Radial and non radial solutions for Hardy–Hénon type elliptic systems

Marta Calanchi · Bernhard Ruf

Received: 15 May 2009 / Accepted: 20 September 2009 / Published online: 17 October 2009 © Springer-Verlag 2009

Abstract We discuss existence and non-existence of positive solutions for the following system of Hardy and Hénon type:

$$
\begin{cases}\n-\Delta v = |x|^{\alpha} u^p, & -\Delta u = |x|^{\beta} v^q \text{ in } \Omega, \\
u = v = 0 & \text{ on } \partial \Omega,\n\end{cases}
$$

where $\Omega \ni 0$ is a bounded domain in \mathbb{R}^N , $N \geq 3$, $p, q > 1$, and $\alpha, \beta > -N$. We also study symmetry breaking for ground states when Ω is the unit ball in \mathbb{R}^N .

Mathematics Subject Classification (2000) 35J47 · 35J60 · 35J20

1 Introduction

In this paper we consider the following system of superlinear elliptic equations of Hardy and Hénon type:

$$
\begin{cases}\n-\Delta v = |x|^{\alpha} u^p & \text{in } \Omega, \\
-\Delta u = |x|^{\beta} v^q & \text{in } \Omega, \\
u > 0 & \text{in } \Omega, \\
v > 0 & \text{in } \Omega, \\
u = v = 0 & \text{on } \partial \Omega,\n\end{cases}
$$
\n(1)

M. Calanchi (B) · B. Ruf

Dipartimento di Matematica, Università degli Studi di Milano, via C. Saldini 50, 20133 Milano, Italy e-mail: marta.calanchi@unimi.it

where Ω is a bounded domain in \mathbb{R}^N with $0 \in \Omega$, $N \geq 3$, $p, q > 1$, and $\alpha, \beta > -N$. In particular, we will investigate existence, multiplicity and qualitative properties (such as radial symmetry in the case Ω a ball) of solutions.

The case of a single equation (especially the case $\alpha > 0$) has been widely studied (see for instance [\[2](#page-21-0)[–4](#page-21-1)[,7,](#page-21-2)[24](#page-21-3)[,26\]](#page-22-0), and the references therein). Recall that the equation

$$
\begin{cases}\n-\Delta u = |x|^{\alpha} u^p & \text{in } \Omega \\
u = 0 & \text{on } \partial \Omega,\n\end{cases}
$$
\n(2)

is called of Hardy type if $\alpha < 0$ (because of its relation to the Hardy-Sobolev inequality) and it is of Hénon type if $\alpha > 0$ (this equation was introduced by Hénon in 1973 [\[15](#page-21-4)] for the study of stellar systems). One has the following results:

Hardy type: By variational methods one obtains the existence of a nontrivial solution of [\(2\)](#page-1-0) in $H_0^1(\Omega)$ ($\Omega \subset R^N$ an arbitrary bounded domain) provided that $2 < p + 1 < \frac{2(N-|a|)}{N-2}$, by an application of the celebrated Caffarelli-Kohn-Nirenberg estimates (CKN, [\[6\]](#page-21-5)), and due to a generalized Pohozaev type identity one proves non-existence of nontrivial solutions in starshaped domains if $0 \ge \alpha > -N$ and $p + 1 = \frac{2(N-|\alpha|)}{N-2}$.

Hénon type: For $\alpha > 0$ one obtains for Ω arbitrary (bounded) the existence of a solution for $2 < p+1 < \frac{2N}{N-2}$. On the other hand, if Ω is a ball, then one has the existence of a radial solution in a larger range, namely for $2 < p+1 < \frac{2(N+\alpha)}{N-2}$ (see [\[23](#page-21-6)]), and the non-existence of nontrivial solutions in the range: $p+1 \ge \frac{2(N+\alpha)}{N-2}$ by a Pohozaev-type identity for radial functions.

Concerning the symmetry of solutions one has the following result: if Ω is a ball, one proves by moving plane techniques [\[12\]](#page-21-7) that the *minimal energy* solution is positive and *radially symmetric* if $\alpha \leq 0$ (Hardy case). One can pose the question if this symmetry continues to be present also for positive α . In an interesting paper Smets et al. [\[26](#page-22-0)] showed that this is not the case: they proved that for $\alpha > 0$ and sufficiently large a *symmetry-breaking* occurs, that is, to the minimal energy level (which is attained for $p + 1 < 2^* = \frac{2N}{N-2}$) corresponds a solution which is *not radially symmetric*. In a related result, Cao and Peng proved in [\[5](#page-21-8)] that for $\alpha > 0$ and $p + 1$ sufficiently close to 2^{*} the ground-state solutions of [\(2\)](#page-1-0) are not radial since they possess a unique maximum point which tends to $\partial \Omega$ as $p + 1 \rightarrow 2^*$.

Turning to the system [\(1\)](#page-0-0), we first recall the case $\alpha = \beta = 0$ which has been studied by many authors. Here the natural restriction on the exponents *p* and *q* for existence/ non-existence of solutions is given by the *critical hyperbola*, that is

$$
\frac{N}{p+1} + \frac{N}{q+1} = N - 2;\t\t(3)
$$

this hyperbola was first introduced by Mitidieri [\[21](#page-21-9)] who proved non-existence of solutions for (*p*, *q*) lying on or above the hyperbola, using a Pohozaev-type identity. Existence of solutions for $(p+1, q+1)$ below the critical hyperbola was proved by de Figueiredo and Felmer (see [\[9\]](#page-21-10)) and by Hulshoff and van der Vorst (see [\[16](#page-21-11)[,17\]](#page-21-12)) by using a variational set-up with fractional Sobolev spaces. A different approach, working with Sobolev-Orlicz spaces (which allows a generalization to non-polynomial nonlinearities), can be found in [\[8](#page-21-13)[,10\]](#page-21-14).

Recently, the general case $\alpha \neq 0$, and/or $\beta \neq 0$ has been investigated independently by de Figueiredo et al. [\[11\]](#page-21-15) and Liu and Yang [\[20](#page-21-16)]; in both papers an approach via fractional Sobolev spaces is used. As in the scalar case, the presence of the weight functions $|x|^\alpha$ and $|x|^\beta$ affects the range of *p* and *q* for which the problem may have solutions. Indeed, in [\[11\]](#page-21-15) and [\[20](#page-21-16)] it is shown that the dividing line between existence and non-existence is given by the following "weighted" critical hyperbola

$$
\frac{N+\alpha}{p+1} + \frac{N+\beta}{q+1} = N-2.
$$
\n⁽⁴⁾

For future reference, we call the hyperbola [\(3\)](#page-1-1) the M-hyperbola (for *Mitidieri hyperbola*), and the hyperbola [\(4\)](#page-2-0) the $\alpha\beta$ -hyperbola).

We remark that systems of type [\(1\)](#page-0-0) are closely related to the double weighted Hardy– Littlewood–Sobolev inequality (see e.g. Stein and Weiss [\[27\]](#page-22-1) and Lieb [\[18\]](#page-21-17)). This becomes clear by the approach we use for system (1) , which is different from the one proposed in the previously cited papers. Following for instance Wang [\[28](#page-22-2)] we (formally) deduce from the second equation in [\(1\)](#page-0-0)

$$
v = \left(-\Delta u\right)^{\frac{1}{q}}\left|x\right|^{-\frac{\beta}{q}},
$$

and inserting this into the first equation we obtain the following scalar equation for the *u*-component

$$
-\Delta\left((-\Delta u)^{1/q}|x|^{-\beta/q}\right) = |x|^\alpha u^p\tag{5}
$$

We intend to investigate the rôle played by the weights α and β when dealing with the existence and symmetry of *ground state* (or *minimal energy*) solutions of Eq. [5,](#page-2-1) that is, minimizers *u* of the corresponding Raleigh quotient

$$
R(u) = \frac{\int_{\Omega} |x|^{-\beta(r-1)} |\Delta u|^r}{\left(\int_{\Omega} |x|^{\alpha} |u|^{p+1} dx\right)^{\frac{r}{p+1}}}, \quad r := \frac{q+1}{q}, \tag{6}
$$

on the weighted Sobolev space

$$
W^{2,r}(\Omega,|x|^{-\beta(r-1)}dx) \cap W_0^{1,r}(\Omega)
$$

Here we denote with $W^{2,r}(\Omega, |x|^{-\beta(r-1)}dx)$ the set of functions $u \in W^{2,1}_{loc}(\Omega)$ such that

$$
\int_{\Omega} (|u|^r + |\nabla u|^r + \sum_{|\xi|=2} |D^{\xi} u|^r |x|^{-\beta(r-1)}) dx < +\infty,
$$

endowed with the norm

$$
||u||_{W^{2,r}(\Omega,|x|^{-\beta/q}dx)} := \left(\int_{\Omega} (|u|^r + |\nabla u|^r + \sum_{|\xi|=2} |D^{\xi} u|^r |x|^{-\beta(r-1)} dx\right) dx\right)^{1/r};
$$

also, we denote with

$$
W^{2,r}_{rad}(\Omega,|x|^{-\beta(r-1)}dx)
$$

the subspace of $W^{2,r}(\Omega, |x|^{-\beta(r-1)}dx)$ of radial functions.

Furthermore, let

$$
W_D^{2,r}(\Omega,|x|^{-\beta(r-1)}dx)
$$

denote the closure of $\{\phi \in C^{\infty}(\Omega) : \phi = 0 \text{ on } \partial\Omega\}$ in $W^{2,r}(\Omega, |x|^{-\beta(r-1)}dx)$, i.e. the closure of the smooth functions in Ω with Dirichlet boundary conditions, and with

$$
W^{2,r}_{D,rad}(\Omega,|x|^{-\beta(r-1)}dx)
$$

the corresponding subspace of radial functions (for Ω a ball).

For the definition of this space and related properties we refer the reader to the Appendix. In particular, we prove there the following generalization of the Meyers-Serrin denseness result:

 $\circled{2}$ Springer

Fig. 1 Hardy type system

Proposition *Let* Ω *a domain with smooth boundary. Suppose that* α , β > $-N$ *and* p , q > 1 *with* $q > \frac{\beta}{N}$ *. Then*

$$
W_{D}^{2,r}(\Omega, |x|^{-\beta/q}dx) = W^{2,r}(\Omega, |x|^{-\beta/q}dx) \cap W_{0}^{1,r}(\Omega).
$$

It is not difficult to prove that critical points of $R(u)$ on $W_D^{2,r}(\Omega, |x|^{-\beta/q} dx)$ are (up to rescaling) weak solutions of (5) , i.e. verifying

$$
\begin{cases}\n\int (\nabla \Delta u)^{1/q} |x|^{-\beta/q} \, (-\Delta \varphi) dx = \int_{\Omega} |x|^{\alpha} u^p \varphi \, dx, \\
\text{for all } \varphi \in W_D^{2,r}(\Omega, |x|^{-\beta/q} dx)\n\end{cases}
$$

and, moreover, if $v = (-\Delta u)^{\frac{1}{q}} |x|^{-\frac{\beta}{q}}$, then $v \in W^{2, \frac{p+1}{p}}(\Omega, |x|^{-\frac{\alpha}{p}} dx) \cap W_0^{1, \frac{p+1}{p}}(\Omega)$. In accordance, by a *strong solution* of the system we mean a couple (u, v) of weak-solutions such that

$$
(u,v)\in W^{2,r}(\Omega,|x|^{-\frac{\beta}{q}}dx)\cap W^{1,r}_0(\Omega)\times W^{2,\frac{p+1}{p}}(\Omega,|x|^{-\frac{\alpha}{p}}dx)\cap W^{1,\frac{p+1}{p}}_0(\Omega).
$$

In what follows, we will denote by *E* the space $E = W_D^{2,r}(\Omega, |x|^{-\beta(r-1)}dx)$ $W^{2,r}(\Omega, |x|^{-\beta/q}dx) \cap W_0^{1,r}(\Omega)$ (if the values β and *r* are clear from the context), and by *Erad* the radial component of *E*.

In this paper we investigate solvability and symmetry properties of the solutions for general exponents α and β . We will see that the solvability and the qualitative properties of the solutions depend on the location of the exponents *p*, *q* with respect to the M-hyperbola and the $\alpha\beta$ -hyperbola.

Note that if α , β < 0, then the $\alpha\beta$ -hyperbola lies below the M-hyperbola, see Fig. [1.](#page-3-0) In this case, we have the following result:

Fig. 2 Hénon type system

Theorem 1 (Hardy-type system) *Let* $0 > \alpha$, $\beta > -N$, and $p, q > 1$.

- (a) If $\frac{N-|\alpha|}{p+1} + \frac{N-|\beta|}{q+1} = N-2$ (i.e. on the $\alpha\beta$ -hyperbola), and if Ω is starshaped, then *system* [\(1\)](#page-0-0) *has no non-trivial solution, and hence* inf *^E R*(*u*) *is not attained.*
- (b) $\hat{H} \frac{N-|\alpha|}{p+1} + \frac{N-|\beta|}{q+1} > N-2$ (*i.e. below the* $\alpha\beta$ -*hyperbola*), then
	- (b_1) inf $_F$ $R(u)$ *is attained, and therefore system* [\(1\)](#page-0-0) *has a nontrivial solution* \bar{u} *(the minimal energy solution);*
	- (b_2) *if* Ω *is a ball, then* \bar{u} *is radially symmetric*

Next, we consider the case α , $\beta > 0$, i.e. the Hénon-type system. Note that then the $\alpha\beta$ -hyperbola lies above the M-hyperbola, and there are three regions which characterize the behavior of the system, see Fig. [2.](#page-4-0)

Theorem 2 (Hénon type system) *Let* α , $\beta > 0$, and suppose that $p, q > 1$.

- (a) If $\frac{N+\alpha}{p+1} + \frac{N+\beta}{q+1} \leq N-2$ (i.e., on or above the $\alpha\beta$ -hyperbola) and Ω is starshaped, *then system* [\(1\)](#page-0-0) *has no non-trivial solution;*
- (b) *Suppose that* $\Omega = B_1(0)$ *. If* $q > \max\{1, \frac{\beta}{N}\}\$ and $\frac{N+\alpha}{p+1} + \frac{N+\beta}{q+1} > N-2$ (i.e. below *the* αβ*-hyperbola), then system* [\(1\)](#page-0-0) *has a radial solution (not necessarily of minimal energy);*
- (c) If $\frac{N}{p+1} + \frac{N}{q+1} > N 2$ (i.e. below the M-hyperbola), then $\inf_E R(u)$ is attained and *hence system* [\(1\)](#page-0-0) *has a ground state solution; furthermore, if* $\alpha > 0$ *is sufficiently large, then the ground state solution is* not radially symmetric*.*
- *Remarks* (1) Note that (c) of the previous theorem can be interpreted as a symmetry breaking: for α , β < 0 we have by Theorem [1](#page-4-1) that the ground state solution in a ball is radial, while (c) says that for α , $\beta > 0$ and α large the ground state solution is non radial.

Fig. 3 Hardy-Hénon type system

(2) By (b) and (c) of Theorem 2 we get the existence of at least two solutions for $(p+1, q+1)$ below the M-hyperbola and α large: one radial solution (obtained as minimum of $R(u)$) on *Erad*), and the minimal energy solution which is non-radial.

In the Hénon case there is a very recent symmetry breaking result, due to He and Yang $([14])$ $([14])$ $([14])$: they prove that if (for *q* fixed) *p* goes towards the M-hyperbola, then the ground state solution is non radial; this result extends to systems the corresponding result for the equation by Cao and Peng $[5]$).

Finally, we consider the case of a mixed *Hénon-Hardy type system*, i.e. one exponent (say α) is positive and the other exponent (i.e. β) is negative. In this case the M-hyperbola and the $\alpha\beta$ -hyperbola intersect, see Fig. [3.](#page-5-0) We show that in this case a third hyperbola comes into play.

Theorem 3 (Hénon-Hardy type system) Let $\alpha > 0$, $0 > \beta > -N$, and suppose that $p, q > 1$.

- (a) *If* $\frac{N+\alpha}{p+1} + \frac{N-|\beta|}{q+1} = N-2$ (i.e. on the $\alpha\beta$ -hyperbola) and Ω is starshaped, then system [\(1\)](#page-0-0) *has no solution;*
- (b) *Assume* $\Omega = B_1(0)$ *. If* $\frac{N+\alpha}{p+1} + \frac{N-|\beta|}{q+1} > N-2$ (i.e. below the $\alpha\beta$ -hyperbola), *then system* [\(1\)](#page-0-0) *has a radial solution (not necessarily of minimal energy);*
- (c) *If* (p, q) *satisfies* $\frac{N}{p+1} + \frac{N-|\beta|}{q+1} > N-2$, then $\inf_E R(u)$ *is attained and hence system* [\(1\)](#page-0-0) has a ground state solution; furthermore, if $\alpha > 0$ is sufficiently large, then the *ground state solution is* not radially symmetric*.*

Remark Suppose that Ω is an arbitrary bounded domain: if $(p + 1, q + 1)$ lies below the αβ-hyperbola and above the M-hyperbola, then it is *not known* whether inf *^E R*(*u*)is attained.

2 The Hardy case: proof of Theorem [1](#page-4-1)

Proof of Theorem [1](#page-4-1) (a): this is obtained via a generalized identity of Pohozaev-type, see Proposition [7](#page-9-0) Sect. [6](#page-8-0) below. Note that this case is somewhat delicate due to the singular weights.

Proof of Theorem I (b_{[1](#page-4-1)}): To prove the existence of a positive solution we minimize the Rayleigh quotient $R(u)$ given in [\(6\)](#page-2-2). By the compactness of the embedding in Lemma [4](#page-7-0) (see Sect. [5\)](#page-7-1) the infimum is attained by a positive function, which is a (strong) solution of problem (10) .

Proof of Theorem l (b₂): for $\alpha = \beta = 0$ and if Ω is a ball, it was proved by X.J. Wang [\[28\]](#page-22-2) that the ground state of (6) is a radial and radially decreasing positive function. By adapting his argument (moving planes technique and maximum principle) one can extend this result also to the values α , β < 0 (noting that the weights do not interfere with the moving planes technique).

3 The Hénon case: proof of Theorem [2](#page-4-2)

Proof of Theorem[2](#page-4-2) (a): this follows again by a Pohozaev-type identity proved in Proposition [6](#page-8-2) in Sect. [6](#page-8-0) below.

Proof of Theorem[2](#page-4-2) (b): The existence of radial solutions under the hypotheses of Theorem [2\(](#page-4-2)b) follows from the embedding result for radial functions in Lemma [9](#page-11-0) in Sect. [7](#page-11-1) below, by considering again the Rayleigh quotient *R*(*u*) on the weighted space $W_{rad}^{2,r}(\Omega, |x|^{-\beta/q})$ *dx*).

Proof of Theorem [2](#page-4-2) (c): We have to show that $m := \inf_{E} R(u)$ is attained. Let $\{u_n\} \subset E$ be a minimizing sequence. We may assume that

$$
\int_{\Omega} |x|^{\alpha} |u_n|^{p+1} = 1, \text{ and } \int_{\Omega} |x|^{-\beta/N} |\Delta u_n|^r dx \to m > 0.
$$

Then clearly $\int_{\Omega} |\Delta u_n|^r dx \leq c$, and by the assumption and the Rellich-Kondrachov compactness theorem it follows that $\{u_n\}$ has a convergent subsequence in $L^{p+1}(\Omega)$, and hence also in $L^{p+1}(\Omega, |x|^\alpha dx)$. This is sufficient to conclude that inf *E* $R(u)$ is attained.

Finally, we show that if $\alpha > 0$ is sufficiently large, then the radial ground state level lies above the ground state level: indeed, by Proposition [10](#page-13-0) below we have the following lower estimate for the radial ground state level:

$$
S_{\alpha,\beta}^{rad} \geq C \alpha^{2r + \frac{r}{p+1} - 1}, \text{ for } \alpha \geq \alpha_0
$$

On the other hand, for the ground state level the following upper estimate holds (see Propo-sition [11](#page-16-0) below): there exist $C > 0$ and α_0 such that for $\alpha \ge \alpha_0$

$$
S_{\alpha,\beta} \leq C \alpha^{2r - N + N \frac{r}{p+1}}
$$

From these two inequalities it follows that the ground state is non radial for α sufficiently large, since

$$
\frac{r}{p+1} - 1 > -N + N \frac{r}{p+1} \Longleftrightarrow \frac{r}{p+1} < 1 \,,
$$

which is clearly the case.

4 The mixed case: proof of Theorem[3](#page-5-1)

Proof of Theorem[3](#page-5-1) (a) and (b): as in Theorem[2](#page-4-2)

Proof of Theorem[3](#page-5-1) (c): Let $\{u_n\} \subset E$ be a minimizing sequence for $m = \inf R(u)$. We may assume that

$$
\int_{\Omega} |x|^{\alpha} |u_n|^{p+1} = 1, \text{ and } \int_{\Omega} |x|^{|\beta|/N} |\Delta u_n|^r dx \to m.
$$

We apply the embedding result in Lemma [4](#page-7-0) (see Sect. [5](#page-7-1) below) for $\alpha = 0$, i.e. under the hypotheses of Theorem 3 c). By the compactness of the embedding we have that for a subsequence $u_n \to u$ in $L^{p+1}(\Omega)$, and since $\alpha > 0$ clearly also in $L^{p+1}(\Omega, |x|^\alpha dx)$. Thus is sufficient to conclude that inf $E R(u)$ is attained.

Proof of Theorem [3](#page-5-1) (c): one proves as in Theorem [2](#page-4-2) c) that if $\alpha > 0$ is sufficiently large, then the ground state level is non radial.

 \Box

5 An embedding result of Caffarelli-Kohn-Nirenberg type

We first prove a preliminary embedding result:

Lemma 4 Let $\Omega \subset \mathbb{R}^N$ be a bounded smooth domain with $0 \in \Omega$. For given α , β , q let p^* *such that*

$$
\frac{N - |\alpha|}{p^* + 1} + \frac{N - |\beta|}{q + 1} = N - 2.
$$
 (7)

Then we have the following continuous embedding

$$
W^{2,r}(\Omega, |x|^{-\beta(r-1)}dx) \hookrightarrow L^{p+1}(\Omega, |x|^{\alpha}), \text{ for } 0 \le p \le p^{\star};
$$

furthermore, if

$$
\frac{N-|\alpha|}{p+1} + \frac{N-|\beta|}{q+1} > N-2, \quad i.e. \ p < p^{\star}, \tag{8}
$$

then the embedding is compact.

Proof This follows from the generalization due to Lin (see [\[19](#page-21-19)]) of the Caffarelli-Kohn-Nirenberg inequality [\[6\]](#page-21-5): if [\(7\)](#page-7-2) holds, then there exists a constant *C* such that

$$
\left(\int_{\mathbb{R}^N} |x|^{\alpha} |u|^{(p^*+1)} \right)^{\frac{1}{(p^*+1)}} \leq C \left(\int_{\mathbb{R}^N} |x|^{-\beta(r-1)} |D^2 u|^r \right)
$$

for all $u \in C_0^{\infty}(\mathbb{R}^N)$.

Via extension theorems (see for instance $[1]$) we have

$$
W^{2,r}(\Omega,|x|^{-\beta(r-1)}dx) \hookrightarrow L^{p^{\star}+1}(\Omega,|x|^{\alpha}),
$$

and for any $0 \le p < p^*$ the embedding is compact.

Another consequence of the CKN inequalities is the following

Lemma 5 *If* $(u, v) \in W_D^{2, \frac{q+1}{q}}(\Omega, |x|^{|\beta|/q} dx) \times W_D^{2, \frac{p+1}{p}}(\Omega, |x|^{|\alpha|/p} dx)$ *, with p and q as in* [\(7\)](#page-7-2), then $\nabla u \nabla v \in L^1(\Omega)$.

Proof If $u \in W_D^{2, \frac{q+1}{q}}(\Omega, |x|^{|\beta|/q} dx)$ and $v \in W_D^{2, \frac{p+1}{p}}(\Omega, |x|^{|\alpha|/p} dx)$ then from the CKN inequality applied to ∇u and ∇v , one has $\nabla u \in L^s(\Omega)$ with $s = \frac{N(q+1)}{Nq+|\beta|-(q+1)}$, and $\nabla v \in$ $L^t(\Omega)$ with $t = \frac{N(p+1)}{Np+|\alpha|-(p+1)}$. It is not difficult to prove that $\frac{1}{s} + \frac{1}{t} = 1$. So the assertion follows by the Hölder inequality. \Box

6 A generalized identity of Pohozaev-type

In this section we prove, via a generalized identity of Pohozaev-type, the non-existence of "strong" solutions on or above the critical $\alpha\beta$ -hyperbola.

We consider first the Hénon case $\alpha \geq 0$, $\beta \geq 0$. In this case we can suppose that the solutions (u, v) are of class $C^2(\Omega) \cap C^1(\overline{\Omega})$.

Proposition 6 *Let* $\Omega \subset \mathbb{R}^N$ *be a bounded, smooth, starshaped domain with respect to* $0 \in \mathbb{R}^N$ *. If* $\alpha, \beta \geq 0$ *and*

$$
\frac{N+\alpha}{p+1} + \frac{N+\beta}{q+1} \le N-2
$$
\n(9)

then the problem

$$
\begin{cases}\n-\Delta v = |x|^{\alpha} |u|^{p-1} u & \text{in } \Omega, \\
-\Delta u = |x|^{\beta} |v|^{q-1} v & \text{in } \Omega, \\
u = v = 0 & \text{on } \partial \Omega,\n\end{cases}
$$
\n(10)

has no nontrivial strong positive solutions.

Proof This follows by adapting the argument of Mitidieri in [\[21](#page-21-9)]. Let

$$
G(x, u, v) = \frac{1}{p+1}|x|^{\alpha}|u|^{p+1} + \frac{1}{q+1}|x|^{\beta}|v|^{q+1}
$$
\n(11)

so [\(10\)](#page-8-1) becomes

$$
\begin{cases}\n-\Delta v = \frac{\partial G}{\partial u}(x, u, v) & \text{in } \Omega \\
-\Delta u = \frac{\partial G}{\partial v}(x, u, v) & \text{in } \Omega \\
u = v = 0 & \text{on } \partial \Omega\n\end{cases}
$$
\n(12)

We multiply the equations respectively by $(x \cdot \nabla u)$ and by $(x \cdot \nabla v)$, add the two equations and integrate. By an application of the divergence theorem (see Proposition 2.1 and Corollary 2.1 in [\[21\]](#page-21-9)) we have for the left sides

$$
\int_{\Omega} {\{\Delta u (x \cdot \nabla v) + \Delta v (x \cdot \nabla u)\} dx}
$$
\n
$$
= \int_{\partial \Omega} {\left\{ \frac{\partial u}{\partial n} \frac{\partial v}{\partial n} (x \cdot n) \right\} ds + (N - 2) \int_{\Omega} (\nabla u \nabla v) dx}
$$
\n(13)

 $(\text{since } u = v = 0 \text{ on } \partial \Omega, \text{ we have } (x \cdot \nabla u) = x \cdot n \frac{\partial u}{\partial n} \text{ and } (x \cdot \nabla v) = x \cdot n \frac{\partial v}{\partial n} \text{ on } \partial \Omega).$

 $\circled{2}$ Springer

For the right sides we have, since

$$
\frac{\partial G}{\partial u}(x \cdot \nabla u) + \frac{\partial G}{\partial v}(x \cdot \nabla v) = \text{div}\{xG(x, u, v)\}\
$$

$$
-NG(x, u, v) - \alpha \frac{|x|^{\alpha}}{p+1}|u|^{p+1} - \beta \frac{|x|^{\beta}}{q+1}|v|^{q+1}
$$
(14)

and taking into account that $G(x, u, v) = 0$ on $\partial\Omega$:

$$
\int_{\Omega} \left\{ \frac{\partial G}{\partial u}(x \cdot \nabla u) + \frac{\partial G}{\partial v}(x \cdot \nabla v) \right\} dx
$$
\n
$$
= -\frac{N + \alpha}{p + 1} \int_{\Omega} |x|^{\alpha} |u|^{p + 1} dx - \frac{N + \beta}{q + 1} \int_{\Omega} |x|^{\beta} |v|^{q + 1} dx. \tag{15}
$$

Therefore

$$
\int_{\partial\Omega} \left\{ \frac{\partial u}{\partial n} \frac{\partial v}{\partial n} (x \cdot n) \right\} ds + (N - 2) \int_{\Omega} (\nabla u \nabla v) dx
$$

$$
= \frac{N + \alpha}{p + 1} \int_{\Omega} |x|^{\alpha} |u|^{p + 1} dx + \frac{N + \beta}{q + 1} \int_{\Omega} |x|^{\beta} |v|^{q + 1} dx. \tag{16}
$$

Now, multiplying the first equation by u , the second by v and integrating, one obtains

$$
\int_{\Omega} (\nabla u \nabla v) dx = \int_{\Omega} |x|^{\alpha} |u|^{p+1} dx = \int_{\Omega} |x|^{\beta} |v|^{q+1} dx
$$

So [\(16\)](#page-9-1) becomes *(Pohozaev identity)*

$$
\int_{\partial\Omega} \left\{ \frac{\partial u}{\partial n} \frac{\partial v}{\partial n}(x \cdot n) \right\} ds
$$
\n
$$
= \left\{ -(N-2) + \frac{N+\alpha}{p+1} + \frac{N+\beta}{q+1} \right\} \int_{\Omega} |x|^{\alpha} |u|^{p+1} dx \tag{17}
$$

Since Ω is starshaped and *u*, *v* are positive, we have $\int_{\partial\Omega} \left\{ \frac{\partial u}{\partial n} \frac{\partial v}{\partial n} (x \cdot n) \right\} ds > 0$, and hence by (16)

$$
0 < \int_{\partial \Omega} \left\{ \frac{\partial u}{\partial n} \frac{\partial v}{\partial n}(x \cdot n) \right\} ds
$$

=
$$
\left\{ -(N-2) + \frac{N+\alpha}{p+1} + \frac{N+\beta}{q+1} \right\} \int_{\Omega} |x|^{\alpha} |u|^{p+1} dx
$$
 (18)

which gives a contradiction for the choice of *p* and *q*.

Next, we consider the Hardy case.

Proposition 7 *Let* Ω *as in Proposition* [6](#page-8-2) *and assume that* $0 \ge \alpha$, $\beta > -N$ *and*

$$
\frac{N - |\alpha|}{p + 1} + \frac{N - |\beta|}{q + 1} = N - 2;\tag{19}
$$

then there exists no positive strong solution (u, v) *of* (12) *.*

 \bigcirc Springer

Proof For this case we follow the idea developed by B. Xuan (see Appendix in [\[29\]](#page-22-3)).

Let (u, v) a positive solution of system (12) . Due to the Hardy weights this solution may be singular in the origin, but standard regularity results imply that for every δ small, u and v belong to $C^2(\Omega \setminus B_\delta(0)) \cap C^0(\overline{\Omega \setminus B_\delta(0)})$. We multiply the equations respectively by $(x \cdot \nabla u)$ and by $(x \cdot \nabla v)$, add the two equations and integrate over $\Omega_{\delta} = \Omega \backslash B_{\delta} (0)$

$$
-\int_{\Omega_{\delta}} \{\Delta u (x \cdot \nabla v) + \Delta v (x \cdot \nabla u)\} dx
$$

=
$$
\int_{\Omega_{\delta}} \left\{ \frac{\partial G}{\partial u} (x \cdot \nabla u) + \frac{\partial G}{\partial v} (x \cdot \nabla v) \right\} dx,
$$
 (20)

where $G = G(x, u, v)$ is as in [\(11\)](#page-8-4).

We apply the Divergence Theorem to xG , so that one has for the right side of (20)

$$
\int_{\Omega_{\delta}} \left\{ \frac{\partial G}{\partial u}(x \cdot \nabla u) + \frac{\partial G}{\partial v}(x \cdot \nabla v) \right\} dx
$$
\n
$$
= -\frac{N - |\alpha|}{p + 1} \int_{\Omega_{\delta}} \frac{u^{p + 1}}{|x|^{\alpha}} dx - \frac{N - |\beta|}{q + 1} \int_{\Omega_{\delta}} \frac{v^{q + 1}}{|x|^{\beta}} dx + \int_{|x| = \delta} G(u, v, x)(x \cdot n) ds, (21)
$$

while for the left side of (20) (see [\[21\]](#page-21-9), Corollary 2.1) one has

$$
\int_{\Omega_{\delta}} \{\Delta u (x \cdot \nabla v) + \Delta v (x \cdot \nabla u)\} dx
$$
\n
$$
= \int_{\partial \Omega_{\delta}} \left\{ \frac{\partial u}{\partial n} (x \cdot \nabla v) + \frac{\partial v}{\partial n} (x \cdot \nabla u) - (\nabla u \nabla v)(x \cdot n) \right\} ds + (N - 2) \int_{\Omega_{\delta}} (\nabla u \nabla v) dx
$$
\n
$$
= \int_{|x| = \delta} \left\{ \frac{\partial u}{\partial n} (x \cdot \nabla v) + \frac{\partial v}{\partial n} (x \cdot \nabla u) - (\nabla u \nabla v)(x \cdot n) \right\} ds
$$
\n
$$
+ \int_{\partial \Omega} \left\{ \frac{\partial u}{\partial n} \frac{\partial v}{\partial n} (x \cdot n) \right\} ds + (N - 2) \int_{\Omega_{\delta}} (\nabla u \nabla v) dx.
$$
\n(22)

Now, multiplying the first equation by u , the second by v and integrating, one obtains

$$
\int_{\Omega_{\delta}} (\nabla u \nabla v) dx - \int_{|x| = \delta} v \nabla u \cdot x = \int_{\Omega_{\delta}} |x|^{\beta} |v|^{q+1} dx
$$

and

$$
\int_{\Omega_{\delta}} (\nabla u \nabla v) dx - \int_{|x| = \delta} u \nabla v \cdot x = \int_{\Omega_{\delta}} |x|^{\alpha} u^{p+1} dx
$$

The Pohozaev identity [\(17\)](#page-9-2) follows if we prove that all the integrals along $\{|x| = \delta\}$ go to zero, at least for a subsequence $\delta_k \to 0$. But this follows by the mean value theorem, since by the Lemmas in Sect. [5](#page-7-1) the integrals

 $\hat{\mathfrak{D}}$ Springer

$$
\int_{\Omega} G(u, v, x) dx, \int_{\Omega} |u \nabla v| dx, \int_{\Omega} |v \nabla u| dx, \int_{\Omega} |\nabla u \nabla v| dx
$$

are finite. Indeed, if ψ is a positive function in $L^1(\Omega)$, then $\epsilon_k = \int_{B_{1/k}(0)} \psi(x) dx \to 0$ as $k \to +\infty$. Moreover, if $\psi \in C(\Omega \setminus \{0\})$ then

$$
\epsilon_k = \int\limits_{B_{1/k}(0)} \psi(x) dx = \int\limits_{0}^{1/k} \int\limits_{|x| = \delta} \psi(x) ds d\delta
$$

By the Mean Value Theorem there exists $\delta_k \in (0, 1/k)$ such that

$$
\epsilon_k = \frac{1}{k} \int\limits_{|x| = \delta_k} \psi(x) ds
$$

Therefore

$$
\int_{|x|=\delta_k} \psi(x)(x \cdot n) ds = \int_{|x|=\delta_k} \psi(x) \delta_k ds = k \epsilon_k \delta_k \le \epsilon_k \to 0.
$$

Proposition 8 *Let* Ω *as in Proposition 6, and assume that* $\alpha \geq 0$, $0 \geq \beta > -N$ *and*

$$
\frac{N+\alpha}{p+1} + \frac{N-|\beta|}{q+1} = N-2
$$
 (23)

then there exists no positive strong solution (u, v) *of* (12) *.*

Proof By combining the previous methods one obtains the result.

7 An embedding theorem for radial functions

Proposition 9 *Let* $\Omega \subset \mathbb{R}^N$ *be the ball* $\Omega = B_1(0)$ *. Let* α *,* β > −*N and let p and q such that* $q > \frac{\beta}{N}$ *and*

$$
\frac{\alpha+N}{p+1} + \frac{N+\beta}{q+1} > N-2.
$$
\n(24)

Then the embedding

$$
E_{rad} = W_{D,rad}^{2,r}(\Omega, |x|^{-\beta/q} dx) \hookrightarrow L^{p+1}(\Omega, |x|^\alpha dx), \quad r = \frac{q+1}{q}
$$

is continuous and compact.

Proof By the density result (Theorem [16](#page-18-0) in the Appendix) it is sufficient to prove the assertion for radial $u \in C^{\infty}(\Omega) \cap E_{rad}$ with $u = 0$ on $\partial \Omega$. For such *u* we have

$$
\Delta u = t^{1-N} (u'(t)t^{N-1})'
$$

It is sufficient to prove that there exists a constant *C* such that

$$
\left(\int_{0}^{1} t^{\alpha} |u(t)|^{p+1} t^{N-1} dt\right)^{\frac{1}{p+1}} \leq C \left(\int_{0}^{1} |(u'(s)s^{N-1})'|^{r} s^{r-r} N+N-1-\beta/q ds\right)^{1/r} =: C \|u\|_{*}
$$

 \bigcirc Springer

Set $w(t) = u'(t)t^{N-1}$. Then, since $w(0) = 0$

$$
|u(t)| = \left| \int_{1}^{t} u'(s)ds \right| = \left| \int_{1}^{t} w(s)s^{1-N}ds \right| = \left| \int_{t}^{1} \left[\int_{0}^{s} w'(\xi)d\xi \right] s^{1-N}ds \right|
$$

=
$$
\left| \int_{1}^{t} \left[\int_{0}^{s} w'(\xi) \xi \frac{r-rN+N-1-\beta/q}{r} \xi^{-\frac{r-rN+N-1-\beta/q}{r}} d\xi \right] s^{1-N}ds \right|
$$

(by Hölder inequality with exponents $r = 1 + \frac{1}{q}$ and $r' = q + 1$)

$$
\leq \int_{t}^{1} \left[\int_{0}^{s} |w'(\xi)|^{r} \xi^{r-r} N + N-1-\beta/q \right]^{1/r} \left[\int_{0}^{s} \xi^{-\frac{r-rN+N-1-\beta/q}{r}} (q+1) \, d\xi \right]^{\frac{1}{q+1}} s^{1-N} ds
$$

$$
\leq ||u||_{*} \int_{t}^{1} \left[\int_{0}^{s} \xi^{N+\beta-1} \, d\xi \right]^{\frac{1}{q+1}} s^{1-N} ds
$$

$$
\leq ||u||_{*} \int_{t}^{1} s^{\frac{N+\beta}{q+1}+1-N} ds
$$

Now three cases may occur:

Case 1 $\frac{N+\beta}{q+1} > N-2$ that is $q+1 < \frac{N+\beta}{N-2}$. In this case we have $\overline{}$ Ω $|x|^{\alpha}|u(x)|^{p+1}dx \leq C||u||_*^{p+1};$

Case 2 For $q + 1 = \frac{N + \beta}{N - 2}$ $\overline{}$ Ω $|x|^{\alpha}|u(x)|^{p+1}dx \leq C||u||_*$ Ω $|x|^{\alpha} |\log(|x|)|^{p+1} dx \leq C ||u||_*^{p+1},$

since, for $\alpha > -N$, $|x|^{\alpha} |\log(|x|)|^{p+1}$ is integrable.

Case 3 Finally for $q + 1 > \frac{N+\beta}{N-2}$

$$
\int_{\Omega} |x|^{\alpha} |u(x)|^{p+1} dx = \omega_{N-1} \int_{0}^{1} t^{\alpha+N-1} |u(t)|^{p+1} dt
$$
\n
$$
\leq C \|u\|_{*}^{p+1} \int_{0}^{1} t^{\alpha+N-1} t^{(p+1) \left(\frac{N+\beta}{q+1} - N + 2\right)} dt \leq C \|u\|_{*}^{p+1}
$$

for α such that

$$
\alpha + N + (p+1) \left(\frac{N+\beta}{q+1} - N + 2 \right) > 0 \,,
$$

that is

$$
\frac{\alpha+N}{p+1} + \frac{N+\beta}{q+1} > N-2.
$$

Finally, the proof of the compactness is standard. \Box

8 Estimates for ground states

8.1 The radial ground state level (β fixed, $\alpha \rightarrow +\infty$)

We give now an estimate from below for the radial level

$$
S_{\alpha,\beta}^{rad} = \inf_{u \in E_{rad} \setminus \{0\}} \frac{\int_{\Omega} |x|^{-\beta/q} |\Delta u|^r dx}{\left(\int_{\Omega} |x|^{\alpha} |u|^{p+1} dx\right)^{\frac{r}{p+1}}}
$$

Proposition 10 *There exist* $C > 0$ *and* α_0 *such that*

$$
S_{\alpha,\beta}^{rad} \geq C\alpha^{2r+\frac{r}{p+1}-1}, \quad \alpha \geq \alpha_0
$$

Proof Let $\varepsilon = \frac{N}{N+\alpha}$ and $u(x) = u(|x|)$ a smooth radial function such that $u = 0$ on $\partial \Omega$. Let $v(\rho) = u(\rho^{\varepsilon})$. We have

$$
v'(\rho) = \varepsilon u'(\rho^{\varepsilon})\rho^{\varepsilon-1} \quad \text{and} \quad v''(\rho) = \varepsilon^2 u''(\rho^{\varepsilon})\rho^{2\varepsilon-2} + \varepsilon(\varepsilon-1)u'(\rho^{\varepsilon})\rho^{\varepsilon-2}
$$

so that

$$
u'(\rho^{\varepsilon}) = \rho^{1-\varepsilon} \varepsilon^{-1} v'(\rho)
$$
 and $u''(\rho^{\varepsilon}) = \varepsilon^{-2} \rho^{2-2\varepsilon} [v''(\rho) - (\varepsilon - 1)\rho^{-1} v'(\rho)]$

Therefore, by the change of variable $t = \rho^{\varepsilon}$,

$$
\int_{\Omega} |x|^{-\beta/q} |\Delta u|^r dx = \omega_{N-1} \int_{0}^{1} \left| u''(t) + \frac{N-1}{t} u'(t) \right|^r t^{N-1-\beta/q} dt
$$

\n
$$
= \omega_{N-1} \int_{0}^{1} \varepsilon \rho^{\varepsilon N - \frac{\varepsilon \beta}{q} - 1} \left| u''(\rho^{\varepsilon}) + \frac{N-1}{\rho^{\varepsilon}} u'(\rho^{\varepsilon}) \right|^r d\rho
$$

\n
$$
= \omega_{N-1} \int_{0}^{1} \varepsilon \rho^{\varepsilon N - \frac{\varepsilon \beta}{q} - 1} \left| \varepsilon^{-2} \rho^{2-2\varepsilon} \left[v''(\rho) - (\varepsilon - 1)\rho^{-1} v'(\rho) \right] \right.
$$

\n
$$
+ \frac{N-1}{\rho^{\varepsilon}} \varepsilon^{-1} \rho^{1-\varepsilon} v'(\rho) \right|^r d\rho
$$

\n
$$
= \omega_{N-1} \int_{0}^{1} \varepsilon^{1-2r} \rho^{\varepsilon N - \frac{\varepsilon \beta}{q} - 1} |\rho^{2-2\varepsilon} \left[v''(\rho) - (\varepsilon - 1)\rho^{-1} v'(\rho) \right]
$$

\n
$$
+ (N-1)\varepsilon \rho^{1-2\varepsilon} v'(\rho) \right|^r d\rho
$$

\n
$$
= \omega_{N-1} \int_{0}^{1} \varepsilon^{1-2r} \rho^{\varepsilon N - \frac{\varepsilon \beta}{q} - 1 + 2r - 2r\varepsilon} \left| v''(\rho) + \frac{N - 2\varepsilon + 1}{\rho} v'(\rho) \right|^r d\rho
$$

 \hat{Z} Springer

$$
= \omega_{N-1} \varepsilon^{1-2r} \int_{0}^{1} \rho^{\varepsilon N - \frac{\varepsilon \beta}{q} - 1 + 2r - 2r\varepsilon} \rho^{-(N-2\varepsilon+1)r} \left| \left(\rho^{N-2\varepsilon+1} v'(\rho) \right)' \right|^{r} d\rho
$$

$$
= \omega_{N-1} \varepsilon^{1-2r} \int_{0}^{1} \rho^{\varepsilon N - \frac{\varepsilon \beta}{q} + r - Nr - 1} \left| \left(\rho^{N-2\varepsilon+1} v'(\rho) \right)' \right|^{r} d\rho
$$

$$
= \omega_{N-1} \varepsilon^{1-2r} \int_{0}^{1} \rho^{\varepsilon N - \frac{\varepsilon \beta}{q} + r - Nr - 1} \left| \left(\rho^{\gamma} v'(\rho) \right)' \right|^{r} d\rho.
$$

where $\gamma = N - 2\varepsilon + 1$. Moreover, by the choice of ε ,

$$
\int_{\Omega} |x|^{\alpha} |u(x)|^{p+1} dx = \omega_{N-1} \varepsilon \int_{0}^{1} |v(\rho)|^{p+1} \rho^{N-1} d\rho.
$$

Thus, we get the following estimate for the radial level:

$$
S_{\alpha,\beta}^{rad} = \varepsilon^{-2r - \frac{r}{p+1} + 1} \inf_{v \in E_{rad} \setminus \{0\}} \frac{\int_0^1 \rho^{\varepsilon N - \frac{\varepsilon \beta}{q} + r - Nr - 1} \left| (\rho^{\gamma} v'(\rho))' \right|^r d\rho}{(\int_0^1 |v(\rho)|^{p+1} \rho^{N-1})^{\frac{r}{p+1}}} \tag{25}
$$

It is now sufficient to show that there exists $\eta > 0$ such that

$$
\inf_{v \in E_{rad} \setminus \{0\}} \frac{\int_0^1 \rho^{\varepsilon N - \frac{\varepsilon \beta}{q} + r - Nr - 1} \left| (\rho^{\gamma} v'(\rho))' \right|^r d\rho}{(\int_0^1 |v(\rho)|^{p+1} \rho^{N-1})^{\frac{r}{p+1}}} \ge \eta > 0 \quad \text{ uniformly as } \varepsilon \to 0
$$

We proceed as in the embedding result setting $w(\rho) = v'(\rho)\rho^{\gamma}$. Then

$$
|v(t)| = \left| \int_{1}^{t} v'(\rho) d\rho \right| = \left| \int_{1}^{t} w(\rho) \rho^{-\gamma} d\rho \right| = \left| \int_{1}^{t} \rho^{-\gamma} \left(\int_{0}^{\rho} w'(s) ds \right) d\rho \right|
$$

=
$$
\left| \int_{1}^{t} \rho^{-\gamma} \left[\int_{0}^{\rho} w'(s) s \frac{e^{N - \frac{\rho \beta}{q} + r - Nr - 1}}{r} s^{- \frac{\rho N - \frac{\rho \beta}{q} + r - Nr - 1}{r}} ds \right] d\rho \right|
$$

(Hölder inequality)

$$
\leq \left| \int_{1}^{t} \rho^{-\gamma} \left(\int_{0}^{1} |w'(s)|^{r} s^{\varepsilon N - \frac{\varepsilon \beta}{q} + r - Nr - 1} ds \right)^{1/r} \left(\int_{0}^{\rho} s^{(-\varepsilon N + \frac{\varepsilon \beta}{q} - r + Nr + 1)q} ds \right)^{\frac{1}{q+1}} d\rho \right|
$$

\n
$$
\leq \left| \int_{1}^{t} \rho^{-\gamma} \left(\int_{0}^{1} |w'(s)|^{r} s^{\varepsilon N - \frac{\varepsilon \beta}{q} + r - Nr - 1} ds \right)^{1/r} \left(\int_{0}^{\rho} s^{-\varepsilon Nq + \varepsilon \beta - 1 + N(q+1)} ds \right)^{\frac{1}{q+1}} d\rho \right|
$$

\n
$$
\leq \left| \int_{1}^{t} \rho^{-\gamma} \left(\int_{0}^{1} |w'(s)|^{r} s^{\varepsilon N - \frac{\varepsilon \beta}{q} + r - Nr - 1} ds \right)^{1/r} \rho^{-\frac{\varepsilon Nq}{q+1} + \frac{\varepsilon \beta}{q+1} + N} d\rho \right|
$$

\n
$$
= \left(\int_{0}^{1} |w'(s)|^{r} s^{\varepsilon N - \frac{\varepsilon \beta}{q} + r - Nr - 1} ds \right)^{1/r} \left| \int_{1}^{t} \rho^{2\varepsilon - \frac{Nq\varepsilon}{q+1} + \frac{\varepsilon \beta}{q+1} - 1} d\rho \right|
$$

\n
$$
= \left(\int_{0}^{1} |w'(s)|^{r} s^{\varepsilon N - \frac{\varepsilon \beta}{q} + r - Nr - 1} ds \right)^{1/r} \left| \int_{1}^{t} \rho^{\varepsilon (2 - N + \frac{N + \beta}{q+1}) - 1} d\rho \right| =: \Im
$$

For $q + 1 \neq \frac{N+\beta}{N-2}$ one has

$$
\mathfrak{I} = \left(\int\limits_0^1 |w'(s)|^r s^{\varepsilon N - \frac{\varepsilon \beta}{q} + r - Nr - 1} ds \right)^{1/r} \left| \frac{t^{\varepsilon (2 - N + \frac{N + \beta}{q + 1})} - 1}{\varepsilon \left(N - 2 - \frac{N + \beta}{q + 1} \right)} \right|
$$

Therefore

$$
\left(\int_{0}^{1} |v(t)|^{p+1} t^{N-1} dt\right)^{\frac{r}{p+1}}
$$
\n
$$
\leq \left(\int_{0}^{1} |w'(s)|^r s^{\varepsilon N - \frac{\varepsilon \beta}{q} + r - Nr - 1} ds\right) \left(\int_{0}^{1} \left|\frac{t^{\varepsilon (2-N + \frac{N+\beta}{q+1})} - 1}{\varepsilon \left(N - 2 - \frac{N+\beta}{q+1}\right)}\right|^{p+1} t^{N-1} dt\right)^{\frac{r}{p+1}}
$$

Now we prove that the last term is uniformly bounded as $\varepsilon \to 0$. Let

$$
g_{\varepsilon}(t) = \left| \frac{t^{\varepsilon(2-N+\frac{N+\beta}{q+1})} - 1}{\varepsilon \left(N - 2 - \frac{N+\beta}{q+1}\right)} \right|^{p+1} t^{N-1}
$$

We have that

$$
g_{\varepsilon}(t) \to (-\log t)^{p+1} t^{N-1}
$$
 on (0, 1), as $\varepsilon \to 0$

and

$$
g_{\varepsilon}(t) \le (-\log t)^{p+1} t^{N-1}
$$
 on (0, 1).

Then, by the Dominated Convergence Theorem

$$
\int_{0}^{1} g_{\varepsilon}(t)dt \to \int_{0}^{1} (-\log t)^{p+1} t^{N-1} dt
$$

which is finite.

The case $q + 1 = \frac{N+\beta}{N-2}$ is easier and left to the reader. This ends the proof.

8.2 The ground state level

Following the ideas of Smetz, Su and Willem in [\[26\]](#page-22-0), we give an upper bound for the level

$$
S_{\alpha,\beta} = \inf_{W^r(\Omega) \setminus \{0\}} R(u) \tag{26}
$$

Proposition 11 *Let p*, *q as in [\(4\)](#page-2-0), such that*

$$
\frac{N}{p+1} + \frac{N}{q+1} > N - 2.
$$
 (27)

Then there exist $C > 0$ *and* α_0 *such that for* $\alpha \ge \alpha_0$

$$
S_{\alpha,\beta} \le C \, \alpha^{2r - N + N \frac{r}{p+1}} \tag{28}
$$

Proof Let ψ a positive smooth function with support in Ω . Let us consider the rescaled function $\psi_{\alpha}(x) = \psi(\alpha(x - x_{\alpha}))$, where $x_{\alpha} = (1 - \frac{1}{\alpha}, 0, \ldots, 0)$. Since ψ_{α} has support in the ball $B(x_\alpha, \frac{1}{\alpha})$, by the change of variable $y = \alpha(x - x_\alpha)$ we obtain for $\beta > 0$

$$
\int_{\Omega} |x|^{-\beta/q} |\Delta \psi_{\alpha}|^{r} dx = \int_{B(x_{\alpha}, \frac{1}{\alpha})} |x|^{-\beta/q} |\Delta \psi_{\alpha}|^{r} dx
$$
\n
$$
\leq \alpha^{2r-N} \int_{\Omega} \left(1 - \frac{2}{\alpha}\right)^{-\beta/q} |\Delta \psi|^{r} dy ,
$$

while for β < 0

$$
\int_{\Omega} |x|^{-\beta/q} |\Delta \psi_{\alpha}|^{r} dx = \int_{B(x_{\alpha}, \frac{1}{\alpha})} |x|^{-\beta/q} |\Delta \psi_{\alpha}|^{r} dx
$$

$$
\leq \int_{B(x_{\alpha}, \frac{1}{\alpha})} |\Delta \psi_{\alpha}|^{r} dx = \alpha^{2r-N} \int_{\Omega} |\Delta \psi|^{r} dy.
$$

Furthermore,

$$
\int_{\Omega} |x|^{\alpha} \psi_{\alpha}^{p+1}(x) dx = \int_{B(x_{\alpha}, \frac{1}{\alpha})} |x|^{\alpha} \psi_{\alpha}^{p+1}(x) dx \ge \left(1 - \frac{2}{\alpha}\right)^{\alpha} \int_{\Omega} \alpha^{-N} \psi^{p+1}(y) dy.
$$

This implies

$$
S_{\alpha} \leq C\alpha^{2r-N+N\frac{r}{p+1}} \frac{\int_{\Omega} |\Delta \psi|^r dx}{(\int_{\Omega} \psi^{p+1}(x) dx)^{\frac{r}{p+1}}}
$$

We remark that $2r - N + N \frac{r}{p+1} > 0$ by [\(27\)](#page-16-1). □

9 Appendix: Sobolev spaces with *Ar* **weights**

9.1 Some definitions

Let $r > 1$, $\lambda > 0$ be a *r*-weight, i.e. a function on \mathbb{R}^N such that

$$
\lambda > 0
$$
 a.e. on \mathbb{R}^N , λ and $\lambda^{-1/(r-1)} \in L^1_{loc}(\mathbb{R}^N)$

Let $\Omega \in \mathbb{R}^N$ a bounded smooth domain. We denote with $L^r(\Omega, \lambda)$ the set of functions $u \in L^1_{loc}(\Omega)$ such that

$$
\int_{\Omega} |u|^r \lambda \, dx < +\infty
$$

and with $W^{2,r}(\Omega, \lambda)$ the set of functions $u \in W^{2,1}_{loc}(\Omega)$ such that

$$
\int_{\Omega} (|u|^r + |\nabla u|^r + \sum_{|\xi|=2} |D^{\xi} u|^r \lambda) dx < +\infty
$$

One can easily prove that endowed with the norm

$$
||u||_{W^{2,r}(\Omega,\lambda)} := \left(\int_{\Omega} (|u|^r + |\nabla u|^r + \sum_{|\xi|=2} |D^{\xi} u|^r \lambda) \, dx\right)^{1/r}
$$

 $W^{2,r}(\Omega, \lambda)$ is a Banach Space. We also denote with $\tilde{W}^{2,r}_0(\Omega, \lambda)$ the closure of $\{\phi \in C^{\infty}(\Omega)$: $\phi = 0$ on $\partial \Omega$ in $W^{2,r}(\Omega, \lambda)$. We are interested to study some "density" property of these Sobolev spaces with weights. To this aim we introduce the following

Definition 12 *(Muckenhoupt Class A_r)* We say that a *r*-weight λ on \mathbb{R}^N is in the Muckenhoupt class *Ar* if

$$
\left(\frac{1}{|B|}\int\limits_B \lambda dx\right)\left(\frac{1}{|B|}\int\limits_B \lambda^{-1/(r-1)}dx\right)^{r-1} \le C\tag{29}
$$

for every ball *B* contained in \mathbb{R}^N (here |*B*| denotes the Lebesgue measure of the ball *B*).

Example 13 $\lambda(x) = |x|^{\gamma} \in A_r$ iff $-N < \gamma < N(r-1)$

This class of weights is strictly related to the Hardy-Littlewood maximal function

Definition 14 Let $f \in L^1_{loc}(\mathbb{R}^N)$. The <u>maximal function of f </u> is defined by

$$
(Mf)(x) = \sup_{R>0} \frac{1}{|B_R(x)|} \int\limits_{B_R(x)} |f(y)| dy.
$$
 (30)

In fact the "condition" A_r was introduced by B. Muckenhoupt in the following Theorem

Theorem 15 (Muckenhoupt [\[22](#page-21-21)]) Let λ be a r-weight. The following conditions are equiv*alent:*

(i) *there is a constant C such that*

$$
\int_{\mathbb{R}^N} [(Mf)]^r \lambda \, dx \le C \int_{\mathbb{R}^N} |f|^r \lambda dx \quad \forall f \in L^r(\mathbb{R}^N)
$$
 (31)

(ii) $\lambda \in A_r$

9.2 Approximation by smooth functions on Ω

The central part of this section is to prove the following extension of the celebrated Meyer-Serrin result

Theorem 16

$$
\tilde{W}_0^{2,r}(\Omega,\lambda) = W^{2,r}(\Omega,\lambda) \cap W_0^{1,r}(\Omega)
$$

In order to prove Theorem [16](#page-18-0) we need some preliminary results

Theorem 17 Let $\lambda \in L^1(\Omega)$ a positive measure on Ω . Then $C_0(\Omega)$ is dense in $L^r(\Omega,\lambda)$ $(1 \le r \le +\infty)$.

Proof (Theorem 2.19 in [\[1\]](#page-21-20)) It is sufficient to prove that for every $\varepsilon > 0$ and a nonnegative function *u* there exists $\varphi \in C_0(\Omega)$ such that $||u - \varphi||_{L^r(\Omega,\lambda)} < \varepsilon$.

For *u* measurable and nonnegative there exists a monotonically increasing sequence $\{s_n\}$ of nonnegative simple functions converging point-wise to *u* on Ω and strongly in $L^r(\Omega, \lambda)$ (since $0 \le s_n(x) \le u(x)$, we have $s_n \in L^r(\Omega, \lambda)$ and $(u(x) - s_n(x))^r \lambda(x) \le u(x)^r \lambda(x)$, so that by the Dominated Convergence theorem $s_n \to u$ in $L^r(\Omega, \lambda)$). Thus there exists $s \in \{s_n\}$ such that $||u - s||_{L^r(\Omega, \lambda)} < \varepsilon/2$. By Lusin's theorem there exists for all $\delta > 0$ a $\varphi \in C_0(\mathbb{R}^N)$ such that

$$
|\varphi(x)| \leq \|s\|_{\infty}
$$

and

$$
\text{Vol}E < \delta, \ \ E = \{x \in \mathbb{R}^N: \ \ \varphi(x) \neq s(x)\}.
$$

Therefore, by the absolute continuity of the integral, we can choose $\delta = \delta(\varepsilon)$ such that

$$
||s - \varphi||_{L^r(\Omega, \lambda)} \le ||s - \varphi||_{\infty} (\int\limits_E \lambda(x) \, dx)^{1/r} < \varepsilon/2
$$

 \Box

Lemma 18 [\[25\]](#page-21-22) Let J be a nonnegative, real-valued function in $C_0^{\infty}(\mathbb{R}^N)$ with the following *properties*

$$
J(x) = 0
$$
 if $|x| \ge 1$, and $\int_{\mathbb{R}^N} J(x) = 1$.

We consider the sequence of "mollifiers" $J_{\epsilon}(x) = \epsilon^{-N} J(x/\epsilon)$. Then

(i) $J_{\epsilon}(x) = 0$ if $|x| > 1$

 $\hat{\mathfrak{D}}$ Springer

(ii) *There exists a positive constant* $C = C(N, \text{sup } J)$ *such that, if*

$$
J_{\epsilon} * u(x) = \int_{\mathbb{R}^N} J_{\epsilon}(x - y)u(y)dy,
$$

then

$$
|J_{\epsilon} * u(x)| \le CM(u)(x), \quad \forall u \in L^{1}_{loc}(\mathbb{R}^{N}).
$$

Proof From (i) and the definition of maximal function one has

$$
|J_{\epsilon} * u(x)| \le \frac{\sup J}{\epsilon^N} \int\limits_{B_{\epsilon}(x)} |u(y)| dy \le C \frac{1}{|B_{\epsilon}(x)|} \int\limits_{B_{\epsilon}(x)} |u(y)| dy \le CM(u)(x)
$$

Theorem 19 ([\[1\]](#page-21-20)) Let u be a function which is defined on \mathbb{R}^N and vanishes identically *outside* Ω *. Let* λ *a r*-weight (1 \leq *r* < $+\infty$ *) belonging to the Muckenhoupt class* A_r *.*

- (a) If $u \in L^1_{loc}(\mathbb{R}^N)$, then $J_{\epsilon} * u(x) \in C^{\infty}(\mathbb{R}^N)$
- (b) *If* $u \in L^1_{loc}(\Omega)$ *and supp*(*u*) $\subset \subset \Omega$ *, then, for* $\epsilon <$ dist (supp(*u*), $\partial \Omega$)*,* $J_{\epsilon} * u(x) \in C_0^{\infty}(\Omega)$
- (c) If $u \in L^r(\Omega, \lambda)$, then $J_\epsilon * u(x) \in L^r(\Omega, \lambda)$ *. Moreover there exists a positive constant* $C = C(N, \text{sup } J)$ *such that*

$$
||J_{\epsilon} * u||_{L^{r}(\Omega, \lambda)} \leq C ||u||_{L^{r}(\Omega, \lambda)}
$$

(d) *If* $u \in L^r(\Omega, \lambda)$ *, then*

$$
||J_{\epsilon} * u - u||_{L^{r}(\Omega, \lambda)} \to 0, \quad \epsilon \to 0^{+}
$$

Proof (For (a) and (b) see [\[1](#page-21-20)] Theorem 2.29). If $u \in L^r(\Omega, \lambda)$ then $(u \in L^1_{loc}(\mathbb{R}^N))$ from Lemma [18](#page-18-1) we have

$$
|J_{\epsilon} * u(x)| \leq CM(u)(x).
$$

Hence since λ is in the Muckenhoupt class, by [\(31\)](#page-18-2) (Theorem [15\)](#page-17-0)

$$
\int_{\Omega} |J_{\epsilon} * u(x)|^r \lambda(x) dx \leq C \int_{\Omega} |M(u)|^r(x) \lambda(x) dx \leq C_1 \int_{\Omega} |u(x)|^r \lambda(x) dx.
$$

In particular $||J_{\epsilon} * u||_{L^r(\Omega, \lambda)} \leq C ||u||_{L^r(\Omega, \lambda)}$ (here $C = C(N, \sup J)$). Now, let $\eta > 0$ be given. By Theorem 17 there exists $\varphi \in C^0(\Omega)$ such that $||u - \varphi||_{L^r(\Omega,\lambda)} < \frac{\eta}{2(C+1)}$.

Now, since $\int_{\mathbb{R}^N} J_{\epsilon}(y) dy = 1$, by the uniform continuity of φ there exists ϵ_0 such that for all $0 < \epsilon < \epsilon_0$

$$
\begin{aligned} |J_{\epsilon} * \varphi(x) - \varphi(x)| &= \left| \int_{\mathbb{R}^N} J_{\epsilon}(x - y)(\varphi(y) - \varphi(x)) \, dy \right| \\ &\leq \sup_{|y - x| < \epsilon} |\varphi(y) - \varphi(x)| < \frac{\eta}{2(\int_{\Omega} \lambda(x) \, dx)^{1/r}} \end{aligned}
$$

This is sufficient to obtain

$$
||J_{\epsilon} * \varphi - \varphi||_{L^{r}(\Omega,\lambda)} < \eta/2
$$

 \circledcirc Springer

Finally, from (c) one has

$$
||J_{\epsilon} * u - u||_{L^{r}(\Omega, \lambda)} \le ||J_{\epsilon} * u - J_{\epsilon} * \varphi||_{L^{r}(\Omega, \lambda)} + ||J_{\epsilon} * \varphi - \varphi||_{L^{r}(\Omega, \lambda)} + ||u - \varphi||_{L^{r}(\Omega, \lambda)}
$$

$$
\le (1 + C) ||u - \varphi||_{L^{r}(\Omega, \lambda)} + ||J_{\epsilon} * \varphi - \varphi||_{L^{r}(\Omega, \lambda)} < \eta
$$

Lemma 20 *Let* $u \in W^{2,r}(\Omega, \lambda)$ *. If* $\Omega' \subset\subset \Omega$ *, then* $J_{\epsilon} * u \to u$ *in* $W^{2,r}(\Omega', \lambda)$

Proof Let $\epsilon <$ dist(Ω' , $\partial \Omega$), then $D^{\alpha} J_{\epsilon} * u = J_{\epsilon} * D^{\alpha} u$ in the distributional sense in Ω' (see [\[1](#page-21-20)], lemma 3.16). Since $Du \in L^r(\Omega)$, and $D^{\alpha}u \in L^r(\Omega, \lambda)$ for $|\alpha| = 2$ we have, by Theorem $19(c)$ $19(c)$

$$
||D^{\alpha} J_{\epsilon} * u - D^{\alpha} u||_{L^{r}(\Omega',\lambda)} = ||J_{\epsilon} * D^{\alpha} u - D^{\alpha} u||_{L^{r}(\Omega',\lambda)} \to 0 \text{ as } \epsilon \to 0^{+}
$$

and

$$
||DJ_{\epsilon}*u - Du||_{L^{r}(\Omega')} = ||J_{\epsilon}*Du - u||_{L^{r}(\Omega')} \to 0 \text{ as } \epsilon \to 0^{+}
$$

so that

$$
\|J_{\epsilon} * u - u\|_{W^{2,r}(\Omega',\lambda)} \to 0 \quad \text{as } \epsilon \to 0^+ \tag{32}
$$

$$
\Box
$$

Now we can prove Theorem [16](#page-18-0)

Proof (we simplify the proof considering the case $\Omega = B_1(0)$) (see also [\[1\]](#page-21-20) and [\[13\]](#page-21-23)).

If $u \in W^{2,r}(\Omega, \lambda)$ and $\varepsilon > 0$ we prove that there exists $\varphi \in C^{\infty}(\Omega)$ such that $\|\varphi\|$ $-u \|_{W_0^{2,r}(\Omega',\lambda)} < \varepsilon$. For $k = 1, 2, ...$ let

$$
\Omega_k = \left\{ x \in \Omega : \ |x| < 1 - \frac{1}{k} \right\}, \quad \Omega_0 = \Omega_{-1} = \emptyset
$$

and

$$
U_1 = \Omega_2, \ U_k = \left\{ x : \ \frac{k-2}{k-1} < |x| < \frac{k}{k+1} \right\}, \quad k = 2, \dots
$$

Then

$$
\mathcal{O} = \{U_k : k = 1, 2, \ldots\}
$$

is a collection of open subsets of Ω that covers Ω . Let Ψ be a C^{∞} -partition of unity for Ω subordinate to \mathcal{O} . Let ψ_k denote the sum of the finitely many functions $\psi \in \Psi$ whose support are contained in U_k . Then $\psi_k \in C_0^{\infty}(U_k)$ and $\sum_{k=1}^{\infty} \psi_k(x) = 1$, $\forall x \in \Omega$.

Let $0 < \epsilon < \frac{1}{(k+1)(k+2)}$ and $V_k = \{x : \frac{k-3}{k-2} \le |x| < \frac{k+1}{k+2}, k = 3, \ldots\}, V_1 = \Omega_3$ $V_2 = \Omega_4$. Then supp $(J_\epsilon * (\psi_k u)) \subset V_k \subset \subset \Omega$. Since $\psi_k u \in W^{2,r}(\Omega, \lambda)$, by Lemma [20](#page-20-0) we may choose $0 < \epsilon_k < \frac{1}{(k+1)(k+2)}$ such that

$$
\|J_{\epsilon} * (\psi_k u) - (\psi_k u)\|_{W^{2,r}(\Omega,\lambda)} = \|J_{\epsilon} * (\psi_k u) - (\psi_k u)\|_{W^{2,r}(V_k,\lambda)} < \frac{\epsilon}{2^k}.
$$

Let $\varphi = \sum_{j=1}^{+\infty} J_{\epsilon_k} * (\psi_k u)$. Since on any $\Omega' \subset\subset \Omega$ only finitely many terms in the sum can be nonzero, one has $\varphi \in C^{\infty}(\Omega)$ and $\varphi = 0$ on $\partial \Omega$. For $x \in \Omega_k$, we have

$$
u(x) = \sum_{j=1}^{k+2} \psi_j(x)u(x) \text{ and } \varphi(x) = \sum_{j=1}^{k+2} J_{\epsilon_k} * (\psi_j u)(x)
$$

 $\circled{2}$ Springer

 \Box

Thus

$$
\|u-\varphi\|_{W^{2,r}(\Omega_k, \lambda)}\leq \sum_{j=1}^{k+2}\|J_{\epsilon_k}*(\psi_j u)-\psi_j u\|_{W^{2,r}_0(\Omega, \lambda)}<\varepsilon
$$

By the monotone convergence theorem $||u - \varphi||_{W_0^{2,r}(\Omega,\lambda)} < \varepsilon$.

References

- 1. Adams, R.A., Fournier, J.J.F.: Sobolev Spaces. Second edition, Academic press, Pure and App. Maths. series **140**, (2003)
- 2. Badiale, M., Serra, E.: Multiplicity results for the supercritical Hénon equation. Adv. Nonlinear Stud. **4**(4), 453–467 (2004)
- 3. Byeon, J., Wang, Z.-Q.: On the Hénon equation: asymptotic profile of ground states. II. J. Differ. Equ. **216**, 78–108 (2005)
- 4. Byeon, J., Wang, Z.-Q.: On the Hénon equation: asymptotic profile of ground states. I. Ann. Inst. H. Poincaré Anal. Non Linéaire **23**, 803–828 (2006)
- 5. Cao, D., Peng, S.: The asymptotic behaviour of the ground state solutions for Hénon equation. J. Math. Anal. Appl. **278**, 1–17 (2003)
- 6. Caffarelli, L., Kohn, R., Nirenberg, L.: First order interpolation inequalities with weights. Compositio Math. **53**, 259–275 (1984)
- 7. Calanchi, M., Secchi, S., Terraneo, E.: Multiple solutions for a Hénon-like equation on the annulus. J. Differ. Equ. **245**(6), 1507–1525 (2008)
- 8. Clément, P., de Pagter, B., Sweers, G., de Thlin, F.: Existence of solutions to a semilinear elliptic system through Orlicz-Sobolev spaces. Mediterr. J. Math. **1**(3), 241–267 (2004)
- 9. de Figueiredo, D.G., Felmer, P.: On superquadratic elliptic systems. Trans. Am. Math. Soc. **343**(1), 99– 116 (1994)
- 10. de Figueiredo, D.G., do Ó, J.M., Ruf, B.: An Orlicz-space approach to superlinear elliptic systems. J. Funct. Anal. **224**(2), 471–496 (2005)
- 11. de Figueiredo, D.G., Peral, I., Rossi, J.D.: The critical hyperbola for a Hamiltonian system with weights. Ann. Mat. Pura Appl. (4) **187**(3), 531–545 (2008)
- 12. Gidas, B., Ni, W.M., Nirenberg, L.: Symmetry of positive solutions of nonlinear elliptic equations in *R^N* , Mathematical Analysis and Applications A, Adv. in Math. Suppl. Stud. 7a, 369–402, Academic Press (1981)
- 13. Hajłasz, P.: Note on Meyers-Serrin's theorem. Expo. Math. **11**(4), 377–379 (1993)
- 14. He, H., Yang, J.: Asymptotic behavior of solutions for Hénon systems with nearly critical exponent. J. Math. Anal. Appl. **347**(2), 459–471 (2008)
- 15. Hénon, M.: Numerical experiments on the stability of spheriocal stellar systems. Astron. Astrophys. **24**, 229–238 (1973)
- 16. Hulshof, J., Van der Vorst, R.: Differential systems with strongly indefinite variational structure. J. Funct. Anal. **114**, 32–58 (1993)
- 17. Hulshof, J., Van der Vorst, R.: Asymptotic behaviour of ground states. Proc. Am. Math. Soc. **124**, 2423– 2431 (1996)
- 18. Lieb, E.H.: Sharp Constants in the Hardy-Littlewood-Sobolev and Related Inequalities. Ann. Math. **118**, 349–374 (1983)
- 19. Lin, C.S.: Interpolation inequalities with weights. Comm. Partial Differ. Equ. **11**(14), 1515–1538 (1986)
- 20. Liu, F., Yang, J.: Nontrivial solutions of Hardy-Henon type elliptic systems. Acta Math. Sci. Ser. B Engl. Ed. **27**(4), 673–688 (2007)
- 21. Mitidieri, E.: A Rellich type identity and applications. Comm. Partial Differ. Equ. **18**, 125–151 (1993)
- 22. Muckenhoupt, B.: Weighted norm inequalities for the Hardy maximal function. Trans. Am. Math. Soc. **165**, 207–226 (1972)
- 23. Ni, W.M.: A nonlinear Dirichlet problem on the unit ball and its applications. Indiana Univ. Math. J. **31**, 801–807 (1982)
- 24. Serra, E.: Non radial positive solutions for the Hénon equation with critical growth. Calc. Var. Partial Differ. Equ. **23**(3), 301–326 (2005)
- 25. Serra Cassano, F.: Un'estensione della *G*-convergenza alla classe degli operatori ellittici degeneri. Ricerche di Matematica **38**, 167–197 (1989)

- 26. Smets, D., Su, J., Willem, M.: Non-radial ground states for the Hénon equation. Commun. Contemp. Math. **4**(3), 467–480 (2002)
- 27. Stein, E.M., Weiss, G.: Fractional integrals on *n*-dimensional Euclidean space. J. Math. Mech. **7**, 503– 514 (1958)
- 28. Wang, X.-J.: Sharp constant in a Sobolev inequality. Nonlinear Anal. **20**(3), 261–268 (1993)
- 29. Xuan, B.: The solvability of quasilinear Brezis-Nirenberg-type problems with singular weights. Nonlinear Anal. 62(**4**), 703–725 (2005)