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Abstract In present work, we first establish the corresponding Sobolev inequality and
Poincaré inequality on the cone Sobolev spaces, and then, as an application of such inequali-
ties, we prove the existence of non-trivial weak solution for Dirichlet boundary value problem
for a class of non-linear elliptic equation on manifolds with conical singularities.
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1 Introduction and preliminaries
Let X be a closed, compact, C* manifold, and set
X% = [®: x X)/({0) x X)

this local model interpreted as a cone with the base X. Since the analysis is formulated off
the singularity it makes sense to pass to

XN =R, x X

the open stretched cone with the base X.
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464 H. Chen et al.

A finite dimensional manifold B with conical singularities is a topological space with
a finite subset By = {b1,...,by} C B of conical singularities, with the following two
properties:

1. B\ By is a C* manifold.

2. Every b € By has an open neighhourhood U in B, such that there is a homeomorphism
¢ : U — X* for some closed compact C* manifold X = X (b), and ¢ restricts to a
diffeomorphism ¢’ : U \ {b} — X".

Example 1.1 Let X be an arbltrary closed compact C* manifold, then there is an integer N
and a C™ submanifold X of S¥~! = {z € RV : |z| = 1} which is diffeomorphism to X.
The set B := {z € RN \ {0} : \TT| € X} U {0} is an infinite cone with the base X and the
conical point {0}.

From now on, we assume that the manifold B is paracompact and of dimension n + 1.
By this assumption we can define the stretched manifold B, associated with B, as a C*®
manifold with compact C*° boundary 9B = |J,,. By X (b), such that there is a diffeomo-
phism B\By = B\0B := intB, the restriction of which to U1\Byp = V;\0B for an open
neighbourhood U; C B near the points of By and a collar neighbourhood Vi C B with

Vi = Upeg, (10, 1) x Xp}.
The typical differential operators on a manifold with conical singularities, are called Fuchs
type, if the operators in a neighbourhood of # = 0 are of the following form

e 3\
A=t ]gak(z‘)(—tat) (1.1)

with (£, ) € Ry x X = X*, ar(t) € C® (R4, Diff"*(X)). Examples of that kind of
operators are as follows.

Example 1.2 Let gx (¢) be an r-dependent family of Riemannian metrics on a closed compact
C°° manifold X, which is infinitely differentiable in # € R. Then

g :=dt* +*gx(r)

is a Riemannian metric on X”. The Laplace-Beltrami operators corresponding to the
metric g are then of the form

2 9\
=172 a1 (—t—)
P ot
with ax (1) € C® (R4, Diff>~ % (X)).

Example 1.3 Let gx (¢, y) be an (¢, y)-dependent family of Riemannian metrics on a closed
compact C* manifold X, which is infinitely differentiable in (¢, y) € R4 x Q. Then

g =di* +2gx(t,y) +dy’

is a Riemannian metric on X" x €. The Laplace—Beltrami operators related to the metric g
are then of the form

2 9 7. 52
=7 a0 + Z—z
/

k=0 =1

with ax (1, y) € C®(Ry x 2, Diff>~%(X)) and ¢ = dimg.
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Cone Sobolev inequality and Dirichlet problem for nonlinear elliptic equations 465

The differentiation 79, in Fuchs type operators motivates us to employ the Mellin trans-
form.

Definition 1.1 Let u(t) € C;°(R1),z € C, then the Mellin transform is defined by the
formula

+o00
dt
Mu(z) = / tzu(t)T,
0
and
M : CSO(R+) — A(C),

where A(C) denotes the space of entire functions.

Proposition 1.1 (cf. [12]) The Mellin transform satisfies the following identities,

(1) M((—to)u)(z) = zM(z),

(2) M(t~Pu)(z) = (Mu)(z — p),

(3) M((logH)u)(z) = (3, Mu)(z),

@) Muh)(2) = B~ (Mu)(B~'2),

fort eRy,z,peC,BeR\ {0}, andu € CP(Ry).
To extend M to more general distribution spaces on R, we introduce the weighted Mellin

transform. The so-called weight line I'g is defined as I's = {z € C : Rez = B}. Then we
define the weighted Mellin transform with weight data y as follows

+00 J
. t
Myu := Mulr, = /tl/z_y+’Tu(t)—,
277 t
0

and the inverse weighted Mellin transform is defined as

1
(My_lg)(t)zﬁ / 17*g(2)dz.
e,

Foru(t) € C°(Ry), set Syu(r) = e’(%’y)’u(e_"), then we have

1
(M, u) (5 -y + i‘r) = (FSyu)(1), (1.2)

where F is the 1-dimensional Fourier transform corresponding to ¢. In fact, by changing
variables t = ¢™" and set z = % —y +it € C,itis easy to see

+00 +oo
(FSyu) (x) = /e*"”e‘(%‘y)’u(e*’)dr:/e‘(%‘VJri’)’u(e*’)dr (1.3)
= d | -
= /tzu(t)Tt = (Myu) (E —y+ir). (1.4)
0

Accordingly, we have the following result.
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466 H. Chen et al.

Proposition 1.2 (cf. [12]) The operator M,, : Cj°(Ry) — S(I' ! _y) extends by continuity
to an isomorphism

M, : LY (Ry) — L (r%fy)

forall y € Rand LY (Ry) = t¥ L>(Ry.), where

_1
el )= Q)77 | Myu ||L2(FLV) (1.5)
2

The so-called weighted Mellin Sobolev spaces can be defined by using the property (1.5)
as follows.

Definition 1.2 For s, y € R, we denote by H;’V (RTI) the space of all u € D’ (RTI) such
that

1 2 2\$ 2
— //(1+|z| +IEP) (M, w1, Foossu) 2, 6)Pd2ds < +oc,
RrR7
14

l—‘nJrI_
2

where M y—ntl is the weighted Mellin transform and F,_, ¢ the n-dimensional Fourier trans-
form. Naturally, the space H;’y (Rf’ﬁl) admits a norm

12

1 s
Il () = | 37 [ [ (rizP4ier) 1 (M, s o) Pz
r‘ n

R
n;—l —y

Now we turn to natural scales of the weighted Mellin Sobolev space of integer smoothness.

Definition 1.3 Let LZ(RT]) be the space of square integrable functions on R'jfl, with
respect to dtdx, and (f, ) € Ry x R". Form € N, and y € R, we define

Hy? (R) = {ue D (RY) o) ofu e 7312 (R drdw) ), (16)

for arbitrary @ € N, 8 € N”, and |a| + |8| < m. Then H5 7 (R"*!) is a Hilbert space with
the norm
1/2

Il (o) = > 1377 (10)* 0P u(t, ) dida
la|+[Bl<m Ry xR”

If we denote by LQ(RT]) the space of square integrable functions with respect to the
measure %dx, we can modify (1.6) as follows:

n dt
HYY (R’fl) = [u eD (R’}Jl) T (1) 9Pu e Ly (R’}J‘, de)] , (1.7

for arbitrary « € N, 8 € N", and |a| + |B| < m. Here m € N is called the smoothness of
Sobolev spaces, and y € R the flatness of 7-variable.
Next, we introduce a map
n+l

(Sn+| ,yu) (r,x) = ei(Tﬂ/)ru (7", 2) (1.8)

2
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Cone Sobolev inequality and Dirichlet problem for nonlinear elliptic equations 467

for u(t,r) € CgO(RT]), which is a continuous map SnTJrl’y : CgO(IR’}rH) — Cgo(R”“).
Analogous to (1.2), we can extend (1.8) to an isomorphism

Sug, 1Y (RE) = Byt (). (1.9)

In other words, we have
leell . (rr) AN Supr  ull gy (e
2 + ’

in the sense of norm equivalence, where H;" (R"t1) denotes the distribution space for (r, z) €
R™"*! such that

H' (R = {v(r,2) € D' (R") [9%0Fv(r, ) € L* (R", drdz)}

fora € N, 8 € N"and |a|+ | B8] < m. One can obtain more details and information on Fuchs
type operators and the weighted Mellin Sobolev spaces in [5], and [12].

Next, we generalize spaces H?’y (R’f‘l) to H'}f’y (R’f’l) for 1 < p < 400, and later
on to H';f”/ (B) (the cone Sobolev spaces) on manifolds with conical singularities. Since the
Eq. 1.5 is only valid for p = 2, we introduce here the definition of Hi,’y (Rf’ﬁl) for s integers.
We first modify the spaces L” (R'J’F’Ll, dtdz) to L p(R’_’:’l, #dm).

Definition 1.4 For (t, z) € Ry x R", we say that u(r, z) € LR, L dz) if

1

p

dt
Ihullp,= // z”+1|u(l,m)|p7dx < +o00.
mn

Moreover, the weighted L ,-spaces with weight data € R is denoted by L%(Rf‘ﬁl, #d x),
namely, if u(t, z) € L (R, L dx), then 17 u(r, 2) € L,(RE, L dz), and

1

P

dt
el = //t”HIf]’u(t,x)lpTd:r < +o0.
ﬂ}’l

Now we can define the weighted Sobolev space for all 1 < p < +oc0.
Definition 1.5 Form € N, and y € R, the spaces
my (1) . (1) .-y @ ap a1 At
Hy (R = fue D (RE) o0 7 o) ofu e L, (RY Tz
for arbitrary @ € N, € N, and || + |8] < m. In other words, if u(t, x) € Hy”" (R%H),

then (10,)*05u € L (R, L dy).

m

It is easy to see that ), v (Ri“) is a Banach space with norm

==

dt
1 —_
Il () = > Y (100 0 ute, )| —~dw

jal+1B1<m \ )7
"

@ Springer



468 H. Chen et al.

Similarly (cf. [4]) we can define the weighted Sobolev spaces HZW(X Ny with 1<p<oo
on manifolds with conical singularities. Let X be a closed compact C*° manifold, and & =
{Ui, ..., Un} an open covering of X by coordinate neighborhoods. If we fix a subordinate
partition of unity {¢y, ..., ¢y}andcharts x; : U; — R", j =1,..., N,thenu € H;,"’V(XA)
if and only if u € D'(X") with the norm

N »
—1
el ppm (xny = [ (1 X X*f) ojull?, < 4o00.
p (XM ; J 'H,,'y(]RJrH)

Here 1 x Xj CPRy x R") — C°(Ry x Uj) is the pull-back function with respect to
I x xj:Ry x Uj = Ry x R". Denote H'[';,’(’)’ (X") as the subspace of HZL”'(XA) which is
defined as the closure of C§°(X") with respect to the norm || - IIHZz,v(XA).

Proposition 1.3 (cf. [11]) We have Hm V(XN € WP(XM) forallm € N, y € R, where

loc

WP (X™) denotes the subspace of all u € D'(X") such that pu € W™P(X") for every
¢ € C(XM).

Let B be the stretched manifold of B, we will always denote w () € C3°(B) as areal-valued
cut-off function which equals 1 near {0} x 9B.

Definition 1.6 Let B be the stretched manifold to a manifold B with conical singularities.
Then H),"” (B) for m € N, y € R denotes the subspace of all u € W,..” (intB), such that

Hy' B) = {u € Wil (intB) | wu € Hy” (XM}
for any cut-off function w, supported by a collar neighbourhood of [0, 1) x dB. Moreover,
the subspace H’;‘g (B) of H’;}’y(IB) is defined as follows:

Hyo B) :=[0]H,§ (X") +[1 — o]Wy"" (intB),

where W(')" P (intB) denotes the closure of Cg°(intB) in Sobolev spaces W7 (f( ) when X is
a closed compact C* manifold of dimension n + 1 that contains B as a submanifold with
boundary.

Remark 1.1 (cf. [11]) We have the following properties:

(1) H;”’V(IPB) is Banach space for 1 < p < oo, and is Hilbert space for p = 2.

Q) LB) :=H) (B).

(3) Lp(B) :=Hy"(B).

4) " Hm V2 (B) = m vi+y2 (B).

(5) Theembedding H';; V(IB) — Hm v (B) is continuous if m > m’, y > y’; and is compact
embedding if m > m', y > y'.

2 Cone Sobolev inequality
In this section we will prove the so-called cone Sobolev inequality on Hm v (R"+1) The dis-

cussion will be separated into two parts. One is for - >
First let us recall two well-known results.

m

FES R

m
and the other is for - < ar
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Cone Sobolev inequality and Dirichlet problem for nonlinear elliptic equations 469

Proposition 2.1 (Gagliardo—Nirenberg—Sobolev inequality) Assume 1 < p < n. There
exists a constant c, depending only on p and n, such that

Null o gy < €NVl oy @.1)

(n=Dp
nn—p)

forallu € Cé (R™), with # = — % Here the constant ¢ = is the optimal constant.

1
P
Proposition 2.2 Let U be a bounded, open subset of R", and suppose dU is C'. Assume
1 <p<n,andu € WLrP(U). Then u € L”*(U) and we have the following Sobolev
inequality:

“u”Ll’*(U) =< C”””WLI’(U)!
the constant C depending only on p, n, and U.

One can obtain all the details in [6]. Here we will generalize the Sobolev inequality on
the cone Sobolev spaces H;’y, namely,
1 1

Theorem 2.1 (Cone Sobolev Inequality) Assume that 1 < p <n+1, p—l* =5 o and

y € R. Let ]R'f'l =Ry xRt eRyandx = (21, ..., x,) € R The following estimate

n

”””sz () = cill (d) u”L;(RT—I) + (c1+¢2) z ||31~[M||L%(R1+1)

i=1

2
+= ., 2.2
o l ”L;(RJI) 2.2)
1
holds for alllu € C(S’O(IRiJr ), where y* = y — 1, ¢ m, and c; =
_ =Dnp 51
np(lr:l_,_l"_J’pl)_(Z_lH) , o= n+"1p_p. Moreover, if u € H;”)(/)(RT']), we have
ull, v one1y = Cllll iy (marys 2.3
Bl ) = €l o 2.3)

where the constant ¢ = c1 + ¢2, and cy, ¢y are given in (2.2).

. . _ x _ n+l
Proof First, we consider p = 1, and then p* = ==

. For arbitrary y’ € R, since u(t, x) €
C& R, where (1, 2) = (t, 21, 22, ..., 2,;) € Ry x R”, we have

t
, N\ d
17 ) = |/<rar) (r="u) <
;
0
+00

/

0

IA

+0o0
' d rd
e (rar)u|—’+|n—y’|/|r”—yu|—’.
r r
0

Analogously, we get

+00

7 7
[V ul < / "7V |3y, uldy;

—0oQ
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470 H. Chen et al.

fori =1,2,...,n. Multiplying the above n + 1 inequalities, one has
+00 d n T
’ ’ r /
Y < / 7 ol == I / "7 |0, uldy;
ros
0 i=1"
+00 P
+ln—v| / ] / "9y uldy;
r Yi I
0 i=1_"

Then, we can obtain

+00 n T
n+l ) dr : 7
Y | < /|r" v (rar>u|71_[/ 1"V |8y, uldy;
0 i=1_"4

n

“+00 d n +0o
A/ r )
+ln =] / " Vu|71_[/r" ' (8y,uldy;
0 i=1_"

+00 nog, +00 n
I’l—)/, d}" }’l—)//
ol | TT( [ 7 1oy uldy
0 i=1 \Uno
1
+00 d nop +00 n
1 o r o
+ln =yl /Ir" ul— I1 /tn 7 0y uldy;

0 i=1 \Uno

Integrating both sides of the last inequality with respect to 4, we have

S =

+00 +00 +oo +o00 n
d ’ d}" ’
[ s [ canu ) [TI( [ o vy
0 0 0 =l ‘Yo
+00 % +oo %
1
tin—y'|n /lr”—V /H /t”‘y |y ldy;
0 o i=1 00
By Holder inequality, it yields
+00o d +00 d % n  TO0+00 n
/' n t ’ r
/ |fn7y :17 =< / |”n7y (r8r)u|7 / /tniy |31/,”|*d%
0 0 =l 0

, dr
H/ /t"*V |yl —~dyi | - (2.4)

+
=y [
0
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Cone Sobolev inequality and Dirichlet problem for nonlinear elliptic equations 471

Now integrating (2.4) with respect to dy;, and applying Holder inequality again, we get

1 1
n+1 dt / dt n / d n
/ a5 Ly, < (//t"‘y |ay,u|7dy1) (/ v (rar)u|7’dy1)
n 1
) dt n
xl_!(///t” 4 Iayiu|7dy1dy[)
1=
1 1
1 —_y! dt n ) d}" n
+|n—y’|z(//r” V|8ylu|7dy1) (/ " Vu|7dy1)
n 1
’ dt n
X H (/// "y |8yiu|7dy1dy,-)
=2

Integrating with respect to dy», . . ., dyy,, and using Holder inequality, we obtain

dt
/---/|r" YulE Zdyr . dy,
d - g
’ r n
s(/---/r"‘yurar)deyl. ) H(/ / V|aylu|—dy1...dyn)
i=1
’ dr ;
It (/m/r”—y |u|7dy1...dyn)
n 1
o dt n
XHl(//t V|ayl_u|7dy1...dyn) ,
i

which means that

15 1
n+l dt n ’ d[ n
7Y ) —d < (19 —d "7V |0y ul—d
//| ul x (// |(¢9;)ul x) H(// 02— x)
d X n 1
/ t n
=y (//’H '”'7‘”) (// " y'af’”'*dx)

Here we used the notation of integral “ / / ” to stand for / / .

0 Rz
Then, by the inequality a + b < (a® 4+ b%)'/% for 0 < o < 1, we have

(/ [ ”ulnrﬂ r)m
1 p 1
/ dt n / dt n
< [(// "y |(18t)u|7d1‘) (// " |3$lu|7dcc)

i=1

S

n

1

+|n—y|n(// 7 w); (// - V|ax,u|—dw) }
< (// tn—V/|(tB,)u|#dl’)n+1 (//,n—l/'|3ziu|#d:c)m

i=1
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472 H. Chen et al.

n+] n
+|n—y|n+1 (// " V|u|—da:) (// " J/|8T,u|—dac)
1 " "
Sn—f—l// Vl(tat)ul—dﬂc—l—iZ// V|a u| dr
|n—')/|n+1 |n—y|n+l
([ S

Sety =y’ + 1, it yields

w1 dt O\ T 1 dt
(/ T Tzl— :c) < //t""’l_yl(ta,)ul—dx
n—+1 t
1 n
1 a1l —yppm // el dt
t Y10, ul—d
+(n+1+ n-+1 )121: lx’u|t $
1— n+|
P et il +i’| (// =y L daz) 2.5)
n

This is the estimate (2.2) for p = 1.
Now we consider the case for 1 < p < n + 1. Applying (2.5) for v = |u|* witha > 1,
and write ¥ = y’ + 1, we have

ney’ o nniﬂ n+1 - // n—y’ @ ﬂ
(f[ 1 ey Gae) ™ <[] e (i) aa
+( Ly '"_y/'”h)i//r"—ﬂa () 1%
e (Jul®) | —dx
n+1 n+1 = t
— n+1
'"n+|1 //"V||“ dz. (2.6)

Since |9z, (Ju|%)| = |8w[(u% %)| < olul*" 1|8JLLM| we can rewrite (2.6) to get

(n—v")+1) wnt)) dt T , dt
(//tflm e —dx) <2 //t"—V Y o) ul L de
t n+1 t
! |n_y/|"lﬁ C = =1 dtd
t u|l—
B P ey ;// ™0 ul =d
— n+l
|n V| (//ny|u|7daj)
n+1
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Cone Sobolev inequality and Dirichlet problem for nonlinear elliptic equations 473

Set ¥ + ¢ = n — y’, and using Holder inequality again, we obtain
g

(Jf )™
t
a“ pot
P
< nil (// (#1eBul)” — ) (// (¢l =ty 7= ldrdx)
1
1 [n — y' [+ dr \7
+Ol(n+1 + ntl )g(// t‘p|axiu|) wa)
=1
% (// (Y u*") 7T drda ) ’
+1 1 P e
'";+|1" (// (tu)) —dz)l (// (Y )P dtdx) "oen

Choose ¢ and v such that pp = n 4+ 1 — py, ¥ - L= = W,p*y*:n—l—l—

p—1
Ml)ﬁ&,and(a—l)%:p* ThllerOmllf—i—gozn—y/andi _ %_n-}r]’we
can get Y = <”+1>(n;pV’><ﬂfl> 9 = = y)r(lf;ﬂ P = W — 14 w
and a = forl < p <n+ 1. 1Itis eas toseethat——L_l:Tanda>1.
n+1 P p y > 5

Consequently, (2.7) becomes the following estimate

(// n+1 pry |M|p*ﬂd$)p7
d 1
t »
< (// g1y <ra,>u|"—dm)
n+1 t
1 1
1 |n — y/|#+T // ji+1=py p »
+a(n+l + n—+1 l ul
+|n_ |n+1 (// Py P == dz) )
n+1

which means that

lull e < eall (3wl + (e +62)Z 185l .+ —||u||Lv (2.8)
i=1

1
|n— = 1)n1>|n+1

mlrwitha = ,andy = y* + 1. o

— —
where ¢; = n+1 0= n+1 n+1 —-p’

Remark 2.1 If wetake t = Int,thent — —occ ast — 0+, and 10, = 9, ";—t = dt. Thus
in case of y = “t in (2.2), then ¢2 = 0, ¢1 = Grpyiig=> Ly R = LP(R™!) and

LZ: (Rf’ﬁ]) = LP"(R"*!). Thus the cone Sobolev inequality becomes the standard Sobolev
inequality (2.1), that means the standard Sobolev inequality is the special case of the cone
Sobolev inequality here and the constants, appeared in (2.2), would be the best possible.
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474 H. Chen et al.

1,2£L
Remark 2.2 There rises a natural question on whether the spaces ‘H » o (]R’_f’l) have certain

inclusion relation with W(}’p (R'IH). Indeed, it is not the case. By definition, if u(z, x) €
n+1

M, (R}, then

ntl

ntl dt
tr T ) duel, (RT‘, de),

fora e N, 8 € N*, and |«| + |B] < 1. On the other hand, if v(¢, z) € W&’p(]R’fl), then
orofv e L7 (RYH, didz),

1’ n+1
fora € N, B € N, and |a| + || < 1. So the spaces H,, (R and Wol’p(R”+H) have
no inclusion relation, since the two conditions of |a| = 1, |8] = 0 and |¢| = 0, || = 1
lead to different results. However, if we set y = %, then we have the equivalent relation, i.e.

Ly®y, dayy = LP (R, didw).

Theorem 2.2 Suppose % — > 0,mpueNu<m andy € R, then there are

n+1
continuous embedding

m,y +1 m',y’ +1
i (R) = i ()

with % = % —hgom' =m—p,andy' =y — n. More precisely, for u & HZ’"&’ (R'fl),
we have

il = ¢l 2.9)
where ¢ = c1 + ¢ is defined as that in (2.8). In particular, if% — nm? > 0, then there are

continuous embedding

m,y +1 r* +1
ol (R) = 1 (mE1)

m,y myn+l
ﬁl and y* =y —m, and foru € HP’O (RY™), we have

1
p n

g1
wzthF=

m
Il = "l (2.10)

Proof Since C§°(R"™) is dense in 1)y (R%*), Theorem 2.1 is valid for u(, z) € 1.
Note that if u(r, z) € H)} (R, then D = (18,) 9% u € HL’%(RTI ) for |a| =
a1+ |a’| < m— 1. We can apply Theorem 2.1 iteratively to obtain the estimate of continuous
embedding (2.9) and (2.10). O

+1

Theorem 2.3 Letrm e N, 0 <o < 1, y > 1+%+'"’1 and m — "1

n+1
exists a constant c, depending only on p,n and y, such that for any u(y) € H:’:”(’; (R'_ﬁ_“),

= «. Then there

and y1, Y2 € ]R'fl, ly1 — y2| & p for some p > 0 small enough, we have

lu(yr) — u(y2)l < cllullygmy lyr — y2l*.
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Cone Sobolev inequality and Dirichlet problem for nonlinear elliptic equations 475

Proof Since u € H,y (R, then (19,)u, 8Tlu e Mo Y@, fori = 1,....n. In

view of (m — 1) — ”TH =a —1 <0, we have 1 5~ ’};’;11 = njr"l‘ > 0. Apply Theorem 2.1,
we obtain (70;)u, 81,u € Ly (]R"'H) for L = % — n+1 ,and y* = y — (m — 1). Since

y>1 —|— + % +1 , then y* > 0. Furthermore we have following estimate

I (18 ull, < collullyens @.11)

and

10 ull < collullygmy, (2.12)
p*

with co = (¢1 + ¢2)™ ™!, where ¢; and ¢, are defined in (2.8).

LetQ2, C R’rrl be a (n+1)-dimensional polyhedron, with center yo = (o, o), side length
p and the side line being parallel with the coordinate axis, such that |t —#y| < «/n + 1p, |z —
zol < v/n+1pfory = (¢, x) € Q,. Here we first suppose u(y) € C(‘)’O(]R'jfl), and get

1
d
u(y) — u(yo)| s/%u(mwumowmwe < Vn¥ip
0

1 n
X /(|8,u (to + 0t, zo + 0x) | + Z [0z, u (fo + 0t, x9 + Ox) |)d9
o i=1

(2.13)

Integrating (2.13) on £2,, we obtain

1
n—“/u(l,m)dtdm—u(to,xo)
P a

/ lu(t, x) — u (ty, xo) |dtdx

2

1
1 n
3 ./n;ir //(|8,u(t0+9[, 0+ 02) |+ D |0a;u (1o + 01, 20 + O) |)d9dzdx.
P ‘
Q, 0 i=1

<
- pn+1

Change the parameters 7o + 0t = 1/, x9 + 0x = 2/, and dt = %dt’, dx = G%dac’ and write
t, x in the place of ¢/, z’ for convenience, we get for p small enough,

1
Vn+1 1 z
uty) —ut)] < [ gt [ (10 01+ 3 10,00 | dodra
Qo 0 i=1

(2.14)

=1+ I,

where

m

L = / [0;u(t, z)|dtdzdb,

Qp

9n+1
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and

—

Zi

= 0 Q(.)p

Consider |0;u| = [t¥0,;u|t™% and set ¢ = ﬁ — y* 4 1. By using Holder inequality for
# + % = 1 to estimate /;, we obtain

1 L
q *

1 — — * *d[
T /t Y4 dtdx /t”(“’ P (t8,) u|P —dx | df.
0 Q0p $0p

—_
<

Since ¢ = %—y*—i—l,wehavel—l—((p—l)p*=n+1—p*y*,and

1
1 g ntl- [ES
/t""‘fdtd;v /t “’"dt/lda: :( )40 T
1 —¢q

Q&p @op

where Qg, = (0, 6p) x wy, with dimwg, = n. Then, we can get

1 1
q n+l— ntl _ % % «dt
/ ( )q 0 T " Yde //z"“—!’ Yt ul? =da
1—pq t
0

S}

R1+l
| 1
_ n+1—gq
Sv%+l( ) /‘ DRI A0 | @d)
1 —¢q »*
0
Since y > 1+ 5 + n+1,then ntl —go—n =a+ep,withey =y —(1+ 5+ n+1) > 0.
Note that p®! < 1 and f 0 ("+1)+ d6’ is bounded, then we have
I < cp®| (¢ ull v (2.15)
p*

for some constant ¢ depending on p, n and y. Analogously, we can obtain the following
estimate

I < (B, ull, o 2.16)
p*

with constant ¢’ depending on p, n and .
Thus for any fixedy = (¢, ),y = (£, Z) € Rffr], and |y — y| & p, we have proved that

lu(y) —u@ =< cllullzgmrly —§1%

where the constant ¢ depends on p, n and y.
Finally, since C§° (R’J’FH) is dense in ’)-('[';'g (R";rl), the estimate above holds in case of
, 1
u e Hyg R o

Theorem 2.3 can be extended to the following result:
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Theorem 2.4 Assumem—% =k+a,keN ,0<a<ly> 1+%+m;_{f1_1 and

multi-index B = (B1, B'), 18] = k. If we denote that DF = (13,)P19% , then we have
IDPuyr) — DPuy)| < cllullygny lyr — 21

where the constant ¢ depends on p,n and y, u(y) = u(t, x) € H'g,’(’; (RT‘I), Y1, Y2 € R’j_"']
and |y1 — y2| = p for some p > 0 small enough.

We can also prove the corresponding Poincaré inequality, which will be useful in the next
section.

Theorem 2.5 (Poincaré inequality) Let B = (0, 1) x X be a bounded subspace in R’fl with
XCR" and1l < p <+oo,y e R Ifu(t,z) € H;’%(B), then

llu(z, I)“LZ(]B) < c||Vpu(t, I)“LZ(]E)» (2.17)
where Vg = (10;, x1, . .., Tp) is the gradient operator on B, and the constant ¢ depends only
on B and p.

Proof Set Q = {(t,x) € RTIIO <t <d,a < <a +d,i =1,...,n}, where

d € R should be chosen large enough such that B C Q. Now suppose u(t, x) € C;°(B). For
(t,x) € B C Q, we have

xy
u(t, x):/axlu(t,s, T2, ..., %n)ds,

ap

and then

x| p
lu(t, 2)|P < /lamlu(t,s,wz,m,xn)lds

1

By Holder inequality, we can choose ¢ > 1 such that % + % = 1, and then we can get

1

Lo
/lqu /|8$1u(t,s,m2,.‘.,xn)|”ds

1 ap

lu(t, 2)|”

IA

ay+d
ar-! /|8w1u(t,s,x2,...,xn)|pds.

ap

IA

By the mean value theorem, we have

aj+d
[0, u (t,s,22,...,2p)|Pds =d - [0 u (171'/1’552, ~--15L'n)|p

ai
with a; < &} < a; + d, and then

e T YL L A L T e S | L (2.18)
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Integrating both sides of (2.18) with respect to %dm on Q, we have

dt dt
/t""'l_”plu(t, gc)|p7dx <dP «/t”+1_y1’|8xlu (t, T, x, .., xn)|p7dz.

Q Q

By the definition of Q and u(t, x) € C5°(B), we can also obtain

dt dt
/["'H_VPW([, x)|1’7dx <d’ ~/t"+1_yp|8l.lu (t,x’l,xz,...,x,,)|p7dx
B B
P . .
<d ||azlu(t»l)||L[V,(]B)-

Since C§°(B) is dense in H;”()(B), the estimate above implies that,
llue(z, x)”L,V,(]B) =< C”al‘lu(t’ x)”L,y,(lB) < c||VBu(t, ‘T)”L,y;(IB)’

for u(t,z) € HII;’}(’)(IB), where the constant ¢ depends only on B and p. Theorem 2.5 is
proved. O

3 Nonlinear Dirichlet boundary value problems on manifolds with conical
singularities

Let B be a n-dimensional compact manifold with conical singularity at the pointb € d B, and
B be the stretched manifold of B, i.e. without loss of generality, we suppose B = [0, 1) x X, X
is a closed compact manifold of dimension n — 1, 9B = {0} x X. Let Ag = (mlazl)z +
8%2 +- 4 Bg%n , be Fuchs Laplacian operator (cf. [8]) and defined in intB. Then we consider
the following Dirichlet problem:

_ -1 +2 i
—Apu = ululP~*, for 1 <p< h, z € int(B) 3.1
u=>0 on 0B.

We say that u(x) € H;g (B) is a weak solution of (3.1) if for any ¢ € C3°(B), we have

70,’351 , pil—dxl ,
Viu - Ve —dz’ — [ ulu|? 'Y ——dz’ =0, (3.2)
X1 X1
B B

where Vi = (21z,, 82y, - - - » 0, ), and A = |Vp|2.
We can prove the following result:

Theorem 3.1 The Dirichlet boundary value problem (3.1) has a non-trivial weak solution
in the weighted Mellin Sobolev space H2 0 2 (B).

Remark 3.1 As an important application, the Sobolev inequality is used to prove the exis-
tence theorem for nonlinear elliptic partial differential equations (cf. [7,9]), in particular in
case of nonlinear term with critical Sobolev exponent. In this aspect, the typical example can
be found in [2]. In a forthcoming paper [3], we will apply our cone Sobolev inequality and
Poincaré inequality to prove the existence of solutions for Dirichlet problem of nonlinear

elliptic equations, defined on the conical manifold, with critical Sobolev exponent p = ”J_rg

The following lemma will be used for solving our problem.

@ Springer



Cone Sobolev inequality and Dirichlet problem for nonlinear elliptic equations 479

Lemma3.1 [f p > land p+ 1 < 2* = 25 then the embedding Hy ¢ (B) — H,,H'O(B)
is compact.

Proof According to Definition 1.6, we can write H2 0 (IB%) and H » ff ]()(IB) as follows,

1,2 L5 .
Hy 5 (B) = [0]H, ¢ (X") +[1 — w]Hy (intB),

pg‘O(B) [w]H pf;‘o(xA)Hl—w]LP“(imB).

By using the Sobolev inequality, we know that the embedding [1 — a)]HOl (intB) —
[1 — w]LP*!(intB) is compact for p > I,and p + 1 < 2* Tt is sufficient to show that the

embedding [w]’H;:g (X" <= [o]H pJf]“O(XA) is compact. Similarly to (1.8) and (1.9), for

meN,y e R,and 1 < g < oo, we define
(Sg,yv) (r,2) = eir(Eiy)v(e_r, z'),
forv(zy,2) € HZM’ (X"). Then Sg,y induces an isomorphism as follows,
HolHg ™ (X7) = [BIW™ (R x X),

with a cut-off function @ (r) = w(e”) € C§°(Ry). In the present case, we take y = #,

n

and ¢ = p + 1 for u(zy,2) € H ”“ (X”). Thus we have the following isomorphism
mapping

Sau o ]Hpjf‘ (X" = [@ILPT (R x X), 3.3)
ie.
Son ny (0@ u(z1,2') =0 e_r(ﬁ_”i‘)u (e 2)=w(e ) ule", 2).

. 1,4 .
Analogously if we take y = 5, ¢ =2 and v(z1, 2') € Hz’g (X”), then we have an isomor-
phism

(X") — [@1H) (R x X),

[=INTE]

: [w]’H;’

e

[N}
[STE)

Ay (a)(xl)v (:rl, ) =w(e _’) —(3-3)y (7", m’) =w (e_r) v(e™, a).

20

Moreover, ST e induces another isomorphism. In fact, for every v(zy, ') € H2 3 (XM,
p+i°p

one has

ot @DV (10) = () e Py (e )

— () eGP eGP )y o )
w(e) e Gy (e, 2)

Ay (@ @) v (z1,2)),

and then the mapping
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 [w]H, g (X") — [@1H] (R x X) (3.4)

p+1 p+1
is also an isomorphism. Since the embedding [® ]H0 (R x X) < [@]LPTI(R x X) is com-

pact, then the embedding [w]?—(2 0 (X Ny e [w]H » _f fl (X") is compact by the isomorphisms

(3.3) and (3.4). O

Correspondmg to the problem (3.1), we introduce the following functional form, which
is defined on H2 2 (B),

d 1 d
J(v) = /|v13u|2 2 e — —/|v|1’+1ﬂdm’. (3.5)
p+1 T
B

Then J(v) € C! (H;g (B), R), and the critical point of J(v) in H;g (B) is just the weak

»—\_/

B

solution of (3.1), i.e.,if u € Hz g (B) is a weak solution of (3.1), then we have

1

— d
(J ), v) = / (Vau - Vav — ulul?~'5) “tda’ = 0 (3.6)
Ha
B

for any v € H;:g (B). Here J'(-) denotes the Fréchet differentiation. According to (3.5), for
ue H;g (B), we can rewrite J as

1 1 1

Jw) == | Veu >y ——— Jull”s (3.7
2 L2® P+ 1 Lp+l (]B)

By Lemma 3.1 and Poincaré inequality (2.17), there exist two constants ¢, ¢ > 0, such
that the following estimates

[[ull =llull o.n, =<clull_ iy <cll Veull s

L[fjf (B) M, i T Hy g B) L2 (B)
hold. Moreover, by (3.7) we have
et p— 2
Jw) =\ = | Veu || I Veu 2 . (3.8
2 p+l L} (B) L} (B)

That means J (#) has lower bound in Hz 0 (IB)
For proving Theorem 3.1, we will use the well-known Mountain Pass Lemma.

Proposition 3.1 (cf.[1,10]) Let E be a Banach space and I € C'(E, R). Suppose 1(0) = 0
and it satisfies

(1) there exists R > 0, a > 0 such that if |u||g = R, then I (u) > a;
(2) there exists e € E such that ||e|| > R and I (e) < a.

If I satisfies (PS). condition with

= inf I(h()),
N R

where
'={heC(0,1; E); h(0)=0 and h(l) =e},

then c is a critical value of I and ¢ > a.
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Here (P S), condition (also called Palais—Smale condition) means the following:

Definition 3.1 We say that [ satisfies the (PS). condition, if for any sequence {u;} C E
with the properties:

Iug) — ¢ and || I'(ui) | gr— 0,

there exists a subsequence which is convergent, where 1'(-) is the Fréchet differentiation of
I and E’ is the dual space of E. If it is hold for any ¢ € R, we say that [ satisfies (PS)
condition.

Lemma 3.2 The functional form J (u), defined by (3.7), satisfies (P S) condition on H;:g (B).

Proof Let {uz} C H;g (B) satisfying

Jup) = ¢ and || S || iy =0,
oo 1)

where J'(-) is the Fréchet differentiation, and H, :)’_2 (B) the dual space of H;g (B), and

J'(u),
I 7@ g = s W
2,0 peCy(B) H;:g ®)

. . . 1,4 . .
First we can deduce that {uy} is bounded in Hz,é (B). In fact, if we assume that {u} is

. 1% . .. . 1.3 .
non-bounded in Hz’é (B), and then by Poincaré inequality (2.17), the norm of Hz,g (B) is
equivalent to the norm || Vgug || g ® thus we have

2

|| Vigug ||L — 400 as k— 4o0.

7 ®)

Let vy = W, then || Vv || = 1, which means {v} being bounded in

S L} ®)
1,2 . . 1,2

H, 5 (B), i.e., there exists v € H, 5 (B), and a subsequence {vkj }, such that

. 1,8
v, = v oin Hy' g (B).

Here, for simplicity, we still denote vk; by vy, then from || J "(uy) ”Hfl’f% (B)—> 0 we know
2,0

that for any ¢ € C3°(B),

dx
Ve Vg — uglug|?~'¢) ——dz’ = o(1 n, 3.9
/( Yo — el 1) Wl (3.9)
B
and then
o) lell 1=z
d H, 2 (B
/ (VaueVad — velugl?~'g) o dy' = — 200 (3.10)
r I VBug || 4
B L ®)
ie.,
- _1o dry
(Vv Ve — vilug |7~ @) m—]d:r =o(1). @3.11)
B

@ Springer



H. Chen et al.

482

From J(u;) — ¢, we know

d
p"'l) S g = o(1),
T

that means
/mv’ 1|vk| da: +o(l). (3.12)

od
/|VIBUk| iy ’=

Take ¢ = vg in (3.11), then we have

/IV wl? —dx /wp 2

Comparing with (3.12), we can deduce that p+1 = 2 which contradicts with the assump-
tion p > 1. That means {u;} would be bounded in H2 0 (B) Thus there exists u € H2 0 2 (B)

dx +o(D).

and a subsequence, which still denotes by uy, such that uy — u in Hz,o (B)
Now we want to prove that uy — u in Hé’g (B). In fact, by Poincaré inequality (2.17)

we have
2~ Vpuk — Veu || 1
Z®) Li®’

| ug —u 1,
2,

Then, by (3.6), we can obtain
~ || Vug — Veu || 1
L} ®)
-1 1 ———dz1
+ [ (lugl? g — )~ ) (uge — u)x—das .
1

B

= (J (ur) — J'(u), up —u)

)2 (®)

g —u |
2,0

Since uy — u in H2 0 (IB) then from Lemma 3.1, we have uy — u in L L (B), that is,
lug P~ g — u|P~ 1umL;n£]1 (B). Sofrom (3.9), one has (J' (1), ¢) = Oforany ¢ € CS°(B)
Since C§°(B) is dense in Hz,o (B) and J'(ug) — 0inH, , > (B), we can deduce that

(J' () = J' (), ux —u) > 0 as k — +oo.
Moreover, by Holder inequality we obtain
/ (Il P~ e = Jul P~ ) m%dm’

B
_ dr
—1 -1
/ [ ”™ g — (P u | -Jug —uIwa
1

—1 —1
B L e L T e R e S
L +1 (B) Lp+l (]B)

S
m‘ 3
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Thus uy — u in L’”'1 (B) implies that

luk—ull 12 =|| Vpuy —Vpu| » —0, ask — +oo,
2 2
2.0 Ly (B)

as required. O

Proof of Theorem 3.1 We choose E = Hé:(; (B), I(u) = J(u) as defined by (3.7). Then it
is obvious that 7 (0) = J(0) = 0. From (3.8), we have

1 Cp+1 p—1
J(u) > 57 | Veu |7, I Vau ||,
p+1 L2 (B)

Choose R satisfying 0 < R < (2 P )p T and let || Vpu || (B)= R > 0. Then there exists

L@

a(R), satisfying 0 < a(R) < (4 — Z- RP~1)R?, such that
Jw= _ inf  Jw) =a(R).
IVl 5 =R
L} ®

That means the condltlon (1) of Proposition 3.1 holds.

Foru e Hz’a(B) with || Vpu || %(B = R > 0, we take & > 0, and then obtain
)
2
dx gr+1 dx
J(0u) = /|VIB% 2 1 o — /| |p+1 ! dz.
]
Since p + 1 > 2, we can get . lim J(Au) = —oo. Therefore, we can find a positive con-
— 400

stant 6 large enough, such that for e = Oju € Hég (B), we have || Vge IIL%(B)> R and
2

J() <0 <a(R).SetI’ ={h € C([0,1]; H;:g(IB%)) | h(0) = 0and h(1) = e}, and from
continuity, we then get

¢ = inf max J(h(t)) > a(R) > 0. (3.13)

hel tegl0,1

Moreover, Lemma 3.2 tells us that the functional J satisfies (PS). condition, and then the
condition (2) of Proposition 3.1 holds. Consequently, from Proposmon 3 l,c>a(R) >0

in (3.13) is a critical value of J (1) with non-trivial critical point & € H2 0 2 (B), which is the
non-trivial weak solution of the Dirichlet problem (3.1). The proof of Theorem 3.1 is now
completed. O

Acknowledgements This work is partially supported by the NSFC.

References

1. Ambrosetti, A., Rabinowitz, P.H.: Dual variational methods in critical point theory and applications.
J. Funct. Anal. 14, 349-381 (1973)

2. Brezis, H., Nirenberg, L.: Positive solutions of nonlinear elliptic equations invovling critical Sobolev
exponent. Commun. Pure Appl. Math. 36, 437-477 (1983)

3. Chen, H., Liu, X., Wei, Y.: Existence theorem for a class of semilinear totally characteristic elliptic
equations with critical cone Sobolev exponents. Ann. Glob. Anal. Geom. 39, 27-43 (2011)

@ Springer



484 H. Chen et al.

4. Coriasco, S., Schrohe, E., Seiler, J.: Realizations of differential operators on conic manifolds with bound-
ary. Ann. Glob. Anal. Geom. 31, 223-285 (2007)
5. Egorov, Ju.V., Schulze, B.-W.: Pseudo-differential operators, singularities, applications. In: Operator
Theory, Advances and Applications, vol. 93. Birkhduser Verlag, Basel (1997)
6. Evans, L.C.: Partial Differential Equations, Graduate Studies in Mathematics, vol. 19. American Mathe-
matical Society (1998)
7. Lions, P.L.: On the existence of positive solutions of semilinear elliptic equations. SIAM Rev. 24(4),
441-467 (1982)
8. Melrose, R.B., Mendoza, G.A.: Elliptic Operators of Totally Characteristic Type. Mathematical Science
Research Institute, MSRI 047-83 (1983)
9. Mokrani, H.: Semi-linear sub-elliptic equations on the Heisenberg group with a singular potential.
Commun. Pure Appl. Anal. 8(5), 1619-1636 (2009)
10. Rabinowitz, P.H.: Minimax methods in critical points theory with applications to differential equation,
CBMS Reg. Conf. Ser. Math., vol. 65. American Mathematical Society, Providence (1986)
11. Schrohe, E., Seiler, J.: Ellipticity and invertibility in the cone algebra on L ,-Sobolev spaces. Integr. Equ.
Oper. Theory 41, 93-114 (2001)
12. Schulze, B.-W.: Boundary Value Problems and Singular Pseudo-differential Operators. Wiley, Chichester
(1998)

@ Springer



	Cone Sobolev inequality and Dirichlet problem for nonlinear elliptic equations on a manifold with conical singularities
	Abstract
	1 Introduction and preliminaries
	2 Cone Sobolev inequality
	3 Nonlinear Dirichlet boundary value problems on manifolds with conical singularities
	Acknowledgements
	References


