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Abstract We discuss existence and non-existence of positive solutions for the following
system of Hardy and Hénon type:

{
−�v = |x |αu p, −�u = |x |βvq in �,

u = v = 0 on ∂�,

where � � 0 is a bounded domain in R
N , N ≥ 3, p, q > 1, and α, β > −N . We also study

symmetry breaking for ground states when � is the unit ball in R
N .

Mathematics Subject Classification (2000) 35J47 · 35J60 · 35J20

1 Introduction

In this paper we consider the following system of superlinear elliptic equations of Hardy and
Hénon type:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

−�v = |x |αu p in �,

−�u = |x |βvq in �,

u > 0 in �,

v > 0 in �,

u = v = 0 on ∂�,

(1)

M. Calanchi (B) · B. Ruf
Dipartimento di Matematica, Università degli Studi di Milano, via C. Saldini 50, 20133 Milano, Italy
e-mail: marta.calanchi@unimi.it

B. Ruf
e-mail: bernhard.ruf@unimi.it

123



112 M. Calanchi, B. Ruf

where � is a bounded domain in R
N with 0 ∈ �, N ≥ 3, p, q > 1, and α, β > −N . In

particular, we will investigate existence, multiplicity and qualitative properties (such as radial
symmetry in the case � a ball) of solutions.

The case of a single equation (especially the case α > 0) has been widely studied (see for
instance [2–4,7,24,26], and the references therein). Recall that the equation{

−�u = |x |αu p in �

u = 0 on ∂�,
(2)

is called of Hardy type if α < 0 (because of its relation to the Hardy-Sobolev inequality)
and it is of Hénon type if α > 0 (this equation was introduced by Hénon in 1973 [15] for the
study of stellar systems). One has the following results:
Hardy type: By variational methods one obtains the existence of a nontrivial solution of (2)
in H1

0 (�) (� ⊂ RN an arbitrary bounded domain) provided that 2 < p + 1 < 2(N−|α|)
N−2 , by

an application of the celebrated Caffarelli-Kohn-Nirenberg estimates (CKN, [6]), and due
to a generalized Pohozaev type identity one proves non-existence of nontrivial solutions in
starshaped domains if 0 ≥ α > −N and p + 1 = 2(N−|α|)

N−2 .
Hénon type: For α > 0 one obtains for � arbitrary (bounded) the existence of a solution for
2 < p+1 < 2N

N−2 . On the other hand, if� is a ball, then one has the existence of a radial solu-

tion in a larger range, namely for 2 < p+1 < 2(N+α)
N−2 (see [23]), and the non-existence of non-

trivial solutions in the range: p+1 ≥ 2(N+α)
N−2 by a Pohozaev-type identity for radial functions.

Concerning the symmetry of solutions one has the following result: if � is a ball, one
proves by moving plane techniques [12] that the minimal energy solution is positive and radi-
ally symmetric if α ≤ 0 (Hardy case). One can pose the question if this symmetry continues
to be present also for positive α. In an interesting paper Smets et al. [26] showed that this is
not the case: they proved that for α > 0 and sufficiently large a symmetry-breaking occurs,
that is, to the minimal energy level (which is attained for p + 1 < 2∗ = 2N

N−2 ) corresponds a
solution which is not radially symmetric. In a related result, Cao and Peng proved in [5] that
for α > 0 and p + 1 sufficiently close to 2∗ the ground-state solutions of (2) are not radial
since they possess a unique maximum point which tends to ∂� as p + 1 → 2∗.

Turning to the system (1), we first recall the case α = β = 0 which has been stud-
ied by many authors. Here the natural restriction on the exponents p and q for existence/
non-existence of solutions is given by the critical hyperbola, that is

N

p + 1
+ N

q + 1
= N − 2; (3)

this hyperbola was first introduced by Mitidieri [21] who proved non-existence of solutions
for (p, q) lying on or above the hyperbola, using a Pohozaev-type identity. Existence of
solutions for (p + 1, q + 1) below the critical hyperbola was proved by de Figueiredo and
Felmer (see [9]) and by Hulshoff and van der Vorst (see [16,17]) by using a variational set-up
with fractional Sobolev spaces. A different approach, working with Sobolev-Orlicz spaces
(which allows a generalization to non-polynomial nonlinearities), can be found in [8,10].

Recently, the general case α �= 0, and/or β �= 0 has been investigated independently by
de Figueiredo et al. [11] and Liu and Yang [20]; in both papers an approach via fractional
Sobolev spaces is used. As in the scalar case, the presence of the weight functions |x |α and
|x |β affects the range of p and q for which the problem may have solutions. Indeed, in [11]
and [20] it is shown that the dividing line between existence and non-existence is given by
the following “weighted” critical hyperbola
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Hardy–Hénon type elliptic systems 113

N + α

p + 1
+ N + β

q + 1
= N − 2. (4)

For future reference, we call the hyperbola (3) the M-hyperbola (for Mitidieri hyperbola),
and the hyperbola (4) the αβ-hyperbola).

We remark that systems of type (1) are closely related to the double weighted Hardy–
Littlewood–Sobolev inequality (see e.g. Stein and Weiss [27] and Lieb [18]). This becomes
clear by the approach we use for system (1), which is different from the one proposed in the
previously cited papers. Following for instance Wang [28] we (formally) deduce from the
second equation in (1)

v = (−�u)
1
q |x |− β

q ,

and inserting this into the first equation we obtain the following scalar equation for the
u-component

−�
(
(−�u)1/q |x |−β/q) = |x |αu p (5)

We intend to investigate the rôle played by the weights α and β when dealing with the exis-
tence and symmetry of ground state (or minimal energy) solutions of Eq. 5, that is, minimizers
u of the corresponding Raleigh quotient

R(u) =
∫
�

|x |−β(r−1)|�u|r(∫
�

|x |α|u|p+1 dx
) r

p+1
, r := q + 1

q
, (6)

on the weighted Sobolev space

W 2,r (�, |x |−β(r−1)dx) ∩ W 1,r
0 (�)

Here we denote with W 2,r (�, |x |−β(r−1)dx) the set of functions u ∈ W 2,1
loc (�) such that∫

�

(|u|r + |∇u|r +
∑
|ξ |=2

|Dξu|r |x |−β(r−1)) dx < +∞ ,

endowed with the norm

‖u‖W 2,r (�,|x |−β/q dx) :=
⎛
⎝∫
�

(|u|r + |∇u|r +
∑
|ξ |=2

|Dξu|r |x |−β(r−1)dx) dx

⎞
⎠

1/r

;

also, we denote with

W 2,r
rad(�, |x |−β(r−1)dx)

the subspace of W 2,r (�, |x |−β(r−1)dx) of radial functions.
Furthermore, let

W 2,r
D (�, |x |−β(r−1)dx)

denote the closure of {φ ∈ C∞(�) : φ = 0 on ∂�} in W 2,r (�, |x |−β(r−1)dx), i.e. the
closure of the smooth functions in � with Dirichlet boundary conditions, and with

W 2,r
D,rad(�, |x |−β(r−1)dx)

the corresponding subspace of radial functions (for � a ball).
For the definition of this space and related properties we refer the reader to the Appendix. In

particular, we prove there the following generalization of the Meyers-Serrin denseness result:
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114 M. Calanchi, B. Ruf

Fig. 1 Hardy type system

Proposition Let� a domain with smooth boundary. Suppose that α, β > −N and p, q > 1
with q > β

N . Then

W 2,r
D (�, |x |−β/qdx) = W 2,r (�, |x |−β/qdx) ∩ W 1,r

0 (�).

It is not difficult to prove that critical points of R(u) on W 2,r
D (�, |x |−β/qdx) are (up to

rescaling) weak solutions of (5), i.e. verifying⎧⎪⎨
⎪⎩
∫
�

(−�u)1/q |x |−β/q (−�ϕ)dx =
∫
�

|x |αu pϕ dx,

for all ϕ ∈ W 2,r
D (�, |x |−β/qdx)

and, moreover, if v = (−�u)
1
q |x |− β

q , then v ∈ W 2, p+1
p (�, |x |− α

p dx) ∩ W
1, p+1

p
0 (�). In

accordance, by a strong solution of the system we mean a couple (u, v) of weak-solutions
such that

(u, v) ∈ W 2,r (�, |x |− β
q dx) ∩ W 1,r

0 (�)× W 2, p+1
p (�, |x |− α

p dx) ∩ W
1, p+1

p
0 (�).

In what follows, we will denote by E the space E = W 2,r
D (�, |x |−β(r−1)dx) =

W 2,r (�, |x |−β/qdx) ∩ W 1,r
0 (�) (if the values β and r are clear from the context), and

by Erad the radial component of E .
In this paper we investigate solvability and symmetry properties of the solutions for gen-

eral exponents α and β. We will see that the solvability and the qualitative properties of the
solutions depend on the location of the exponents p, q with respect to the M-hyperbola and
the αβ-hyperbola.

Note that if α, β < 0, then the αβ-hyperbola lies below the M-hyperbola, see Fig. 1. In
this case, we have the following result:
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Fig. 2 Hénon type system

Theorem 1 (Hardy-type system) Let 0 ≥ α, β > −N, and p, q > 1.

(a) If N−|α|
p+1 + N−|β|

q+1 = N − 2 (i.e. on the αβ-hyperbola), and if � is starshaped, then
system (1) has no non-trivial solution, and hence inf E R(u) is not attained.

(b) If N−|α|
p+1 + N−|β|

q+1 > N − 2 (i.e. below the αβ-hyperbola), then

(b1) inf E R(u) is attained, and therefore system (1) has a nontrivial solution ū (the
minimal energy solution);

(b2) if � is a ball, then ū is radially symmetric

Next, we consider the case α, β > 0, i.e. the Hénon-type system. Note that then the
αβ-hyperbola lies above the M-hyperbola, and there are three regions which characterize the
behavior of the system, see Fig. 2.

Theorem 2 (Hénon type system) Let α, β > 0, and suppose that p, q > 1.

(a) If N+α
p+1 + N+β

q+1 ≤ N − 2 (i.e., on or above the αβ-hyperbola) and � is starshaped,
then system (1) has no non-trivial solution;

(b) Suppose that � = B1(0). If q > max{1, βN } and N+α
p+1 + N+β

q+1 > N − 2 (i.e. below
the αβ-hyperbola), then system (1) has a radial solution (not necessarily of minimal
energy);

(c) If N
p+1 + N

q+1 > N − 2 (i.e. below the M-hyperbola), then inf E R(u) is attained and
hence system (1) has a ground state solution; furthermore, if α > 0 is sufficiently large,
then the ground state solution is not radially symmetric.

Remarks (1) Note that (c) of the previous theorem can be interpreted as a symmetry break-
ing: for α, β ≤ 0 we have by Theorem 1 that the ground state solution in a ball is radial,
while (c) says that for α, β > 0 and α large the ground state solution is non radial.
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116 M. Calanchi, B. Ruf

Fig. 3 Hardy-Hénon type system

(2) By (b) and (c) of Theorem 2 we get the existence of at least two solutions for (p+1, q+1)
below the M-hyperbola and α large: one radial solution (obtained as minimum of R(u)
on Erad ), and the minimal energy solution which is non-radial.

In the Hénon case there is a very recent symmetry breaking result, due to He and Yang
([14]): they prove that if (for q fixed) p goes towards the M-hyperbola, then the ground state
solution is non radial; this result extends to systems the corresponding result for the equation
by Cao and Peng [5]).

Finally, we consider the case of a mixed Hénon-Hardy type system, i.e. one exponent (say
α) is positive and the other exponent (i.e. β) is negative. In this case the M-hyperbola and
the αβ-hyperbola intersect, see Fig. 3. We show that in this case a third hyperbola comes into
play.

Theorem 3 (Hénon-Hardy type system) Let α > 0, 0 > β > −N, and suppose that
p, q > 1.

(a) If N+α
p+1 + N−|β|

q+1 = N − 2 (i.e. on the αβ-hyperbola) and � is starshaped, then system
(1) has no solution;

(b) Assume � = B1(0). If N+α
p+1 + N−|β|

q+1 > N − 2 (i.e. below the αβ-hyperbola),
then system (1) has a radial solution (not necessarily of minimal energy);

(c) If (p, q) satisfies N
p+1 + N−|β|

q+1 > N − 2, then inf E R(u) is attained and hence system
(1) has a ground state solution; furthermore, if α > 0 is sufficiently large, then the
ground state solution is not radially symmetric.

Remark Suppose that � is an arbitrary bounded domain: if (p + 1, q + 1) lies below the
αβ-hyperbola and above the M-hyperbola, then it is not known whether inf E R(u) is attained.
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Hardy–Hénon type elliptic systems 117

2 The Hardy case: proof of Theorem 1

Proof of Theorem1 (a): this is obtained via a generalized identity of Pohozaev-type, see
Proposition 7 Sect. 6 below. Note that this case is somewhat delicate due to the singular
weights.

Proof of Theorem1 (b1): To prove the existence of a positive solution we minimize the
Rayleigh quotient R(u) given in (6). By the compactness of the embedding in Lemma 4
(see Sect. 5) the infimum is attained by a positive function, which is a (strong) solution of
problem (10).

Proof of Theorem1 (b2): for α = β = 0 and if � is a ball, it was proved by X.J. Wang [28]
that the ground state of (6) is a radial and radially decreasing positive function. By adapting
his argument (moving planes technique and maximum principle) one can extend this result
also to the values α, β < 0 (noting that the weights do not interfere with the moving planes
technique). 
�

3 The Hénon case: proof of Theorem 2

Proof of Theorem2 (a): this follows again by a Pohozaev-type identity proved in Proposi-
tion 6 in Sect. 6 below.

Proof of Theorem2 (b): The existence of radial solutions under the hypotheses of Theorem
2(b) follows from the embedding result for radial functions in Lemma 9 in Sect. 7 below,
by considering again the Rayleigh quotient R(u) on the weighted space W 2,r

rad(�, |x |−β/q
dx).

Proof of Theorem2 (c): We have to show that m := inf E R(u) is attained. Let {un} ⊂ E be
a minimizing sequence. We may assume that∫

�

|x |α|un |p+1 = 1, and
∫
�

|x |−β/N |�un |r dx → m > 0.

Then clearly
∫
�

|�un |r dx ≤ c, and by the assumption and the Rellich-Kondrachov com-
pactness theorem it follows that {un} has a convergent subsequence in L p+1(�), and hence
also in L p+1(�, |x |αdx). This is sufficient to conclude that inf E R(u) is attained. 
�

Finally, we show that if α > 0 is sufficiently large, then the radial ground state level lies
above the ground state level: indeed, by Proposition 10 below we have the following lower
estimate for the radial ground state level:

Srad
α,β ≥ C α

2r+ r
p+1 −1

, for α ≥ α0

On the other hand, for the ground state level the following upper estimate holds (see Propo-
sition 11 below): there exist C > 0 and α0 such that for α ≥ α0

Sα,β ≤ C α
2r−N+N r

p+1

From these two inequalities it follows that the ground state is non radial for α sufficiently
large, since

r

p + 1
− 1 > −N + N

r

p + 1
⇐⇒ r

p + 1
< 1 ,

which is clearly the case.
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118 M. Calanchi, B. Ruf

4 The mixed case: proof of Theorem 3

Proof of Theorem3 (a) and (b): as in Theorem 2

Proof of Theorem3 (c): Let {un} ⊂ E be a minimizing sequence for m = inf R(u). We
may assume that∫

�

|x |α|un |p+1 = 1, and
∫
�

|x ||β|/N |�un |r dx → m.

We apply the embedding result in Lemma 4 (see Sect. 5 below) for α = 0, i.e. under the
hypotheses of Theorem 3 c). By the compactness of the embedding we have that for a
subsequence un → u in L p+1(�), and since α > 0 clearly also in L p+1(�, |x |αdx).
Thus is sufficient to conclude that inf E R(u) is attained.

Proof of Theorem3 (c): one proves as in Theorem 2 c) that if α > 0 is sufficiently large,
then the ground state level is non radial.


�

5 An embedding result of Caffarelli-Kohn-Nirenberg type

We first prove a preliminary embedding result:

Lemma 4 Let � ⊂ R
N be a bounded smooth domain with 0 ∈ �. For given α, β, q let p	

such that

N − |α|
p	 + 1

+ N − |β|
q + 1

= N − 2. (7)

Then we have the following continuous embedding

W 2,r (�, |x |−β(r−1)dx) ↪→ L p+1(�, |x |α), for 0 ≤ p ≤ p	;
furthermore, if

N − |α|
p + 1

+ N − |β|
q + 1

> N − 2, i.e. p < p	 , (8)

then the embedding is compact.

Proof This follows from the generalization due to Lin (see [19]) of the Caffarelli-Kohn-
Nirenberg inequality [6]: if (7) holds, then there exists a constant C such that⎛

⎜⎝ ∫
RN

|x |α|u|(p	+1)

⎞
⎟⎠

1
(p	+1)

≤ C

⎛
⎜⎝ ∫

RN

|x |−β(r−1)|D2u|r
⎞
⎟⎠

for all u ∈ C∞
0 (R

N ).
Via extension theorems (see for instance [1]) we have

W 2,r (�, |x |−β(r−1)dx) ↪→ L p	+1(�, |x |α) ,
and for any 0 ≤ p < p	 the embedding is compact. 
�

Another consequence of the CKN inequalities is the following
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Lemma 5 If (u, v) ∈ W
2, q+1

q
D (�, |x ||β|/qdx)× W

2, p+1
p

D (�, |x ||α|/pdx), with p and q as in
(7), then ∇u∇v ∈ L1(�).

Proof If u ∈ W
2, q+1

q
D (�, |x ||β|/qdx) and v ∈ W

2, p+1
p

D (�, |x ||α|/pdx) then from the CKN

inequality applied to ∇u and ∇v, one has ∇u ∈ Ls(�) with s = N (q+1)
Nq+|β|−(q+1) , and ∇v ∈

Lt (�) with t = N (p+1)
N p+|α|−(p+1) . It is not difficult to prove that 1

s + 1
t = 1. So the assertion

follows by the Hölder inequality. 
�

6 A generalized identity of Pohozaev-type

In this section we prove, via a generalized identity of Pohozaev-type, the non-existence of
“strong” solutions on or above the critical αβ-hyperbola.

We consider first the Hénon case α ≥ 0, β ≥ 0. In this case we can suppose that the
solutions (u, v) are of class C2(�) ∩ C1(�).

Proposition 6 Let � ⊂ R
N be a bounded, smooth, starshaped domain with respect to

0 ∈ R
N . If α, β ≥ 0 and

N + α

p + 1
+ N + β

q + 1
≤ N − 2 (9)

then the problem ⎧⎪⎨
⎪⎩

−�v = |x |α|u|p−1u in �,

−�u = |x |β |v|q−1v in �,

u = v = 0 on ∂�,

(10)

has no nontrivial strong positive solutions.

Proof This follows by adapting the argument of Mitidieri in [21]. Let

G(x, u, v) = 1

p + 1
|x |α|u|p+1 + 1

q + 1
|x |β |v|q+1 (11)

so (10) becomes ⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−�v = ∂G

∂u
(x, u, v) in �

−�u = ∂G

∂v
(x, u, v) in �

u = v = 0 on ∂�

(12)

We multiply the equations respectively by (x · ∇u) and by (x · ∇v), add the two equations
and integrate. By an application of the divergence theorem (see Proposition 2.1 and Corollary
2.1 in [21]) we have for the left sides∫

�

{�u (x · ∇v)+�v (x · ∇u)}dx

=
∫
∂�

{
∂u

∂n

∂v

∂n
(x · n)

}
ds + (N − 2)

∫
�

(∇u∇v)dx (13)

(since u = v = 0 on ∂�, we have (x · ∇u) = x · n ∂u
∂n and (x · ∇v) = x · n ∂v

∂n on ∂�).
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For the right sides we have, since

∂G

∂u
(x · ∇u)+ ∂G

∂v
(x · ∇v) = div{xG(x, u, v)}

−N G(x, u, v)− α
|x |α
p + 1

|u|p+1 − β
|x |β

q + 1
|v|q+1 (14)

and taking into account that G(x, u, v) = 0 on ∂� :∫
�

{
∂G

∂u
(x · ∇u)+ ∂G

∂v
(x · ∇v)

}
dx

= − N + α

p + 1

∫
�

|x |α|u|p+1dx − N + β

q + 1

∫
�

|x |β |v|q+1dx . (15)

Therefore ∫
∂�

{
∂u

∂n

∂v

∂n
(x · n)

}
ds + (N − 2)

∫
�

(∇u∇v)dx

= N + α

p + 1

∫
�

|x |α|u|p+1dx + N + β

q + 1

∫
�

|x |β |v|q+1dx . (16)

Now, multiplying the first equation by u, the second by v and integrating, one obtains∫
�

(∇u∇v)dx =
∫
�

|x |α|u|p+1dx =
∫
�

|x |β |v|q+1dx

So (16) becomes (Pohozaev identity)∫
∂�

{
∂u

∂n

∂v

∂n
(x · n)

}
ds

=
{
−(N − 2)+ N + α

p + 1
+ N + β

q + 1

}∫
�

|x |α|u|p+1dx (17)

Since � is starshaped and u, v are positive, we have
∫
∂�

{
∂u
∂n

∂v
∂n (x · n)

}
ds > 0, and hence

by (16)

0 <
∫
∂�

{
∂u

∂n

∂v

∂n
(x · n)

}
ds

=
{
−(N − 2)+ N + α

p + 1
+ N + β

q + 1

}∫
�

|x |α|u|p+1dx (18)

which gives a contradiction for the choice of p and q . 
�
Next, we consider the Hardy case.

Proposition 7 Let � as in Proposition6 and assume that 0 ≥ α, β > −N and

N − |α|
p + 1

+ N − |β|
q + 1

= N − 2; (19)

then there exists no positive strong solution (u, v) of (12).
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Proof For this case we follow the idea developed by B. Xuan (see Appendix in [29]).
Let (u, v) a positive solution of system (12). Due to the Hardy weights this solution may

be singular in the origin, but standard regularity results imply that for every δ small, u and v
belong to C2(�\ Bδ(0))∩C0(� \ Bδ(0)). We multiply the equations respectively by (x ·∇u)
and by (x · ∇v), add the two equations and integrate over �δ = �\Bδ(0)

−
∫
�δ

{�u (x · ∇v)+�v (x · ∇u)}dx

=
∫
�δ

{
∂G

∂u
(x · ∇u)+ ∂G

∂v
(x · ∇v)

}
dx, (20)

where G = G(x, u, v) is as in (11).
We apply the Divergence Theorem to xG, so that one has for the right side of (20)∫

�δ

{
∂G

∂u
(x · ∇u)+ ∂G

∂v
(x · ∇v)

}
dx

= − N − |α|
p + 1

∫
�δ

u p+1

|x |α dx − N − |β|
q + 1

∫
�δ

vq+1

|x |β dx +
∫

|x |=δ
G(u, v, x)(x · n)ds, (21)

while for the left side of (20) (see [21], Corollary 2.1) one has∫
�δ

{�u (x · ∇v)+�v (x · ∇u)} dx

=
∫
∂�δ

{
∂u

∂n
(x · ∇v)+ ∂v

∂n
(x · ∇u)− (∇u∇v)(x · n)

}
ds + (N − 2)

∫
�δ

(∇u∇v)dx

=
∫

|x |=δ

{
∂u

∂n
(x · ∇v)+ ∂v

∂n
(x · ∇u)− (∇u∇v)(x · n)

}
ds

+
∫
∂�

{
∂u

∂n

∂v

∂n
(x · n)

}
ds + (N − 2)

∫
�δ

(∇u∇v)dx . (22)

Now, multiplying the first equation by u, the second by v and integrating, one obtains∫
�δ

(∇u∇v)dx −
∫

|x |=δ
v∇u · x =

∫
�δ

|x |β |v|q+1dx

and ∫
�δ

(∇u∇v)dx −
∫

|x |=δ
u∇v · x =

∫
�δ

|x |αu p+1dx

The Pohozaev identity (17) follows if we prove that all the integrals along {|x | = δ} go to
zero, at least for a subsequence δk → 0. But this follows by the mean value theorem, since
by the Lemmas in Sect. 5 the integrals
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∫
�

G(u, v, x)dx,
∫
�

|u∇v|dx ,
∫
�

|v∇u|dx ,
∫
�

|∇u∇v|dx

are finite. Indeed, if ψ is a positive function in L1(�), then εk = ∫B1/k (0)
ψ(x)dx → 0 as

k → +∞. Moreover, if ψ ∈ C(�\{0}) then

εk =
∫

B1/k (0)

ψ(x)dx =
1/k∫
0

∫
|x |=δ

ψ(x)ds dδ

By the Mean Value Theorem there exists δk ∈ (0, 1/k) such that

εk = 1

k

∫
|x |=δk

ψ(x)ds

Therefore ∫
|x |=δk

ψ(x)(x · n)ds =
∫

|x |=δk

ψ(x)δkds = kεkδk ≤ εk → 0.


�
Proposition 8 Let � as in Proposition6, and assume that α ≥ 0 , 0 ≥ β > −N and

N + α

p + 1
+ N − |β|

q + 1
= N − 2 (23)

then there exists no positive strong solution (u, v) of (12).

Proof By combining the previous methods one obtains the result. 
�

7 An embedding theorem for radial functions

Proposition 9 Let � ⊂ R
N be the ball � = B1(0). Let α, β > −N and let p and q such

that q > β
N and

α + N

p + 1
+ N + β

q + 1
> N − 2. (24)

Then the embedding

Erad = W 2,r
D,rad(�, |x |−β/qdx) ↪→ L p+1(�, |x |αdx), r = q + 1

q

is continuous and compact.

Proof By the density result (Theorem 16 in the Appendix) it is sufficient to prove the assertion
for radial u ∈ C∞(�) ∩ Erad with u = 0 on ∂�. For such u we have

�u = t1−N (u′(t)t N−1)′

It is sufficient to prove that there exists a constant C such that

⎛
⎝ 1∫

0

tα|u(t)|p+1t N−1dt

⎞
⎠

1
p+1

≤ C

⎛
⎝ 1∫

0

|(u′(s)s N−1)′|r sr−r N+N−1−β/qds

⎞
⎠

1/r

=: C‖u‖∗
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Set w(t) = u′(t)t N−1. Then, since w(0) = 0

|u(t)| =
∣∣∣∣∣∣

t∫
1

u′(s)ds

∣∣∣∣∣∣ =
∣∣∣∣∣∣

t∫
1

w(s)s1−N ds

∣∣∣∣∣∣ =
∣∣∣∣∣∣

1∫
t

⎡
⎣ s∫

0

w′(ξ)dξ

⎤
⎦ s1−N ds

∣∣∣∣∣∣
=
∣∣∣∣∣∣

t∫
1

⎡
⎣ s∫

0

w′(ξ) ξ
r−r N+N−1−β/q

r ξ− r−r N+N−1−β/q
r dξ

⎤
⎦ s1−N ds

∣∣∣∣∣∣
(by Hölder inequality with exponents r = 1 + 1

q and r ′ = q + 1)

≤
1∫

t

⎡
⎣ s∫

0

|w′(ξ)|r ξ r−r N+N−1−β/q
⎤
⎦

1/r ⎡
⎣ s∫

0

ξ− r−r N+N−1−β/q
r (q+1) dξ

⎤
⎦

1
q+1

s1−N ds

≤ ‖u‖∗
1∫

t

⎡
⎣ s∫

0

ξ N+β−1 dξ

⎤
⎦

1
q+1

s1−N ds

≤ ‖u‖∗
1∫

t

s
N+β
q+1 +1−N ds

Now three cases may occur:

Case 1 N+β
q+1 > N − 2 that is q + 1 < N+β

N−2 . In this case we have∫
�

|x |α|u(x)|p+1dx ≤ C‖u‖p+1∗ ;

Case 2 For q + 1 = N+β
N−2∫

�

|x |α|u(x)|p+1dx ≤ C‖u‖∗
∫
�

|x |α| log(|x |)|p+1dx ≤ C‖u‖p+1∗ ,

since, for α > −N , |x |α| log(|x |)|p+1 is integrable.

Case 3 Finally for q + 1 > N+β
N−2

∫
�

|x |α|u(x)|p+1dx = ωN−1

1∫
0

tα+N−1|u(t)|p+1dt

≤ C‖u‖p+1∗
1∫

0

tα+N−1t
(p+1)

(
N+β
q+1 −N+2

)
dt ≤ C‖u‖p+1∗

for α such that

α + N + (p + 1)

(
N + β

q + 1
− N + 2

)
> 0 ,
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that is

α + N

p + 1
+ N + β

q + 1
> N − 2.

Finally, the proof of the compactness is standard. 
�

8 Estimates for ground states

8.1 The radial ground state level (β fixed, α → +∞)

We give now an estimate from below for the radial level

Srad
α,β = inf

u∈Erad\{0}

∫
�

|x |−β/q |�u|r dx(∫
�

|x |α|u|p+1 dx
) r

p+1

Proposition 10 There exist C > 0 and α0 such that

Srad
α,β ≥ Cα2r+ r

p+1 −1
, α ≥ α0

Proof Let ε = N
N+α and u(x) = u(|x |) a smooth radial function such that u = 0 on ∂�. Let

v(ρ) = u(ρε). We have

v′(ρ) = εu′(ρε)ρε−1 and v′′(ρ) = ε2u′′(ρε)ρ2ε−2 + ε(ε − 1)u′(ρε)ρε−2

so that

u′(ρε) = ρ1−εε−1v′(ρ) and u′′(ρε) = ε−2ρ2−2ε[v′′(ρ)− (ε − 1)ρ−1v′(ρ)]
Therefore, by the change of variable t = ρε ,

∫
�

|x |−β/q |�u|r dx = ωN−1

1∫
0

∣∣∣∣u′′(t)+ N − 1

t
u′(t)
∣∣∣∣
r

t N−1−β/qdt

= ωN−1

1∫
0

ερ
εN− εβ

q −1
∣∣∣∣u′′(ρε)+ N − 1

ρε
u′(ρε)

∣∣∣∣
r

dρ

= ωN−1

1∫
0

ερ
εN− εβ

q −1 ∣∣ε−2ρ2−2ε [v′′(ρ)− (ε − 1)ρ−1v′(ρ)
]

+ N − 1

ρε
ε−1ρ1−εv′(ρ)

∣∣∣∣
r

dρ

= ωN−1

1∫
0

ε1−2rρ
εN− εβ

q −1 ∣∣ρ2−2ε [v′′(ρ)− (ε − 1)ρ−1v′(ρ)
]

+ (N − 1)ερ1−2εv′(ρ)
∣∣r dρ

= ωN−1

1∫
0

ε1−2rρ
εN− εβ

q −1+2r−2rε
∣∣∣∣v′′(ρ)+ N − 2ε + 1

ρ
v′(ρ)

∣∣∣∣
r

dρ
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=ωN−1ε
1−2r

1∫
0

ρ
εN− εβ

q −1+2r−2rε
ρ−(N−2ε+1)r

∣∣∣∣(ρN−2ε+1v′(ρ)
)′∣∣∣∣

r

dρ

= ωN−1ε
1−2r

1∫
0

ρ
εN− εβ

q +r−Nr−1
∣∣∣∣(ρN−2ε+1v′(ρ)

)′∣∣∣∣
r

dρ

= ωN−1ε
1−2r

1∫
0

ρ
εN− εβ

q +r−Nr−1
∣∣∣(ργ v′(ρ)

)′∣∣∣r dρ.

where γ = N − 2ε + 1. Moreover, by the choice of ε,

∫
�

|x |α|u(x)|p+1 dx = ωN−1 ε

1∫
0

|v(ρ)|p+1ρN−1dρ.

Thus, we get the following estimate for the radial level:

Srad
α,β = ε

−2r− r
p+1 +1 inf

v∈Erad\{0}

∫ 1
0 ρ

εN− εβ
q +r−Nr−1

∣∣∣(ργ v′(ρ)
)′∣∣∣r dρ

(
∫ 1

0 |v(ρ)|p+1ρN−1)
r

p+1
(25)

It is now sufficient to show that there exists η > 0 such that

inf
v∈Erad\{0}

∫ 1
0 ρ

εN− εβ
q +r−Nr−1

∣∣∣(ργ v′(ρ)
)′∣∣∣r dρ

(
∫ 1

0 |v(ρ)|p+1ρN−1)
r

p+1
≥ η > 0 uniformly as ε → 0

We proceed as in the embedding result setting w(ρ) = v′(ρ)ργ . Then

|v(t)| =
∣∣∣∣∣∣

t∫
1

v′(ρ)dρ

∣∣∣∣∣∣ =
∣∣∣∣∣∣

t∫
1

w(ρ)ρ−γ dρ

∣∣∣∣∣∣ =
∣∣∣∣∣∣

t∫
1

ρ−γ
⎛
⎝ ρ∫

0

w′(s)ds

⎞
⎠ dρ

∣∣∣∣∣∣
=
∣∣∣∣∣∣

t∫
1

ρ−γ
⎡
⎣ ρ∫

0

w′(s)s
εN− εβ

q +r−Nr−1

r s− εN− εβ
q +r−Nr−1

r ds

⎤
⎦ dρ

∣∣∣∣∣∣
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(Hölder inequality)

≤

∣∣∣∣∣∣∣
t∫

1

ρ−γ
⎛
⎝ 1∫

0

|w′(s)|r sεN− εβ
q +r−Nr−1ds

⎞
⎠

1/r ⎛
⎝ ρ∫

0

s(−εN+ εβ
q −r+Nr+1)q ds

⎞
⎠

1
q+1

dρ

∣∣∣∣∣∣∣
≤

∣∣∣∣∣∣∣
t∫

1

ρ−γ
⎛
⎝ 1∫

0

|w′(s)|r sεN− εβ
q +r−Nr−1ds

⎞
⎠

1/r ⎛
⎝ ρ∫

0

s−εNq+εβ−1+N (q+1)ds

⎞
⎠

1
q+1

dρ

∣∣∣∣∣∣∣
≤

∣∣∣∣∣∣∣
t∫

1

ρ−γ
⎛
⎝ 1∫

0

|w′(s)|r sεN− εβ
q +r−Nr−1ds

⎞
⎠

1/r

ρ
− εNq

q+1 + εβ
q+1 +N dρ

∣∣∣∣∣∣∣
=
⎛
⎝ 1∫

0

|w′(s)|r sεN− εβ
q +r−Nr−1ds

⎞
⎠

1/r ∣∣∣∣∣∣
t∫

1

ρ
2ε− Nqε

q+1 + εβ
q+1 −1dρ

∣∣∣∣∣∣
=
⎛
⎝ 1∫

0

|w′(s)|r sεN− εβ
q +r−Nr−1ds

⎞
⎠

1/r ∣∣∣∣∣∣
t∫

1

ρ
ε
(

2−N+ N+β
q+1

)
−1

dρ

∣∣∣∣∣∣ =: �

For q + 1 �= N+β
N−2 one has

� =
⎛
⎝ 1∫

0

|w′(s)|r sεN− εβ
q +r−Nr−1ds

⎞
⎠

1/r ∣∣∣∣∣∣
tε(2−N+ N+β

q+1 ) − 1

ε
(

N − 2 − N+β
q+1

)
∣∣∣∣∣∣

Therefore⎛
⎝ 1∫

0

|v(t)|p+1t N−1dt

⎞
⎠

r
p+1

≤
⎛
⎝ 1∫

0

|w′(s)|r sεN− εβ
q +r−Nr−1ds

⎞
⎠
⎛
⎜⎝

1∫
0

∣∣∣∣∣∣
tε(2−N+ N+β

q+1 ) − 1

ε
(

N − 2 − N+β
q+1

)
∣∣∣∣∣∣

p+1

t N−1dt

⎞
⎟⎠

r
p+1

Now we prove that the last term is uniformly bounded as ε → 0. Let

gε(t) =
∣∣∣∣∣∣

tε(2−N+ N+β
q+1 ) − 1

ε
(

N − 2 − N+β
q+1

)
∣∣∣∣∣∣

p+1

t N−1

We have that

gε(t) → (− log t)p+1t N−1 on (0, 1), as ε → 0

and

gε(t) ≤ (− log t)p+1t N−1 on (0, 1).
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Then, by the Dominated Convergence Theorem

1∫
0

gε(t)dt →
1∫

0

(− log t)p+1t N−1dt

which is finite.
The case q + 1 = N+β

N−2 is easier and left to the reader. This ends the proof. 
�
8.2 The ground state level

Following the ideas of Smetz, Su and Willem in [26], we give an upper bound for the level

Sα,β = inf
Wr (�)\{0} R(u) (26)

Proposition 11 Let p, q as in (4), such that

N

p + 1
+ N

q + 1
> N − 2. (27)

Then there exist C > 0 and α0 such that for α ≥ α0

Sα,β ≤ C α
2r−N+N r

p+1 (28)

Proof Let ψ a positive smooth function with support in �. Let us consider the rescaled
function ψα(x) = ψ(α(x − xα)), where xα = (1 − 1

α
, 0, . . . , 0). Since ψα has support in

the ball B(xα,
1
α
), by the change of variable y = α(x − xα) we obtain for β > 0∫
�

|x |−β/q |�ψα|r dx =
∫

B(xα,
1
α
)

|x |−β/q |�ψα|r dx

≤ α2r−N
∫
�

(
1 − 2

α

)−β/q
|�ψ |r dy ,

while for β ≤ 0∫
�

|x |−β/q |�ψα|r dx =
∫

B(xα,
1
α
)

|x |−β/q |�ψα|r dx

≤
∫

B(xα,
1
α
)

|�ψα|r dx = α2r−N
∫
�

|�ψ |r dy.

Furthermore,∫
�

|x |αψ p+1
α (x)dx =

∫
B(xα,

1
α
)

|x |αψ p+1
α (x)dx ≥

(
1 − 2

α

)α ∫
�

α−Nψ p+1(y)dy.

This implies

Sα ≤ Cα2r−N+N r
p+1

∫
�

|�ψ |r dx

(
∫
�
ψ p+1(x)dx)

r
p+1

We remark that 2r − N + N r
p+1 > 0 by (27). 
�
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9 Appendix: Sobolev spaces with Ar weights

9.1 Some definitions

Let r > 1, λ > 0 be a r -weight, i.e. a function on R
N such that

λ > 0 a.e. on R
N , λ and λ−1/(r−1) ∈ L1

loc(R
N )

Let � ∈ R
N a bounded smooth domain. We denote with Lr (�, λ) the set of functions

u ∈ L1
loc(�) such that ∫

�

|u|rλ dx < +∞

and with W 2,r (�, λ) the set of functions u ∈ W 2,1
loc (�) such that∫

�

(|u|r + |∇u|r +
∑
|ξ |=2

|Dξu|rλ) dx < +∞

One can easily prove that endowed with the norm

‖u‖W 2,r (�,λ) :=
⎛
⎝∫
�

(|u|r + |∇u|r +
∑
|ξ |=2

|Dξu|rλ) dx

⎞
⎠

1/r

W 2,r (�, λ) is a Banach Space. We also denote with W̃ 2,r
0 (�, λ) the closure of {φ ∈ C∞(�) :

φ = 0 on ∂�} in W 2,r (�, λ). We are interested to study some “density” property of these
Sobolev spaces with weights. To this aim we introduce the following

Definition 12 (Muckenhoupt Class Ar ) We say that a r -weight λ on R
N is in the Muck-

enhoupt class Ar if ⎛
⎝ 1

|B|
∫
B

λdx

⎞
⎠
⎛
⎝ 1

|B|
∫
B

λ−1/(r−1)dx

⎞
⎠

r−1

≤ C (29)

for every ball B contained in R
N (here |B| denotes the Lebesgue measure of the ball B).

Example 13 λ(x) = |x |γ ∈ Ar iff −N < γ < N (r − 1)

This class of weights is strictly related to the Hardy-Littlewood maximal function

Definition 14 Let f ∈ L1
loc(R

N ). The maximal function of f is defined by

(M f )(x) = sup
R>0

1

|BR(x)|
∫

BR(x)

| f (y)|dy. (30)

In fact the “condition” Ar was introduced by B. Muckenhoupt in the following Theorem

Theorem 15 (Muckenhoupt [22]) Let λ be a r-weight. The following conditions are equiv-
alent:
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(i) there is a constant C such that∫
RN

[(M f )]rλ dx ≤ C
∫

RN

| f |rλdx ∀ f ∈ Lr (RN ) (31)

(ii) λ ∈ Ar

9.2 Approximation by smooth functions on �

The central part of this section is to prove the following extension of the celebrated Meyer-
Serrin result

Theorem 16

W̃ 2,r
0 (�, λ) = W 2,r (�, λ) ∩ W 1,r

0 (�)

In order to prove Theorem 16 we need some preliminary results

Theorem 17 Let λ ∈ L1(�) a positive measure on �. Then C0(�) is dense in Lr (�, λ)

(1 ≤ r < +∞).

Proof (Theorem 2.19 in [1]) It is sufficient to prove that for every ε > 0 and a nonnegative
function u there exists ϕ ∈ C0(�) such that ‖u − ϕ‖Lr (�,λ) < ε.

For u measurable and nonnegative there exists a monotonically increasing sequence {sn}
of nonnegative simple functions converging point-wise to u on � and strongly in Lr (�, λ)

(since 0 ≤ sn(x) ≤ u(x), we have sn ∈ Lr (�, λ) and (u(x)− sn(x))rλ(x) ≤ u(x)rλ(x), so
that by the Dominated Convergence theorem sn → u in Lr (�, λ)). Thus there exists s ∈ {sn}
such that ‖u − s‖Lr (�,λ) < ε/2. By Lusin’s theorem there exists for all δ > 0 a ϕ ∈ C0(R

N )

such that

|ϕ(x)| ≤ ‖s‖∞

and

VolE < δ, E = {x ∈ R
N : ϕ(x) �= s(x)}.

Therefore, by the absolute continuity of the integral, we can choose δ = δ(ε) such that

‖s − ϕ‖Lr (�,λ) ≤ ‖s − ϕ‖∞(
∫
E

λ(x) dx)1/r < ε/2


�
Lemma 18 [25] Let J be a nonnegative, real-valued function in C∞

0 (R
N )with the following

properties

J (x) = 0 i f |x | ≥ 1, and
∫

RN

J (x) = 1.

We consider the sequence of “mollifiers” Jε(x) = ε−N J (x/ε). Then

(i) Jε(x) = 0 if |x | ≥ 1
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(ii) There exists a positive constant C = C(N , sup J ) such that, if

Jε ∗ u(x) =
∫

RN

Jε(x − y)u(y)dy ,

then

|Jε ∗ u(x)| ≤ C M(u)(x), ∀u ∈ L1
loc(R

N ).

Proof From (i) and the definition of maximal function one has

|Jε ∗ u(x)| ≤ sup J

εN

∫
Bε (x)

|u(y)|dy ≤ C
1

|Bε(x)|
∫

Bε (x)

|u(y)|dy ≤ C M(u)(x)


�
Theorem 19 ([1]) Let u be a function which is defined on R

N and vanishes identically
outside �. Let λ a r-weight (1 ≤ r < +∞) belonging to the Muckenhoupt class Ar .

(a) If u ∈ L1
loc(R

N ), then Jε ∗ u(x) ∈ C∞(RN )

(b) If u ∈ L1
loc(�) and supp(u) ⊂⊂ �, then, for ε < dist (supp(u), ∂�),

Jε ∗ u(x) ∈ C∞
0 (�)

(c) If u ∈ Lr (�, λ), then Jε ∗ u(x) ∈ Lr (�, λ). Moreover there exists a positive constant
C = C(N , sup J ) such that

‖Jε ∗ u‖Lr (�,λ) ≤ C‖u‖Lr (�,λ)

(d) If u ∈ Lr (�, λ), then

‖Jε ∗ u − u‖Lr (�,λ) → 0, ε → 0+

Proof (For (a) and (b) see [1] Theorem 2.29).
If u ∈ Lr (�, λ) then (u ∈ L1

loc(R
N )) from Lemma 18 we have

|Jε ∗ u(x)| ≤ C M(u)(x).

Hence since λ is in the Muckenhoupt class, by (31) (Theorem 15)∫
�

|Jε ∗ u(x)|r λ(x)dx ≤ C
∫
�

|M(u)|r (x)λ(x) dx ≤ C1

∫
�

|u(x)|rλ(x) dx .

In particular ‖Jε ∗ u‖Lr (�,λ) ≤ C‖u‖Lr (�,λ) (here C = C(N , sup J ) ). Now, let η > 0 be
given. By Theorem 17 there exists ϕ ∈ C0(�) such that ‖u − ϕ‖Lr (�,λ) <

η
2(C+1) .

Now, since
∫

RN Jε(y)dy = 1, by the uniform continuity of ϕ there exists ε0 such that for
all 0 < ε < ε0

|Jε ∗ ϕ(x)− ϕ(x)| =

∣∣∣∣∣∣∣
∫

RN

Jε(x − y)(ϕ(y)− ϕ(x))dy

∣∣∣∣∣∣∣
≤ sup

|y−x |<ε
|ϕ(y)− ϕ(x)| < η

2(
∫
�
λ(x)dx)1/r

This is sufficient to obtain

‖Jε ∗ ϕ − ϕ‖Lr (�,λ) < η/2
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Finally, from (c) one has

‖Jε ∗ u − u‖Lr (�,λ) ≤ ‖Jε ∗ u − Jε ∗ ϕ‖Lr (�,λ) + ‖Jε ∗ ϕ − ϕ‖Lr (�,λ) + ‖u − ϕ‖Lr (�,λ)

≤ (1 + C)‖u − ϕ‖Lr (�,λ) + ‖Jε ∗ ϕ − ϕ‖Lr (�,λ) < η


�
Lemma 20 Let u ∈ W 2,r (�, λ). If �′ ⊂⊂ �, then Jε ∗ u → u in W 2,r (�′, λ)

Proof Let ε < dist(�′, ∂�), then Dα Jε ∗ u = Jε ∗ Dαu in the distributional sense in �′
(see [1], lemma 3.16). Since Du ∈ Lr (�), and Dαu ∈ Lr (�, λ) for |α| = 2 we have, by
Theorem 19(c)

‖Dα Jε ∗ u − Dαu‖Lr (�′,λ) = ‖Jε ∗ Dαu − Dαu‖Lr (�′,λ) → 0 as ε → 0+

and

‖D Jε ∗ u − Du‖Lr (�′) = ‖Jε ∗ Du − u‖Lr (�′) → 0 as ε → 0+

so that

‖Jε ∗ u − u‖W 2,r (�′,λ) → 0 as ε → 0+ (32)


�
Now we can prove Theorem 16

Proof (we simplify the proof considering the case � = B1(0)) (see also [1] and [13]).
If u ∈ W 2,r (�, λ) and ε > 0 we prove that there exists ϕ ∈ C∞(�) such that ‖ϕ

− u‖W 2,r
0 (�′,λ) < ε. For k = 1, 2, . . . let

�k =
{

x ∈ � : |x | < 1 − 1

k

}
, �0 = �−1 = ∅

and

U1 = �2, Uk =
{

x : k − 2

k − 1
< |x | < k

k + 1

}
, k = 2, . . .

Then

O = {Uk : k = 1, 2, . . .}
is a collection of open subsets of � that covers �. Let � be a C∞-partition of unity for �
subordinate to O. Letψk denote the sum of the finitely many functionsψ ∈ � whose support
are contained in Uk . Then ψk ∈ C∞

0 (Uk) and
∑∞

k=1 ψk(x) = 1, ∀x ∈ �.
Let 0 < ε < 1

(k+1)(k+2) and Vk = {x : k−3
k−2 ≤ |x | < k+1

k+2 , k = 3, . . .}, V1 = �3,

V2 = �4. Then supp(Jε ∗ (ψku)) ⊂ Vk ⊂⊂ �. Since ψku ∈ W 2,r (�, λ), by Lemma 20 we
may choose 0 < εk <

1
(k+1)(k+2) such that

‖Jε ∗ (ψku)− (ψku)‖W 2,r (�,λ) = ‖Jε ∗ (ψku)− (ψku)‖W 2,r (Vk ,λ)
<

ε

2k
.

Let ϕ =∑+∞
j=1 Jεk ∗ (ψku). Since on any �′ ⊂⊂ � only finitely many terms in the sum can

be nonzero, one has ϕ ∈ C∞(�) and ϕ = 0 on ∂�. For x ∈ �k , we have

u(x) =
k+2∑
j=1

ψ j (x)u(x) and ϕ(x) =
k+2∑
j=1

Jεk ∗ (ψ j u)(x)
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Thus

‖u − ϕ‖W 2,r (�k ,λ)
≤

k+2∑
j=1

‖Jεk ∗ (ψ j u)− ψ j u‖W 2,r
0 (�,λ)

< ε

By the monotone convergence theorem ‖u − ϕ‖W 2,r
0 (�,λ)

< ε. 
�
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