Radial and non radial solutions for Hardy–Hénon type elliptic systems

Marta Calanchi · Bernhard Ruf

Received: 15 May 2009 / Accepted: 20 September 2009 / Published online: 17 October 2009 © Springer-Verlag 2009

Abstract We discuss existence and non-existence of positive solutions for the following system of Hardy and Hénon type:

$$\begin{cases} -\Delta v = |x|^{\alpha} u^{p}, \ -\Delta u = |x|^{\beta} v^{q} & \text{in } \Omega, \\ u = v = 0 & \text{on } \partial\Omega, \end{cases}$$

where $\Omega \ni 0$ is a bounded domain in \mathbb{R}^N , $N \ge 3$, p, q > 1, and $\alpha, \beta > -N$. We also study symmetry breaking for ground states when Ω is the unit ball in \mathbb{R}^N .

Mathematics Subject Classification (2000) 35J47 · 35J60 · 35J20

1 Introduction

In this paper we consider the following system of superlinear elliptic equations of Hardy and Hénon type:

$$\begin{cases}
-\Delta v = |x|^{\alpha} u^{p} & \text{in } \Omega, \\
-\Delta u = |x|^{\beta} v^{q} & \text{in } \Omega, \\
u > 0 & \text{in } \Omega, \\
v > 0 & \text{in } \Omega, \\
u = v = 0 & \text{on } \partial \Omega,
\end{cases}$$
(1)

M. Calanchi (🖂) · B. Ruf

Dipartimento di Matematica, Università degli Studi di Milano, via C. Saldini 50, 20133 Milano, Italy e-mail: marta.calanchi@unimi.it

where Ω is a bounded domain in \mathbb{R}^N with $0 \in \Omega$, $N \ge 3$, p, q > 1, and $\alpha, \beta > -N$. In particular, we will investigate existence, multiplicity and qualitative properties (such as radial symmetry in the case Ω a ball) of solutions.

The case of a single equation (especially the case $\alpha > 0$) has been widely studied (see for instance [2–4,7,24,26], and the references therein). Recall that the equation

$$\begin{cases} -\Delta u = |x|^{\alpha} u^{p} & \text{in } \Omega\\ u = 0 & \text{on } \partial\Omega, \end{cases}$$
(2)

is called of Hardy type if $\alpha < 0$ (because of its relation to the Hardy-Sobolev inequality) and it is of Hénon type if $\alpha > 0$ (this equation was introduced by Hénon in 1973 [15] for the study of stellar systems). One has the following results:

Hardy type: By variational methods one obtains the existence of a nontrivial solution of (2) in $H_0^1(\Omega)$ ($\Omega \subset \mathbb{R}^N$ an arbitrary bounded domain) provided that $2 , by an application of the celebrated Caffarelli-Kohn-Nirenberg estimates (CKN, [6]), and due to a generalized Pohozaev type identity one proves non-existence of nontrivial solutions in starshaped domains if <math>0 \ge \alpha > -N$ and $p + 1 = \frac{2(N-|\alpha|)}{N-2}$.

Hénon type: For $\alpha > 0$ one obtains for Ω arbitrary (bounded) the existence of a solution for $2 < p+1 < \frac{2N}{N-2}$. On the other hand, if Ω is a ball, then one has the existence of a radial solution in a larger range, namely for $2 < p+1 < \frac{2(N+\alpha)}{N-2}$ (see [23]), and the non-existence of non-trivial solutions in the range: $p+1 \ge \frac{2(N+\alpha)}{N-2}$ by a Pohozaev-type identity for radial functions. Concerning the symmetry of solutions one has the following result: if Ω is a ball, one

Concerning the symmetry of solutions one has the following result: if Ω is a ball, one proves by moving plane techniques [12] that the *minimal energy* solution is positive and *radially symmetric* if $\alpha \leq 0$ (Hardy case). One can pose the question if this symmetry continues to be present also for positive α . In an interesting paper Smets et al. [26] showed that this is not the case: they proved that for $\alpha > 0$ and sufficiently large a *symmetry-breaking* occurs, that is, to the minimal energy level (which is attained for $p + 1 < 2^* = \frac{2N}{N-2}$) corresponds a solution which is *not radially symmetric*. In a related result, Cao and Peng proved in [5] that for $\alpha > 0$ and p + 1 sufficiently close to 2^* the ground-state solutions of (2) are not radial since they possess a unique maximum point which tends to $\partial\Omega$ as $p + 1 \rightarrow 2^*$.

Turning to the system (1), we first recall the case $\alpha = \beta = 0$ which has been studied by many authors. Here the natural restriction on the exponents *p* and *q* for existence/ non-existence of solutions is given by the *critical hyperbola*, that is

$$\frac{N}{p+1} + \frac{N}{q+1} = N - 2; \tag{3}$$

this hyperbola was first introduced by Mitidieri [21] who proved non-existence of solutions for (p, q) lying on or above the hyperbola, using a Pohozaev-type identity. Existence of solutions for (p + 1, q + 1) below the critical hyperbola was proved by de Figueiredo and Felmer (see [9]) and by Hulshoff and van der Vorst (see [16,17]) by using a variational set-up with fractional Sobolev spaces. A different approach, working with Sobolev-Orlicz spaces (which allows a generalization to non-polynomial nonlinearities), can be found in [8,10].

Recently, the general case $\alpha \neq 0$, and/or $\beta \neq 0$ has been investigated independently by de Figueiredo et al. [11] and Liu and Yang [20]; in both papers an approach via fractional Sobolev spaces is used. As in the scalar case, the presence of the weight functions $|x|^{\alpha}$ and $|x|^{\beta}$ affects the range of p and q for which the problem may have solutions. Indeed, in [11] and [20] it is shown that the dividing line between existence and non-existence is given by the following "weighted" critical hyperbola

Springer
 Springer

$$\frac{N+\alpha}{p+1} + \frac{N+\beta}{q+1} = N - 2.$$
 (4)

For future reference, we call the hyperbola (3) the M-hyperbola (for *Mitidieri hyperbola*), and the hyperbola (4) the $\alpha\beta$ -hyperbola).

We remark that systems of type (1) are closely related to the double weighted Hardy– Littlewood–Sobolev inequality (see e.g. Stein and Weiss [27] and Lieb [18]). This becomes clear by the approach we use for system (1), which is different from the one proposed in the previously cited papers. Following for instance Wang [28] we (formally) deduce from the second equation in (1)

$$v = (-\Delta u)^{\frac{1}{q}} |x|^{-\frac{\beta}{q}} ,$$

and inserting this into the first equation we obtain the following scalar equation for the u-component

$$-\Delta\left((-\Delta u)^{1/q}|x|^{-\beta/q}\right) = |x|^{\alpha}u^{p}$$
(5)

We intend to investigate the rôle played by the weights α and β when dealing with the existence and symmetry of *ground state* (or *minimal energy*) solutions of Eq. 5, that is, minimizers u of the corresponding Raleigh quotient

$$R(u) = \frac{\int_{\Omega} |x|^{-\beta(r-1)} |\Delta u|^r}{\left(\int_{\Omega} |x|^{\alpha} |u|^{p+1} dx\right)^{\frac{r}{p+1}}}, \quad r := \frac{q+1}{q},$$
(6)

on the weighted Sobolev space

$$W^{2,r}(\Omega,|x|^{-\beta(r-1)}dx)\cap W^{1,r}_0(\Omega)$$

Here we denote with $W^{2,r}(\Omega, |x|^{-\beta(r-1)}dx)$ the set of functions $u \in W^{2,1}_{loc}(\Omega)$ such that

$$\int_{\Omega} (|u|^r + |\nabla u|^r + \sum_{|\xi|=2} |D^{\xi}u|^r |x|^{-\beta(r-1)}) \, dx < +\infty \,,$$

endowed with the norm

$$\|u\|_{W^{2,r}(\Omega,|x|^{-\beta/q}dx)} := \left(\int_{\Omega} (|u|^r + |\nabla u|^r + \sum_{|\xi|=2} |D^{\xi}u|^r |x|^{-\beta(r-1)}dx) \, dx \right)^{1/r};$$

also, we denote with

$$W_{rad}^{2,r}(\Omega,|x|^{-\beta(r-1)}dx)$$

the subspace of $W^{2,r}(\Omega, |x|^{-\beta(r-1)}dx)$ of radial functions.

Furthermore, let

$$W_D^{2,r}(\Omega,|x|^{-\beta(r-1)}dx)$$

denote the closure of $\{\phi \in C^{\infty}(\Omega) : \phi = 0 \text{ on } \partial\Omega\}$ in $W^{2,r}(\Omega, |x|^{-\beta(r-1)}dx)$, i.e. the closure of the smooth functions in Ω with Dirichlet boundary conditions, and with

$$W_{D,rad}^{2,r}(\Omega,|x|^{-\beta(r-1)}dx)$$

the corresponding subspace of radial functions (for Ω a ball).

For the definition of this space and related properties we refer the reader to the Appendix. In particular, we prove there the following generalization of the Meyers-Serrin denseness result:

🖄 Springer

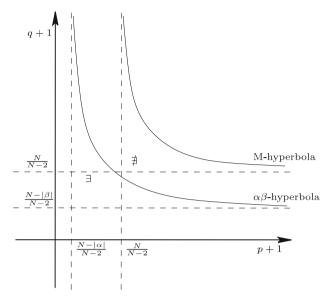


Fig. 1 Hardy type system

Proposition Let Ω a domain with smooth boundary. Suppose that α , $\beta > -N$ and p, q > 1 with $q > \frac{\beta}{N}$. Then

$$W_D^{2,r}(\Omega, |x|^{-\beta/q} dx) = W^{2,r}(\Omega, |x|^{-\beta/q} dx) \cap W_0^{1,r}(\Omega).$$

It is not difficult to prove that critical points of R(u) on $W_D^{2,r}(\Omega, |x|^{-\beta/q}dx)$ are (up to rescaling) weak solutions of (5), i.e. verifying

$$\begin{cases} \int (-\Delta u)^{1/q} |x|^{-\beta/q} (-\Delta \varphi) dx = \int_{\Omega} |x|^{\alpha} u^{p} \varphi \, dx, \\ \text{for all } \varphi \in W_{D}^{2,r}(\Omega, |x|^{-\beta/q} dx) \end{cases}$$

and, moreover, if $v = (-\Delta u)^{\frac{1}{q}} |x|^{-\frac{\beta}{q}}$, then $v \in W^{2,\frac{p+1}{p}}(\Omega, |x|^{-\frac{\alpha}{p}} dx) \cap W_0^{1,\frac{p+1}{p}}(\Omega)$. In accordance, by a *strong solution* of the system we mean a couple (u, v) of weak-solutions such that

$$(u,v) \in W^{2,r}(\Omega, |x|^{-\frac{\beta}{q}} dx) \cap W^{1,r}_0(\Omega) \times W^{2,\frac{p+1}{p}}(\Omega, |x|^{-\frac{\alpha}{p}} dx) \cap W^{1,\frac{p+1}{p}}_0(\Omega)$$

In what follows, we will denote by *E* the space $E = W_D^{2,r}(\Omega, |x|^{-\beta(r-1)}dx) = W^{2,r}(\Omega, |x|^{-\beta/q}dx) \cap W_0^{1,r}(\Omega)$ (if the values β and *r* are clear from the context), and by E_{rad} the radial component of *E*.

In this paper we investigate solvability and symmetry properties of the solutions for general exponents α and β . We will see that the solvability and the qualitative properties of the solutions depend on the location of the exponents p, q with respect to the M-hyperbola and the $\alpha\beta$ -hyperbola.

Note that if α , $\beta < 0$, then the $\alpha\beta$ -hyperbola lies below the M-hyperbola, see Fig. 1. In this case, we have the following result:

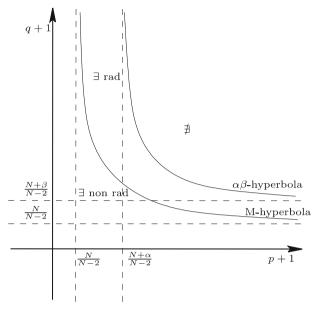


Fig. 2 Hénon type system

Theorem 1 (Hardy-type system) Let $0 \ge \alpha$, $\beta > -N$, and p, q > 1.

- (a) If N-|α|/p+1 + N-|β|/(q+1) = N 2 (i.e. on the αβ-hyperbola), and if Ω is starshaped, then system (1) has no non-trivial solution, and hence inf_E R(u) is not attained.
 (b) If N-|α|/(p+1) + N-|β|/(q+1) > N 2 (i.e. below the αβ-hyperbola), then
- - (b₁) inf_E R(u) is attained, and therefore system (1) has a nontrivial solution \bar{u} (the *minimal energy solution):*
 - (b₂) if Ω is a ball, then \overline{u} is radially symmetric

Next, we consider the case $\alpha, \beta > 0$, i.e. the Hénon-type system. Note that then the $\alpha\beta$ -hyperbola lies above the M-hyperbola, and there are three regions which characterize the behavior of the system, see Fig. 2.

Theorem 2 (Hénon type system) Let α , $\beta > 0$, and suppose that p, q > 1.

- If $\frac{N+\alpha}{p+1} + \frac{N+\beta}{q+1} \leq N-2$ (i.e., on or above the $\alpha\beta$ -hyperbola) and Ω is starshaped, then system (1) has no non-trivial solution; (a)
- Suppose that $\Omega = B_1(0)$. If $q > \max\{1, \frac{\beta}{N}\}$ and $\frac{N+\alpha}{p+1} + \frac{N+\beta}{q+1} > N-2$ (i.e. below (b) the $\alpha\beta$ -hyperbola), then system (1) has a radial solution (not necessarily of minimal energy);
- (c) If $\frac{N}{p+1} + \frac{N}{q+1} > N 2$ (i.e. below the M-hyperbola), then $\inf_E R(u)$ is attained and hence system (1) has a ground state solution; furthermore, if $\alpha > 0$ is sufficiently large, then the ground state solution is not radially symmetric.
- *Remarks* (1) Note that (c) of the previous theorem can be interpreted as a symmetry breaking: for α , $\beta < 0$ we have by Theorem 1 that the ground state solution in a ball is radial, while (c) says that for α , $\beta > 0$ and α large the ground state solution is non radial.

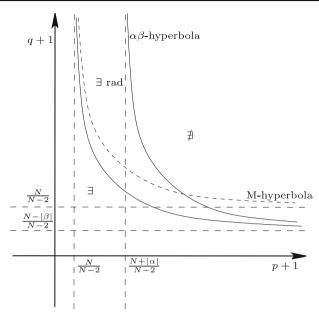


Fig. 3 Hardy-Hénon type system

By (b) and (c) of Theorem 2 we get the existence of at least two solutions for (p+1, q+1)(2)below the M-hyperbola and α large: one radial solution (obtained as minimum of R(u)) on E_{rad}), and the minimal energy solution which is non-radial.

In the Hénon case there is a very recent symmetry breaking result, due to He and Yang ([14]): they prove that if (for q fixed) p goes towards the M-hyperbola, then the ground state solution is non radial; this result extends to systems the corresponding result for the equation by Cao and Peng [5]).

Finally, we consider the case of a mixed *Hénon-Hardy type system*, i.e. one exponent (say α) is positive and the other exponent (i.e. β) is negative. In this case the M-hyperbola and the $\alpha\beta$ -hyperbola intersect, see Fig. 3. We show that in this case a third hyperbola comes into play.

Theorem 3 (Hénon-Hardy type system) Let $\alpha > 0$, $0 > \beta > -N$, and suppose that p, q > 1.

- If $\frac{N+\alpha}{p+1} + \frac{N-|\beta|}{q+1} = N 2$ (i.e. on the $\alpha\beta$ -hyperbola) and Ω is starshaped, then system (1) has no solution; (a)
- (b) Assume Ω = B₁(0). If ^{N+α}/_{p+1} + ^{N-|β|}/_{q+1} > N 2 (i.e. below the αβ-hyperbola), then system (1) has a radial solution (not necessarily of minimal energy);
 (c) If (p, q) satisfies ^N/_{p+1} + ^{N-|β|}/_{q+1} > N 2, then inf_E R(u) is attained and hence system
 (1) has a provide that a state of the sta
- (1) has a ground state solution; furthermore, if $\alpha > 0$ is sufficiently large, then the ground state solution is not radially symmetric.

Remark Suppose that Ω is an arbitrary bounded domain: if (p + 1, q + 1) lies below the $\alpha\beta$ -hyperbola and above the M-hyperbola, then it is *not known* whether inf E R(u) is attained.

2 The Hardy case: proof of Theorem 1

Proof of Theorem 1 (a): this is obtained via a generalized identity of Pohozaev-type, see Proposition 7 Sect. 6 below. Note that this case is somewhat delicate due to the singular weights.

Proof of Theorem 1 (b₁): To prove the existence of a positive solution we minimize the Rayleigh quotient R(u) given in (6). By the compactness of the embedding in Lemma 4 (see Sect. 5) the infimum is attained by a positive function, which is a (strong) solution of problem (10).

Proof of Theorem 1 (b₂): for $\alpha = \beta = 0$ and if Ω is a ball, it was proved by X.J. Wang [28] that the ground state of (6) is a radial and radially decreasing positive function. By adapting his argument (moving planes technique and maximum principle) one can extend this result also to the values α , $\beta < 0$ (noting that the weights do not interfere with the moving planes technique).

3 The Hénon case: proof of Theorem 2

Proof of Theorem 2 (a): this follows again by a Pohozaev-type identity proved in Proposition 6 in Sect. 6 below.

Proof of Theorem2 (b): The existence of radial solutions under the hypotheses of Theorem 2(b) follows from the embedding result for radial functions in Lemma 9 in Sect. 7 below, by considering again the Rayleigh quotient R(u) on the weighted space $W_{rad}^{2,r}(\Omega, |x|^{-\beta/q} dx)$.

Proof of Theorem 2 (c): We have to show that $m := \inf_E R(u)$ is attained. Let $\{u_n\} \subset E$ be a minimizing sequence. We may assume that

$$\int_{\Omega} |x|^{\alpha} |u_n|^{p+1} = 1, \quad \text{and} \quad \int_{\Omega} |x|^{-\beta/N} |\Delta u_n|^r dx \to m > 0.$$

Then clearly $\int_{\Omega} |\Delta u_n|^r dx \leq c$, and by the assumption and the Rellich-Kondrachov compactness theorem it follows that $\{u_n\}$ has a convergent subsequence in $L^{p+1}(\Omega)$, and hence also in $L^{p+1}(\Omega, |x|^{\alpha} dx)$. This is sufficient to conclude that $\inf_E R(u)$ is attained.

Finally, we show that if $\alpha > 0$ is sufficiently large, then the radial ground state level lies above the ground state level: indeed, by Proposition 10 below we have the following lower estimate for the radial ground state level:

$$S_{\alpha,\beta}^{rad} \geq C \alpha^{2r+\frac{r}{p+1}-1}$$
, for $\alpha \geq \alpha_0$

On the other hand, for the ground state level the following upper estimate holds (see Proposition 11 below): there exist C > 0 and α_0 such that for $\alpha \ge \alpha_0$

$$S_{\alpha,\beta} < C \alpha^{2r-N+N\frac{r}{p+1}}$$

From these two inequalities it follows that the ground state is non radial for α sufficiently large, since

$$\frac{r}{p+1} - 1 > -N + N \frac{r}{p+1} \Longleftrightarrow \frac{r}{p+1} < 1 ,$$

which is clearly the case.

4 The mixed case: proof of Theorem 3

Proof of Theorem 3 (a) and (b): as in Theorem 2

Proof of Theorem 3 (c): Let $\{u_n\} \subset E$ be a minimizing sequence for $m = \inf R(u)$. We may assume that

$$\int_{\Omega} |x|^{\alpha} |u_n|^{p+1} = 1, \quad \text{and} \quad \int_{\Omega} |x|^{|\beta|/N} |\Delta u_n|^r dx \to m$$

We apply the embedding result in Lemma 4 (see Sect. 5 below) for $\alpha = 0$, i.e. under the hypotheses of Theorem 3 c). By the compactness of the embedding we have that for a subsequence $u_n \rightarrow u$ in $L^{p+1}(\Omega)$, and since $\alpha > 0$ clearly also in $L^{p+1}(\Omega, |x|^{\alpha} dx)$. Thus is sufficient to conclude that $\inf_E R(u)$ is attained.

Proof of Theorem 3 (c): one proves as in Theorem 2 c) that if $\alpha > 0$ is sufficiently large, then the ground state level is non radial.

5 An embedding result of Caffarelli-Kohn-Nirenberg type

We first prove a preliminary embedding result:

Lemma 4 Let $\Omega \subset \mathbb{R}^N$ be a bounded smooth domain with $0 \in \Omega$. For given α , β , q let p^* such that

$$\frac{N-|\alpha|}{p^*+1} + \frac{N-|\beta|}{q+1} = N-2.$$
(7)

Then we have the following continuous embedding

$$W^{2,r}(\Omega, |x|^{-\beta(r-1)}dx) \hookrightarrow L^{p+1}(\Omega, |x|^{\alpha}), \text{ for } 0 \le p \le p^*;$$

furthermore, if

$$\frac{N-|\alpha|}{p+1} + \frac{N-|\beta|}{q+1} > N-2, \quad i.e. \ p < p^{\star},$$
(8)

then the embedding is compact.

Proof This follows from the generalization due to Lin (see [19]) of the Caffarelli-Kohn-Nirenberg inequality [6]: if (7) holds, then there exists a constant C such that

$$\left(\int\limits_{\mathbb{R}^N} |x|^{\alpha} |u|^{(p^{\star}+1)}\right)^{\frac{1}{(p^{\star}+1)}} \leq C\left(\int\limits_{\mathbb{R}^N} |x|^{-\beta(r-1)} |D^2 u|^r\right)$$

for all $u \in C_0^{\infty}(\mathbb{R}^N)$.

Via extension theorems (see for instance [1]) we have

$$W^{2,r}(\Omega, |x|^{-\beta(r-1)}dx) \hookrightarrow L^{p^*+1}(\Omega, |x|^{\alpha}),$$

and for any $0 \le p < p^*$ the embedding is compact.

Another consequence of the CKN inequalities is the following

Lemma 5 If $(u, v) \in W_D^{2, \frac{q+1}{q}}(\Omega, |x|^{|\beta|/q}dx) \times W_D^{2, \frac{p+1}{p}}(\Omega, |x|^{|\alpha|/p}dx)$, with p and q as in (7), then $\nabla u \nabla v \in L^1(\Omega)$.

Proof If $u \in W_D^{2,\frac{q+1}{q}}(\Omega, |x|^{|\beta|/q}dx)$ and $v \in W_D^{2,\frac{p+1}{p}}(\Omega, |x|^{|\alpha|/p}dx)$ then from the CKN inequality applied to ∇u and ∇v , one has $\nabla u \in L^s(\Omega)$ with $s = \frac{N(q+1)}{Nq+|\beta|-(q+1)}$, and $\nabla v \in L^t(\Omega)$ with $t = \frac{N(p+1)}{Np+|\alpha|-(p+1)}$. It is not difficult to prove that $\frac{1}{s} + \frac{1}{t} = 1$. So the assertion follows by the Hölder inequality.

6 A generalized identity of Pohozaev-type

In this section we prove, via a generalized identity of Pohozaev-type, the non-existence of "strong" solutions on or above the critical $\alpha\beta$ -hyperbola.

We consider first the Hénon case $\alpha \ge 0, \beta \ge 0$. In this case we can suppose that the solutions (u, v) are of class $C^2(\Omega) \cap C^1(\overline{\Omega})$.

Proposition 6 Let $\Omega \subset \mathbb{R}^N$ be a bounded, smooth, starshaped domain with respect to $0 \in \mathbb{R}^N$. If $\alpha, \beta \geq 0$ and

$$\frac{N+\alpha}{p+1} + \frac{N+\beta}{q+1} \le N-2 \tag{9}$$

then the problem

$$\begin{cases} -\Delta v = |x|^{\alpha} |u|^{p-1} u \quad in \ \Omega, \\ -\Delta u = |x|^{\beta} |v|^{q-1} v \quad in \ \Omega, \\ u = v = 0 \qquad on \ \partial\Omega, \end{cases}$$
(10)

has no nontrivial strong positive solutions.

Proof This follows by adapting the argument of Mitidieri in [21]. Let

$$G(x, u, v) = \frac{1}{p+1} |x|^{\alpha} |u|^{p+1} + \frac{1}{q+1} |x|^{\beta} |v|^{q+1}$$
(11)

so (10) becomes

$$\begin{cases} -\Delta v = \frac{\partial G}{\partial u}(x, u, v) & \text{in } \Omega\\ -\Delta u = \frac{\partial G}{\partial v}(x, u, v) & \text{in } \Omega\\ u = v = 0 & \text{on } \partial \Omega \end{cases}$$
(12)

We multiply the equations respectively by $(x \cdot \nabla u)$ and by $(x \cdot \nabla v)$, add the two equations and integrate. By an application of the divergence theorem (see Proposition 2.1 and Corollary 2.1 in [21]) we have for the left sides

$$\int_{\Omega} \{\Delta u \left(x \cdot \nabla v\right) + \Delta v \left(x \cdot \nabla u\right)\} dx$$
$$= \int_{\partial \Omega} \left\{ \frac{\partial u}{\partial n} \frac{\partial v}{\partial n} (x \cdot n) \right\} ds + (N - 2) \int_{\Omega} (\nabla u \nabla v) dx$$
(13)

(since u = v = 0 on $\partial \Omega$, we have $(x \cdot \nabla u) = x \cdot n \frac{\partial u}{\partial n}$ and $(x \cdot \nabla v) = x \cdot n \frac{\partial v}{\partial n}$ on $\partial \Omega$).

For the right sides we have, since

$$\frac{\partial G}{\partial u}(x \cdot \nabla u) + \frac{\partial G}{\partial v}(x \cdot \nabla v) = \operatorname{div}\{xG(x, u, v)\}$$
$$-NG(x, u, v) - \alpha \frac{|x|^{\alpha}}{p+1} |u|^{p+1} - \beta \frac{|x|^{\beta}}{q+1} |v|^{q+1}$$
(14)

and taking into account that G(x, u, v) = 0 on $\partial \Omega$:

$$\int_{\Omega} \left\{ \frac{\partial G}{\partial u} (x \cdot \nabla u) + \frac{\partial G}{\partial v} (x \cdot \nabla v) \right\} dx$$
$$= -\frac{N+\alpha}{p+1} \int_{\Omega} |x|^{\alpha} |u|^{p+1} dx - \frac{N+\beta}{q+1} \int_{\Omega} |x|^{\beta} |v|^{q+1} dx.$$
(15)

Therefore

$$\int_{\partial\Omega} \left\{ \frac{\partial u}{\partial n} \frac{\partial v}{\partial n} (x \cdot n) \right\} ds + (N - 2) \int_{\Omega} (\nabla u \nabla v) dx$$
$$= \frac{N + \alpha}{p + 1} \int_{\Omega} |x|^{\alpha} |u|^{p+1} dx + \frac{N + \beta}{q + 1} \int_{\Omega} |x|^{\beta} |v|^{q+1} dx.$$
(16)

Now, multiplying the first equation by u, the second by v and integrating, one obtains

$$\int_{\Omega} (\nabla u \nabla v) dx = \int_{\Omega} |x|^{\alpha} |u|^{p+1} dx = \int_{\Omega} |x|^{\beta} |v|^{q+1} dx$$

So (16) becomes (Pohozaev identity)

$$\int_{\partial\Omega} \left\{ \frac{\partial u}{\partial n} \frac{\partial v}{\partial n} (x \cdot n) \right\} ds$$

= $\left\{ -(N-2) + \frac{N+\alpha}{p+1} + \frac{N+\beta}{q+1} \right\} \int_{\Omega} |x|^{\alpha} |u|^{p+1} dx$ (17)

Since Ω is starshaped and u, v are positive, we have $\int_{\partial \Omega} \left\{ \frac{\partial u}{\partial n} \frac{\partial v}{\partial n} (x \cdot n) \right\} ds > 0$, and hence by (16)

$$0 < \int_{\partial\Omega} \left\{ \frac{\partial u}{\partial n} \frac{\partial v}{\partial n} (x \cdot n) \right\} ds$$

=
$$\left\{ -(N-2) + \frac{N+\alpha}{p+1} + \frac{N+\beta}{q+1} \right\} \int_{\Omega} |x|^{\alpha} |u|^{p+1} dx$$
(18)

which gives a contradiction for the choice of p and q.

Next, we consider the Hardy case.

Proposition 7 Let Ω as in Proposition 6 and assume that $0 \ge \alpha$, $\beta > -N$ and

$$\frac{N-|\alpha|}{p+1} + \frac{N-|\beta|}{q+1} = N-2;$$
(19)

then there exists no positive strong solution (u, v) of (12).

Proof For this case we follow the idea developed by B. Xuan (see Appendix in [29]).

Let (u, v) a positive solution of system (12). Due to the Hardy weights this solution may be singular in the origin, but standard regularity results imply that for every δ small, u and vbelong to $C^2(\Omega \setminus B_{\delta}(0)) \cap C^0(\overline{\Omega \setminus B_{\delta}(0)})$. We multiply the equations respectively by $(x \cdot \nabla u)$ and by $(x \cdot \nabla v)$, add the two equations and integrate over $\Omega_{\delta} = \Omega \setminus B_{\delta}(0)$

$$-\int_{\Omega_{\delta}} \{\Delta u (x \cdot \nabla v) + \Delta v (x \cdot \nabla u)\} dx$$
$$= \int_{\Omega_{\delta}} \left\{ \frac{\partial G}{\partial u} (x \cdot \nabla u) + \frac{\partial G}{\partial v} (x \cdot \nabla v) \right\} dx,$$
(20)

where G = G(x, u, v) is as in (11).

We apply the Divergence Theorem to xG, so that one has for the right side of (20)

$$\int_{\Omega_{\delta}} \left\{ \frac{\partial G}{\partial u} (x \cdot \nabla u) + \frac{\partial G}{\partial v} (x \cdot \nabla v) \right\} dx$$

= $-\frac{N - |\alpha|}{p + 1} \int_{\Omega_{\delta}} \frac{u^{p+1}}{|x|^{\alpha}} dx - \frac{N - |\beta|}{q + 1} \int_{\Omega_{\delta}} \frac{v^{q+1}}{|x|^{\beta}} dx + \int_{|x| = \delta} G(u, v, x) (x \cdot n) ds,$ (21)

while for the left side of (20) (see [21], Corollary 2.1) one has

$$\int_{\Omega_{\delta}} \{\Delta u \left(x \cdot \nabla v\right) + \Delta v \left(x \cdot \nabla u\right)\} dx$$

$$= \int_{\partial\Omega_{\delta}} \left\{ \frac{\partial u}{\partial n} (x \cdot \nabla v) + \frac{\partial v}{\partial n} (x \cdot \nabla u) - (\nabla u \nabla v) (x \cdot n) \right\} ds + (N - 2) \int_{\Omega_{\delta}} (\nabla u \nabla v) dx$$

$$= \int_{|x|=\delta} \left\{ \frac{\partial u}{\partial n} (x \cdot \nabla v) + \frac{\partial v}{\partial n} (x \cdot \nabla u) - (\nabla u \nabla v) (x \cdot n) \right\} ds$$

$$+ \int_{\partial\Omega} \left\{ \frac{\partial u}{\partial n} \frac{\partial v}{\partial n} (x \cdot n) \right\} ds + (N - 2) \int_{\Omega_{\delta}} (\nabla u \nabla v) dx. \tag{22}$$

Now, multiplying the first equation by u, the second by v and integrating, one obtains

$$\int_{\Omega_{\delta}} (\nabla u \nabla v) dx - \int_{|x|=\delta} v \nabla u \cdot x = \int_{\Omega_{\delta}} |x|^{\beta} |v|^{q+1} dx$$

and

$$\int_{\Omega_{\delta}} (\nabla u \nabla v) dx - \int_{|x|=\delta} u \nabla v \cdot x = \int_{\Omega_{\delta}} |x|^{\alpha} u^{p+1} dx$$

The Pohozaev identity (17) follows if we prove that all the integrals along $\{|x| = \delta\}$ go to zero, at least for a subsequence $\delta_k \to 0$. But this follows by the mean value theorem, since by the Lemmas in Sect. 5 the integrals

$$\int_{\Omega} G(u, v, x) dx, \int_{\Omega} |u \nabla v| dx, \int_{\Omega} |v \nabla u| dx, \int_{\Omega} |\nabla u \nabla v| dx$$

are finite. Indeed, if ψ is a positive function in $L^1(\Omega)$, then $\epsilon_k = \int_{B_{1/k}(0)} \psi(x) dx \to 0$ as $k \to +\infty$. Moreover, if $\psi \in C(\Omega \setminus \{0\})$ then

$$\epsilon_k = \int\limits_{B_{1/k}(0)} \psi(x) dx = \int\limits_{0}^{1/k} \int\limits_{|x|=\delta} \psi(x) ds \, d\delta$$

By the Mean Value Theorem there exists $\delta_k \in (0, 1/k)$ such that

$$\epsilon_k = \frac{1}{k} \int\limits_{|x|=\delta_k} \psi(x) ds$$

Therefore

$$\int_{|x|=\delta_k} \psi(x)(x \cdot n) ds = \int_{|x|=\delta_k} \psi(x) \delta_k ds = k\epsilon_k \delta_k \le \epsilon_k \to 0.$$

Proposition 8 Let Ω as in Proposition 6, and assume that $\alpha \ge 0, 0 \ge \beta > -N$ and

$$\frac{N+\alpha}{p+1} + \frac{N-|\beta|}{q+1} = N-2$$
(23)

then there exists no positive strong solution (u, v) of (12).

Proof By combining the previous methods one obtains the result.

7 An embedding theorem for radial functions

Proposition 9 Let $\Omega \subset \mathbb{R}^N$ be the ball $\Omega = B_1(0)$. Let α , $\beta > -N$ and let p and q such that $q > \frac{\beta}{N}$ and

$$\frac{\alpha + N}{p+1} + \frac{N+\beta}{q+1} > N-2.$$
(24)

Then the embedding

$$E_{rad} = W_{D,rad}^{2,r}(\Omega, |x|^{-\beta/q} dx) \hookrightarrow L^{p+1}(\Omega, |x|^{\alpha} dx), \quad r = \frac{q+1}{q}$$

is continuous and compact.

Proof By the density result (Theorem 16 in the Appendix) it is sufficient to prove the assertion for radial $u \in C^{\infty}(\Omega) \cap E_{rad}$ with u = 0 on $\partial\Omega$. For such u we have

$$\Delta u = t^{1-N} (u'(t)t^{N-1})'$$

It is sufficient to prove that there exists a constant C such that

$$\left(\int_{0}^{1} t^{\alpha} |u(t)|^{p+1} t^{N-1} dt\right)^{\frac{1}{p+1}} \le C \left(\int_{0}^{1} |(u'(s)s^{N-1})'|^{r} s^{r-rN+N-1-\beta/q} ds\right)^{1/r} =: C ||u||_{*}$$

Deringer

Set $w(t) = u'(t)t^{N-1}$. Then, since w(0) = 0

$$|u(t)| = \left| \int_{1}^{t} u'(s)ds \right| = \left| \int_{1}^{t} w(s)s^{1-N}ds \right| = \left| \int_{t}^{1} \left[\int_{0}^{s} w'(\xi)d\xi \right] s^{1-N}ds \right|$$
$$= \left| \int_{1}^{t} \left[\int_{0}^{s} w'(\xi) \,\xi \,\frac{r-rN+N-1-\beta/q}{r} \,\xi^{-\frac{r-rN+N-1-\beta/q}{r}} \,d\xi \right] s^{1-N}ds \right|$$

(by Hölder inequality with exponents $r = 1 + \frac{1}{q}$ and r' = q + 1)

$$\leq \int_{t}^{1} \left[\int_{0}^{s} |w'(\xi)|^{r} \xi^{r-rN+N-1-\beta/q} \right]^{1/r} \left[\int_{0}^{s} \xi^{-\frac{r-rN+N-1-\beta/q}{r}(q+1)} d\xi \right]^{\frac{1}{q+1}} s^{1-N} ds$$

$$\leq \|u\|_{*} \int_{t}^{1} \left[\int_{0}^{s} \xi^{N+\beta-1} d\xi \right]^{\frac{1}{q+1}} s^{1-N} ds$$

$$\leq \|u\|_{*} \int_{t}^{1} s^{\frac{N+\beta}{q+1}+1-N} ds$$

Now three cases may occur:

Case 1 $\frac{N+\beta}{q+1} > N-2$ that is $q+1 < \frac{N+\beta}{N-2}$. In this case we have $\int_{\Omega} |x|^{\alpha} |u(x)|^{p+1} dx \le C ||u||_*^{p+1};$

Case 2 For $q + 1 = \frac{N+\beta}{N-2}$ $\int_{\Omega} |x|^{\alpha} |u(x)|^{p+1} dx \le C ||u||_{*} \int_{\Omega} |x|^{\alpha} |\log(|x|)|^{p+1} dx \le C ||u||_{*}^{p+1},$

since, for $\alpha > -N$, $|x|^{\alpha} |\log(|x|)|^{p+1}$ is integrable.

Case 3 Finally for $q + 1 > \frac{N+\beta}{N-2}$

$$\int_{\Omega} |x|^{\alpha} |u(x)|^{p+1} dx = \omega_{N-1} \int_{0}^{1} t^{\alpha+N-1} |u(t)|^{p+1} dt$$
$$\leq C \|u\|_{*}^{p+1} \int_{0}^{1} t^{\alpha+N-1} t^{(p+1)\left(\frac{N+\beta}{q+1}-N+2\right)} dt \leq C \|u\|_{*}^{p+1}$$

for α such that

$$\alpha + N + (p+1)\left(\frac{N+\beta}{q+1} - N + 2\right) > 0$$

that is

$$\frac{\alpha+N}{p+1} + \frac{N+\beta}{q+1} > N-2.$$

Finally, the proof of the compactness is standard.

8 Estimates for ground states

8.1 The radial ground state level (β fixed, $\alpha \to +\infty$)

We give now an estimate from below for the radial level

$$S_{\alpha,\beta}^{rad} = \inf_{u \in E_{rad} \setminus \{0\}} \frac{\int_{\Omega} |x|^{-\beta/q} |\Delta u|^r dx}{\left(\int_{\Omega} |x|^{\alpha} |u|^{p+1} dx\right)^{\frac{r}{p+1}}}$$

Proposition 10 *There exist* C > 0 *and* α_0 *such that*

$$S_{\alpha,\beta}^{rad} \ge C \alpha^{2r + \frac{r}{p+1} - 1}, \quad \alpha \ge \alpha_0$$

Proof Let $\varepsilon = \frac{N}{N+\alpha}$ and u(x) = u(|x|) a smooth radial function such that u = 0 on $\partial\Omega$. Let $v(\rho) = u(\rho^{\varepsilon})$. We have

$$v'(\rho) = \varepsilon u'(\rho^{\varepsilon})\rho^{\varepsilon-1}$$
 and $v''(\rho) = \varepsilon^2 u''(\rho^{\varepsilon})\rho^{2\varepsilon-2} + \varepsilon(\varepsilon-1)u'(\rho^{\varepsilon})\rho^{\varepsilon-2}$

so that

$$u'(\rho^{\varepsilon}) = \rho^{1-\varepsilon}\varepsilon^{-1}v'(\rho)$$
 and $u''(\rho^{\varepsilon}) = \varepsilon^{-2}\rho^{2-2\varepsilon}[v''(\rho) - (\varepsilon - 1)\rho^{-1}v'(\rho)]$

Therefore, by the change of variable $t = \rho^{\varepsilon}$,

$$\begin{split} \int_{\Omega} |x|^{-\beta/q} |\Delta u|^r dx &= \omega_{N-1} \int_{0}^{1} \left| u''(t) + \frac{N-1}{t} u'(t) \right|^r t^{N-1-\beta/q} dt \\ &= \omega_{N-1} \int_{0}^{1} \varepsilon \rho^{\varepsilon N - \frac{\varepsilon \beta}{q} - 1} \left| u''(\rho^{\varepsilon}) + \frac{N-1}{\rho^{\varepsilon}} u'(\rho^{\varepsilon}) \right|^r d\rho \\ &= \omega_{N-1} \int_{0}^{1} \varepsilon \rho^{\varepsilon N - \frac{\varepsilon \beta}{q} - 1} \left| \varepsilon^{-2} \rho^{2-2\varepsilon} \left[v''(\rho) - (\varepsilon - 1) \rho^{-1} v'(\rho) \right] \\ &+ \frac{N-1}{\rho^{\varepsilon}} \varepsilon^{-1} \rho^{1-\varepsilon} v'(\rho) \right|^r d\rho \\ &= \omega_{N-1} \int_{0}^{1} \varepsilon^{1-2r} \rho^{\varepsilon N - \frac{\varepsilon \beta}{q} - 1} \left| \rho^{2-2\varepsilon} \left[v''(\rho) - (\varepsilon - 1) \rho^{-1} v'(\rho) \right] \\ &+ (N-1) \varepsilon \rho^{1-2\varepsilon} v'(\rho) \right|^r d\rho \\ &= \omega_{N-1} \int_{0}^{1} \varepsilon^{1-2r} \rho^{\varepsilon N - \frac{\varepsilon \beta}{q} - 1 + 2r - 2r\varepsilon} \left| v''(\rho) + \frac{N-2\varepsilon + 1}{\rho} v'(\rho) \right|^r d\rho \end{split}$$

Deringer

$$=\omega_{N-1}\varepsilon^{1-2r}\int_{0}^{1}\rho^{\varepsilon N-\frac{\varepsilon\beta}{q}-1+2r-2r\varepsilon}\rho^{-(N-2\varepsilon+1)r}\left|\left(\rho^{N-2\varepsilon+1}v'(\rho)\right)'\right|^{r}d\rho$$
$$=\omega_{N-1}\varepsilon^{1-2r}\int_{0}^{1}\rho^{\varepsilon N-\frac{\varepsilon\beta}{q}+r-Nr-1}\left|\left(\rho^{N-2\varepsilon+1}v'(\rho)\right)'\right|^{r}d\rho$$
$$=\omega_{N-1}\varepsilon^{1-2r}\int_{0}^{1}\rho^{\varepsilon N-\frac{\varepsilon\beta}{q}+r-Nr-1}\left|\left(\rho^{\gamma}v'(\rho)\right)'\right|^{r}d\rho.$$

where $\gamma = N - 2\varepsilon + 1$. Moreover, by the choice of ε ,

$$\int_{\Omega} |x|^{\alpha} |u(x)|^{p+1} dx = \omega_{N-1} \varepsilon \int_{0}^{1} |v(\rho)|^{p+1} \rho^{N-1} d\rho.$$

Thus, we get the following estimate for the radial level:

$$S_{\alpha,\beta}^{rad} = \varepsilon^{-2r - \frac{r}{p+1} + 1} \inf_{v \in E_{rad} \setminus \{0\}} \frac{\int_0^1 \rho^{\varepsilon N - \frac{\varepsilon \beta}{q} + r - Nr - 1} \left| \left(\rho^{\gamma} v'(\rho) \right)' \right|^r d\rho}{\left(\int_0^1 |v(\rho)|^{p+1} \rho^{N-1} \right)^{\frac{r}{p+1}}}$$
(25)

It is now sufficient to show that there exists $\eta > 0$ such that

$$\inf_{v \in E_{rad} \setminus \{0\}} \frac{\int_0^1 \rho^{\varepsilon N - \frac{\varepsilon \beta}{q} + r - Nr - 1} \left| \left(\rho^{\gamma} v'(\rho) \right)' \right|^r d\rho}{\left(\int_0^1 |v(\rho)|^{p+1} \rho^{N-1} \right)^{\frac{r}{p+1}}} \ge \eta > 0 \quad \text{ uniformly as } \varepsilon \to 0$$

We proceed as in the embedding result setting $w(\rho) = v'(\rho)\rho^{\gamma}$. Then

$$\begin{aligned} |v(t)| &= \left| \int_{1}^{t} v'(\rho) d\rho \right| = \left| \int_{1}^{t} w(\rho) \rho^{-\gamma} d\rho \right| = \left| \int_{1}^{t} \rho^{-\gamma} \left(\int_{0}^{\rho} w'(s) ds \right) d\rho \right| \\ &= \left| \int_{1}^{t} \rho^{-\gamma} \left[\int_{0}^{\rho} w'(s) s^{\frac{\varepsilon N - \frac{\varepsilon \beta}{q} + r - Nr - 1}{r}} s^{-\frac{\varepsilon N - \frac{\varepsilon \beta}{q} + r - Nr - 1}{r}} ds \right] d\rho \right| \end{aligned}$$

 $\stackrel{{}_{\scriptstyle{\frown}}}{\underline{\bigcirc}}$ Springer

(Hölder inequality)

$$\leq \left| \int_{1}^{t} \rho^{-\gamma} \left(\int_{0}^{1} |w'(s)|^{r} s^{\varepsilon N - \frac{\varepsilon \beta}{q} + r - Nr - 1} ds \right)^{1/r} \left(\int_{0}^{\rho} s^{(-\varepsilon N + \frac{\varepsilon \beta}{q} - r + Nr + 1)q} ds \right)^{\frac{1}{q+1}} d\rho \right|$$

$$\leq \left| \int_{1}^{t} \rho^{-\gamma} \left(\int_{0}^{1} |w'(s)|^{r} s^{\varepsilon N - \frac{\varepsilon \beta}{q} + r - Nr - 1} ds \right)^{1/r} \left(\int_{0}^{\rho} s^{-\varepsilon Nq + \varepsilon \beta - 1 + N(q+1)} ds \right)^{\frac{1}{q+1}} d\rho \right|$$

$$\leq \left| \int_{1}^{t} \rho^{-\gamma} \left(\int_{0}^{1} |w'(s)|^{r} s^{\varepsilon N - \frac{\varepsilon \beta}{q} + r - Nr - 1} ds \right)^{1/r} \rho^{-\frac{\varepsilon Nq}{q+1} + \frac{\varepsilon \beta}{q+1} + N} d\rho \right|$$

$$= \left(\int_{0}^{1} |w'(s)|^{r} s^{\varepsilon N - \frac{\varepsilon \beta}{q} + r - Nr - 1} ds \right)^{1/r} \left| \int_{1}^{t} \rho^{2\varepsilon - \frac{Nq\varepsilon}{q+1} + \frac{\varepsilon \beta}{q+1} - 1} d\rho \right|$$

$$= \left(\int_{0}^{1} |w'(s)|^{r} s^{\varepsilon N - \frac{\varepsilon \beta}{q} + r - Nr - 1} ds \right)^{1/r} \left| \int_{1}^{t} \rho^{\varepsilon (2 - N + \frac{N+\beta}{q+1}) - 1} d\rho \right| =: \Im$$

For $q + 1 \neq \frac{N+\beta}{N-2}$ one has

$$\mathfrak{S} = \left(\int_{0}^{1} |w'(s)|^{r} s^{\varepsilon N - \frac{\varepsilon \beta}{q} + r - Nr - 1} ds\right)^{1/r} \left| \frac{t^{\varepsilon (2 - N + \frac{N + \beta}{q + 1})} - 1}{\varepsilon \left(N - 2 - \frac{N + \beta}{q + 1}\right)} \right|$$

Therefore

$$\left(\int_{0}^{1} |v(t)|^{p+1} t^{N-1} dt\right)^{\frac{1}{p+1}}$$

$$\leq \left(\int_{0}^{1} |w'(s)|^{r} s^{\varepsilon N - \frac{\varepsilon \beta}{q} + r - Nr - 1} ds\right) \left(\int_{0}^{1} \left|\frac{t^{\varepsilon(2-N+\frac{N+\beta}{q+1})} - 1}{\varepsilon \left(N - 2 - \frac{N+\beta}{q+1}\right)}\right|^{p+1} t^{N-1} dt\right)^{\frac{r}{p+1}}$$

Now we prove that the last term is uniformly bounded as $\varepsilon \to 0$. Let

$$g_{\varepsilon}(t) = \left| \frac{t^{\varepsilon(2-N+\frac{N+\beta}{q+1})} - 1}{\varepsilon \left(N-2-\frac{N+\beta}{q+1}\right)} \right|^{p+1} t^{N-1}$$

We have that

$$g_{\varepsilon}(t) \to (-\log t)^{p+1} t^{N-1}$$
 on $(0, 1)$, as $\varepsilon \to 0$

and

$$g_{\varepsilon}(t) \le (-\log t)^{p+1} t^{N-1}$$
 on $(0, 1)$.

D Springer

Then, by the Dominated Convergence Theorem

$$\int_{0}^{1} g_{\varepsilon}(t)dt \rightarrow \int_{0}^{1} (-\log t)^{p+1} t^{N-1}dt$$

which is finite.

The case $q + 1 = \frac{N+\beta}{N-2}$ is easier and left to the reader. This ends the proof.

8.2 The ground state level

Following the ideas of Smetz, Su and Willem in [26], we give an upper bound for the level

$$S_{\alpha,\beta} = \inf_{W^r(\Omega) \setminus \{0\}} R(u) \tag{26}$$

Proposition 11 Let p, q as in (4), such that

$$\frac{N}{p+1} + \frac{N}{q+1} > N-2.$$
(27)

Then there exist C > 0 *and* α_0 *such that for* $\alpha \ge \alpha_0$

$$S_{\alpha,\beta} \le C \, \alpha^{2r-N+N\frac{r}{p+1}} \tag{28}$$

Proof Let ψ a positive smooth function with support in Ω . Let us consider the rescaled function $\psi_{\alpha}(x) = \psi(\alpha(x - x_{\alpha}))$, where $x_{\alpha} = (1 - \frac{1}{\alpha}, 0, ..., 0)$. Since ψ_{α} has support in the ball $B(x_{\alpha}, \frac{1}{\alpha})$, by the change of variable $y = \alpha(x - x_{\alpha})$ we obtain for $\beta > 0$

$$\int_{\Omega} |x|^{-\beta/q} |\Delta \psi_{\alpha}|^{r} dx = \int_{B(x_{\alpha}, \frac{1}{\alpha})} |x|^{-\beta/q} |\Delta \psi_{\alpha}|^{r} dx$$
$$\leq \alpha^{2r-N} \int_{\Omega} \left(1 - \frac{2}{\alpha}\right)^{-\beta/q} |\Delta \psi|^{r} dy \quad .$$

while for $\beta \leq 0$

$$\int_{\Omega} |x|^{-\beta/q} |\Delta\psi_{\alpha}|^r dx = \int_{B(x_{\alpha}, \frac{1}{\alpha})} |x|^{-\beta/q} |\Delta\psi_{\alpha}|^r dx$$
$$\leq \int_{B(x_{\alpha}, \frac{1}{\alpha})} |\Delta\psi_{\alpha}|^r dx = \alpha^{2r-N} \int_{\Omega} |\Delta\psi|^r dy$$

Furthermore,

$$\int_{\Omega} |x|^{\alpha} \psi_{\alpha}^{p+1}(x) dx = \int_{B(x_{\alpha}, \frac{1}{\alpha})} |x|^{\alpha} \psi_{\alpha}^{p+1}(x) dx \ge \left(1 - \frac{2}{\alpha}\right)^{\alpha} \int_{\Omega} \alpha^{-N} \psi^{p+1}(y) dy.$$

This implies

$$S_{\alpha} \leq C \alpha^{2r-N+N\frac{r}{p+1}} \frac{\int_{\Omega} |\Delta \psi|^r dx}{\left(\int_{\Omega} \psi^{p+1}(x) dx\right)^{\frac{r}{p+1}}}$$

We remark that $2r - N + N \frac{r}{p+1} > 0$ by (27).

Deringer

9 Appendix: Sobolev spaces with A_r weights

9.1 Some definitions

Let r > 1, $\lambda > 0$ be a *r*-weight, i.e. a function on \mathbb{R}^N such that

$$\lambda > 0$$
 a.e. on \mathbb{R}^N , λ and $\lambda^{-1/(r-1)} \in L^1_{\text{loc}}(\mathbb{R}^N)$

Let $\Omega \in \mathbb{R}^N$ a bounded smooth domain. We denote with $L^r(\Omega, \lambda)$ the set of functions $u \in L^1_{loc}(\Omega)$ such that

$$\int_{\Omega} |u|^r \lambda \, dx < +\infty$$

and with $W^{2,r}(\Omega, \lambda)$ the set of functions $u \in W^{2,1}_{loc}(\Omega)$ such that

$$\int_{\Omega} \left(|u|^r + |\nabla u|^r + \sum_{|\xi|=2} |D^{\xi}u|^r \lambda \right) dx < +\infty$$

One can easily prove that endowed with the norm

$$||u||_{W^{2,r}(\Omega,\lambda)} := \left(\int_{\Omega} (|u|^r + |\nabla u|^r + \sum_{|\xi|=2} |D^{\xi}u|^r \lambda) \, dx \right)^{1/r}$$

 $W^{2,r}(\Omega, \lambda)$ is a Banach Space. We also denote with $\tilde{W}_0^{2,r}(\Omega, \lambda)$ the closure of $\{\phi \in C^{\infty}(\Omega) : \phi = 0 \text{ on } \partial\Omega\}$ in $W^{2,r}(\Omega, \lambda)$. We are interested to study some "density" property of these Sobolev spaces with weights. To this aim we introduce the following

Definition 12 (*Muckenhoupt Class A_r*) We say that a *r*-weight λ on \mathbb{R}^N is in the Muckenhoupt class A_r if

$$\left(\frac{1}{|B|} \int_{B} \lambda dx\right) \left(\frac{1}{|B|} \int_{B} \lambda^{-1/(r-1)} dx\right)^{r-1} \le C$$
(29)

for every ball *B* contained in \mathbb{R}^N (here |B| denotes the Lebesgue measure of the ball *B*).

Example 13 $\lambda(x) = |x|^{\gamma} \in A_r$ iff $-N < \gamma < N(r-1)$

This class of weights is strictly related to the Hardy-Littlewood maximal function

Definition 14 Let $f \in L^1_{loc}(\mathbb{R}^N)$. The maximal function of f is defined by

$$(Mf)(x) = \sup_{R>0} \frac{1}{|B_R(x)|} \int_{B_R(x)} |f(y)| dy.$$
 (30)

In fact the "condition" A_r was introduced by B. Muckenhoupt in the following Theorem

Theorem 15 (Muckenhoupt [22]) Let λ be a *r*-weight. The following conditions are equivalent:

(i) there is a constant C such that

$$\int_{\mathbb{R}^{N}} \left[(Mf) \right]^{r} \lambda \, dx \, \leq C \int_{\mathbb{R}^{N}} |f|^{r} \lambda dx \quad \forall f \in L^{r}(\mathbb{R}^{N})$$
(31)

(ii) $\lambda \in A_r$

9.2 Approximation by smooth functions on Ω

The central part of this section is to prove the following extension of the celebrated Meyer-Serrin result

Theorem 16

$$\tilde{W}_0^{2,r}(\Omega,\lambda) = W^{2,r}(\Omega,\lambda) \cap W_0^{1,r}(\Omega)$$

In order to prove Theorem 16 we need some preliminary results

Theorem 17 Let $\lambda \in L^1(\Omega)$ a positive measure on Ω . Then $C_0(\Omega)$ is dense in $L^r(\Omega, \lambda)$ $(1 \le r < +\infty)$.

Proof (Theorem 2.19 in [1]) It is sufficient to prove that for every $\varepsilon > 0$ and a nonnegative function *u* there exists $\varphi \in C_0(\Omega)$ such that $||u - \varphi||_{L^r(\Omega, \lambda)} < \varepsilon$.

For *u* measurable and nonnegative there exists a monotonically increasing sequence $\{s_n\}$ of nonnegative simple functions converging point-wise to *u* on Ω and strongly in $L^r(\Omega, \lambda)$ (since $0 \le s_n(x) \le u(x)$, we have $s_n \in L^r(\Omega, \lambda)$ and $(u(x) - s_n(x))^r \lambda(x) \le u(x)^r \lambda(x)$, so that by the Dominated Convergence theorem $s_n \to u$ in $L^r(\Omega, \lambda)$). Thus there exists $s \in \{s_n\}$ such that $||u - s||_{L^r(\Omega, \lambda)} < \varepsilon/2$. By Lusin's theorem there exists for all $\delta > 0$ a $\varphi \in C_0(\mathbb{R}^N)$ such that

$$|\varphi(x)| \le \|s\|_{\infty}$$

and

$$\operatorname{Vol} E < \delta, \quad E = \{ x \in \mathbb{R}^N : \varphi(x) \neq s(x) \}.$$

Therefore, by the absolute continuity of the integral, we can choose $\delta = \delta(\varepsilon)$ such that

$$\|s-\varphi\|_{L^{r}(\Omega,\lambda)} \leq \|s-\varphi\|_{\infty} (\int_{E} \lambda(x) \, dx)^{1/r} < \varepsilon/2$$

Lemma 18 [25] Let J be a nonnegative, real-valued function in $C_0^{\infty}(\mathbb{R}^N)$ with the following properties

$$J(x) = 0 \ if \ |x| \ge 1, \ and \ \int_{\mathbb{R}^N} J(x) = 1.$$

We consider the sequence of "mollifiers" $J_{\epsilon}(x) = \epsilon^{-N} J(x/\epsilon)$. Then

(i) $J_{\epsilon}(x) = 0$ if $|x| \ge 1$

There exists a positive constant $C = C(N, \sup J)$ such that, if (ii)

$$J_{\epsilon} * u(x) = \int_{\mathbb{R}^N} J_{\epsilon}(x - y)u(y)dy \, .$$

then

$$|J_{\epsilon} * u(x)| \le CM(u)(x), \quad \forall u \in L^{1}_{\text{loc}}(\mathbb{R}^{N}).$$

Proof From (i) and the definition of maximal function one has

$$|J_{\epsilon} * u(x)| \le \frac{\sup J}{\epsilon^N} \int_{B_{\epsilon}(x)} |u(y)| dy \le C \frac{1}{|B_{\epsilon}(x)|} \int_{B_{\epsilon}(x)} |u(y)| dy \le CM(u)(x)$$

Theorem 19 ([1]) Let u be a function which is defined on \mathbb{R}^N and vanishes identically outside Ω . Let λ a r-weight ($1 < r < +\infty$) belonging to the Muckenhoupt class A_r .

- (a) If u ∈ L¹_{loc}(ℝ^N), then J_ε * u(x) ∈ C[∞](ℝ^N)
 (b) If u ∈ L¹_{loc}(Ω) and supp(u) ⊂⊂ Ω, then, for ε < dist (supp(u), ∂Ω), $J_{\epsilon} * u(x) \in C_0^{\infty}(\Omega)$
- (c) If $u \in L^r(\Omega, \lambda)$, then $J_{\epsilon} * u(x) \in L^r(\Omega, \lambda)$. Moreover there exists a positive constant $C = C(N, \sup J)$ such that

$$\|J_{\epsilon} * u\|_{L^{r}(\Omega,\lambda)} \leq C \|u\|_{L^{r}(\Omega,\lambda)}$$

(d) If $u \in L^r(\Omega, \lambda)$, then

$$||J_{\epsilon} * u - u||_{L^{r}(\Omega,\lambda)} \to 0, \quad \epsilon \to 0^{+}$$

Proof (For (a) and (b) see [1] Theorem 2.29). If $u \in L^r(\Omega, \lambda)$ then $(u \in L^1_{loc}(\mathbb{R}^N))$ from Lemma 18 we have

$$|J_{\epsilon} * u(x)| \le CM(u)(x).$$

Hence since λ is in the Muckenhoupt class, by (31) (Theorem 15)

$$\int_{\Omega} |J_{\epsilon} * u(x)|^r \lambda(x) dx \le C \int_{\Omega} |M(u)|^r (x) \lambda(x) dx \le C_1 \int_{\Omega} |u(x)|^r \lambda(x) dx.$$

In particular $||J_{\epsilon} * u||_{L^{r}(\Omega,\lambda)} \le C ||u||_{L^{r}(\Omega,\lambda)}$ (here $C = C(N, \sup J)$). Now, let $\eta > 0$ be given. By Theorem 17 there exists $\varphi \in C^0(\Omega)$ such that $||u - \varphi||_{L^r(\Omega,\lambda)} < \frac{\eta}{2(C+1)}$.

Now, since $\int_{\mathbb{R}^N} J_{\epsilon}(y) dy = 1$, by the uniform continuity of φ there exists ϵ_0 such that for all $0 < \epsilon < \epsilon_0$

$$\begin{aligned} |J_{\epsilon} * \varphi(x) - \varphi(x)| &= \left| \int_{\mathbb{R}^{N}} J_{\epsilon}(x - y)(\varphi(y) - \varphi(x)) dy \right| \\ &\leq \sup_{|y - x| < \epsilon} |\varphi(y) - \varphi(x)| < \frac{\eta}{2(\int_{\Omega} \lambda(x) dx)^{1/r}} \end{aligned}$$

This is sufficient to obtain

$$\|J_{\epsilon} * \varphi - \varphi\|_{L^{r}(\Omega,\lambda)} < \eta/2$$

Springer

Finally, from (c) one has

$$\begin{split} \|J_{\epsilon} * u - u\|_{L^{r}(\Omega,\lambda)} &\leq \|J_{\epsilon} * u - J_{\epsilon} * \varphi\|_{L^{r}(\Omega,\lambda)} + \|J_{\epsilon} * \varphi - \varphi\|_{L^{r}(\Omega,\lambda)} + \|u - \varphi\|_{L^{r}(\Omega,\lambda)} \\ &\leq (1+C)\|u - \varphi\|_{L^{r}(\Omega,\lambda)} + \|J_{\epsilon} * \varphi - \varphi\|_{L^{r}(\Omega,\lambda)} < \eta \end{split}$$

Lemma 20 Let $u \in W^{2,r}(\Omega, \lambda)$. If $\Omega' \subset \subset \Omega$, then $J_{\epsilon} * u \to u$ in $W^{2,r}(\Omega', \lambda)$

Proof Let $\epsilon < \text{dist}(\Omega', \partial\Omega)$, then $D^{\alpha}J_{\epsilon} * u = J_{\epsilon} * D^{\alpha}u$ in the distributional sense in Ω' (see [1], lemma 3.16). Since $Du \in L^{r}(\Omega)$, and $D^{\alpha}u \in L^{r}(\Omega, \lambda)$ for $|\alpha| = 2$ we have, by Theorem 19(c)

$$\|D^{\alpha}J_{\epsilon} * u - D^{\alpha}u\|_{L^{r}(\Omega',\lambda)} = \|J_{\epsilon} * D^{\alpha}u - D^{\alpha}u\|_{L^{r}(\Omega',\lambda)} \to 0 \quad \text{as } \epsilon \to 0^{+}$$

and

$$||DJ_{\epsilon} * u - Du||_{L^{r}(\Omega')} = ||J_{\epsilon} * Du - u||_{L^{r}(\Omega')} \to 0 \text{ as } \epsilon \to 0^{+}$$

so that

$$\|J_{\epsilon} * u - u\|_{W^{2,r}(\Omega',\lambda)} \to 0 \quad \text{as } \epsilon \to 0^+$$
(32)

Now we can prove Theorem 16

Proof (we simplify the proof considering the case $\Omega = B_1(0)$) (see also [1] and [13]).

If $u \in W^{2,r}(\Omega, \lambda)$ and $\varepsilon > 0$ we prove that there exists $\varphi \in C^{\infty}(\Omega)$ such that $\|\varphi - u\|_{W^{2,r}_{0}(\Omega',\lambda)} < \varepsilon$. For k = 1, 2, ... let

$$\Omega_k = \left\{ x \in \Omega : \ |x| < 1 - \frac{1}{k} \right\}, \quad \Omega_0 = \Omega_{-1} = \emptyset$$

and

$$U_1 = \Omega_2, \ U_k = \left\{ x : \ \frac{k-2}{k-1} < |x| < \frac{k}{k+1} \right\}, \ k = 2, \dots$$

Then

$$\mathcal{O} = \{U_k : k = 1, 2, \ldots\}$$

is a collection of open subsets of Ω that covers Ω . Let Ψ be a C^{∞} -partition of unity for Ω subordinate to \mathcal{O} . Let ψ_k denote the sum of the finitely many functions $\psi \in \Psi$ whose support are contained in U_k . Then $\psi_k \in C_0^{\infty}(U_k)$ and $\sum_{k=1}^{\infty} \psi_k(x) = 1, \forall x \in \Omega$.

are contained in U_k . Then $\psi_k \in C_0^{\infty}(U_k)$ and $\sum_{k=1}^{\infty} \psi_k(x) = 1$, $\forall x \in \Omega$. Let $0 < \epsilon < \frac{1}{(k+1)(k+2)}$ and $V_k = \{x : \frac{k-3}{k-2} \le |x| < \frac{k+1}{k+2}, k = 3, \ldots\}$, $V_1 = \Omega_3$, $V_2 = \Omega_4$. Then supp $(J_{\epsilon} * (\psi_k u)) \subset V_k \subset \subset \Omega$. Since $\psi_k u \in W^{2,r}(\Omega, \lambda)$, by Lemma 20 we may choose $0 < \epsilon_k < \frac{1}{(k+1)(k+2)}$ such that

$$\|J_{\epsilon} * (\psi_{k}u) - (\psi_{k}u)\|_{W^{2,r}(\Omega,\lambda)} = \|J_{\epsilon} * (\psi_{k}u) - (\psi_{k}u)\|_{W^{2,r}(V_{k},\lambda)} < \frac{\epsilon}{2^{k}}.$$

Let $\varphi = \sum_{j=1}^{+\infty} J_{\epsilon_k} * (\psi_k u)$. Since on any $\Omega' \subset \subset \Omega$ only finitely many terms in the sum can be nonzero, one has $\varphi \in C^{\infty}(\Omega)$ and $\varphi = 0$ on $\partial \Omega$. For $x \in \Omega_k$, we have

$$u(x) = \sum_{j=1}^{k+2} \psi_j(x)u(x)$$
 and $\varphi(x) = \sum_{j=1}^{k+2} J_{\epsilon_k} * (\psi_j u)(x)$

Deringer

Thus

$$\|u-\varphi\|_{W^{2,r}(\Omega_k,\lambda)} \leq \sum_{j=1}^{k+2} \|J_{\epsilon_k} * (\psi_j u) - \psi_j u\|_{W^{2,r}_0(\Omega,\lambda)} < \varepsilon$$

By the monotone convergence theorem $\|u - \varphi\|_{W^{2,r}_{\alpha}(\Omega,\lambda)} < \varepsilon$.

References

- 1. Adams, R.A., Fournier, J.J.F.: Sobolev Spaces. Second edition, Academic press, Pure and App. Maths. series **140**, (2003)
- Badiale, M., Serra, E.: Multiplicity results for the supercritical Hénon equation. Adv. Nonlinear Stud. 4(4), 453–467 (2004)
- Byeon, J., Wang, Z.-Q.: On the Hénon equation: asymptotic profile of ground states. II. J. Differ. Equ. 216, 78–108 (2005)
- Byeon, J., Wang, Z.-Q.: On the Hénon equation: asymptotic profile of ground states. I. Ann. Inst. H. Poincaré Anal. Non Linéaire 23, 803–828 (2006)
- Cao, D., Peng, S.: The asymptotic behaviour of the ground state solutions for Hénon equation. J. Math. Anal. Appl. 278, 1–17 (2003)
- Caffarelli, L., Kohn, R., Nirenberg, L.: First order interpolation inequalities with weights. Compositio Math. 53, 259–275 (1984)
- Calanchi, M., Secchi, S., Terraneo, E.: Multiple solutions for a Hénon-like equation on the annulus. J. Differ. Equ. 245(6), 1507–1525 (2008)
- Clément, P., de Pagter, B., Sweers, G., de Thlin, F.: Existence of solutions to a semilinear elliptic system through Orlicz-Sobolev spaces. Mediterr. J. Math. 1(3), 241–267 (2004)
- de Figueiredo, D.G., Felmer, P.: On superquadratic elliptic systems. Trans. Am. Math. Soc. 343(1), 99– 116 (1994)
- de Figueiredo, D.G., do Ó, J.M., Ruf, B.: An Orlicz-space approach to superlinear elliptic systems. J. Funct. Anal. 224(2), 471–496 (2005)
- 11. de Figueiredo, D.G., Peral, I., Rossi, J.D.: The critical hyperbola for a Hamiltonian system with weights. Ann. Mat. Pura Appl. (4) **187**(3), 531–545 (2008)
- Gidas, B., Ni, W.M., Nirenberg, L.: Symmetry of positive solutions of nonlinear elliptic equations in R^N, Mathematical Analysis and Applications A, Adv. in Math. Suppl. Stud. 7a, 369–402, Academic Press (1981)
- 13. Hajłasz, P.: Note on Meyers-Serrin's theorem. Expo. Math. 11(4), 377-379 (1993)
- He, H., Yang, J.: Asymptotic behavior of solutions for Hénon systems with nearly critical exponent. J. Math. Anal. Appl. 347(2), 459–471 (2008)
- Hénon, M.: Numerical experiments on the stability of spheriocal stellar systems. Astron. Astrophys. 24, 229–238 (1973)
- Hulshof, J., Van der Vorst, R.: Differential systems with strongly indefinite variational structure. J. Funct. Anal. 114, 32–58 (1993)
- Hulshof, J., Van der Vorst, R.: Asymptotic behaviour of ground states. Proc. Am. Math. Soc. 124, 2423– 2431 (1996)
- Lieb, E.H.: Sharp Constants in the Hardy-Littlewood-Sobolev and Related Inequalities. Ann. Math. 118, 349–374 (1983)
- 19. Lin, C.S.: Interpolation inequalities with weights. Comm. Partial Differ. Equ. 11(14), 1515–1538 (1986)
- Liu, F., Yang, J.: Nontrivial solutions of Hardy-Henon type elliptic systems. Acta Math. Sci. Ser. B Engl. Ed. 27(4), 673–688 (2007)
- 21. Mitidieri, E.: A Rellich type identity and applications. Comm. Partial Differ. Equ. 18, 125–151 (1993)
- Muckenhoupt, B.: Weighted norm inequalities for the Hardy maximal function. Trans. Am. Math. Soc. 165, 207–226 (1972)
- Ni, W.M.: A nonlinear Dirichlet problem on the unit ball and its applications. Indiana Univ. Math. J. 31, 801–807 (1982)
- Serra, E.: Non radial positive solutions for the Hénon equation with critical growth. Calc. Var. Partial Differ. Equ. 23(3), 301–326 (2005)
- Serra Cassano, F.: Un'estensione della G-convergenza alla classe degli operatori ellittici degeneri. Ricerche di Matematica 38, 167–197 (1989)

- Smets, D., Su, J., Willem, M.: Non-radial ground states for the Hénon equation. Commun. Contemp. Math. 4(3), 467–480 (2002)
- Stein, E.M., Weiss, G.: Fractional integrals on *n*-dimensional Euclidean space. J. Math. Mech. 7, 503– 514 (1958)
- 28. Wang, X.-J.: Sharp constant in a Sobolev inequality. Nonlinear Anal. 20(3), 261–268 (1993)
- Xuan, B.: The solvability of quasilinear Brezis-Nirenberg-type problems with singular weights. Nonlinear Anal. 62(4), 703–725 (2005)