That means J (u) has lower bound in H1, n
2

2,0 (B).
For proving Theorem 3.1, we will use the well-known Mountain Pass Lemma.

Proposition 3.1 (cf. [1,10]) Let E be a Banach space and I ∈ C1(E,R). Suppose I (0) = 0
and it satisfies

(1) there exists R > 0, a > 0 such that if ‖u‖E = R, then I (u) ≥ a;
(2) there exists e ∈ E such that ‖e‖ > R and I (e) < a.

If I satisfies (PS)c condition with

c = inf
h∈� max

t∈[0,1] I (h(t)),

where

� = {h ∈ C([0, 1]; E); h(0) = 0 and h(1) = e},
then c is a critical value of I and c ≥ a.
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Here (P S)c condition (also called Palais–Smale condition) means the following:

Definition 3.1 We say that I satisfies the (PS)c condition, if for any sequence {uk} ⊂ E
with the properties:

I (uk) → c and ‖ I ′(uk) ‖E ′→ 0,

there exists a subsequence which is convergent, where I ′(·) is the Fréchet differentiation of
I and E ′ is the dual space of E . If it is hold for any c ∈ R, we say that I satisfies (PS)
condition.

Lemma 3.2 The functional form J (u), defined by (3.7), satisfies (P S) condition on H1, n
2

2,0 (B).

Proof Let {uk} ⊂ H1, n
2

2,0 (B) satisfying

J (uk) → c and ‖ J ′(uk) ‖
H−1,− n

2
2,0 (B)

→ 0,

where J ′(·) is the Fréchet differentiation, and H−1,− n
2

2,0 (B) the dual space of H1, n
2

2,0 (B), and

‖ J ′(u) ‖
H−1,− n

2
2,0 (B)

= sup
ϕ∈C∞

0 (B)

|〈J ′(u), ϕ〉|
‖ ϕ ‖

H1, n
2

2,0 (B)

.

First we can deduce that {uk} is bounded in H1, n
2

2,0 (B). In fact, if we assume that {uk} is

non-bounded in H1, n
2

2,0 (B), and then by Poincaré inequality (2.17), the norm of H1, n
2

2,0 (B) is
equivalent to the norm ‖ ∇Buk ‖

L
n
2
2 (B)

, thus we have

‖ ∇Buk ‖
L

n
2
2 (B)

→ +∞ as k → +∞.

Let vk = uk‖∇Buk‖
L

n
2
2 (B)

, then ‖ ∇Bvk ‖
L

n
2
2 (B)

= 1, which means {vk} being bounded in

H1, n
2

2,0 (B), i.e., there exists v ∈ H1, n
2

2,0 (B), and a subsequence {vk j }, such that

vk j ⇀ v in H1, n
2

2,0 (B).

Here, for simplicity, we still denote vk j by vk , then from ‖ J ′(uk) ‖
H−1,− n

2
2,0 (B)

→ 0 we know

that for any ϕ ∈ C∞
0 (B),

∫

B

(∇Buk∇Bϕ̄ − uk |uk |p−1ϕ̄
) dx1

x1
dx′ = o(1) ‖ ϕ ‖

H1, n
2

2,0 (B)
, (3.9)

and then

∫

B

(∇Bvk∇Bϕ̄ − vk |uk |p−1ϕ̄
) dx1

x1
dx′ =

o(1) ‖ ϕ ‖
H1, n

2
2,0 (B)

‖ ∇Buk ‖
L

n
2
2 (B)

, (3.10)

i.e.,
∫

B

(∇Bvk∇Bϕ̄ − vk |uk |p−1ϕ̄
) dx1

x1
dx′ = o(1). (3.11)
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From J (uk) → c, we know

1

2

∫

B

(

|∇Buk |2 − 1

p + 1
|uk |p+1

)
dx1

x1
dx′ = o(1),

that means

1

2

∫

B

|∇Bvk |2 dx1

x1
dx′ = 1

p + 1

∫

B

|uk |p−1|vk |2 dx1

x1
dx′ + o(1). (3.12)

Take ϕ = vk in (3.11), then we have
∫

B

|∇Bvk |2 dx1

x1
dx′ =

∫

B

|uk |p−1|vk |2 dx1

x1
dx′ + o(1).

Comparing with (3.12), we can deduce that p+1 = 2, which contradicts with the assump-

tion p > 1. That means {uk} would be bounded in H1, n
2

2,0 (B). Thus there exists u ∈ H1, n
2

2,0 (B)

and a subsequence, which still denotes by uk , such that uk ⇀ u in H1, n
2

2,0 (B).

Now we want to prove that uk → u in H1, n
2

2,0 (B). In fact, by Poincaré inequality (2.17),
we have

‖ uk − u ‖
H1, n

2
2,0 (B)

≈‖ ∇Buk − ∇Bu ‖
L

n
2
2 (B)

.

Then, by (3.6), we can obtain

‖ uk − u ‖
H1, n

2
2,0 (B)

≈ ‖ ∇Buk − ∇Bu ‖
L

n
2
2 (B)

= 〈J ′(uk)− J ′(u), uk − u〉

+
∫

B

(|uk |p−1uk − |u|p−1u
)
(uk − u)

dx1

x1
dx′.

Since uk ⇀ u in H1, n
2

2,0 (B), then from Lemma 3.1, we have uk → u in L
n

p+1
p+1(B), that is,

|uk |p−1uk → |u|p−1u in L
np

p+1
p+1(B). So from (3.9), one has 〈J ′(u), ϕ〉 = 0 for anyϕ ∈ C∞

0 (B).

Since C∞
0 (B) is dense in H1, n

2
2,0 (B) and J ′(uk) → 0 in H−1,− n

2
2,0 (B), we can deduce that

〈J ′ (uk)− J ′(u), uk − u〉 → 0 as k → +∞.

Moreover, by Hölder inequality we obtain
∫

B

(|uk |p−1uk − |u|p−1u
)
(uk − u)

dx1

x1
dx′

≤
∫

B

| |uk |p−1uk − |u|p−1u | ·|uk − u|dx1

x1
dx′

≤‖ |uk |p−1uk − |u|p−1u ‖
L

np
p+1
p+1

p
(B)

‖ uk − u ‖
L

n
p+1
p+1 (B)

.

123



Cone Sobolev inequality and Dirichlet problem for nonlinear elliptic equations 483

Thus uk → u in L
n

p+1
p+1(B) implies that

‖ uk − u ‖
H1, n

2
2,0 (B)

≈‖ ∇Buk − ∇Bu ‖
L

n
2
2 (B)

→ 0, as k → +∞,

as required. ��

Proof of Theorem 3.1 We choose E = H1, n
2

2,0 (B), I (u) = J (u) as defined by (3.7). Then it
is obvious that I (0) = J (0) = 0. From (3.8), we have

J (u) ≥
(

1

2
− c̃ p+1

p + 1
‖ ∇Bu ‖p−1

L
n
2
2 (B)

)

‖ ∇Bu ‖2

L
n
2
2 (B)

.

Choose R satisfying 0 < R < (
p+1

2c̃ p+1 )
1

p−1 , and let ‖ ∇Bu ‖
L

n
2
2 (B)

= R > 0. Then there exists

a(R), satisfying 0 < a(R) ≤ ( 1
2 − c̃ p+1

p+1 R p−1)R2, such that

J (u) ≥ inf‖∇Bu‖
L

n
2
2 (B)

=R
J (u) = a(R).

That means the condition (1) of Proposition 3.1 holds.

For u ∈ H1, n
2

2,0 (B) with ‖ ∇Bu ‖
L

n
2
2 (B)

= R > 0, we take θ > 0, and then obtain

J (θu) = θ2

2

∫

B

|∇Bu|2 dx1

x1
dx′ − θ p+1

p + 1

∫

B

|u|p+1 dx1

x1
dx′.

Since p + 1 > 2, we can get lim
θ→+∞ J (θu) = −∞. Therefore, we can find a positive con-

stant θ1 large enough, such that for e = θ1u ∈ H1, n
2

2,0 (B), we have ‖ ∇Be ‖
L

n
2
2 (B)

> R and

J (e) < 0 < a(R). Set � = {h ∈ C([0, 1]; H1, n
2

2,0 (B)) | h(0) = 0 and h(1) = e}, and from
continuity, we then get

c = inf
h∈� max

t∈[0,1] J (h(t)) ≥ a(R) > 0. (3.13)

Moreover, Lemma 3.2 tells us that the functional J satisfies (P S)c condition, and then the
condition (2) of Proposition 3.1 holds. Consequently, from Proposition 3.1, c ≥ a(R) > 0

in (3.13) is a critical value of J (u) with non-trivial critical point ũ ∈ H1, n
2

2,0 (B), which is the
non-trivial weak solution of the Dirichlet problem (3.1). The proof of Theorem 3.1 is now
completed. ��
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