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Abstract We analyze the Ginzburg–Landau energy in the presence of an applied magnetic
field when the superconducting sample occupies a thin neighborhood of a bounded, closed
manifold in R

3. We establish �-convergence to a reduced Ginzburg–Landau model posed on
the manifold in which the magnetic potential is replaced in the limit by the tangential com-
ponent of the applied magnetic potential. We then study the limiting problem, constructing
two-vortex critical points when the manifold M is a simply connected surface of revolution
and the applied field is constant and vertical. Finally, we calculate that the exact asymptotic
value of the first critical field Hc1 is simply (4π/(area of M)) ln κ for large values of the
Ginzburg–Landau parameter κ . Merging this with the �-convergence result, we also obtain
the same asymptotic value for Hc1 in 3d valid for large κ and sufficiently thin shells.

Mathematics Subject Classification (2000) 49S05 · 35Q56 · 49J45

1 Introduction

We initiate here an investigation of the behavior of thin superconducting shells when subjected
to an applied magnetic field within the context of Ginzburg–Landau theory. One goal is to
identify, via the theory of �-convergence (cf. [5]), an appropriate limiting energy as the
thickness of the shell approaches zero. This leads us to the problem of Ginzburg–Landau on
a closed manifold. A second major thrust of this study is to identify the so-called first critical
field, Hc1, representing the threshold in applied field strength that must be crossed in order to
first see vortices in minimizers of the energy. We identify this value in the asymptotic regime
of large Ginzburg–Landau parameter, both for the limiting problem on a manifold and for
Ginzburg–Landau on thin 3d shells.
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244 A. Contreras, P. Sternberg

Within the physics community, there are numerous studies of the response of a spherical
superconducting shell or film to a magnetic field, including the experimental study [25] and
the theoretical studies [9,20,26]. The latter are primarily computational studies using a Ginz-
burg–Landau theory based on the presence of a magnetic monopole located at the center.
(The monopole assumption, which we do not invoke, leads to the condition that the magnetic
field strength is uniform throughout the surface of the sphere.) Within the applied mathe-
matics community, we note the computational work in [10] and [11] on superconducting
spheres in the presence of a vertical magnetic field. Here the authors capture various vortex
patterns on the surface of the sphere as the magnetic field strength is varied. Note that all of
the research cited above focuses solely on a spherical geometry and is largely computational.
Two primary aims of our research here are to inject some rigorous mathematical analysis
into the discussion and to explore the role that the geometry and topology of the limiting
manifold may play in generating non-trivial vortex behavior.

While, to our knowledge, there has been little rigorous analysis of Ginzburg–Landau for
thin shells or on a closed manifold, there has of course been extensive work on the thin
film limit of Ginzburg–Landau as a 3d sample collapses to a bounded, planar domain with
boundary. In [2], the authors show that when the applied field is vertical, then in this thin
film limit, minimizers of the 3d problem approach a function of two variables that solves a
reduced Ginzburg–Landau system in which the magnetic potential is replaced by the applied
magnetic potential corresponding to the applied field. We also obtain a reduced problem,
though now it is on a manifold and our main result in this direction, Theorem 3.1, consists
of proving the full �-convergence of the 3d Ginzburg–Landau energy to a 2d energy, valid
for any fixed value of the Ginzburg–Landau parameter κ . Thus, in addition to showing that
sequences of minimizers approach a minimizer of the limiting energy (and hence, in partic-
ular, approach a solution to the limiting Euler–Lagrange system), this opens the door to the
future study of existence and convergence of local minimizers and critical points through the
machinery of �-convergence, in the spirit of [15,16,18,19], and to the study of associated
gradient flows in the sense of [22].

Loosely stated, for�ε ⊂ R
3 representing an ε-neighborhood of a smooth, compact man-

ifold M, we begin by showing in Sect. 3 that the sequence of Ginzburg–Landau energies
(cf. [24])

1

ε

∫

�ε

(
|(∇ − iA)�|2 + κ2

2

(|�|2 − 1
)2
)

d X + 1

ε

∫

R3

∣∣∇ × A − He
∣∣2 d X

�-converges in an appropriate topology to the energy
∫

M

(∣∣(∇M − i(Ae)τ )ψ
∣∣2 + κ2

2

(|ψ |2 − 1
)2
)

dH2
M(x).

(See conditions (3.5) and (3.9) below for a working definition of �-convergence.) Here
� : �ε → C is the order parameter in 3d and ψ : M → C is the corresponding object
defined on the manifold. The vector field A : R

3 → R
3 is the effective magnetic potential,

He : R
3 → R

3 is the given applied magnetic field, assumed to be divergence-free and smooth
but otherwise general, and (Ae)τ is the tangential component of the restriction of the applied
magnetic potential to the manifold M. (More precise definitions and notational explanations
are given in Sect. 2.) The scaling factor of 1

ε
in the 3d energy is chosen so as to keep the

energy of minimizers bounded but non-zero in the limit. We should note that in this article,
we assume the collapse of the 3d domains�ε to M is uniform but one can surely adjust our
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Ginzburg–Landau on thin shells 245

proof of �-convergence to handle variable thickness approach to M as has been considered
in various studies of planar thin superconducting films subjected to vertical applied fields,
e.g., [6,7,17]. The replacement of A by (Ae)τ in the �-limit is a manifestation of the fact that
for thin samples, the magnetic field penetrates the sample to leading order in the thickness.

We stress that the �-convergence result established here is valid for any smooth, compact
manifold, with or without boundary, and any smooth divergence-free applied field. In this
level of generality, we also demonstrate the existence of a positive first critical field below
which minimizers do not vanish, cf. Proposition 3.7.

Having derived the �-limit, we turn to an analysis of the limiting energy, a variational
problem which is quite interesting in its own right. Recall that for the 2d planar version of
this problem subject to Neumann boundary conditions, a vortex might escape through the
boundary, but this phenomenon is precluded if we take our compact manifold to be without
boundary. This restriction should lead to interesting new aspects of vortex dynamics and
though we do not pursue the time-dependent problem here, we do exploit a related feature
of this problem, namely the fact that if the order parameter ψ vanishes on M it must do so
with total degree zero. One manifestation of this observation is that if we take M to be a
surface of revolution rotated around the z-axis and if we take He to be constant and vertical,
then we can construct two-vortex critical points of the energy, with zeros lying at the north
and south poles, cf. Proposition 4.1. This construction and related properties of the solutions
are discussed in Sect. 4.

Continuing with the assumption that M is a surface of revolution and He is constant and
vertical, we conclude this article in Sect. 5 with a determination of the asymptotic value of
the first critical field Hc1 in the ‘extreme type-II regime’ where κ � 1 and |He| ∼ ln κ . For
the case of an infinite superconducting cylinder of constant cross-section, the authors of [21]
carry out such an investigation and determine the critical coefficient of ln κ , characterizing it
in terms of a solution to a certain auxiliary problem related to the London equation. (See also
[23] for much more detailed information about Hc1 in this setting.) For the planar problem
arising as a thin film limit, the authors of [6,7] determine this critical coefficient in terms of
a different auxiliary problem. In the present manifold setting, we first obtain an asymptotic
upper bound on Hc1 through a construction. Then we obtain a lower bound that matches the
upper bound so that, somewhat remarkably, the first critical field is simply given by

Hc1 =
(

4π

area of M

)
ln κ

in the large κ regime, cf. Theorem 5.1. Combining this with the�-convergence and compact-
ness results of Sect. 3, we can establish a similar result for the 3d Ginzburg–Landau energy
posed on �ε when ε is small, cf. Theorem 5.3. To our knowledge, this is one of the first
calculations of the first critical field for Ginzburg–Landau in a three-dimensional setting,
preceded by the determination of a candidate for Hc1 for a solid ball in R

3 in [1].
Our proof of the lower bound requires us to adapt and when necessary substantially adjust

the technology on energy concentration on balls developed in [14] and [21]. Aside from
its use in analyzing Hc1 in the present paper and more recently in [3], we expect that this
extension of energy ball concentration results to the manifold setting will prove useful in
other investigations involving Ginzburg–Landau on manifolds.

We view this article as a ‘first shot’ at the rigorous analysis of Ginzburg–Landau on a
manifold in the presence of an applied field. Further results related to the large κ regime for
surfaces of revolution will be presented in [4]. Certainly in the future it would be illumi-
nating to study the more subtle roles that geometry and topology can play by considering
more general manifolds, to investigate the critical field Hc3 associated with loss of stability
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246 A. Contreras, P. Sternberg

of the normal state, and of course, to look at the dynamics of Ginzburg–Landau vortices on
manifolds.

2 Basic definitions, notation and conventions

We will use X to denote a point in R
3. For any two-dimensional manifold S, we will use H2

S
to denote two-dimensional Hausdorff measure restricted to S. We let M denote a two-dimen-
sional, C2, orientable and compact manifold in R

3, with or without boundary, and use x or
p to denote a point on M. We write ν(x) for a unit normal to the manifold at a given point
x ∈ M, in particular it denotes the outer unit normal in the case where M has no boundary.
In light of the assumed regularity of M, we can assert the existence of a value ε0 > 0 such
that the map Tε : M × (0, 1) → R

3 given by

X = Tε(x, t) := x + εtν(x), (2.1)

is smoothly invertible for all ε ∈ (0, ε0). We shall assume the superconductor occupies a thin
neighborhood of M given by

�ε := {X ∈ R
3 : X = x + εtν(x) for x ∈ M, t ∈ (0, 1)},

for ε < ε0.
Our object of study will be the Ginzburg–Landau functional

Gε,κ (�,A) = 1

ε

∫

�ε

(
|(∇ − iA)�|2 + κ2

2

(|�|2 − 1
)2
)

d X

+ 1

ε

∫

R3

∣∣∇ × A − He
∣∣2 d X. (2.2)

Here the external magnetic field He : R
3 → R

3 is taken to be a given, smooth divergence-
free vector field. The constant κ > 0 is the Ginzburg–Landau parameter and the scaling
by 1/ε is chosen to keep energies at O(1). As is natural, we take Gε,κ to be defined for
� ∈ H1(�ε; C). Regarding the domain of definition of the potential A, we introduce H as
the closure of

{A ∈ C∞(R3; R
3) : A compactly supported}

with respect to the norm ‖∇A‖L2(R3;R9) = (∫
R3 |∇A|2 dx

)1/2
. Then we set H0 = {A ∈ H :

div A = 0}. We note here that for A ∈ H one has

‖A‖L6(R3;R3) ≤ C

⎛
⎜⎝
∫

R3

|∇A|2 d X

⎞
⎟⎠

1/2

, (2.3)

and for A ∈ H0 one has
∫

R3

|∇A|2 d X =
∫

R3

|∇ × A|2 d X. (2.4)
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Ginzburg–Landau on thin shells 247

We also choose a magnetic potential Ae corresponding to the given external magnetic field
He to be any vector field satisfying the requirements

∇ × Ae = He and div Ae = 0 in R
3. (2.5)

These conditions determine Ae up to the gradient of a harmonic function. With these defini-
tions in place, we then view Gε,κ as being defined for all A such that A − Ae ∈ H0.

Notice that through the invertible map Tε, we can associate to each � ∈ H1(�ε; C) a
function ψ ∈ H1(M× (0, 1); C) via the formula ψ(x, t) = �(Tε(x, t)). Then, denoting by
∇Mψ the tangential gradient of ψ relative to M, one directly calculates from (2.1) that

∇�(X) = ∇Mψ(x, t)+ 1

ε
ψt (x, t)ν(x)+ εχε(x, t), (2.6)

where χε(x, t) is a vector field tangent to M satisfying the bound |χε| ≤ C |∇�| for some
constant C depending only on M.

For any two-dimensional manifold S, we will use H2
S to denote two-dimensional Hausdorf

measure restricted to S. Now for any t ∈ (0, 1) and ε ∈ (0, ε0), we introduce the manifold

Mε,t := {x + εtν(x) : x ∈ M}, (2.7)

and observe that (2.2) can be written as

Gε,κ (�,A) =
1∫

0

∫

Mε,t

(
|(∇ − iA)�|2 + κ2

2

(|�|2 − 1
)2
)

dH2
Mε,t

(X)dt

+1

ε

∫

R3

∣∣∇ × A − He
∣∣2 d X. (2.8)

Making the change of variables X = Tε(x, t), using (2.6) and noting from (2.1) that

dH2
Mε,t

(X) = (1 + O(ε))dH2
M(x), (2.9)

we can assert that

Gε,κ (�,A) = Gε,κ (ψ,A)+ O(ε)Gε,κ (�,A), (2.10)

where

Gε,κ (ψ,A) :=
1∫

0

∫

M

(∣∣(∇M − iAτ
)
ψ
∣∣2 +

∣∣∣∣
(

1

ε
ν∂t − iAν

)
ψ

∣∣∣∣
2

+ κ2

2

(|ψ |2 − 1
)2

)
dH2

M(x) dt

+ 1

ε

∫

R3

∣∣∇ × A − He
∣∣2 d X. (2.11)

Here we have introduced notation for the normal and tangential components of any potential
A near M, namely

Aν(x, t) := Aνν where Aν :=A(Tε(x, t)) · ν(x) and Aτ (x, t) :=A(Tε(x, t))− Aν(x, t).

In particular, we will write (Ae)ν and (Ae)τ for the normal and tangential components of the
applied potential Ae near M viewed as functions of x and t .

Note that the O(ε) discrepancy between Gε,κ (�,A) and Gε,κ (ψ,A) one sees in (2.10)
arises from the O(ε) error terms appearing in (2.6) and (2.9).
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248 A. Contreras, P. Sternberg

3 �-convergence

In this section we will identify the�-limit of the 3d Ginzburg–Landau energy Gε,κ as ε → 0.
Following this, we will establish a compactness result for energy-bounded sequences and
a stronger compactness result for sequences of minimizers. Then we will conclude with a
general result showing that for both the �-limit and for Gε,κ , there is a first critical field
Hc1 such that for applied fields below this value, a minimizer will have no vortices. This last
result will be significantly sharpened later in the paper when we take the field to be vertical
and constant and take the limiting manifold M to be a surface of revolution.

Before stating our proposed �-limit of {Gε,κ }, we must first introduce the topology of
the convergence. To this end, given (�ε,Aε) ⊂ H1(�ε; C) × ({Ae} + H0) and (ψ,A) ∈
H1(M × (0, 1); C)× ({Ae} + H0) we will write (�ε,Aε)

Y→ (ψ,A) provided

ψε ⇀ ψ weakly in H1(M × (0, 1); C) and Aε − A → 0 strongly in H0, (3.1)

where ψε = �ε ◦ Tε. (See Remark 3.3 below.)
Then for (ψ,A) ∈ H1(M; C)× ({Ae} + H0) we define

GM,κ (ψ) =
∫

M

(∣∣(∇M − i(Ae)τ )ψ
∣∣2 + κ2

2

(|ψ |2 − 1
)2
)

dH2
M(x) (3.2)

and for (ψ,A) ∈ H1(M × (0, 1); C)× ({Ae} + H0) we define

GM,κ (ψ,A) =
{GM,κ (ψ) if ψt = 0 a.e. in M × (0, 1), A = Ae,

+∞ otherwise.
(3.3)

We point out that in (3.3) we have made the obvious identification between elements ψ of
H1(M × (0, 1); C) satisfying the condition ψt = 0 a.e. and elements of H1(M; C).

Theorem 3.1 The sequence of functionals Gε,κ �-converges as ε → 0 to GM,κ in the
Y -topology.

The definition of �-convergence consists of conditions (3.5) and (3.9) below. Before begin-
ning the proof we first present a needed lemma.

Lemma 3.2 Let {(�ε,Aε)} be any sequence in H1(�ε; C)× ({Ae} + H0) satisfying a uni-
form energy bound Gε,κ (�

ε,Aε) < C0 for some C0 > 0. Then there exists a constant C > 0
independent of ε such that

⎛
⎝

1∫

0

∫

M

∣∣Aε ◦ Tε − Ae ◦ Tε
∣∣6 dH2

M(x) dt

⎞
⎠

1/6

≤ Cε1/3. (3.4)
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Ginzburg–Landau on thin shells 249

Proof of Lemma 3.2 Through the change of variables s = εt , property (2.9) and Hölder’s
inequality we find that

⎛
⎝

1∫

0

∫

M

∣∣Aε ◦ Tε − Ae ◦ Tε
∣∣6 dH2

M(x) dt

⎞
⎠

1/6

= 1

ε1/6

⎛
⎝

ε∫

0

∫

M

∣∣Aε(x + sν(x))− Ae(x + sν(x))
∣∣6 dH2

M(x) ds

⎞
⎠

1/6

≤ C

ε1/6

⎛
⎜⎝
∫

�ε

∣∣Aε − Ae
∣∣6 d X

⎞
⎟⎠

1/6

.

Then using (2.3), (2.4) and the uniform energy bound we can estimate

∥∥Aε − Ae
∥∥

L6(�ε;R3)
≤ ∥∥Aε − Ae

∥∥
L6(R3;R3)

≤ C

⎛
⎜⎝
∫

R3

∣∣∇ × Aε − He
∣∣2 dx

⎞
⎟⎠

1/2

≤ Cε1/2.

Combining these two inequalities, we have established (3.4). ��
Proof of Theorem 3.1. Lower-semi-continuity. We begin with a proof of the assertion:

Whenever (�ε,Aε)
Y→ (ψ,A) one has lim inf

ε→0
Gε,κ (�

ε,Aε) ≥ GM,κ (ψ,A). (3.5)

Let us assume that

lim inf
ε→0

Gε,κ (�
ε,Aε) < +∞,

as otherwise there is nothing to prove. But in this case, one sees from (2.2) that necessarily,
A = Ae and from (2.10) it will suffice to show that

lim inf
ε→0

Gε,κ (ψε,Aε) ≥ GM,κ (ψ,Ae) (3.6)

provided

Gε,κ (ψε,Aε) ≤ C0 for some C0 > 0. (3.7)

We begin the verification of (3.6) by noting that Lemma 3.2, (3.7) and Hölder’s inequality
imply

1∫

0

∫

M

∣∣(Aε)νψε∣∣2 dH2
M(x) dt

≤ C

⎛
⎝

1∫

0

∫

M

∣∣(Aε)ν − (Ae)ν
∣∣4 dH2

M(x) dt

⎞
⎠

1/2 ⎛
⎝

1∫

0

∫

M

∣∣ψε∣∣4 dH2
M(x) dt

⎞
⎠

1/2

+ C

⎛
⎝

1∫

0

∫

M

∣∣(Ae)ν
∣∣4 dH2

M(x) dt

⎞
⎠

1/2 ⎛
⎝

1∫

0

∫

M

∣∣ψε∣∣4 dH2
M(x) dt

⎞
⎠

1/2

< C
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since Ae is locally bounded in L∞. (Here and throughout, C denotes a positive constant
independent of ε.) Consequently, we see that

1∫

0

∫

M

∣∣ψεt
∣∣2 dH2

M(x) dt < Cε2.

Thus, ψt = 0 a.e.in M × (0, 1) and we may restrict our attention to the case where
GM,κ (ψ,A) = GM,κ (ψ). But through (2.11) we find that

lim inf
ε→0

Gε,κ (ψε,Aε) ≥ lim inf
ε→0

1∫

0

∫

M

(∣∣(∇M − i(Aε)τ
)
ψε

∣∣2 + κ2

2

(∣∣ψε∣∣2 − 1
)2

)

×H2
M(x) dt

= lim inf
ε→0

1∫

0

∫

M

(∣∣∇Mψε
∣∣2 + i

(
(ψε)∗∇Mψε − ψε∇M(ψε)∗

) · (Aε)τ + ∣∣(Aε)τψε∣∣2

+ κ2

2

(∣∣ψε∣∣2 − 1
)2

)
dH2

M(x) dt

≥ lim inf
ε→0

1∫

0

∫

M

(∣∣∇Mψε
∣∣2 + i

(
(ψε)∗∇Mψε − ψε∇M(ψε)∗

) · (Ae)τ + ∣∣(Ae)τψε
∣∣2

+ κ2

2

(∣∣ψε∣∣2 − 1
)2

)
dH2

M(x) dt

+ lim inf
ε→0

1∫

0

∫

M

((∣∣(Aε)τψε∣∣2 − ∣∣(Ae)τψε
∣∣2)) dH2

M(x) dt

+ lim inf
ε→0

1∫

0

∫

M

(
i
(
(ψε)∗∇Mψε − ψε∇M(ψε)∗

) · ((Aε)τ − (Ae)τ
))

dH2
M(x) dt

= lim inf
ε→0

I + lim inf
ε→0

I I + lim inf
ε→0

I I I.

(3.8)

In light of the weak H1-convergence of {ψε}, we know (up to subsequences) that ψε → ψ

strongly in L4. Hence, we may pass to the limit in I to obtain lim infε→0 I ≥ GM,κ (ψ,Ae).

Thus, (3.6) will follow if we can demonstrate that limε→0 I I = 0 and limε→0 I I I = 0.
Turning to the limit of I I , we estimate using (3.4) and the boundedness of Ae along with

Hölder’s inequality again that
∣∣∣∣∣∣

1∫

0

∫

M

((∣∣(Aε)τψε∣∣2 − ∣∣(Ae)τψε
∣∣2)) dH2

M(x) dt

∣∣∣∣∣∣

=
∣∣∣∣∣∣

1∫

0

∫

M

((∣∣(Aε)τ ∣∣ − ∣∣(Ae)τ
∣∣) ∣∣ψε∣∣2 (∣∣(Aε)τ ∣∣ + ∣∣(Ae)τ

∣∣)) dH2
M(x) dt

∣∣∣∣∣∣
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≤ C

⎛
⎝

1∫

0

∫

M

∣∣(Aε)τ − (Ae)τ
∣∣2 ∣∣ψε∣∣4 dH2

M(x) dt

⎞
⎠

1/2

×
⎛
⎝

1∫

0

∫

M

(∣∣(Aε)τ ∣∣2 + ∣∣(Ae)τ
∣∣2) dH2

M(x) dt

⎞
⎠

1/2

≤ C

⎛
⎝

1∫

0

∫

M

∣∣(Aε)τ − (Ae)τ
∣∣2 ∣∣ψε∣∣4 dH2

M(x) dt

⎞
⎠

1/2

×
⎛
⎝

1∫

0

∫

M

(∣∣(Aε)τ − (Ae)τ
∣∣2 + ∣∣(Ae)τ

∣∣2) dH2
M(x) dt

⎞
⎠

1/2

≤ C
∥∥Aε ◦ Tε − Ae ◦ Tε

∥∥
L6(M×(0,1))

∥∥ψε∥∥2
L6(M×(0,1)) < Cε1/3

since ∥∥ψε∥∥L6(M×(0,1)) ≤ C
∥∥ψε∥∥H1(M×(0,1)) < C

in light of the weak H1 convergence of {ψε}. Hence, limε→0 I I = 0.
The estimate of III in (3.8) is handled similarly:

1∫

0

∫

M

∣∣i ((ψε)∗∇Mψε − ψε∇M(ψε)∗
) · ((Aε)τ − (Ae)τ

)∣∣ dH2
M(x) dt

≤ C
∥∥∇ψε∥∥L2(M×(0,1))

∥∥ψε∥∥L4(M×(0,1))
∥∥(Aε)τ − (Ae)τ

∥∥
L4(M×(0,1)) ≤ Cε1/3.

Construction of recovery sequence. Given any ψ ∈ H1(M × (0, 1)) and A ∈ {Ae} + H0,
our goal here is to construct a sequence {(�ε,Aε)} satisfying the conditions

(�ε,Aε)
Y→ (ψ,A) and lim

ε→0
Gε,κ (�

ε,Aε) = GM,κ (ψ,A). (3.9)

If either A �= Ae or if ψt �= 0 on a set of positive measure in M × (0, 1), then the trivial
choice (�ε,Aε) = (ψ(Tε−1),A) for all ε > 0 serves as a recovery sequence since then
GM,κ (ψ,A) = ∞ and one easily verifies that

lim
ε→0

Gε,κ (�
ε,Aε) = ∞.

Thus, we proceed under the assumption that A = Ae and ψt = 0 a.e. so that ψ = ψ(x)
only and GM,κ (ψ,A) = GM,κ (ψ). In this case, for Aε we choose simply Aε = Ae for all
ε > 0. For the construction of �ε we will utilize the solution ψε : M × (0, 1) → C to:{

∂tψ
ε(x, t) = iε (Ae(x + εtν(x)) · ν(x)) ψε(x, t) for x ∈ M, t ∈ (0, 1),

ψε(x, 0) = ψ(x),
(3.10)

an ordinary differential equation in t in which x plays the role of a parameter. In other words

ψε(x, t) = ψ(x)eiε
∫ t

0 (A
e(x+εsν(x))·ν(x)) ds . (3.11)

Then we define �ε := ψε ◦ Tε−1. Direct calculation reveals that
∣∣ψε − ψ

∣∣2 + ∣∣∇Mψε − ∇Mψ
∣∣2 + ∣∣ψεt

∣∣2 ≤ Cε |ψ |2 . (3.12)
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Consequently, ψε → ψ strongly in H1(M × (0, 1)) and so in particular, �ε converges in
the Y -topology introduced in (3.1).

Substituting this choice for (�ε,Aε) into Gε,κ and using (2.10), (2.11) and (3.12) we find

lim
ε→0

Gε,κ (�
ε,Aε) =

1∫

0

∫

M

(∣∣(∇M − iAτ
)
ψε

∣∣2 + κ2

2

(∣∣ψε∣∣2 − 1
)2

)
dH2

M(x) dt

=
1∫

0

∫

M

(∣∣(∇M − iAτ
)
ψ
∣∣2 + κ2

2

(|ψ |2 − 1
)2
)

dH2
M(x) dt

=
∫

M

(∣∣(∇M − iAτ
)
ψ
∣∣2 + κ2

2

(|ψ |2 − 1
)2
)

dH2
M(x)

= GM,κ (ψ) = GM,κ (ψ,A).

Note that the second term in (2.11) is completely eliminated in light of (3.10). ��
Remark 3.3 An examination of the recovery sequence construction reveals that we could have
strengthened the topology of the �-convergence to be strong H1-convergence on M× (0, 1)
rather than weak. We have stated the result for weak convergence so as to work in a topology
for which we also have compactness of energy-bounded sequences.

We turn now to the issue of compactness.

Proposition 3.4 Given any sequence {(�ε,Aε)} ⊂ H1(�ε; C) × ({Ae} + H0) , satisfying
a uniform energy bound

Gε,κ (�
ε,Aε) ≤ C,

there exists a function ψ ∈ H1(M; C) such that after passing to a subsequence one has

ψε := �ε(Tε) ⇀ ψ weakly in H1(M × (0, 1); C) and

(ψε)t → 0 strongly in L2(M × (0, 1); C) (3.13)

while

Aε − Ae → 0 strongly in H0. (3.14)

Proof The uniform energy bound Gε,κ (�
ε,Aε) ≤ C immediately implies (3.14). Then

through (2.3), (2.10), (2.11) and Lemma 3.2 we see that both ψε and Aε ◦ Tε are uniformly
bounded in L4(M × (0, 1)). Hence the uniform bound on Gε,κ (ψε,Aε) and use of Hölder’s
inequality also yield

1∫

0

∫

M

(
|∇Mψε|2 + 1

ε2
|(ψε)t |2

)
dH2

M(x) dt

≤ C

⎛
⎝1 +

1∫

0

∫

M

(
|ψε|2

∣∣Aε ◦ Tε
∣∣2) dH2

M(x) dt

⎞
⎠ ≤ C,

and (3.13) follows. ��
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The topology of convergence can naturally be strengthened if one considers not just
energy-bounded sequences but instead sequences of minimizers of Gε,κ .

Proposition 3.5 Fix any κ > 0. For any ε > 0, let �ε,κ : �ε → C and Aε,κ : R
3 → R

3

denote a minimizing pair for Gε,κ with ψε,κ : M × (0, 1) → C associated with �ε,κ via
ψε,κ (x, t) := �ε,κ(x + tεν(x)). Then there exists a subsequence {ε j } → 0 and a minimizer
ψκ of GM,κ such that ψε j ,κ → ψκ in C0,α(M × (0, 1)) for any positive α < 1

2 .

Proof We begin by invoking the �-convergence of Theorem 3.1 and compactness of Prop-
osition 3.4 to conclude that a minimizer (�ε,κ ,Aε,κ ) of Gε,κ satisfies

ψε,κ ⇀ ψκ weakly in H1(M × (0, 1); C),

(ψε,κ )t → 0 strongly in L2(M × (0, 1); C) (3.15)

where ψκ minimizes GM,κ .
Our goal is to upgrade the topology of the convergence to C0,α and to this end, we note

that a minimizing pair (�ε,κ ,Aε,κ ) satisfies the elliptic Euler-Lagrange system

(∇ − iAε,κ
)2
�ε,κ = κ2

(∣∣�ε,κ ∣∣2 − 1
)
�ε,κ in �ε, (3.16)

∇ × ∇ × Aε,κ =
{

i
2

(
�ε,κ∇�∗

ε,κ −�∗
ε,κ∇�ε,κ

) − ∣∣�ε,κ ∣∣2 Aε,κ in �ε,
0 in R

3\�ε, (3.17)

along with the conditions
(∇ − iAε,κ

)
�ε,κ · νε = 0 on ∂�ε,

and ∇ × Aε,κ − He ∈ L2(R3; R
3). Also, the comparison Gε,κ (�ε,κ ,Aε,κ ) ≤ Gε,κ (1,Ae)

yields the bounds

κ2
∫

�ε

(∣∣�ε,κ ∣∣2 − 1
)2

d X ≤ C
∥∥He

∥∥2
L2(B;R3)

ε,

∫

�ε

∣∣∇�ε,κ ∣∣2 d X ≤ C
∥∥He

∥∥2
L2(B;R3)

ε,

(3.18)

along with

⎛
⎜⎝
∫

�ε

∣∣Aε,κ − Ae
∣∣6 d X

⎞
⎟⎠

1/6

≤ C
∥∥He

∥∥2
L2(B;R3)

√
ε, (3.19)

after an appeal to (2.3) and (2.4). Here we can take B ⊂ R
3 to be any ball containing, say

{X : dist (X,M) < 1}.
Combining (3.18) and (3.19) with the elementary inequality

∣∣�ε,κ ∣∣ ≤ 1 that follows from
the maximum principle, we find through (3.16) that

∥∥��ε,κ∥∥L2(�ε)
≤ C

√
ε,

where here and below in the proof, C > 0 denotes a constant that is independent of ε, but
which could depend on κ. Hence, by standard elliptic regularity, cf. [13], one has

∥∥��ε,κ∥∥H2(�ε)
≤ C

√
ε. (3.20)
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In light of the assumed smoothness of the manifold M, it then follows that the map�ε,κ ◦ T1

satisfies a similar H2-bound on the set M × (0, ε), where T1 = T1(x, s) := x + sν(x), cf.
(2.1). Substituting s = εt then results in an ε-independent bound

∥∥ψε,κ∥∥H2(M×(0,1)) ≤ C. (3.21)

The result follows from the compact imbedding of H2 in C0,α . ��

Having obtained the �-limit GM,κ of the original Ginzburg–Landau energy, we turn now
to the goal of showing that for sufficiently small applied fields, minimizers do not vanish.
In other words, we want to establish a general statement that there is a threshold in field
strength that must be crossed before vortices appear in an energy minimizer. We begin with
the �-limit.

Proposition 3.6 For any smooth, divergence-free He : R
3 → R

3, let {He
δ}δ>0 denote the

family of applied fields given by He
δ = δHe. Also denote by GδM,κ the corresponding energy

GδM,κ (ψ) :=
∫

M

(∣∣(∇M − i(Ae
δ)
τ )ψ

∣∣2 + κ2

2

(|ψ |2 − 1
)2
)

dH2
M(x),

where Ae
δ = δAe and Ae is any divergence-free magnetic potential satisfying ∇ × Ae = He.

Then there is a positive value δ0 such that for δ ∈ [0, δ0], any global minimizer of GδM,κ does
not vanish.

Proof It is simple to check that as δ → 0, GδM,κ �-converges in the weak H1 topology to

G0
M,κ (ψ) :=

∫

M

(
|∇Mψ |2 + κ2

2

(|ψ |2 − 1
)2
)

dH2
M(x).

The lower-semi-continuity follows easily from the convex dependence of the energy on
∇Mψ and the trivial sequence ψδ = ψ suffices as a recovery sequence. Compactness in the
weak H1-topology is equally simple.

As a result of this�-convergence and the uniform energy bound GδM,κ (ψ
δ) ≤ GδM,κ (1) ≤

Cδ2 for any sequence {ψδ} of minimizers of GδM,κ , one has weak convergence in H1, up to

subsequences, of {ψδ} to a minimizer ψ0 of G0
M,κ . Clearly, ψ0 = eiα for some α ∈ R. In

addition to the uniform H1-bound on {ψδ}, one can use the Euler-Lagrange equation,

(∇M − i
(
Ae
δ

)τ )2
ψδ = κ2

(∣∣ψδ∣∣2 − 1
)
ψδ

to see via standard elliptic regularity that
∥∥�Mψδ

∥∥
L2(M;C) ≤ C

∥∥ψδ∥∥H1(M;C) < C.

Hence the sequence of minimizers is uniformly bounded in H2 and converges uniformly, up
to subsequences, to some eiα. In particular, the full sequence {∣∣ψδ∣∣} must converge uniformly
on M to 1. The result follows. ��

We conclude this section with a similar result for the 3d energy:
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Proposition 3.7 Fix any κ > 0. For He
δ defined as in Proposition 3.6, let

Gδ
ε,κ (�,A) := 1

ε

∫

�ε

(
|(∇ − iA)�|2 + κ2

2

(|�|2 − 1
)2
)

d X

+ 1

ε

∫

R3

∣∣∇ × A − He
δ

∣∣2 d X

and let (�δε,κ ,Aδε,κ ) denote any minimizing pair. Then for any positive δ < δ0, with δ0 coming
from Proposition 3.6, there exists a value ε0 = ε0(δ), such that for all positive ε < ε0, �δε,κ
does not vanish.

Proof Fixing any δ < δ0, we may apply the �-convergence result Theorem 3.1 and the
compactness result Proposition 3.5 to the sequence of functionals Gδ

ε,κ and sequence of
minimizers (�δε,κ ,Aδε,κ ) as ε → 0. Suppose then, by way of contradiction, that along a
subsequence {ε j } → 0, the functions �δε j ,κ

had a zero for each ε j somewhere in �ε j .

Then ψδε j ,κ
would have to vanish somewhere on M × (0, 1) for each ε j . Consequently, the

uniform convergence ofψδε j ,κ
to a minimizerψδ of GδM,κ guaranteed by Proposition 3.5 and

the compactness of M would imply that ψδ must vanish somewhere on M. This contradicts
Proposition 3.6. ��

4 Critical points of GM,κ for surfaces of revolution

Next we undertake the construction of non-trivial critical points of the�-limit (3.2) under the
assumption that the surface M is a smooth compact surface of revolution without boundary
which is a topological sphere. Our primary goal here is to initiate an investigation of the first
critical field, Hc1, for such a surface, namely the value of an external field above which the
global minimizer of GM,κ must have vortices. Throughout this section and for the remainder
of the paper, we will take He to be of the form h(0, 0, 1) for some non-negative value of h.

We will describe the surface using standard spherical coordinates, that is, using θ to denote
the standard azimuth angle and φ to denote the zenith angle. Then let u : [0, π] → R and
v : [0, π] → R be C1 functions related by the condition

v(φ) = cot φ u(φ) for 0 < φ < π (4.1)

with

u(0) = 0 = u(π), v(0) > 0, v(π) > 0 and v′(0) = 0 = v′(π). (4.2)

We will realize the manifold as the surface obtained through revolution about the z-axis of
the curve

(u(φ), 0, v(φ)) for 0 ≤ φ ≤ π (4.3)

lying in the xz-plane. Let us further assume that this parametrized curve is regular in the
sense that

γ (φ) :=
√

u′(φ)2 + v′(φ)2 ≥ γ0 for φ ∈ [0, π] (4.4)

for some positive constant γ0. Note that necessarily,

u(φ) = lφ + o(φ) for some positive constant l (4.5)
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near φ = 0 with a similar expansion holding near φ = π.

This leads to the simply connected, parametrized surface of revolution M̌ defined by

M̌ := {(u(φ) cos θ, u(φ) sin θ, v(φ)) : φ ∈ [0, π], θ ∈ [0, 2π]}. (4.6)

If we denote by êθ and êφ the unit vectors in the θ and φ directions respectively, then for
any function ψ : M̌ → C we have

∇M̌ψ = 1

γ (φ)
ψφ êφ + 1

u(φ)
ψθ êθ . (4.7)

Also, for the area element, we note that

dH2
M̌ = u(φ) γ (φ) dφ dθ. (4.8)

Regarding the magnetic potential associated with the field h(0, 0, 1), it will be convenient to
choose Ae = h

2 (−X2, X1, 0) so that on M̌ we have

Ae = (Ae)τ = hu(φ)

2
êθ . (4.9)

Thus, the functional GM̌,κ
given by (3.2) takes the form

GM̌,κ
(ψ) :=

π∫

0

2π∫

0

{
1

γ 2

∣∣ψφ∣∣2+
∣∣∣∣ 1

u
ψθ − i

hu

2
ψ

∣∣∣∣
2

+ κ2

2
(|ψ |2−1)2

}
u γ dθ dφ. (4.10)

Exploiting the symmetry of the problem and with the intuition gained by observing the
computations of [10,11], we seek a two-vortex critical point with vortices at the north and
south pole in the formψ(θ, φ) = f (φ)eiθ for some function f : [0, π] → R vanishing at the
endpoints. Plugging this ansatz into (4.10), we are left with the task of finding a non-trivial
critical point f of the functional

Eh,κ ( f ) :=
π∫

0

{
f ′2

γ 2 +
(

1

u
− hu

2

)2

f 2 + κ2

2
( f 2 − 1)2

}
γ u dφ. (4.11)

We note that f ≡ 0 is always a critical point of Eh,κ , as it is of GM̌,κ
for that matter.

Then let Rh denote the Rayleigh quotient

Rh( f ) :=
∫ π

0

{
f ′2
γ 2 + ( 1

u − hu
2

)2
f 2
}
γ u dφ∫ π

0 f 2 γ u dφ

with associated first eigenvalue

λ1(h) := inf
f

Rh( f ).

Now we can prove:

Proposition 4.1 For any h ≥ 0 and for κ2 > λ1(h), there exists a non-trivial global mini-
mizer, fh,κ , of Eh,κ ( f ) within the admissible set

A := L2((0, π)) ∩
⎧⎨
⎩ f ∈ H1

loc((0, π)) :
π∫

0

1

γ
f ′2u(φ) dφ < ∞ ,

π∫

0

f 2

u(φ)
γ dφ < ∞.

⎫⎬
⎭ .
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The minimizer fh,κ is continuous on [0, π ] and satisfies the problem

− 1

γ 2 f ′′
h,κ−

1

γ u

(
u

γ

)′
f ′
h,κ+

(
1

u
− hu

2

)2

fh,κ+κ2( f 3
h,κ − fh,κ )=0 on 0 < φ < π,

(4.12)

with fh,κ (0) = fh,κ (π) = 0. Hence, ψ = fh,κ (φ)eiθ represents a non-trivial critical point
of GM̌ having vortices at the north and south poles. On the other hand, when κ2 < λ1(h),
the unique global minimizer of Eh,κ is ψ ≡ 0.

Remark 4.2 Consider the special case where M̌ is the unit sphere S2 so that u = sin φ,
v = cosφ and γ = 1, and suppose there is no applied field (h = 0). Then the eigenvalue
problem associated with the Rayleigh quotient R0 is

−(sin φ) f ′′ − (cosφ) f ′ + 1

sin φ
f = λ1(0)(sin φ) f

and one can explicitly compute that λ1(0) = 2 with corresponding first eigenfunction sin φ.
Hence, our theorem guarantees the existence of a non-trivial two-vortex critical point on S2

in the absence of any applied field provided κ2 > 2.

Remark 4.3 We conjecture that for h in some interval (h, h) with 0 < h < h < ∞, and for
κ2 > λ(h), the two-vortex critical point fh,κ (φ)eiθ is in fact a local minimizer of GM̌,κ

and
in a perhaps smaller subinterval it is the global minimizer. While we have estimates on the
Morse index of these critical points, so far we have not established these conjectured stability
properties in general. However, in the asymptotic regime κ � 1 and h = h(κ) ∼ ln κ , this
stability question seems to be more tractable [4].

Remark 4.4 By similar methods, one can also construct critical points with higher degree
zeros at the north and south poles by plugging the ansatzψ(θ, φ) = fn(φ)einθ for any integer
n ≥ 2 into GM̌,κ

. This leads to the minimization problem

inf
f

E (n)h,κ ( f ) where E (n)h,κ ( f ) :=
π∫

0

{
f ′2

γ 2 +
(

n

u
− hu

2

)2

f 2 + κ2

2
( f 2 − 1)2

}
γ u dφ.

(4.13)

The direct method will again provide a minimizer which, as before, will be non-trivial pro-
vided that κ2 exceeds the first eigenvalue λ(n)1 (h) associated with the Rayleigh quotient

R(n)
h ( f ) :=

∫ π
0

{
f ′2
γ 2 + ( n

u − hu
2

)2
f 2
}
γ u dφ∫ π

0 f 2 γ u dφ
.

Proof We will obtain fh,κ via the direct method. To this end, fix any h ≥ 0 and κ > 0
and let { f j } ⊂ A denote a minimizing sequence for Eh,κ . Then Eh,κ ( f j ) ≤ Eh,κ (0) =
κ2

2 H2(M̌) =: c0 so we immediately conclude that for any δ > 0 there exists a constant
Cδ > 0 such that ∥∥ f j

∥∥
H1((δ,π−δ)) ≤ Cδ for all j.

Hence we find via a diagonalization argument that after passing to a subsequence (with
subsequential notation suppressed), one has

f j ⇀ fh,κ in H1
loc((0, π))
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for some function fh,κ ∈ H1
loc((0, π)). Of course, this implies that the convergence is also

locally uniform and that fh,κ is continuous on (0, π). Then by the lower semi-continuity of
the Sobolev norm, we find for each δ > 0 that

c0 ≥ lim inf
j→∞ Eh,κ ( f j ) ≥

π−δ∫

δ

{
( f ′

j )
2

γ 2

+
(

1

u
− h

2
u

)2

f 2
j + κ2

2
( f 2

j − 1)2
}
γ u dφ

≥
π−δ∫

δ

{
( f ′

h,κ )
2

γ 2 +
(

1

u
− h

2
u

)2

f 2
h,κ

+ κ2

2
( f 2

h,κ − 1)2
}
γ u dφ

Letting δ → 0, we conclude that Eh,κ ( fh,κ ) ≤ c0 so that indeed fh,κ ∈ A and that fh,κ

minimizes Eh,κ . It remains to argue that fh,κ is continuous on [0, π] and vanishes at the
endpoints. To this end, we calculate that for any φ1 and φ2 in (0, π):

∣∣ f 2
h,κ (φ2)− f 2

h,κ (φ1)
∣∣ =

∣∣∣∣∣∣∣
2

φ2∫

φ1

fh,κ f ′
h,κ dφ

∣∣∣∣∣∣∣

= 2

∣∣∣∣∣∣∣

φ2∫

φ1

fh,κ

(γ
u

) 1
2

f ′
h,κ

(
u

γ

) 1
2

dφ

∣∣∣∣∣∣∣

≤ 2

⎛
⎜⎝

φ2∫

φ1

f 2
h,κγ

u
dφ

⎞
⎟⎠

1
2
⎛
⎜⎝

φ2∫

φ1

f ′2
h,κu

γ
dφ

⎞
⎟⎠

1
2

.

Since Eh,κ ( fh,κ ) ≤ c0 implies in particular that the last two integrals both approach zero as
|φ1 − φ2| → 0, we see that f 2

h,κ is uniformly continuous on (0, π). Thus, fh,κ naturally has
a continuous extension to [0, π ] with fh,κ (0) = 0 = fh,κ (π).

It remains to argue that the minimizer fh,κ is non-trivial provided κ2 > λ1(h) while it is
identically zero if κ2 < λ1(h). To see this, consider the second variation of Eh,κ taken about
the critical point f ≡ 0:

δ2 Eh,κ (0; f ) =
π∫

0

{
f ′2

γ 2 +
(

1

u
− hu

2

)2

f 2 − κ2 f 2

}
γ u dφ.

If κ2 > λ1(h), then letting f1 denote the first eigenfunction corresponding to λ1(h) we find

δ2 Eh,κ (0; f1) =
π∫

0

{
(λ1(h)− κ2) f 2

1

}
γ u dφ < 0,

and so 0 is unstable. Hence, the global minimizer fh,κ is non-trivial.
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On the other hand, if κ2 < λ1(h) then we calculate that for any nontrivial f ∈ A one has

Eh,κ ( f )− Eh,κ (0) = (Rh( f )− κ2)
π∫

0

f 2γ u dφ + κ2

2

π∫

0

f 4γ u dφ

≥ (
λ1(h)− κ2)

π∫

0

f 2γ u dφ + κ2

2

π∫

0

f 4γ u dφ > 0,

and so 0 is the unique global minimizer and fh,κ constructed via the direct method is
trivial. ��

Proposition 4.1 establishes the existence of a two-vortex critical point on a surface of rev-
olution when κ2 > λ1(h) by realizing its modulus as the minimizer of Eh,κ . However, this
leaves open the possibility that other non-trivial critical points of Eh,κ exist when κ2 < λ(h)
that are either unstable or at least not globally minimizing. We partially address this in the
following proposition which relates the possibility of having a non-trivial two-vortex critical
point of degree n to the geometry of the curve (4.3).

Proposition 4.5 Let n be any positive integer and suppose

u2
max <

2n

h

(
so that

n

umax
− h

2
umax > 0

)
where umax := max[0,π ] u(φ).

If

κ2 ≤
(

n

umax
− h

2
umax

)2

,

then the only critical point of E (n)h (cf. (4.13)) is ψ ≡ 0.

Proof Suppose that f is a critical point of E (n)h so that f satisfies (4.12) with the coeffi-

cient of fh,κ in the third term replaced more generally by
( n

u − hu
2

)2
. Suppose also that f is

non-trivial (and if f (φ) < 0 for all φ ∈ (0, π) then replace f by − f ) so that

0 < a := max[0,π ] f (φ) = f (φ0) for some φ0 ∈ (0, π).

Then at φ = φ0, (4.12) yields

(
n

u(φ0)
− h

2
u(φ0)

)2

a + κ2(a3 − a) ≤ 0.

Hence,

0 < a2 ≤ 1 − 1

κ2

(
n

u(φ0)
− h

2
u(φ0)

)2

≤ 1 − 1

κ2

(
n

umax
− h

2
umax

)2

,

so that

κ2 >

(
n

umax
− h

2
umax

)2

. ��
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5 Estimates for Hc1 on manifolds in the large κ regime

In this section we continue the analysis of the �-limit GM̌,κ
given by (4.10) where again we

take M = M̌ to be a surface of revolution described by (4.1)–(4.6). However, in order to
apply a version of the results from [12], we will further assume in this section that the func-
tions u and v, and hence the manifold M̌ are analytic. As in the previous section, for given
external magnetic field He = h(0, 0, 1), we seek information about Hc1, the smallest value
of h above which the global minimizer must possess vortices. What distinguishes this section
from the previous one is that here we consider a so-called extreme type-II superconductor
by taking κ to be large and studying the asymptotic regime where h = h(κ) obeys

lim
κ→∞

h(κ)

ln κ
= C0 (5.1)

for some non-negative constant C0.
To describe the results, for any φ ∈ (0, π), we introduce notation for the circle Cφ ⊂ M̌

via

Cφ := {(u(φ) cos θ, u(φ) sin θ, v(φ)) : 0 ≤ θ ≤ 2π}. (5.2)

Then we will establish:

Theorem 5.1 (Part I) If the magnitude of the external field satisfies (5.1) with C0 >
4π

H2(M̌)
,

then there exists a value κ0 such that for all κ ≥ κ0, any global minimizer ψκ of GM̌,κ

satisfies the conditions

ψκ �= 0 everywhere on Cφ and deg(ψκ,Cφ) �= 0 for some φ ∈ (0, π) (5.3)

where deg(ψκ,Cφ) is simply the winding number of ψκ restricted to Cφ. In particular, ψκ
has at least two vortices of nonzero degree.
(Part II) If, instead the external field satisfies (5.1) with C0 <

4π
H2(M̌)

, then there exists a

value κ0 such that for all κ ≥ κ0, any global minimizer of GM̌,κ
does not vanish.

Remark 5.2 This relatively simply asymptotic formula for Hc1 will not hold in general if
one relaxes the assumption that the manifold is a surface of revolution. Note that for surfaces
with this symmetry, the magnetic potential Ae is purely tangential, allowing for substantial
saving in energy through the term �(Ae, ψ), cf. (5.5). It is not hard to construct examples
of manifolds where He is mostly tangential to the surface, and hence there would exist a
potential Ae for which �(Ae, ψ) vanishes on most of the surface for any ψ . Based on these
ideas, we conjecture that 4π/H2(M) is the smallest possible coefficient of ln κ for Hc1 that
one can obtain.

As an application of the �-convergence result Theorem 3.1, we will show in this section
that the value 4π

H2(M̌)
also serves as an asymptotic value for Hc1 for the 3d Ginzburg–Landau

energy Gε,κ when ε is sufficiently small. More precisely, we will show:

Theorem 5.3 (i) Assume C0 >
4π

H2(M̌)
in condition (5.1). Fix any value κ ≥ κ0 where κ0

is the value arising in Theorem 5.1 and for any ε > 0, let �ε denote a minimizer of Gε,κ .
Then there exists a value ε0 = ε0(κ) such that for all positive ε < ε0 there exists a circle
Cφε ⊂ M̌ as defined in (5.2) satisfying the condition

�ε �= 0 everywhere on Cφε,t , deg (�ε,Cφε,t ) �= 0 for all t ∈ (0, 1) (5.4)
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where

Cφε,t := {x + εtν(x) : x ∈ Cφε } ⊂ M̌ε,t ,

cf. (2.7). Hence, in particular, �ε vanishes at least twice on each manifold M̌ε,t , for 0 <
t < 1.
(ii) Assume C0 <

4π
H2(M̌)

in condition (5.1). Fix any value κ ≥ κ0 where κ0 is the value

arising in Theorem 5.1 and for any ε > 0, let �ε,κ denote a minimizer of Gε,κ . Then there
exists a value ε0 = ε0(κ) such that for all positive ε < ε0, �ε,κ does not vanish in �ε.

The proof of this theorem will be given at the end of the section in Propositions 5.10 and
5.11. In fact, in Proposition 5.10 we will prove a bit more than is stated above in item (i).

The section is split into three parts. In the first, we obtain an asymptotic upper bound by
analyzing the case where C0 >

4π
H2(M̌)

. In the second part, we obtain an asymptotic lower

bound corresponding to the reverse inequality. Together, these two results constitute a proof
of Theorem 5.1. In the last part we prove Theorem 5.3.

5.1 Asymptotic upper bound on Hc1 (Part I of Theorem 5.1)

We begin by studying the case where the applied field is sufficiently large to force the presence
of vortices in minimizers of GM̌,κ

.
The proof of Part I of Theorem 5.1 relies on the following lemma.

Lemma 5.4 For any A ∈ H1(M̌; R
3) and any ψ ∈ H1(M̌; C) define

�(A, ψ) := i
∫

M̌

Aτ · (ψ∇M̌ψ∗ − ψ∗∇M̌ψ) dH2
M̌, (5.5)

where as before, Aτ := A − (A · ν) ν. Given any ψ ∈ C1(M̌; C) satisfying GM,κ (ψ) ≤
GM,κ (1), suppose that H1(S) = π where

S := {φ ∈ (0, π) : ψ �= 0 everywhere on Cφ and deg(ψ,Cφ) = 0}. (5.6)

Then

∣∣�(Ae, ψ)
∣∣ ≤ Cu

h(κ)3

κ
= O

(
(ln κ)3

κ

)
, (5.7)

where Cu > 0 is a constant depending only on u given in (4.3).

Proof For each φ ∈ S, we may write ψ(θ, φ) = f (θ, φ)eiχ(θ,φ) for 0 ≤ θ ≤ 2π where f
and χ are smooth real functions that are 2π -periodic in θ . Then we see from (4.7)–(4.9) that

�(Ae, ψ) = h(κ)
∫

S

2π∫

0

f 2 ∂χ

∂θ
u γ dθ dφ

= h(κ)
∫

S

2π∫

0

(
f 2 − 1

) ∂χ
∂θ

u γ dθ dφ,

since the periodicity of χ implies that

∫

S

⎛
⎝

2π∫

0

∂χ

∂θ
(θ, φ) dθ

⎞
⎠ u(φ) γ (φ) dφ = 0. (5.8)
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Then we use the assumption

GM,κ (ψ) ≤ GM,κ (1) =
(

h(κ)

2

)2

‖u‖2
L2(M̌)

, (5.9)

along with an application of Hölder’s inequality to conclude that

∣∣�(Ae, ψ)
∣∣ =

∣∣∣∣∣∣h(κ)
∫

S

2π∫

0

(
f 2 − 1

) ∂χ
∂θ

u γ dθ dφ

∣∣∣∣∣∣

≤ umaxh(κ)

∣∣∣∣∣∣
∫

S

2π∫

0

√
uγ

(
f 2 − 1

) 1

u

∂χ

∂θ

√
uγ dθ dφ

∣∣∣∣∣∣

≤ umaxh(κ)

⎛
⎜⎝
∫

M̌

(|ψ |2 − 1)2 dH2
M̌

⎞
⎟⎠

1
2
⎛
⎜⎝
∫

M̌

∣∣∇M̌ψ
∣∣2 dH2

M̌

⎞
⎟⎠

1
2

≤ Cu
h(κ)3

κ
.

Invoking (5.1), we complete the proof. ��
Proof of Part I of Theorem 5.1 We begin by constructing a two-vortex function

ψ̃κ (θ, φ) = fκ (φ)e
iθ , (5.10)

where

fκ (φ) :=

⎧⎪⎪⎨
⎪⎪⎩

0, φ ∈ [0, 1
2κ )

2κ
(
φ − 1

2κ

)
, φ ∈ [ 1

2κ ,
1
κ
)

1, φ ∈ [ 1
κ
, π2 ]

fκ (π − φ), φ ∈ [π2 , π].
(5.11)

Then taking ψκ to be a global minimizer of GM,κ , it follows that∫

M̌

∣∣(Ae)τψκ
∣∣2 dH2

M̌ −�(Ae, ψκ) ≤ GM,κ (ψκ) ≤ GM̌,κ
(ψ̃κ ), (5.12)

so that we will have a lower bound for the quantity�(Ae, ψκ) once we compute GM̌,κ
(ψ̃k).

The proof hinges on pitting this lower bound against the upper bound provided by Lemma
5.4 satisfied by a vortex-free minimizer.

We proceed to estimate each of the terms arising in GM̌,κ
(ψ̃κ ), cf. (4.11). In the estimates

below, all terms denoted by O(1) refer to terms bounded by a constant that may depend on
M̌ through the functions u or v but which are independent of κ.

First of all, it is easy to check using (4.5) that
π∫

0

{
1

γ 2 f ′2
κ + κ2( f 2

κ − 1)2
}

u γ dφ = O(1). (5.13)

Then we estimate that
π∫

0

(
h(κ)

2

)2

f 2
κ u3γ dφ ≤

π∫

0

(
h(κ)

2

)2

u3γ dφ =
(

h(κ)

2

)2 1

2π
‖u‖2

L2(M̌)
. (5.14)
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Now from (4.2) and (4.5), one sees that

γ

u
= 1

φ
+ O(1) for φ near 0

with a similar estimate holding near φ = π , from which it follows that

π∫

0

1

u
f 2
κ γ dφ ≤ 2 ln κ + O(1). (5.15)

Finally, one checks that

h(κ)

π∫

0

f 2
κ uγ dφ = h(κ)

π∫

0

uγ dφ − h(κ)

π∫

0

(1 − f 2
κ )uγ dφ

= h(κ)
H2(M̌)

2π
− O

(
h(κ)

κ2

)

≥ h(κ)
H2(M̌)

2π
− o(1), (5.16)

where we have invoked (5.1) in the last inequality. (We seek a lower bound for this term
rather than an upper bound since it appears with a minus sign in the energy.) From (5.13) to
(5.16), we conclude that

GM̌,κ
(ψ̃κ ) ≤

(
h(κ)

2

)2

‖u‖2
L2(M̌)

+ 4π ln κ − H2(M̌)h(κ)+ O(1). (5.17)

Returning to (5.12), we have found that

�(Ae, ψκ) ≥
∫

M̌

∣∣(Ae)τψκ
∣∣2 dH2

M̌ − GM̌,κ
(ψ̃κ )

≥
∫

M̌

∣∣(Ae)τψκ
∣∣2 dH2

M̌ −
(

h(κ)

2

)2

‖u‖2
L2(M̌)

− 4π ln κ + h(κ)H2(M̌)− O(1). (5.18)

Then since a minimizer ψκ in particular satisfies the estimate (5.9), we know that

∫

M̌

(|ψκ |2 − 1)2 dH2
M̌ ≤

‖u‖2
L2(M̌)

4

(
h(κ)

κ

)2

.

Thus, by (4.9) and Hölder’s inequality,
∫

M̌

∣∣(Ae)τψκ
∣∣2 dH2

M̌ =
∫

M̌

∣∣(Ae)τ
∣∣2 dH2

M̌ −
∫

M̌

∣∣(Ae)τ
∣∣2 (1 − |ψκ |2) dH2

M̌

=
(

h(κ)

2

)2

‖u‖2
L2(M̌)

−
(

h(κ)

2

)2 ∫

M̌

|u|2 (1 − |ψκ |2) dH2
M̌
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≥
(

h(κ)

2

)2

‖u‖2
L2(M̌)

−
(

h(κ)

2

)2

‖u‖2
L4(M̌)

⎛
⎜⎝
∫

M̌

(|ψκ |2 − 1)2 dH2
M̌

⎞
⎟⎠

1
2

≥
(

h(κ)

2

)2

‖u‖2
L2(M̌)

− O
(

h(κ)3

κ

)
. (5.19)

Consequently, first (5.18) and then (5.1) yield the lower bound

�(Ae, ψκ) ≥ −4π ln κ + H2(M̌)h(κ)− O(1)− O
(

h(κ)3

κ

)

≥
(

H2(M̌)− 4π

C0

)
h(κ)− O(1) =: R(κ). (5.20)

Since we are assuming that C0 >
4π

H2(M̌)
, we see that the coefficient of h(κ) in the first

term of the lower bound in (5.20) is positive. Since any minimizer ψκ is smooth, Lemma 5.4
applies and by choosing κ0 large enough so that, say,

Cu
h(κ)3

κ
<

1

2
while R(κ) > 1 provided κ ≥ κ0, (5.21)

we conclude that H1 ((0, π) \ S) > 0 for κ ≥ κ0 where S is given by (5.6).
Finally, in light of the simple connectivity and analyticity of M̌ and consequent ana-

lyticity of ψκ , we may apply the main result of [12] to conclude that the zeros of ψκ are
isolated. (The result of [12] is established for planar domains but inspection of the proof
reveals that all of the analysis carries over to the case of a 2d, analytic, simply connected
manifold.) Since M̌ is compact without boundary, the zero set is therefore finite and so in
particular, there must exist a set of φ-values of positive measure for which ψκ �= 0 on Cφ
and deg(ψκ,Cφ) �= 0. Focusing on any one such φ, the result follows since Cφ divides M̌
into two disjoint components, each one necessarily containing at least one vortex. ��
5.2 Asymptotic lower bound on Hc1 (Proof of Theorem 5.1 Part II)

In this subsection our goal is to obtain an asymptotic lower bound on the size of the first
critical field. We will see that it coincides with the upper bound obtained in the previous
subsection. In order to achieve this we will need to adapt results from [14] and [21] regarding
energy concentration on balls to the manifold setting.

We will denote by expp the exponential map at p, cf. [8]. It is well-known that for r

small enough, expp provides a local diffeomorphism from TpM̌ onto its image in M̌. This
radius will be denoted henceforth by r̃ , which can be chosen independently of the point p
in virtue of the compactness of the surface. That is, we fix r̃ to be any positive value below
the injectivity radius of the surface. We then define a pseudo-ball to be the diffeomorphic
image of a Euclidean ball under the exponential map, i.e. B̂(p, r) := expp[B(0, r)] for

B(0, r) ⊂ TpM̌.

We begin with a proposition whose content is essentially Proposition 3.2 of [21].
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Proposition 5.5 Let ψ be a sequence of smooth functions defined on M̌, satisfying∣∣∇M̌ψ
∣∣ ≤ C · κ, with

∫

M̌

∣∣∇M̌ψ
∣∣2 + κ2

2

(|ψ |2 − 1
)2

dH2
M̌ ≤ C · (ln κ)2. (5.22)

Then, there exists a family of disjoint pseudo-balls B̂ j := B̂(p j , r j ) with p j ∈ M̌ for
j = 1, . . . , Nκ , such that for κ sufficiently large

(1) {|ψ |−1 [0, 3/4)} ⊂ ⋃Nκ
j=1 B̂ j

(2) Nκ ≤ C · (ln κ)2
(3) r j ≤ C · (ln κ)−6

(4)
∫

B̂ j

∣∣∇M̌ψ
∣∣2 + κ2

2

(|ψ |2 − 1
)

dH2
M̌ ≥ 2π

∣∣∣dκj
∣∣∣ (ln κ − O(ln ln κ)) , where d(κ)j =

deg(ψκ, ∂ B̂ j ).

We will apply this proposition to global minimizers of GM̌,κ
.The hypotheses will be satisfied

since, first of all, we can compare the energy of a minimizer to the energy ofψ ≡ 1 to get the
energy bound (5.22). Then the estimate

∣∣∇M̌ψκ
∣∣ ≤ C · κ follows from elliptic regularity by

working in local coordinates, rescaling these by 1
κ

and applying standard Schauder theory,

[13]. By the compactness of M̌, one constant C can be obtained such that the estimate holds
along the entire manifold.

First we need to adapt to our case the key estimates that this proposition is based upon.
These estimates correspond to those in Theorem 2.1 [14], and its associated lemmas. In our
situation we rephrase Lemma 2.4. of [14] in the following way:

Lemma 5.6 Let ψ ∈ H1(M̌; S1). Then for any B̂(p, r) ⊂ M̌ and a.e. r < r̃ sufficiently
small, one has

2π

r (1 + O(r)) deg(ψ, ∂ B̂(p, r))2 ≤
∫

∂ B̂(p,r)

∣∣∇M̌ψ
∣∣2 dH1. (5.23)

Proof Since ψ is S1-valued, one can write ψ = ei� and we have

deg(ψ; ∂ B̂(p, r)) = 1

2π

∫

∂ B̂(p,r)

∂τ� dH1

≤ 1

2π

∫

∂ B̂(p,r)

|∂τψ | dH1

≤ 1

2π

⎛
⎜⎝

∫

∂ B̂(p,r)

|∂τψ |2 dH1

⎞
⎟⎠

1
2

H1
(
∂ B̂(p, r)

)1/2

≤ 1

2π

⎛
⎜⎝

∫

∂ B̂(p,r)

∣∣∇M̌ψ
∣∣2 dH1

⎞
⎟⎠

1
2

(2πr(1 + O(r))) 1
2 ,

where ∂τ · denotes tangential differentiation. The last line uses that the Jacobian of the expo-
nential map is the identity at 0, as well as our analyticity assumptions, which in particular
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imply that the circumference of a pseudo-circle is of the order of 2πr(1 + O(r)). The con-
clusion is immediate. ��
We can now invoke the following lemmas, without major changes, from [14].

Lemma 5.7 (cf. Lemma 2.5 [14]) Letψ ∈ H1(M̌; C). There is a radius r0 depending only
on the surface such that for a.e. r ∈ [ 1

κ
, r0) and for any p ∈ M̌, one has

∫

∂ B̂(p,r)

∣∣∇M̌ψ
∣∣2 + κ2

2

(|ψ |2 − 1
)2

dH1 ≥ Cκ(1 − m)N ,

where m := inf
∂ B̂(p,r) |ψ | and N is a positive constant independent of κ.

This result is then used to establish:

Lemma 5.8 (cf. Theorem 2.1 [14]) If ψ ∈ H1(M̌; C), then for a.e. r ∈ [ 1
κ
, r0) one has

∫

∂B̂(p,r)

∣∣∇M̌ψ
∣∣2+ κ

2

2

(|ψ |2−1
)2

dH1 ≥
(

2πm2

r(1+O(r))

)
deg(ψ, ∂ B̂(p, r))2+Cκ(1−m)N .

(5.24)

With these lemmas in hand, Proposition 5.5 will follow from the “growing balls” con-
struction laid out in [21, Proposition 3.1]. In our setting, we will only grow the balls up to a
radius that remains significantly less that r̃ so that whenever two pseudo-balls are combined,
they will sit inside a larger pseudo-ball. The only ingredient that is missing to perform this
construction is a lower bound on the energy within a pseudo-annulus. This construction cor-
responds to the one carried out in Lemma 3.2 of [21]. In our case, it can be phrased through
the following lemma.

Lemma 5.9 Let B̂(p, r1) and B̂(p, r2) be two pseudo-balls centered at p ∈ M̌, satisfying
1
κ
< r1 < r2 < r̃ . Then there is a function �κ : (0, 2

(ln κ)7
) → R satisfying the properties

(i) �κ(s)
s is decreasing,

(ii) sup �κ(s)
s ≤ Cκ , and

(iii) there exists κ0 > 0 such that if κ > κ0 and 1
κ
< t then

|�κ(t)− π ln (tκ)| ≤ C.

Furthermore, whenever |ψ | > 3
4 on B̂(p, r2)\B̂(p, r1), this function�κ satisfies the follow-

ing estimate:
∫

B̂(p,r2)\B̂(p,r1)

(∣∣∇M̌ψ
∣∣2 + κ2

2

(|ψ |2 − 1
)2
)

dH2
M̌ ≥ |d|

(
�κ

(
r2

|d|
)

−�κ

(
r1

|d|
))

,

(5.25)

where we have written d = deg(ψ , ∂ B̂(p, r2)),

Proof Defining g : B̂(p, r2) → R via the formula

g(x) :=
∥∥∥exp−1

p (x)
∥∥∥ ,
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we note that since g simply measures distance along M̌, one has
∣∣∇M̌g(x)

∣∣ = 1. Also,

since ∂ B̂(p, r) = expp(∂ B(p, r)) and expp(∂ B(p, r)) = g−1(r), we can apply the coarea
formula and (5.24) to get

∫

B̂(p,r2)\B̂(p,r1)

(∣∣∇M̌ψ
∣∣2 + κ2

2

(|ψ |2 − 1
)2
)

dH2
M̌

=
∫

B̂(p,r2)\B̂(p,r1)

(∣∣∇M̌ψ
∣∣2 + κ2

2

(|ψ |2 − 1
)2
) ∣∣∇M̌g

∣∣ dH2
M̌

≥
r2∫

r1

∫

∂ B̂(p,r)

(∣∣∇M̌ψ
∣∣2 + κ2

2

(|ψ |2 − 1
)2
)

dH1 dr

≥
r2∫

r1

(
2πd2m2

r (1 + O(r)) + Cκ(1 − m)N
)

dr

≥
r2∫

r1

(
2π |d| m N1

r (1 + O(r)) + Cκ(1 − m)N1

)
dr

≥
r2∫

r1

(
2π |d| m N1

r
(1 − C1r)+ Cκ(1 − m)N1

)
dr

≥
r2∫

r1

(
2π |d| m N1

r

(
1 − C1

(ln κ)7

)
+ Cκ(1 − m)N1

)
dr,

where N1 := max {2, N }. The remainder of the argument follows as in the proof of Propo-
sition 3.1 of [14] or in Lemma 3.2 of [21] by choosing�κ(s) essentially as�1/κ (s) in these
articles except that one adjusts the definition to accommodate the addition of the (harmless)
term involving C1

(ln κ)7
. ��

Proof of Part II of Theorem 5.1 We will consider a sequence of global minimizers ψκ, of
GM̌,κ

. We will drop the subscript throughout the rest of the proof for convenience and write
simply ψ for ψκ . We begin by computing

�((Ae), ψ) = i
∫

⋃
j∈I B̂ j

(Ae)τ · (ψ∇M̌ψ∗ − ψ∗∇M̌ψ
)

dH2
M̌

+i
∫

M̌\⋃ j∈I B̂ j

(Ae)τ · (ψ∇M̌ψ∗ − ψ∗∇M̌ψ
)

dH2
M̌

= I + I I. (5.26)

123



268 A. Contreras, P. Sternberg

Note that from (5.1), Proposition 5.5, (3) and comparison with the energy of the function 1,
an application of Hölder’s inequality yields

|I | ≤ C
∥∥Ae

∥∥
L∞

∥∥∇M̌ψ
∥∥

L2(M̌)
· Nκ
(ln κ)6

≤ C (ln κ) (ln κ)
(ln κ)2

(ln κ)6
≤ C

(ln κ)2
. (5.27)

To estimate I I , we substitute in α := ψ
|ψ | and find that

I I = i
∫

M̌\⋃ j∈I B̂ j

(Ae)τ · (α∇M̌α∗ − α∗∇M̌α
)

dH2
M̌

+i
∫

M̌\⋃ j∈I B̂ j

(|ψ |2 − 1) (Ae)τ · (α∇M̌α∗ − α∗∇M̌α
)

dH2
M̌

= I I I + I V . (5.28)

Again comparing the energy of ψ to the energy of the function 1, and using the fact that
|ψ | ≥ 3/4 on M̌ \ ⋃

j∈I B̂ j (cf. Prop. 5.5, (1)), we can estimate I V as follows:

|I V | ≤ 2
∥∥Ae

∥∥
L∞

⎛
⎜⎜⎝

∫

M̌\⋃ j∈I B̂ j

(|ψ |2 − 1)2 dH2
M̌

⎞
⎟⎟⎠

1/2 ⎛
⎜⎜⎝

∫

M̌\⋃ j∈I B̂ j

∣∣∇M̌α
∣∣2 dH2

M̌

⎞
⎟⎟⎠

1/2

≤ 2
∥∥Ae

∥∥
L∞

⎛
⎜⎜⎝

∫

M̌\⋃ j∈I B̂ j

(|ψ |2 − 1)2 dH2
M̌

⎞
⎟⎟⎠

1/2

×

⎛
⎜⎜⎝(4/3)2

∫

M̌\⋃ j∈I B̂ j

|ψ |2 ∣∣∇M̌α
∣∣2 dH2

M̌

⎞
⎟⎟⎠

1/2

≤ C (ln κ)

(
ln κ

κ

)
⎛
⎜⎜⎝

∫

M̌\⋃ j∈I B̂ j

∣∣∇M̌ψ
∣∣2 dH2

M̌

⎞
⎟⎟⎠

1/2

≤ C

(
(ln κ)3

κ

)
.

(5.29)

Combining (5.26)–(5.29), we find that

�((Ae)τ , ψ) = i
∫

M̌\⋃ j∈I B̂ j

(Ae)τ · (α∇M̌α∗ − α∗∇M̌α
)

dH2
M̌ + O

(
1

(ln κ)2

)
.

(5.30)

Now we let F : [0, π ] → R denote any primitive of uγ and then define FM̌ : M̌ → R

via FM̌(x) := F(φ(x)). This, of course, only determines FM̌ up to a constant, but as we
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shall see in the calculation to follow, it is only the difference max FM̌ − min FM̌ that will
matter and one readily computes from (4.8) that

max FM̌ − min FM̌ = H2(M̌)

2π
. (5.31)

Then by (4.8), (4.9) and exterior differentiation we obtain

i
∫

M̌\⋃ j∈I B̂ j

(Ae)τ · (α∇M̌α∗ − α∗∇M̌α
)

dH2
M̌

= i
h(κ)

2

∫

M̌\⋃ j∈I B̂ j

(α d FM̌ ∧ dα∗ − α∗ d FM̌ ∧ dα)

= i
h(κ)

2

∫

M̌\⋃ j∈I B̂ j

d
(
FM̌(αdα∗ − α∗dα)

) + i
h(κ)

2

×
∫

M̌\⋃ j∈I B̂ j

FM̌(dα∗ ∧ dα − dα ∧ dα∗). (5.32)

The last integral is zero since |α| = 1, and so integration by parts on the penultimate
integral yields

i
∫

M̌\⋃ j∈I B̂ j

(Ae)τ · (α∇M̌α∗ − α∗∇M̌α
)

dH2
M̌ = i

h(κ)

2

Nκ∑
j=1

∫

∂ B̂ j

FM̌ (αdα∗ − α∗dα)

= h(κ)

2

Nκ∑
j=1

FM̌(p j )

∫

∂ B̂ j

i (αdα∗ − α∗dα)+ h(κ)

2

Nκ∑
j=1

×
∫

∂ B̂ j

(
FM̌ − FM̌(p j )

)
i (αdα∗ − α∗dα)

= 2πh(κ)
Nκ∑
j=1

FM̌(p j )d
(κ)
j + h(κ)

2

Nκ∑
j=1

∫

∂ B̂ j

(
FM̌ − FM̌(p j )

)
i (αdα∗ − α∗dα).

(5.33)

To control the last sum in (5.33) we define

ψ̂ :=
{
ψ if |ψ | ≤ 3/4,

3
4
ψ
|ψ | if |ψ | > 3/4

and α̂ := ψ̂∣∣∣ψ̂
∣∣∣ . Then we compute

Nκ∑
j=1

∫

∂ B̂ j

(
FM̌−FM̌(p j )

)
i (αdα∗ − α∗dα)=

Nκ∑
j=1

∫

∂ B̂ j

(
FM̌− FM̌(p j )

)
i (α̂dα̂∗ −α̂∗dα̂)
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= 16

9

Nκ∑
j=1

∫

∂ B̂ j

(
FM̌ − FM̌(p j )

)
i (ψ̂dψ̂∗ − ψ̂∗dψ̂)

= 16

9

Nκ∑
j=1

∫

B̂ j

d
((

FM̌ − FM̌(p j )
)

i (ψ̂dψ̂∗ − ψ̂∗dψ̂)
)

= 16

9

Nκ∑
j=1

∫

B̂ j

d FM̌ ∧ i
(
ψ̂dψ̂∗ − ψ̂∗dψ̂

)

+ 32

9

Nκ∑
j=1

∫

B̂ j

(
FM̌ − FM̌(p j )

)
d ψ̂ ∧ d ψ̂∗

= I1 + I2. (5.34)

But since the gradient of FM̌ is bounded on M̌ and the norm of the gradient of ψ̂ is bounded
by the norm of the gradient of ψ , we can invoke Proposition 5.5 to find that

h(κ) |I1| ≤ Ch(κ)
∥∥∇M̌FM̌

∥∥
L∞(M̌)

Nκ∑
j=1

∥∥∇M̌ψ
∥∥

L2(B̂ j )
‖1‖L2(B̂ j )

≤ C (ln κ)
∥∥∇M̌FM̌

∥∥
L∞(M̌)

∥∥∇M̌ψ
∥∥

L2(M̌)
Nκ

1

(ln κ)6
≤ C

(ln κ)4

(ln κ)6
.

(5.35)

Similarly, since
∣∣FM̌ − FM̌(p j )

∣∣ ≤ C
(ln κ)6

inside B̂ j , we see that

h(κ) |I2| ≤ C (ln κ)
∥∥∇M̌ψ

∥∥2
L2(M̌)

Nκ
(ln κ)6

≤ C
(ln κ)5

(ln κ)6
. (5.36)

Hence, the last term in (5.33) is indeed o(1).
Combining (5.30), (5.32), (5.33) (5.34), (5.35) and (5.36) we conclude that

�(Ae, ψ) = 2πh(κ)
Nκ∑
j=1

FM̌(p j )d
(κ)
j + o(1). (5.37)

Next, we note that since M̌ is closed, the total degree is zero, that is:

4π� j∈I d(κ)j = i
∫

M̌\⋃ j∈I B̂ j

d(αdα∗ − α∗dα) = 0. (5.38)

Denoting by N+
κ the number of pseudo-balls out of the total of Nκ that carry a positive degree,

and assuming, without any loss of generality, that the pseudo-balls are ordered so that the
ones with positive degree are listed first, we can express (5.38) as

N+
κ∑

j=1

d(κ)j +
Nκ∑

j=N+
κ +1

d(κ)j = 0 (5.39)
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or equivalently,

Nκ∑
j=1

∣∣∣d(κ)j

∣∣∣ = 2
N+
κ∑

j=1

d(κ)j . (5.40)

Now we use Proposition 5.5, (5.19) and (5.37) to estimate the energy of a minimizer ψ
from below as

GM̌,κ
(ψ) =

∫

M̌

∣∣∇M̌ψ
∣∣2 + κ2

2

(|ψ |2 − 1
)2

dH2
M̌ +

∫

M̌

∣∣(Ae)τ
∣∣2 |ψ |2 dH2

M̌ −�(Ae, ψ)

≥
Nκ∑
j=1

∫

B̂(p j ,r j )

∣∣∇M̌ψ
∣∣2 + κ2

2

(|ψ |2 − 1
)2

dH2
M̌

+
(

h(κ)

2

)2

‖u‖2
L2(M̌)

− 2πh(κ)
Nκ∑
j=1

FM̌(p j )d
(κ)
j − o(1)

≥ 2π
Nκ∑
j=1

∣∣∣d(κ)j

∣∣∣ (ln κ − O(ln ln κ))+
(

h(κ)

2

)2

‖u‖2
L2(M̌)

−2πh(κ)
Nκ∑
j=1

FM̌(p j )d
(κ)
j − o(1). (5.41)

Appealing once again to the comparison GM̌,κ
(ψ) ≤ GM̌,κ

(1), cf. (5.9), we can then invoke
(5.31), (5.39) and (5.40) to conclude that

Nκ∑
j=1

∣∣∣d(κ)j

∣∣∣ (ln κ − O(ln ln κ)) ≤ h(κ)
Nκ∑
j=1

FM̌(p j )d
(κ)
j + o(1) ≤ h(κ)

(
max
M̌

FM̌

) N+
κ∑

j=1

d(κ)j

+ h(κ)

(
min
M̌

FM̌

) Nκ∑
j=N+

κ +1

d(κ)j + o(1)

=
⎛
⎝h(κ)

N+
κ∑

j=1

d(κ)j

⎞
⎠

(
max
M̌

FM̌ − min
M̌

FM̌

)
+ o(1)

= H2(M̌)

4π
h(κ)

Nκ∑
j=1

∣∣∣d(κ)j

∣∣∣ + o(1).

But in view of (5.1) and the assumption C0 <
4π

H2(M̌)
, this cannot hold for κ sufficiently

large unless

Nκ∑
j=1

∣∣∣d(κ)j

∣∣∣ = 0, (5.42)

that is, unless any zeros of the minimizer ψ have zero degree.
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Pursuing this possibility, however, we note that (5.37) would then imply that�(Ae, ψ) =
o(1) and so in view of (5.19) we would find
∫

M̌

∣∣∇M̌ψ
∣∣2 + κ2

2

(|ψ |2 − 1
)2

dH2
M̌ = GM̌,κ

(ψ)−
∫

M̌

∣∣(Ae)τ
∣∣2 |ψ |2 dH2

M̌ + o(1)

≤ GM̌,κ
(1)−

∫

M̌

∣∣(Ae)τ
∣∣2 |ψ |2 dH2

M̌+o(1)=o(1).

(5.43)

But if there exists even one zero of ψ of zero degree, say at x = p ∈ M̌, then the estimate∣∣∇M̌ψ
∣∣ ≤ C · κ implies that |ψ | ≤ 1/2 on a pseudo-ball B̂(p, r) for a radius r ≥ C1

κ
for

some C1 independent of κ. Hence, we can rule out this possibility since we would then have
∫

M̌

∣∣∇M̌ψ
∣∣2 + κ2

2

(|ψ |2 − 1
)2

dH2
M̌ ≥

∫

B̂(p,r)

∣∣∇M̌ψ
∣∣2 + κ2

2

(|ψ |2 − 1
)2

dH2
M̌ ≥ C2,

for some positive constant C2 independent of κ, contradicting (5.43). ��
5.3 Existence and non-existence of vortices for Gε,κ

We conclude with results on the existence and non-existence of vortices for minimizers of
the 3d Ginzburg–Landau functional Gε,κ given by (2.2). These will follow from the asymp-
totic value of Hc1 associated with the energy GM̌,κ

for large κ established in Theorem 5.1,
combined with the �-convergence shown in Theorem 3.1 and the compactness demonstrated
in Proposition 3.5.

Proposition 5.10 Assume C0 >
4π

H2(M̌)
in condition (5.1). Fix any value κ ≥ κ0 where κ0

is the value arising in Theorem 5.1, Part I, and for any ε > 0, let �ε denote a minimizer of
Gε,κ . Then there exists a value ε0 = ε0(κ) such that for all positive ε < ε0 there exists a
circle Cφε ⊂ M̌ as defined in (5.2) satisfying the condition

�ε �= 0 everywhere on Cφε,t , deg (�ε,Cφε,t ) �= 0 for all t ∈ (0, 1) (5.44)

where

Cφε,t := {x + εtν(x) : x ∈ Cφε } ⊂ M̌ε,t ,

cf. (2.7). Hence, in particular, �ε vanishes at least twice on each manifold M̌ε,t , for 0 <
t < 1.

Furthermore, if {ε j } → 0 is a subsequence such that ψε j ,κ → ψκ in C0,α
(
M̌ × (0, 1)

)
as in Proposition 3.5, for some minimizer ψκ of GM̌,κ

, then for each of the two vortices of

ψκ , say p1, p2 ∈ M̌ guaranteed by Theorem 5.1, Part I, and for all t ∈ (0, 1), there exist
sequences {p j

1 (t)} and {p j
2 (t)} of zeros of �ε jκ lying on M̌ε j ,t such that p j

1 (t) → p1 and

p j
2 (t) → p2 as j → ∞.

Proof Suppose, by way of contradiction, that the assertion (5.44) does not hold along a
sequence {ε j } → 0. After perhaps passing to a further subsequence (still denoted by ε j ), we
may apply Proposition 3.5 to establish that ψε j ,κ → ψκ in C0,α , where ψκ is a minimizer
of GM̌,κ

. Associated with this minimizer there is a value φ ∈ (0, π) guaranteed by Theorem
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5.1, Part I such that (5.3) holds along Cφ ⊂ M̌. Since ψκ is independent of t , (5.3) must
also hold for ψκ where Cφ replaced by Cφ,t ⊂ M̌ε,t and t is any value in (0, 1). But then
(5.44) must be valid for �ε j ,κ in light of the uniform convergence, and a contradiction is
reached. The second assertion of Corollary 5.10 also follows immediately from the uniform
convergence of ψε j ,κ to ψκ , the t-independence of ψκ and the fact that the zeros of ψκ
guaranteed by Theorem 5.1, Part I are isolated and have nonzero degree. ��
Proposition 5.11 Assume C0 <

4π
H2(M̌)

in condition (5.1). Fix any value κ ≥ κ0 where κ0

is the value arising in Theorem 5.1, Part II and for any ε > 0, let �ε,κ denote a minimizer
of Gε,κ . Then there exists a value ε0 = ε0(κ) such that for all positive ε < ε0,�ε,κ does not
vanish in �ε.

Proof This result is an immediate consequence of the uniform convergence of minimizers of
Gε,κ guaranteed by Proposition 3.5, coupled with the non-vanishing property of minimizers
of the �-limit provided by Theorem 5.1, Part II. ��

Propositions 5.10 and 5.11 together in particular imply Theorem 5.3.
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