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Abstract Let � ⊂ R
n be a bounded domain, and let 1 < p < ∞ and σ < p. We study

the nonlinear singular integral equation

M[u](x) = f0(x) in �

with the boundary condition u = g0 on ∂�, where f0 ∈ C(�) and g0 ∈ C(∂�) are given
functions and M is the singular integral operator given by

M[u](x) = p.v.
∫

B(0,ρ(x))

p − σ

|z|n+σ |u(x + z)− u(x)|p−2(u(x + z)− u(x)) dz,

with some choice of ρ ∈ C(�) having the property, 0 < ρ(x) ≤ dist (x, ∂�). We establish
the solvability (well-posedness) of this Dirichlet problem and the convergence uniform on
�, as σ → p, of the solution uσ of the Dirichlet problem to the solution u of the Dirichlet
problem for the p-Laplace equation ν�pu = f0 in � with the Dirichlet condition u = g0

on ∂�, where the factor ν is a positive constant (see (7.2)).
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486 H. Ishii, G. Nakamura

1 Introduction

Let � be a bounded domain of R
n and ρ ∈ C(�) a given function satisfying

λ0 dist (x, ∂�) ≤ ρ(x) ≤ dist (x, ∂�),

where 0 < λ0 ≤ 1 is a fixed constant.
Let p > 1 and σ < p. We introduce the nonlinear singular integral operator M = Mσ

given formally by

M[φ](x) = p.v.
∫

B(0,ρ(x))

G(φ(x + z)− φ(x))K (z) dz

for bounded measurable functions φ on �, where G is the function on R given by
G(x) = |x |p−2x and the kernel K = Kσ is given by

K (z) = µ

|z|n+σ , with µ = µσ := p − σ.

The symbol “p.v.” stands for the principal value of the integral. That is,

M[φ](x) = lim
r→0+

∫

r<|z|≤ρ(x)
G(φ(x + z)− φ(x))K (z) dz if the limit exists.

The constant σ will be often regarded as a parameter to be sent to p.
We deal with the integral equation

M[u](x) = f0(x) in �, (1.1)

where f0 is a given continuous, real-valued function on � and u represents the unknown
function on �. Associated with (1.1) is the boundary condition

u(x) = g0(x) for x ∈ ∂�, (1.2)

where g0 is a given continuous function on ∂�.
Our primary purpose is to investigate the solvability of the Dirichlet problem (1.1) and

(1.2), and the secondary interest here is to study the asymptotic behavior of solutions uσ of
(1.1)–(1.2) as σ → p.

In the next section, we establish some basic estimates of the singular integral operator
M . In view of application to the asymptotic analysis as σ → p, it is important to obtain
estimates of the operators M = Mσ which are independent of σ in a range close to p.

The notion of solution of (1.1) in this paper is an adaptation of viscosity solutions of
differential equations and it is defined as follows. We begin by introducing the spaces Tp(�)

of test functions. We set Tp(�) = C2(�) for p ≥ 2. For 1 < p < 2 let Tp(�) denote the
space of functions φ ∈ C2(�) having the property: for each compact R ⊂ � there exist a
neighborhood V ⊂ � of R and constants β > 1/(p −1) and A > 0 such that for any y ∈ R,
if Dφ vanishes at y, then

|φ(x)− φ(y)| ≤ A|x − y|β+1 for all x ∈ V .

We call any bounded function u in � a (viscosity) subsolution of (1.1) if we have

M+[u∗](x) ≥ f0(x)
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Integral equations 487

whenever (x, φ) ∈ � × Tp(�) and u∗ − φ has a maximum at x . Here the operator M+ is
defined by

M+[v](x) = lim sup
δ→0+

∫

δ<|z|<ρ(x)
G(v(x + z)− v(x))K (z) dz

and u∗ denotes the upper semicontinuous envelope of u. Similarly, we call any bounded
function u a (viscosity) supersolution of (1.1) if we have

M−[u∗](x) ≤ f0(x)

whenever (x, φ) ∈ � × Tp(�) and u∗ − φ has a minimum at x , where the operator M− is
defined by

M−[v](x) = lim inf
δ→0+

∫

δ<|z|<ρ(x)
G(v(x + z)− v(x))K (z) dz

and u∗ denotes the lower semicontinuous envelope of u. Finally, we call any bounded func-
tion u in � a (viscosity) solution of (1.1) if it is both a subsolution and a supersolution of
(1.1).

In Sect. 3 we prove the stability of solutions of (1.1) under certain limiting processes and
under taking the pointwise supremum or infimum. Also, in Sect. 3 the Perron method is estab-
lished for the integral equation (1.1). In Sect. 4 we establish a comparison theorem between
sub and supersolutions of (1.1). In Sect. 5, we build sub and supersolutions which attain the
boundary condition (1.2) and prove the existence of a continuous solution of (1.1)–(1.2).

In Sect. 6, we recall basic results concerning weak solutions in W 1,p
loc (�) of the inhomo-

geneous p-Laplace equation

�pu(x) = f0(x) in �, (1.3)

and formulate comparison results for (1.3), where we mostly follow the argument of [12].
In Sect. 7 we are concerned with the asymptotic behavior of solutions uσ of (1.1)–(1.2),

and we show that under appropriate hypotheses, uσ converges uniformly to the solution u of
the Dirichlet problem

ν�pu(x) = f0(x) in �,

where ν is an appropriate positive constant (see (7.2) for the precise value of ν), with the
Dirichlet condition (1.2).

In Sect. 8, we give a few comments on possible generalizations or variants of the results
presented in the preceding sections.

Recently, while this paper was in preparation, Andreu–Mazón–Rossi–Toledo [1,2] have
studied problems similar to ours. In [1] they study the evolution equation

ut (x, t) = MD[u(·, t)](x) in �× (0, T ). (1.4)

Here the unknown function u is defined on�×(0, T ), 0 < T < ∞, ut denotes the derivative
of u with respect to the time variable t and the operator MD is given by

MD[φ](x) =
∫

�

G(φ(y)− φ(x))J (x − y) dy

+
∫

�J \�
G(g0(y)− φ(x))J (x − y) dy, (1.5)
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where the function J is a non-negative continuous radial function on R
n with compact sup-

port, �J := �+ supp J and g0 is a given function on R
n belonging to L p(Rn). In [1] they

have established, among others, the solvability in the space

C([0, T ], L1(�)) ∩ W 1,1((0, T ), L1(�)),

of the Cauchy problem for (1.4) with initial data u0 ∈ L p(�) and, under some additional
assumptions on J and g0, the convergence in the space C([0, T ], L p(�)), as ε → 0+,
of the solution uε of the Cauchy problem for (1.4), with the kernel function J (x) replaced
by Jp,ε(x) := C p J (x/ε)/εn+p with C p := (1/2)

∫
J (x)|xn |p dx , to the solution u of the

initial-boundary value problem for

ut (x, t) = �pu(x, t) for (x, t) ∈ �× (0,∞) (1.6)

with the Dirichlet boundary condition u = g0 on ∂�×(0, T ) and the initial data u(·, 0) = u0.
In [2], they have treated the evolution equation similar to (1.4), but with MD replaced by the
operator MN defined by

MN [φ](x) =
∫

�

G(φ(y)− φ(x))J (x − y) dy,

and have obtained solvability and convergence results similar to the above, where the limit
problem is the initial-boundary problem for (1.6) with the Neumann boundary condition
∂u/∂n = 0, with n denoting the outer unit normal vectors at points on ∂�.

In [1] they treat the evolution problem while we study here the stationary problem, and
the operator MD in [1] is different from our M . Beyond these apparent differences, there are
two important differences between [1] and ours. One is of the qualitative property between
the operators M and MD : the kernel Kσ of M is singular at the origin while the kernel J
of MD is continuous. Indeed, it is not clear if the Cauchy problem for (1.4), with singular
kernel J is solvable or not, while it seems difficult to solve the Dirichlet problem for (1.1)
with a continuous kernel K . The second is that the results [1,2] are formulated in the L p

framework while the viscosity solutions approach is taken here.
We refer the reader to [1,2] and the references therein for some applications of nonlocal

diffusion equations like (1.1), (1.4), or (1.4) with MN in place of MD . For the viscosity
solutions approach to integro-differential equations with singular kernels, we refer to the
article [4]. We refer to [3,6] for regularity results for integro-differential equations. We refer
to [9,10] and the references therein for analysis of nonlocal Hamilton–Jacobi equations
describing dislocation dynamics.

Before closing the introduction we introduce a few of notation used below: a ∧ b :=
min{a, b}, a ∨ b := max{a, b}, a+ := a ∨ 0 for a, b ∈ R and ‖u‖∞,� := supx∈� |u(x)|
for real-valued function u on �. We write intB for the interior of the set B in a topological
space.

2 Estimates of operators M±

We note that for any bounded measurable functionφ on� and for any x ∈ �, if 0 < δ ≤ ρ(x),
then

M+[φ](x) = M+
δ [φ](x)+

∫

δ<|z|≤ρ(x)
G(φ(x + z)− φ(x))K (z) dz,

123



Integral equations 489

where

M+
δ [φ](x) = lim sup

ε→0+

∫

ε<|z|<δ
G(φ(x + z)− φ(x))K (z) dz.

In this section, we fix x ∈ R
n , δ > 0 and u a bounded measurable function on the ball

B(x, δ), and establish some upper bounds of M+
δ [u](x).

We note that the function G has the properties: (i) G(a) < G(b) if a < b and (ii)
G(ab) = G(a)G(b) for all a, b ∈ R.

The following lemma (see, e.g., [8, Exercise 6.65]) will be useful when carrying out our
computations and can be checked easily.

Lemma 2.1 Let pi > 0 for i = 1, . . . , n and let f : (0, 1] → [0, ∞) be a continuous
function which satisfies the integrability condition at the origin:

1∫

0

f (t)t p1+p2+···+pn−1 dt < ∞.

Set � = {x = (x1, . . . , xn) ∈ B(0, 1) | xi ≥ 0 for all i}. Then∫

�

f (x2
1 + x2

2 + · · · + x2
n )x

2p1−1
1 x2p2−1

2 · · · x2pn−1
n dx

= (p1)(p2) · · ·(pn)

2n(p1 + p2 + · · · + pn)

1∫

0

f (t)t p1+p2+···+pn−1 dt,

where  denotes the gamma function, i.e., (t) = ∫ ∞
0 e−x xt−1 dx.

Theorem 2.2 Assume that p ≥ 2 and that there are a vector q ∈ R
n and a constant C > 0

such that

u(x + z)− u(x) ≤ q · z + C |z|2 for all z ∈ B(0, δ). (2.1)

Then there is a constant C1 > 0, depending only on n, such that

M+
δ [u](x) ≤ C1C(|q| + δC)p−2δ p−σ .

A warning here is that M+
δ [u](x) can be −∞ in the above theorem. Also, we remark that

if we replace (2.1) by the inequality

u(x + z)− u(x) ≥ q · z − C |z|2 for all z ∈ B(0, δ)

in the above theorem, we have the following conclusion:

M−
δ [u](x) ≥ −C1C(|q| + δC)p−2δ p−σ ,

where

M−
δ [u](x) := lim inf

ε→0−

∫

ε<|z|<δ
G(u(x + z)− u(z))K (z) dz.

This result follows from the above theorem applied to v := −u. Indeed, we have

v(x + z)− v(x) ≤ −q · z + C |z|2
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for all z ∈ B(0, δ). Hence, as a consequence of Theorem 2.2, we obtain

M+
δ [v](x) ≤ C1C(|q| + δC)p−2δ p−σ ,

while we obviously have

M−
δ [u](x) = −M+

δ [v](x).
Combining these yields the desired conclusion.

Another important remark is that Theorem 2.2 readily shows that under the assumptions
of Theorem 2.2 we have M+

δ [u](x) = M−
δ [u](x). Indeed, under the assumptions of Theorem

2.2, we see that

M+
ε [u](x) ≤ C1C(|q| + εC)p−2ε p−σ for any 0 < ε < δ,

from which one deduces easily that M+
δ [u](x) ≤ M−

δ [u](x). That is, under the assumptions
of Theorem 2.2, the following identity holds:

M[u](x) = M+[u](x) = M−[u](x). (2.2)

In what follows we denote by σn the surface area of (n − 1)-dimensional unit sphere, i.e.,

σn := 2(1/2)n

(n/2)
= 2πn/2

(n/2)
.

Proof It is enough to show that the assertion of Theorem 2.2 is valid for x = 0 and δ = 1.
Indeed, if we define the function uδ on B(0, 1) by uδ(z) = u(x + δz), then we have

uδ(z)− uδ(0) ≤ δq · z + δ2C |z|2 for all z ∈ B(0, 1).

If we assume in addition that the assertion of Theorem 2.2 holds true for x = 0 and δ = 1,
then we get

M+
1 [uδ](0) ≤ C1δ

2C(δ|q| + δ2C)p−2 = C1C(|q| + δC)p−2δ p. (2.3)

On the other hand, one observes that

M+
1 [uδ](0) = lim sup

ε→0+

∫

ε<|z|<1

G(u(x + δz)− u(x))K (z) dz

= lim sup
ε→0+

∫

ε<|z|<δ
G(u(x + y)− u(x))K (y/δ)δ−n dy = δσ M+

δ [u](x).

Combining this with (2.3) ensures that

M+
δ [u](x) ≤ C1(|q| + δC)p−2δ p−σ .

We may thus assume that x = 0 and δ = 1. Fix any 0 < ε < 1. Let z ∈ R
n be such that

ε < |z| ≤ 1. Observe that

G(u(z)− u(0)) ≤ G(q · z + C |z|2) ≤ G(q · z)+ G ′(q · z + θC |z|2)C |z|2

for some θ = θ(z) ∈ (0, 1), where G ′(t) := dG(t)/ dt , and

G ′(q · z + θC |z|2) ≤ (p − 1) (|q||z| + C |z|2)p−2 ≤ (p − 1) (|q| + C)p−2|z|p−2.
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By symmetry, we have ∫

ε<|z|<1

G(q · z)K (z) dz = 0.

Hence, we get ∫

ε<|z|<1

G(u(z)− u(0))K (z) dz

≤
∫

ε<|z|<1

(G(q · z)+ C(p − 1)(|q| + C)p−2|z|p)K (z) dz

= µC(|q| + C)p−2
∫

ε<|z|<1

|z|p−n−σ dz

= µC(|q| + C)p−2σn

1∫

ε

r p−1−σ dr < σnC(|q| + C)p−2,

which completes the proof. �
Theorem 2.3 Assume that 1 < p < 2 and there are a vector q ∈ R

n\{0} and a constant
C > 0 such that u(x + z)−u(x) ≤ q · z +C |z|2 for all z ∈ B(0, δ). Then there is a constant
C1 > 0, depending only on p and n, such that

M+
δ [u](x) ≤ C1C |q|p−2δ p−σ .

For the proof of the above theorem, we need the following lemma.

Lemma 2.4 Suppose that n ≥ 2. Let 0 < a < 1 and e ∈ R
n be a unit vector. Set

S(a) = {x ∈ R
n | |x | = 1, |e · x | ≤ a}.

Let |S(a)| denote the (n − 1)-dimensional surface measure of S(a). Then we have |S(a)| ≤
πσn−1a.

Proof We begin with the formula from Advanced Calculus

|S(a)| = 2σn−1

sin−1 a∫

0

cosn−2 t dt.

Since sin−1 a ≤ πa/2, we immediately get

|S(a)| ≤ 2σn−1 sin−1(a) ≤ πσn−1a.

�
Proof of Theorem 2.3 We first prove that the conclusion of Theorem 2.3 is valid under the
additional assumption that

|q| ≥ 4δC. (2.4)

As in the proof of the previous theorem, we may assume that x = 0 and δ = 1.
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In the case where n ≥ 2, we make an orthogonal transformation if needed and assume
that q = |q|en , where en ∈ R

n denotes the unit vector en = (0, . . . , 0, 1). We write
z = (z′, zn) ∈ R

n−1 × R for generic z ∈ R
n in what follows.

Fix any 0 < ε < 1. Set a := C/|q| ∈ (0, 1/4], � = {z ∈ R
n | ε < |z| < 1},

�+ = {z = (z′, zn) ∈ � | |zn | > 2a|z|2} and �− = {z = (z′, zn) ∈ � | |zn | ≤ 2a|z|2}.
Setting

I :=
∫

�

G(u(z)− u(0))K (z) dz,

I + :=
∫

�+
G(u(z)− u(0))K (z) dz,

I − :=
∫

�−
G(u(z)− u(0))K (z) dz,

we observe that I = I + + I − and

I + :=
∫

�+
G(u(z)− u(0))K (z) dz ≤

∫

�+
G(|q|zn)G(1 + a|z|2/zn)K (z) dz

= |q|p−1
∫

�+
|zn |p−2(zn + (p − 1)|1 + λ(z)|p−2a|z|2)K (z) dz,

where λ(z) is a real-valued function on �+ satisfying |λ(z)| < 1/2. Here we have used that
a|z|2/|zn | ≤ 1/2 for z ∈ �+. Hence we get

I + ≤ 22−p(p − 1)|q|p−1aµ
∫

�+
|zn |p−2|z|2−n−σ dz.

Applying Lemma 2.1, we obtain

I + < C2|q|p−1aµ

1∫

0

t
p−σ

2 −1 dt = 2C2|q|p−1a = 2C2C |q|p−2,

where

C2 = 22−p(p − 1)(1/2)n−1((p − 1)/2)

((p + n − 2)/2)
.

Now, we compute

I − ≤ |q|p−1
∫

�−
G(|zn | + a|z|2)K (z) dz ≤ |q|p−1

∫

�−
G(3a|z|2)K (z) dz

≤ |q|p−1µ

∫

�−
|z|2p−2−σ−n dz ≤ |q|p−1µ

∫

�−
|z|p−1−n−σ dz. (2.5)
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For z = (z′, zn) ∈ �−, since a ≤ 1/4, we have |zn | ≤ 2a|z|2 ≤ 2a|z′|2 + |zn |
2 , and

|zn | ≤ 4a|z′|2. We now assume that p − σ < 2. Since p − 1 − n − σ < 0, we get

∫

�−
|z|p−1−n−σ dz ≤

∫

�−
|z′|p−1−n−σ dz

and

µ

∫

�−
|z|p−1−n−σ dz ≤ µ

∫

|z′|<1

dz′
4a|z′|2∫

0

|z′|p−1−n−σ dzn

≤ 4aµ
∫

|z′|<1

|z′|p+1−σ−n dz′ = 4aσn−1.

We next treat the other case, i.e., the case where p − σ ≥ 2. Let S(t) denote the portion of
the unit sphere defined by Lemma 2.4, with e = en , for t ∈ (0, 1). Since |zn | ≤ 2a|z|2 for
z ∈ �−, we see that �− ⊂ {t y | y ∈ S(2a), 0 ≤ t ≤ 1}. Thus, using Lemma 2.4, we find
that

µ

∫

�−
|z|p−1−n−σ dz ≤ µ|S(2a)|

1∫

0

t p−2−σ dt ≤ 2πσn−1
p − σ

p − 1 − σ
a ≤ 4πσn−1a.

Thus we get I − ≤ 4πσn−1|q|p−2 in view of (2.5) and

I ≤ C3C |q|p−2, (2.6)

where C3 = 2C2 + 4πσn−1.
Next we consider the case where n = 1. We follow the above argument for higher dimen-

sions. Noting that C |z|/|q| < 1/2 for all z ∈ (−1, 1), we compute that for any 0 < ε < 1
and for some function λ(z) ∈ (−1/2, 1/2),

I ≤
∫

ε<|z|<1

G(qz)

(
1 + (p − 1)|1 + λ(z)|p−2 Cz

q

)
K (z) dz

≤ 23−p(p − 1)C |q|p−2µ

1∫

ε

|z|p−1−σ dz < 23−p(p − 1)C |q|p−2.

This together with (2.6) guarantees that the conclusion of the theorem holds under condition
(2.4).

Now, we turn to the general case. We may assume that x = 0 and δ = 1. If |q| ≥ 4C ,
then we are done. Thus, we may assume that |q| < 4C .

We set r := |q|/(4C) ∈ (0, 1) and observe that condition (2.4), with r in place of δ, is
satisfied. We apply what we have proved above, to see that

M+
r [u](0) ≤ C3C |q|p−2r p−σ < C3C |q|p−2.
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Also, we have∫

r<|z|<1

G (u(z)− u(0)) K (z) dz ≤
∫

r<|z|<1

(
G(|q||z|)+ G(C |z|2)) K (z) dz,

∫

r<|z|<1

G(|q||z|)K (z) dz ≤ |q|p−1r−1µ

∫

r<|z|<1

|z|p−n−σ dz

≤ σn |q|p−1r−1 = 4σnC |q|p−2,

and ∫

r<|z|<1

G(C |z|2)K (z) dz ≤ C p−1r p−2µ

∫

r<|z|<1

|z|p−n−σ dz

≤ σnC(Cr)p−2 ≤ 4σnC |q|p−2.

Combining these, we get

I ≤ (C3 + 8σn)C |q|p−2,

which completes the proof. �
Now let 1 < p < 2 and β > 1/(p − 1). Let φ ∈ C2(Rn) be the function given by

φ(x) = |x |β+1. We note that for all x, y ∈ R
n ,

Dφ(x) = (β + 1)|x |β−1x and |D2φ(x)y · y| ≤ β(β + 1)|x |β−1|y|2.
Lemma 2.5 We have

M+
δ [φ](0) ≤ σn δ

(β+1)(p−1)−σ .

We remark that (β + 1)(p − 1)− σ > p − σ > 0.

Proof Observe that for any z ∈ R
n ,

G(φ(z)− φ(0))K (z) = G(|z|β+1)K (z) = µ|z|(β+1)(p−1)−n−σ .

Hence, we get for any 0 < ε < δ,

∫

ε<|z|<δ
G(φ(z)− φ(0))K (z) dz = σnµ

δ∫

ε

r (β+1)(p−1)−σ−1 dz

<
σnµ

(β + 1)(p − 1)− σ
δ(β+1)(p−1)−σ .

Thus

M+
δ [φ](0) ≤ σnδ

(β+1)(p−1)−σ .

�
Theorem 2.6 There is a constant C1 > 0 depending only on β, p and n such that for any
x ∈ B(0, δ),

M+
δ [φ](x) ≤ C1δ

(β+1)(p−1)−σ .
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Proof Fix any x ∈ B(0, δ). In view of Lemma 2.5, if x = 0, then we have nothing to prove,
and hence we may assume that x �= 0. Observe that for any z ∈ B(0, |x |) and for some
θ = θ(z) ∈ (0, 1),

φ(x + z)− φ(x) ≤ (β + 1)|x |β−1x · z + β(β + 1)

2
|x + θ z|β−1|z|2

≤ (β + 1)|x |β−1x · z + β(β + 1)2β−2|x |β−1|z|2.
Using Theorem 2.3, we get

M|x |[φ](x) ≤ C22β−2β(β + 1)p−1|x |(β+1)(p−1)−σ ,

where C2 is a constant depending only on p and n.
Next, setting

I =
∫

|x |<|z|<δ
G(φ(x + z)− φ(x))K (z) dz,

we have

M+
δ [φ](x) ≤ C22β−2β(β + 1)p−1δ(β+1)(p−1)−σ + I. (2.7)

Observe that G(φ(x + z)− φ(x)) ≤ G(φ(x + z)) ≤ G(φ(2z)) for z ∈ R
n\B(0, |x |) and

I ≤ 2(β+1)(p−1)µ

∫

|x |<|z|<δ
|z|(β+1)(p−1)−n−σ dz ≤ 2(β+1)(p−1)σnδ

(β+1)(p−1)−σ .

This combined with (2.7) completes the proof. �
We close this section with the following remark. Theorems 2.2, 2.3 and 2.6 guarantee that

identity (2.2) holds true for every x ∈ � and u ∈ Tp .

3 Stability properties and the Perron method

In this section we establish some stability properties of subsolutions of (1.1) as well as the
Perron method. Analogous stability properties are valid for supersolutions of (1.1), but we
leave the details to the reader.

Lemma 3.1 Let δ > 0, {xk} ⊂ � and x0 ∈ �. Let {uk} be a sequence of bounded measurable
functions on � and u a bounded measurable function on �. Assume that {uk} is uniformly
bounded on � and (xk, uk(xk)) → (x0, u(x0)) as k → ∞. Moreover assume that

lim
j→∞ sup{uk(y) | y ∈ B(z, j−1) ∩�, k ≥ j} ≤ u(z) for all z ∈ �. (3.1)

Then

lim sup
k→∞

∫

B(0, ρ(xk ))\B(0, δ)

G(uk(xk + z)− uk(xk))K (z) dz

≤
∫

B(0, ρ(x0))\B(0, δ)

G(u(x0 + z)− u(x0))K (z) dz.
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Proof Set

fk(z) =
{

G(uk(xk + z)− uk(xk)) for z ∈ B(0, ρ(x0)) ∩ B(0, ρ(xk)),

0 for z ∈ B(0, ρ(x0)) \ B(0, ρ(xk)),

Ik =
∫

B(0, ρ(x0))\B(0, δ)

fk(z)K (z) dz.

Choose a constant C > 0 so that |uk(z)| ≤ C for all (z, k) ∈ � × N, and note that
| fk(z)|K (z) ≤ G(2C)K (z) for all z ∈ B(0, ρ(x0)) and all k ∈ N. By the continuity of ρ,
we find that

lim sup
k→∞

∫

B(0, ρ(xk ))\B(0, δ)

G(uk(xk + z)− uk(xk))K (z) dz = lim sup
k→∞

Ik .

By the Fatou lemma, we have

lim sup
k→∞

Ik ≤
∫

B(0, ρ(x0))\B(0,δ)

lim sup
k→∞

fk(z) K (z) dz.

Since G is continuous and nondecreasing in R, using (3.1), we see that for any z ∈
intB(0, ρ(x0)),

lim sup
k→∞

fk(z) ≤ G(u(x0 + z)− u(x0)).

Thus we obtain

lim sup
k→∞

Ik ≤
∫

B(0, ρ(x0))\B(0, δ)

G(u(x0 + z)− u(x0))K (z) dz,

which completes the proof. �
Theorem 3.2 Let {uk} be a sequence of bounded measurable functions on� and u a bounded
measurable function on�. Let φ ∈ Tp and let {xk} ⊂ � be a sequence converging to a point
x0 ∈ �. Assume that for each k ∈ N the function uk − φ attains a maximum at xk , the
sequence {uk} is uniformly bounded on �, uk(xk) → u(x0) as k → ∞ and

lim
j→∞ sup{uk(y) | y ∈ B(x, j−1) ∩�, k ≥ j} ≤ u(x) for all x ∈ �.

Then

lim sup
k→∞

M+[uk](xk) ≤ M+[u](x0).

A useful remark concerning the above theorem is that the global maximum assumption
can be replaced by the following “uniform” local maximum condition: there exists a constant
r > 0, independent of k, such that uk − φ attains a maximum over B(x0, r) ∩�.

Proof Fix an r ∈ (0, ρ(x0)/2). By selecting a subsequence if necessary, we may assume
that xk ∈ B(x0, r) for all k ∈ N. Noting that B(xk, r) ⊂ B(x0, 2r) ⊂ �, we choose a
constant C > 0 so that

φ(xk + z)− φ(xk) ≤ Dφ(xk) · z + C |z|2 for all z ∈ B(0, r).
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Then we have

uk(xk + z)− uk(xk) ≤ Dφ(xk) · z + C |z|2 for all z ∈ B(0, r).

We first treat the case where p ≥ 2. By Theorem 2.2, there is a constant C1 > 0, inde-
pendent of k, such that for any 0 < δ < r and any k ∈ N,

M+
δ [uk](xk) ≤ C1C(|Dφ(xk)| + δC)p−2δ p−σ . (3.2)

Thus, we have

M+[uk](xk) ≤ C1C(|Dφ(xk)| + δC)p−2δ p−σ

+
∫

B(0, ρ(xk ))\B(0, δ)

G(uk(xk + z)− uk(xk))K (z) dz.

We now apply Lemma 3.1 to the second term on the right hand side of the above inequality,
to get

lim sup
k→∞

M+[uk](xk) ≤ C1C(|Dφ(x0)| + δC)p−2δ p−σ

+
∫

B(0, ρ(x0))\B(0, δ)

G(u(x0 + z)− u(x0))K (z) dz,

from which we conclude that

lim sup
k→∞

M+[uk](xk) ≤ M+[u](x0).

Next, we consider the case where 1 < p < 2. We follow the above argument with some
modifications. In the case where Dφ(x0) �= 0, we may assume by selecting a subsequence
if needed that infk∈N |Dφ(xk)| > 0, and instead of (3.2), by applying Theorem 2.3, we get

M+
δ [uk](xk) ≤ C1|Dφ(xk)|p−2δ p−σ .

In the case where Dφ(x0) = 0, we may replace the test function φ by the function

φ(x) = A|x − x0|β+1,

where A is a sufficiently large constant, and using Theorem 2.6, we get

M+
δ [uk](xk) ≤ M+

δ [φ](xk) ≤ AC1δ
(β+1)(p−1)−σ if |xk − x0| ≤ δ

in place of (3.2), where C1 is a constant depending only on p, β and n. Then the rest of
argument is the same as the previous case. �

Theorem 3.3 Let S0 be a nonempty set of subsolutions of (1.1). Assume that the family S0 is
uniformly bounded on�. Define the bounded function u on� by u(x) = sup{v(x) | v ∈ S0}.
Then u is a subsolution of (1.1).

Proof Let x0 ∈ � and φ ∈ Tp(�), and assume that u∗ − φ attains a strict maximum at x0.
By the definition of u∗, there are sequences {xk} ⊂ B(x0, r), where r > 0 is chosen so that
B(x0, r) ⊂ �, and {vk} ⊂ S0 such that vk(xk) → u∗(x0) and xk → x0 as k → ∞. By the
definition of u, we have v∗

k ≤ u∗ in �.
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For each k ∈ N let yk ∈ B(x0, r) be a maximum point, over B(x0, r), of the function
v∗

k − φ. Observe as usual that

(u∗ − φ)(x0) = lim
k→∞(vk − φ)(xk) ≤ lim inf

k→∞ (v∗
k − φ)(yk)

≤ lim sup
k→∞

(v∗
k − φ)(yk) ≤ lim sup

k→∞
(u∗ − φ)(yk) ≤ (u∗ − φ)(x0).

This shows that v∗
k (yk) → u∗(x0) and (u∗ − φ)(yk) → (u∗ − φ)(x0) as k → ∞. It is

now easy to deduce that yk → x0 as k → ∞. Passing to a subsequence if necessary, we
may assume that yk ∈ intB(x0, r) for all k. Since vk is a subsolution of (1.1), we have
M+[v∗

k ](yk) ≥ f (yk) for all k ∈ N. Since v∗
k ≤ u∗, we see that for all x ∈ �,

lim
j→∞ sup{v∗

k (y) | k ≥ j, y ∈ B(x, j−1) ∩�} ≤ u∗(x).

We may now invoke Theorem 3.2, to conclude that M+[u∗](x0) ≥ f0(x0), which completes
the proof. �
Theorem 3.4 Let {uk} be a sequence of subsolutions of (1.1). Assume that the collection
{uk} is uniformly bounded on �. Define the bounded function u on � by

u(x) = lim
j→∞ sup{uk(y) | y ∈ B(x, j−1) ∩�, k ≥ j}.

Then u is a subsolution of (1.1).

Proof First of all, we remark that u ∈ USC(�). Next, let x0 ∈ � and φ ∈ Tp(�). Assume
that u −φ attains a strict maximum at x0. By the definition of u, there are sequences {k j } ⊂ N

diverging to infinity and {x j } ⊂ � such that uk j (x j ) → u(x0) and x j → x0 as j → ∞.
Here we also assume by passing to a subsequence if necessary that {x j } ⊂ B(x0, r), where
r > 0 is chosen so that B(x0, r) ⊂ �.

Set v j = uk j for j ∈ N. For each j ∈ N let y j ∈ B(x0, r) be a maximum point, over
B(x0, r), of v∗

j − φ. We observe that

(u − φ)(x0) = lim
j→∞(v j − φ)(x j ) ≤ lim inf

j→∞ (v∗
j − φ)(y j ). (3.3)

By selecting a subsequence if necessary, we may assume that y j → y as j → ∞ for some
y ∈ B(x0, r). By the definition of u, we see that

lim sup
j→∞

(v∗
j − φ)(y j ) = lim sup

k→∞
v∗

j (y j )− φ(y) ≤ u(y)− φ(y).

This together with (3.3) guarantees that y = x0. That is, the sequence {y j } converges to x0.
Also, it follows that v∗

j (y j ) → u(x0) as j → ∞.
For sufficiently large j , we have y j ∈ intB(x0, r) and M+[v∗

j ](y j ) ≥ f0(y j ). Applying
Theorem 3.2, we find that M+[u](x0) ≥ f0(x0). This finishes the proof. �

To formulate a basic existence result (Perron method) for (1.1), we let g− ∈ LSC(�)
and g+ ∈ USC(�) be a subsolution and a supersolution of (1.1), respectively. Assume
furthermore that g± are bounded in � and g− ≤ g+ in �. Set

u(x) = sup{v(x) | v is a subsolution of (1.1), g− ≤ v ≤ g+ in �}. (3.4)

Note that u is bounded in �.

Theorem 3.5 The function u given by (3.4) is a solution of (1.1).
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Proof We note by Theorem 3.4 that u∗ is a subsolution of (1.1). We thus need to show that
u∗ is a supersolution of (1.1).

Let x0 ∈ � and φ ∈ Tp(�). Assume that u∗ − φ attains a strict minimum at x0, with
minimum value zero. We intend to show that the inequality

M−[u∗](x0) ≤ f0(x0) (3.5)

holds.
It is clear by the definition of u that g− ≤ u ≤ g+ in �. Consequently we have g− ≤

u∗ ≤ g+∗ in �. Consider first the case where u∗(x0) = g+∗(x0). Then, since u∗ ≤ g+∗ in �,
it follows that g+∗ − φ attains a minimum at x0. As g+ is a supersolution of (1.1), we have

M−[g+∗](x0) ≤ f0(x0). (3.6)

But, since u∗ ≤ g+∗ in � and g+∗(x0) = u∗(x0), we see that

M−[g+∗](x0) ≥ M−[u∗](x0),

from which together with (3.6) we conclude that (3.5) holds.
Next we assume that u∗(x0) < g+∗(x0). We deduce by the semicontinuity of g+∗ that

g+∗ > φ + ε in a neighborhood of x0 for some constant ε ∈ (0, 1). Furthermore, we may
assume, by modifying φ on a set away from the point x0 if necessary, that g+∗(x) > φ(x)+ ε
for all x ∈ �.

Define

uk = u ∨ (
φ + 1

k

)
in �.

Note that (uk)∗(x0) = φ(x0) + 1/k > u∗(x0) and therefore uk �≤ u. Since φ + ε < g+ in
�, we see that g− ≤ uk ≤ g+ for sufficiently large k, say, k ≥ j , for some j ∈ N.

In what follows we are concerned only with uk having k ≥ j . Since uk �≤ u and g− ≤
uk ≤ g+ on �, by the definition of u, we find that uk is not a subsolution of (1.1). Thus, for
each k there are a point xk ∈ � and a function ψk ∈ Tp(�) such that xk is a maximum point
of u∗

k − ψk and the inequality

M+[u∗
k ](xk) < f0(xk) (3.7)

holds.
Set φk(x) = φ(x)+ 1

k for x ∈ � and Vk = {x ∈ � | φk(x) > u∗(x)}. Note that Vk is an
open subset of � and uk = φk on Vk .

We claim that xk ∈ Vk . Indeed, if this were not the case, then we would have φk(xk) ≤
u∗(xk) and therefore u ∗

k (xk) = u∗(xk) ∨ φk(xk) = u∗(xk).
Now, since u∗

k ≥ u∗ in �, we see that xk is a maximum point of u∗ −ψk . Hence we have
M+[u∗](xk) ≥ f0(xk). Since u∗

k(xk) = u∗(xk) and u∗
k ≥ u∗ in �, we have M+[u∗](xk) ≤

M+[u∗
k ](xk). From these we obtain M+[u∗

k ](xk) ≥ f0(xk), which contradicts (3.7). Thus we
have xk ∈ Vk .

As noted above, Vk is an open subset of � and uk = φk on Vk . Therefore, (uk)∗(xk) =
φk(xk). By the definition of uk , we have uk ≥ φk on � and hence (uk)∗ ≥ φk on �. Thus,
(uk)∗ − φ takes a minimum at xk . Also, since u∗ ≤ (uk)∗ ≤ u∗ + 1/k in �, we find that,
as k → ∞, (uk)∗ → u∗ uniformly on � and xk → x0. Hence, applying Theorem 3.2, we
obtain

lim inf
k→∞ M−[(uk)∗](xk) ≥ M−[u∗](x0).

Combining this with (3.7) yields f0(x0) ≥ M−[u∗](x0), which finishes the proof. �
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4 Comparison theorem

In this section we prove the following comparison theorem.

Theorem 4.1 Let λ0 = 1. Let u ∈ USC(�) and v ∈ LSC(�) be a subsolution and a
supersolution of (1.1), respectively. Assume that u ≤ v on ∂� and u and v are bounded on
�. Then u ≤ v in �.

Proof We argue by contradiction, and thus suppose that m := sup�(u − v) > 0 and will
show a contradiction. We fix a constant C > 0 so that ‖u‖∞,� ∨ ‖v‖∞,� ≤ C . Since G is
strictly increasing, we can choose a nondecreasing positive function γ on (0, m) so that

G(t + s) ≥ G(t)+ γ (s) for all |t | ≤ 2C, 0 < s < m.

For α > 0 we consider the function �α on �×� defined by

�α(x, y) = u(x)− v(y)− α|x − y|β+1,

where β > max{1, 1/(p − 1)}. For each α > 0, let (xα, yα) ∈ �×� be a maximum point
of �α . As usual in viscosity solutions theory, we observe that there are a sequence {αk},
diverging to infinity, and a point x0 ∈ � for which xαk → x0, yαk → x0, u(xαk ) → u(x0)

and v(yαk ) → v(x0) as j → ∞. Also, it is easy to see that (u − v)(x0) = m. Since
max∂�(u − v) ≤ 0 by assumption, we have x0 ∈ �.

For notational simplicity, we write xk and yk for xαk and yαk , respectively. Passing to a sub-
sequence if necessary, we may assume that xk, yk ∈ � for all k ∈ N. Hence, by the definition
of sub and supersolutions of (1.1), we have M+[u](xk) ≥ f0(xk) and f0(yk) ≥ M−[v](yk)

for all k ∈ N. As a remark after Theorem 2.2, we see from Theorems 2.2, 2.3 and 2.6 that
M+[u](xk) = M−[u](xk) for all ∈ N.

Since ρ(x0) = dist (x0, ∂�) and m > 0, by the upper semicontinuity of u − v, we
can choose a point ξ ∈ intB(x0, ρ(x0)) so that (u − v)(ξ) < m/2. Then, in view of the
semicontinuity of u and v, we can choose an 0 < r < dist (ξ, ∂B(x0, ρ(x0))) so that
u(x) − v(y) < m/2 for all x, y ∈ B(ξ, r). Setting ρk = ρ(xk) ∧ ρ(yk) and passing to a
subsequence if necessary, we may assume that

B(ξ, r) ⊂ B(xk, ρk) ∩ B(yk, ρk) for all k ∈ N,

which can be stated as

B(ξ − xk, r) ∪ B(ξ − yk, r) ⊂ B(0, ρk) for k ∈ N.

Again, passing to a subsequence if needed, we may assume that

B(ξ − x0, r/2) ⊂ B(ξ − xk, r) ∩ B(ξ − yk, r) for k ∈ N.

Note that for z ∈ B(ξ − x0, r/2),

xk + z, yk + z ∈ B(ξ, r)

and

u(xk + z)− v(yk + z) <
m

2
.

Since u(xk)− v(yk) ≥ m, we have

u(xk + z)− u(xk) < v(yk + z)− v(yk)− m

2
for z ∈ B(ξ − x0, r/2).
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Note also that B(ξ − x0) ⊂ B(0, ρk) for k ∈ N.
We have

�(xk, yk) ≥ �(xk + z, yk + z) for all z ∈ B(0, ρk), k ∈ N,

and hence

u(xk)− v(yk) ≥ u(xk + z)− v(yk + z) for all z ∈ B(0, ρk), k ∈ N.

We set η = ξ − x0. Using the above observations, we compute that

f0(xk) ≤ M−[u](xk)

≤ lim inf
ε→0+

∫

B(0, ρk )\(B(η, r/2)∪B(0, ε))

G(v(yk + z)− v(yk))K (z) dz

+
∫

B(η, r/2)

G(u(xk + z)− u(xk))K (z) dz

+
∫

ρk<|z|<ρ(xk )

G(2C)K (z) dz

≤ lim inf
ε→0+

∫

B(0, ρk )\(B(η, r/2)∪B(0, ε))

G(v(yk + z)− v(yk))K (z) dz

+
∫

B(η, r/2)

G(v(yk + z)− v(yk)− m/2)K (z) dz

+
∫

ρk<|z|<ρ(xk )

G(2C)K (z) dz

≤ lim inf
ε→0+

∫

B(0, ρk )\B(0, ε)

G(v(yk + z)− v(yk))K (z) dz

−γ (m/2)
∫

B(η, r/2)

K (z) dz +
∫

ρk<|z|<ρ(xk )

G(2C)K (z) dz

≤ M−[v](yk)− γ (m/2)
∫

B(η, r/2)

K (z) dz

+2
∫

ρk<|z|<ρ(xk )∨ρ(yk )

G(2C)K (z) dz

≤ f0(yk)− γ (m/2)
∫

B(η, r/2)

K (z) dz

+2
∫

ρk<|z|<ρ(xk )∨ρ(yk )

G(2C)K (z) dz. (4.1)
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Sending k → ∞ yields

γ (m/2)
∫

B(η, r/2)

K (z) dz < 0,

which is a contradiction. �
Remark 4.1 In the (linear) case where p = 2, the same conclusion as the above theorem is
valid without assuming λ0 = 1.

Proof of Remark 4.1 Let p = 2 and 0 < λ0 < 1. As in the proof of the previous the-
orem, we suppose that m := max�(u − v) > 0 and will show a contradiction. We set
 = {x ∈ � | (u − v)(x) = m}. Obviously, the set  is a nonempty closed subset of � and
there are a point x0 ∈  and a ball B(ξ, r), with r > 0, such that

B(ξ, r) ⊂ intB(x0, ρ(x0))\.
Here we may assume by choosing r > 0 small enough that u(x) − v(y) ≤ m0 for all
x, y ∈ B(ξ, r) and some constant m0 < m.

Let ε > 0, and note that the function u(x)− v(x)− ε|x − x0|2 has a strict maximum at
x = x0, and, introducing the function

�α(x, y) = u(x)− v(y)− ε|x − x0|2 − α|x − y|2
on � × �, we find that there are a sequence {αk} diverging to infinity and sequences {xk}
and {yk} converging to x0 such that �αk attains a maximum at (xk, yk).

Selecting a subsequence if necessary, we may assume that xk, yk �∈ B(ξ, r) and B(ξ, r) ⊂
B(xk, ρ(xk)) ∩ B(yk, ρ(yk)) for all k ∈ N. Setting η = ξ − x0, we may assume that for all
k ∈ N,

(xk + B(η, r/2)) ∪ (yk + B(η, r/2)) ⊂ B(ξ, r).

As u and v are sub and supersolutions of (1.1), respectively, we get

M+[u](xk) = M−[u](xk) ≥ f0(xk) and M−[v](yk) = M+[v](yk) ≤ f0(yk).

Since

�αk (xk, yk) ≥ �αk (xk + z, yk + z) for all z ∈ B(0, ρ(xk) ∧ ρ(yk)), k ∈ N,

we have

u(xk + z)− u(xk) ≤ v(yk + z)− v(yk)+ ε
(
2(xk − x0) · z + |z|2)

for all z ∈ B(0, ρ(xk) ∧ ρ(yk)), k ∈ N.

Hence, computing similarly to (4.1), we get

f0(xk) ≤ f0(yk)− γ (m − m0)

∫

B(η, r/2)

K (z) dz + 2
∫

Nk

G(2C)K (z) dz

+ε
∫

B(0, ρ(xk ))

|z|2 K (z) dz,

where

Nk = (B(xk, ρ(xk)) ∪ B(yk, ρ(yk))) \ (B(xk, ρ(xk) ∩ B(yk, ρ(yk))),
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from which we obtain a contradiction in the limit as k → ∞ if ε > 0 is sufficiently small.
�

5 Existence of continuous solutions

In this section we establish an existence result for the Dirichlet problem for (1.1)–(1.2). We
need the following additional hypotheses on � and f0.

(H1):The set � satisfies the uniform exterior sphere condition. That is, there is an R > 0
and, for each x ∈ ∂�, a point y ∈ R

n such that

B(y, R) ∩� = {x}.
(H2):There exist constants ε0 ∈ (0, 1) and C0 > 0 such that

| f0(x)| ≤ C0 (λ0 dist (x, ∂�))ε0(p−1)−σ for all x ∈ �.
Remark 5.1 (i) Although we are mainly concerned with bounded f0, but assumption (H2),
with ε0(p−1)−σ < 0, allows f0 to blow up at points of the boundary ∂�. (ii) Fix a bounded
function f0 on� and constants p > 1 and 0 < σ0 < p. We may choose constants ε0 ∈ (0, 1)
and C0 > 0 so that ε0(p − 1) − σ0 ≤ 0 and | f0(x)| ≤ C0(λ0 dist (x, ∂�))ε0(p−1)−σ0 for
x ∈ �. Then, for any σ0 ≤ σ < p, we have | f0(x)| ≤ C1 (λ0 dist (x, ∂�))ε0(p−1)−σ for all
x ∈ � and for some constant C1 > 0 independent of σ . This remark is important when we
discuss the asymptotic behavior of of the solution uσ of (1.1)–(1.2) as σ → p.

Henceforth in this section, we assume that the above hypotheses are valid, and we fix
R > 0, ε0 ∈ (0, 1) and C0 > 0 taken from (H1)–(H2).

The main result in this section is stated as follows.

Theorem 5.1 Assume that λ0 = 1 if p �= 2. Then there exists a unique solution u ∈ C(�)
of (1.1)–(1.2).

Proof In view of the Perron method (Theorem 3.5) and the comparison theorem (Theorem
4.1 and Remark 4.1), we need only to show that there exist a subsolutionψ− ∈ LSC(�) and
a supersolution ψ+ ∈ USC(�) of (1.1) such that ψ− ≤ ψ+ in � and ψ− = ψ+ on ∂�,
which is exactly what the next theorem guarantees. �
Theorem 5.2 There exist functionsψ+ ∈ USC(�) andψ− ∈ LSC(�) such thatψ+ (resp.,
ψ−) is a supersolution (resp., subsolution) of (1.1), ψ− ≤ ψ+ on � and ψ = g0 on ∂�.
Moreover, the functions ψ± can be chosen independently of σ .

Remark 5.2 The hypotheses of Theorem 4.1 exclude the case where 0 < λ0 < 1 and p �= 2.
But, even in this case, the proof of Theorem 5.1 ensures the existence of a solution u of
(1.1)–(1.2) which is continuous at points of the boundary ∂�, i.e.,

lim
��x→y

u(x) = g0(y) for y ∈ ∂�,

and may not be continuous in �.

The above theorem is an easy consequence of the following lemma.

Lemma 5.3 Let g ∈ C2(�). Then there is a function ψ ∈ C(�) such that ψ is a superso-
lution of (1.1), g ≤ ψ on � and ψ = g on ∂�. The choice of ψ does not depends on σ .

Assuming the above lemma as true for the moment, we prove Theorem 5.2 as follows.
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Proof of Theorem 5.2 We extend the domain of definition of g0 to � so that the resulting
function, denoted again by g0, is continuous on �. For any 0 < ε < 1 we choose a function
gε ∈ C2(�) so that ‖gε − g0‖∞,� < ε. We apply Lemma 5.3 with g = ε + gε, to find a

supersolution ψ+
ε ∈ C(�) of (1.1) such that ψ+

ε ≥ ε + gε on � and ψ+
ε = ε + gε on ∂�.

Here the choice of ψ+
ε is independent of σ . Now, we set

ψ+(x) = inf{ψ+
ε (x) | 0 < ε < 1} for x ∈ �.

This function ψ+ is upper semicontinuous on �, is a supersolution of (1.1) due to Theorem
3.3 and satisfies the conditions that g0 ≤ ψ+ on � and g0 = ψ+ on ∂�.

Next we apply Lemma 5.3 with − f0 and ε − gε in place of f0 and g, respectively, to
obtain a supersolution φε of

M[u](x) = − f0 in �.

Setting ψ−
ε = −φε , we observe that ψ−

ε is a subsolution of (1.1) and satisfies the conditions
that ψ−

ε ≥ −ε + gε on � and ψ−
ε = −ε + gε on ∂�. As before, setting

ψ−(x) = sup{ψ−
ε (x) | 0 < ε < 1} for x ∈ �,

we get a subsolutionψ− ∈ LSC(�) of (1.1), the choice of which is independent of σ , having
the properties: ψ− ≤ g0 on � and ψ− = g0 on ∂�. Noting that ψ− ≤ g0 ≤ ψ+ on �, we
conclude the proof. �

In this section we put d(x) = dist (x, ∂�) for x ∈ � and

�δ = {x ∈ � | d(x) > δ} for δ > 0.

To prove Lemma 5.3, we need the following lemma.

Lemma 5.4 Let ε ∈ (0, 1). Define the function φε ∈ C(�) by φε(x) = d(x)ε . Then there
are constants δ = δε,R, C = CR > 0, γ = γε,R > 0 and, for each x ∈ �\�δ , a unit vector
e = ex ∈ R

n such that for any z ∈ B(0, d(x)),

φε(x + z)− φε(x) ≤
{
εd(x)ε−1

(
e · z + C |z|2) ,

εd(x)ε−1
(
e · z − γ d(x)−1|z|2) if |e · z| ≥ |z|/2. (5.1)

Now, assuming Lemma 5.4 as true, we give the proof of Lemma 5.3.

Proof of Lemma 5.3 In this proof we write ε for ε0 for notational simplicity. Let φε, CR ,
γ = γε,R and δ = δε,R be as in Lemma 5.4. Fix a constant C ≥ CR ∨ 1 so that

C0 ∨ ‖g‖∞,� ∨ ‖Dg‖∞,� ∨ ‖D2g‖∞,� ≤ C.

Here, to be sure, we write ‖D2g‖∞,� := sup{|D2g(x)ξ · ξ | | x ∈ �, ξ ∈ B(0, 1)}.
It is easy to see that there is a quadratic function ψ0 ∈ C2(Rn) such that

ψ0(x + z)− ψ0(x) ≤ Dψ0(x) · z − |z|2 for all x, z ∈ R
n

and

diam (�)+ 1 ≤ |Dψ0(x)| ≤ 3 diam (�)+ 1 for all x ∈ �.
We may moreover assume that ψ0 ≥ 0 on �. We fix such a function ψ0.

Now, we fix x ∈ � and set q0 = Dψ0(x) and

�0 = {z ∈ B(0, ρ(x)) | |q0 · z| ≥ |q0||z|/2}.
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Note that �0 is symmetric, i.e., −�0 = �0 and the volume of �0 is comparable to that of
B(0, ρ(x)), i.e., |�0| = τn |B(0, ρ(x))| for some constant τn ∈ (0, 1). We observe that for
some θ ∈ (0, 1),

G(ψ0(x + z)− ψ0(x)) = G(q0 · z)− G ′(q0 · z − θ |z|2)|z|2

≤
⎧⎨
⎩

G(q0 · z) for all z ∈ B(0, ρ(x))

G(q0 · z)− (p − 1)|q0 · z − θ |z|2|p−2|z|p for all z ∈ �0.

Let z ∈ �0 and θ ∈ (0, 1), and observe that if p ≥ 2, then

|q0 · z − θ |z|2|p−2 ≥ 22−p|z|p−2 ||q0| − 2|z||p−2 ≥ 22−p|z|p−2

and if p < 2, then

|q0 · z − θ |z|2|p−2 ≥ |z|p−2||q0| + |z||p−2 ≥ (4 diam (�)+ 1)p−2|z|p−2.

Here we have used the condition that diam (�)+ 1 ≤ |q0| ≤ 3 diam (�)+ 1. Setting

bp =
⎧⎨
⎩
(p − 1) 22−p if p ≥ 2,

(p − 1)(4 diam (�)+ 1)p−2 if p < 2,

we have for z ∈ �0,

G(ψ0(x + z)− ψ0(x)) ≤ G(q0 · z)− bp|z|2,
and obtain

M[ψ0](x) ≤
∫

B(0, ρ(x))\�0

G(q0 · z)K (z) dz

+
∫

�0

(
G(q0 · z)− bp|z|p) K (z) dz

= −bpµ

∫

�0

|z|p−n−σ dz = −bpτnσnρ(x)
p−σ .

Thus, noting that p = ε(p − 1) + (1 − ε)p + ε and setting b0 = bpτnσn(λ0δ/2)(1−ε)p+ε ,
we get

M[ψ0](x) ≤ −b0ρ(x)
ε(p−1)−σ for all x ∈ �δ/2. (5.2)

Let A ≥ 1 be a constant to be fixed later on, and set

v(x) = g(x)+ Aφε(x) for x ∈ �.
Fix x ∈ �\�δ and let e ∈ R

n be a unit vector which satisfies (5.1). We set � = {z ∈
B(0, ρ(x)) | |e · z| ≥ |z|/2}, q1 = Dg(x)+ εd(x)ε−1 Ae and γ1 = γ εd(x)ε−2 A/2. We may
assume by replacing γ and δ by smaller positive numbers if needed that δ ≤ 4γ ≤ 1. We
now assume that 4C ≤ εδε−1 A. Then we have C ≤ γ εδε−2 A and

C

2
− γ εd(x)ε−2 A ≤ −γ εd(x)

ε−2 A

2
= γ1.
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Hence, by (5.1), we have for any z ∈ �,

v(x + z)− v(x) ≤ q1 · z − γ1|z|2.
Observe also that for any z ∈ �,

γ1|z|2 ≤ γ εd(x)ε−1 A|z|
2

≤ εd(x)ε−1 A|z|
8

,

|q1 · z| ≥ εd(x)ε−1 A|e · z| − C |z| ≥ εd(x)ε−1|z|A
4

,

|q1 · z| ≤ εd(x)ε−1 A|z| + C |z| ≤ 2εd(x)ε−1 A|z|.
Hence, for any z ∈ � and θ ∈ (0, 1), if p ≥ 2, then

G ′(q1 · z − θγ1|z|2) = (p − 1)
∣∣q1 · z − θγ1|z|2

∣∣p−2 ≥ (p − 1)

(
εd(x)ε−1 A|z|

8

)p−2

,

and if 1 < p < 2, then

G ′(q1 · z − θγ1|z|2) ≥ (p − 1)
(
2εd(x)ε−1 A|z|)p−2

.

Thus, setting

cp =
⎧⎨
⎩
(p − 1) 82−p if p ≥ 2,

(p − 1) 2p−2 if p < 2,

we get

G(v(x + z)− v(x)) ≤ G(q1 · z)− cp
(
εd(x)ε−1 A

)p−2
γ1|z|p for z ∈ �,

and consequently∫

�

G(v(x + z)− v(x))K (z) dz ≤ −cp
(
εd(x)ε−1 A

)p−2
γ1µ

∫

�

|z|p−n−σ dz

= −1

2
cpγ (εA)p−1d(x)−(1−ε)p−ετnσnρ(x)

p−σ

≤ −1

2
cpτnσnγ (εA)p−1λ

(1−ε)p+ε
0 ρ(x)ε(p−1)−σ . (5.3)

Next, we give an estimate of the integral

I :=
∫

B(0, ρ(x))\�
G(v(x + z)− v(x))K (z) dz.

We have v(x + z)− v(x) ≤ q1 · z + C(1 + εd(x)ε−1 A)|z|2 for z ∈ B(0, ρ(x)). Noting that

|q1| ∨ C(1 + εd(x)ε−1 A) ≤ Q := 2εd(x)ε−1 AC

and arguing as in the proofs of Theorems 2.2 and 2.3, we find a constant C1 > 0, depending
only on p and n, such that if p ≥ 2, then

I ≤ C1 Q(Q + ρ(x)Q)p−2ρ(x)p−σ = C1 Q p−1(1 + ρ(x))p−2ρ(x)p−σ

≤ 2p−2C1 (2εAC)p−1 d(x)(ε−1)(p−1)ρ(x)p−σ ≤ C1(4εAC)p−1ρ(x)(ε−1)(p−1)+p−σ

= C1(4εAC)p−1ρ(x)ε(p−1)−σ+1,
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and if p < 2, then

I ≤ C1 Q p−1ρ(x)p−σ ≤ C1(2εAC)p−1d(x)(ε−1)(p−1)ρ(x)p−2

≤ C1(2εAC)p−1ρ(x)ε(p−1)−σ+1.

Here we have used that ρ(x) ≤ δ ≤ 1. From these and (5.3), we get

M+[v](x) ≤ (εA)p−1
(
(4C)p−1C1δ − 1

2
cpτnσnγ λ

(1−ε)p+ε
0

)
ρ(x)ε(p−1)−σ .

Set c0 = cpτnσnγ λ
(1−ε)p+ε
0 /4. Replacing δ > 0 by a smaller number if needed, we may

assume that (4C)p−1C1δ ≤ c0. Then we have

M+[v](x) ≤ −c0(εA)p−1ρ(x)ε(p−1)−σ for all x ∈ �\�δ.
We now assume that c0(εA)p−1 ≥ C , and then we get

M+[v](x) ≤ −Cρ(x)ε(p−1)−σ for all x ∈ �\�δ. (5.4)

At this stage, our requirement on A is that A ≥ A1, where

A1 := max

{
1,

4C

εδε−1 ,
1

ε

(
C

c0

) 1
p−1

}
.

By (5.2), for any constant B > 0, we have

M[Bψ0](x) ≤ −B p−1b0ρ(x)
ε(p−1)−σ for x ∈ �δ/2.

We fix B > 0 so that B p−1b0 ≥ C , and we have

M[Bψ0](x) ≤ −Cρ(x)ε(p−1)−σ for all x ∈ �δ/2. (5.5)

We set

L := B max
�

ψ0 ∈ (0, ∞) and jε(t) = tε for t ≥ 0,

and observe that

sup
�\�δ/2

v ≤ C + Ajε(δ/2),

inf
�δ
v ≥ −C + Ajε(δ).

Since jε(δ) > jε(δ/2), we may choose a constant A2 > 0 so that

A2 ( jε(δ)− jε(δ/2)) ≥ L + 2C.

We finally fix A = A1 ∨ A2, and define the functions w, ψ ∈ C(�) by

w(x) = C + Ajε(δ/2)+ Bψ0(x),

ψ(x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

v(x) if x ∈ �\�δ/2,

v(x) ∧ w(x) if x ∈ �δ/2\�δ,

w(x) if x ∈ �δ.
It is easily checked that ψ ≥ g on � and ψ = g on ∂� and also that ψ(x) = v(x) ∧ w(x)
on �.
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It remains to check that ψ is a supersolution of (1.1). Let φ ∈ Tp(�) and y ∈ �, and
assume that ψ − φ attains a minimum at y. We may assume that (ψ − φ)(y) = 0, so that
ψ ≥ φ in �. We divide our consideration into three cases. First, we consider the case where
y ∈ �δ/2 and ψ(y) = w(y). Since φ ≤ ψ = v ∧ w in �, we see from (5.5) that

M[φ](y) ≤ M[w](y) ≤ f0(y).

Next, consider the case where y ∈ �δ/2 and ψ(y) �= w(y). Then we have y ∈ �δ/2\�δ and
ψ(y) = v(y). Hence, from (5.4), we get

M[φ](y) ≤ M+[v](y) ≤ f0(y).

The last case is where y ∈ � \�δ/2. But then we have φ(y) = ψ(y) = v(y) and, as in the
previous case, we get

M[φ](y) ≤ M+[v](y) ≤ f0(y),

which completes the proof. �
We need the following lemma for the proof of Lemma 5.4.

Lemma 5.5 Let r > 0, 0 < ε < 1, and e ∈ R
n be a unit vector. Set x = (R + r)e. Then

there are positive constants cε,R and δε,R, depending only on ε and R, such that for any
z ∈ B(0, r), if r ≤ δε,R, then

(|x + z| − R)ε − (|x | − R)ε ≤

⎧⎪⎪⎨
⎪⎪⎩
εrε−1

(
e · z + |z|2

2R

)
,

εrε−1 (
e · z − cε,Rr−1|z|2) if |e · z| ≥ |z|

2 .

Proof We fix any z ∈ B(0, r) and observe that for some θ ∈ (0, 1),

(|x + z| − R)ε − (|x | − R)ε ≤ ε(|x | − R)ε−1(|x + z| − |x |)
−ε(1 − ε)

2
(|x + θ z| − R)ε−2(|x + z| − |x |)2.

We set f (y) = |x + y| for y ∈ R
n and compute that if x + y �= 0, then

D f (y) = x + y

|x + y| and D2 f (y) = 1

|x + y|
(

I − (x + y)⊗ (x + y)

|x + y|2
)
,

where I denotes the identity matrix of order n and v ⊗ v := (viv j )1≤i, j≤n for
v = (v1, v2, . . . , vn). Hence, we have

|x + z| − |x | ≤ e · z + |z|2
2|x + θ z|

for some θ ∈ (0, 1). Thus, noting that R ≤ |x + θ z| ≤ R + 2r for θ ∈ (0, 1), we get

(|x + z| − R)ε − (|x | − R)ε ≤ εrε−1
(

e · z + |z|2
2R

)

−ε(1 − ε)

2
(2r)ε−2(|x + z| − |x |)2. (5.6)

In particular, we have

(|x + z| − R)ε − (|x | − R)ε ≤ εrε−1
(

e · z + |z|2
2R

)
.
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We assume henceforth that |e · z| ≥ |z|/2. Note that

2|x · z| − |z|2 ≥ (R + r)|z| − r |z| = R|z|,
and

(|x + z| − |z|)2 = (|x + z|2 − |x |2)2
(|x + z| + |x |)2 ≥ (R|z|)2

(2R + 3r)2
. (5.7)

We choose δε,R > 0 so that

1

R
≤ (1 − ε)2ε−3 R2

(2R + 3δ)2
,

and set

cε,R := (1 − ε)2ε−3 R2

(2R + 3δ)2
.

From (5.6) and (5.7), if r ≤ δε,R , we get

(|x + z| − R)ε − (|x | − R)ε ≤ εrε−1 (
e · z − cε,Rr−1|z|2) ,

which completes the proof. �
Proof of Lemma 5.4 Let c = cε,R and δ = δε,R be positive constants from Lemma 5.5. Fix
any x ∈ �\�δ . Set r := d(x) ∈ (0, δ] and select a point ξ ∈ ∂� so that r = |ξ − x |. By the
uniform exterior sphere condition (H1), there is a point η ∈ R

n such that B(η, R)∩� = {ξ}.
By translation, we may assume that η = 0. Setting e = x/|x |, we have x = (R + r)e and
ξ = Re. Note also that d(x)ε = rε = (|x |− R)ε . Let z ∈ B(0, r). Setting ē = (x +z)/|x +z|,
we observe that Rē �∈ �,

d(x + z) ≤ |x + z − Rē| = |x + z| − R,

and
d(x + z)ε − d(x)ε ≤ (|x + z| − R)ε − (|x | − R)ε.

Now, by virtue of Lemma 5.5, we see that

φε(x + z)− φε(x) ≤

⎧⎪⎨
⎪⎩
εrε−1

(
e · z + |z|2

2R

)
,

εrε−1
(
e · z − cr−1|z|2) if |e · z| ≥ |z|

2 .

This completes the proof. �

6 Comparison results for the p-Laplace equation

In this section we recall some of basic results on the inhomogeneous p-Laplace equation

�pu = f0(x) in � (6.1)

and formulate comparison results for (6.1). The results in this section are more or less well-
known (see [12]), and thus we give only a brief sketch of their proofs. We refer to [12] for
results and proofs similar to those in this section.
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We are concerned with the Dirichlet problem for (6.1) with the Dirichlet condition (1.2),
i.e., the condition u = g0 on ∂�. We may assume that g0 is a continuous function on � and
moreover g0 ∈ C2(�).

We call any function u ∈ W 1,p
loc (�) a weak solution of (6.1) if

−
∫

�

|Du(x)|p−2 Du(x) · Dψ(x) dx =
∫

�

f0(x)ψ(x) dx for all ψ ∈ C∞
0 (�).

Also we call any function u ∈ W 1,p
loc (�) a weak subsolution (resp., supersolution) of (1.1) if

−
∫

�

|Du(x)|p−2 Du(x) · Dψ(x) dx ≥
∫

�

f0(x)ψ(x) dx,

(resp., −
∫

�

|Du(x)|p−2 Du(x) · Dψ(x) dx ≤
∫

�

f0(x)ψ(x) dx)

for all ψ ∈ C∞
0 (�) with ψ ≥ 0.

In this paper, the Dirichlet condition (1.2) for weak solutions u of (6.1) is understood in
the pointwise sense, i.e.,

lim
x→∂�

(u − g0)(x) = 0.

Next, following [11,14], we recall the definition of viscosity solutions of (6.1). We call
any bounded function u in � a viscosity subsolution (resp., supersolution) of (6.1) provided
that for any (x, φ) ∈ �× Tp(�) for which u∗ − φ (resp., u∗ − φ) attains a local maximum
(resp., minimum) at x , we have

�pφ(x) ≥ f0(x) ( resp., �pφ(x) ≤ f0(x) ) if Dφ(x) �= 0,

and

0 ≥ f0(x) ( resp., 0 ≤ f0(x) ) if Dφ(x) = 0.

We call any bounded function u on� a viscosity solution of (6.1) if it is both a viscosity sub
and supersolution of (6.1).

We assume throughout this section that the uniform exterior sphere condition (H1) holds
and that f0 ∈ C(�) is bounded on �.

Theorem 6.1 Let u, v ∈ W 1,p
loc (�) be weak sub and supersolutions of (6.1), respectively.

Assume that

lim sup
x→∂�

(u − v)(x) ≤ 0.

Then u ≤ v a.e. in �.

Proof Fix any ε > 0 and replace u by u − ε. Then w := (u − v)+ ∈ W 1,p
0 (�), and we get

−
∫

w>0

(|Du|p−2 Du − |Dv|p−2 Dv
) · (Du − Dv) dx ≥ 0,

which implies that∫

w>0

(|Du|p−2 Du − |Dv|p−2 Dv
) · (Du − Dv) dx = 0.
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Observe (see [15, Lemma 1]) that there is a constant γp > 0 such that for all a, b ∈ R
n ,

(|a|p−2 − |b|p−2b) · (a − b) ≥

⎧⎪⎨
⎪⎩
γp|a − b|p if p ≥ 2,

γp|a − b|2
(|a| + |b|)2−p

if p < 2.

Accordingly, if p ≥ 2, then we have∫

w>0

|D(u − v)|p dx

≤ γ−1
p

∫

w>0

(|Du|p−2 Du − |Dv|p−2 Dv
) · (Du − Dv) = 0,

and, if 1 < p < 2, then we have∫

w>0

|Du − Dv|p dx

≤
⎛
⎝

∫

w>0

|Du − Dv|2
(|Du| + |Dv|)2−p

dx

⎞
⎠

p/2 ⎛
⎝

∫

w>0

(|Du| + |Dv|)p dx

⎞
⎠
(2−p)/2

≤
⎛
⎝γ−1

p

∫

w>0

(|Du|p−2 Du − |Dv|p−2 Dv
) · (Du − Dv) dx

⎞
⎠

p/2

×
⎛
⎝

∫

w>0

(|Du| + |Dv|)p dx

⎞
⎠
(2−p)/2

= 0.

Thus we find that w = 0 and hence u ≤ v+ ε a.e. in�, which shows that u ≤ v a.e. in�. �
Lemma 6.2 For each x ∈ ∂� and ε > 0 there exist a weak supersolution ψ+

x,ε ∈ C∞(�)
and a weak subsolution ψ−

x,ε ∈ C∞(�) of (6.1) such that ψ−
x,ε ≤ g0 ≤ ψ+

x,ε in � and
ψ+

x,ε(x)− ε ≤ g0(x) ≤ ψ−
x,ε(x)+ ε.

Proof Fix any x ∈ ∂� and ε > 0. Let y ∈ R
n and R > 0 be those from condition (H1). Let

C > 0 and α > 0 be constants to be selected later. We define the function f ∈ C∞(Rn) by

f (z) = C(e−αR2 − e−α|z−y|2).

By a simple computation, we get

�p f (z) = (2αC)p−1e−α(p−1)|z−y|2 |z − y|p−2 (
n + p − 2 − 2α(p − 1)|z − y|2) .

We choose α > 0 so that 2α(p − 1)R2 > n + p − 2 and then C > 0 so that

�p f (z) ≤ f0(z) and ε + f (z) ≥ g0(z) for all z ∈ �.
The function f (z) + ε has the properties required of the function ψ+

x,ε in the lemma. The
function ψ−

x,ε can be constructed in a similar way. �
We need the following well-known Hölder gradient estimate for the solutions of (6.1). We

refer to [7,13,15] for this estimate.
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Lemma 6.3 Let u ∈ W 1,p
loc (�) be a weak solution of (6.1). There is a constant α ∈ (0, 1),

depending only on p and n, and for each ball B := B(x0, 2r) ⊂ � a constant C > 0,
depending only on p, n, r , ‖u‖∞,B and ‖ f0‖∞,B, such that

|Du(x)− Du(x ′)| ≤ C |x − x ′|α for all x, x ′ ∈ B(x0, r).

The constant C can be chosen so that it is nondecreasing in ‖u‖∞,B and ‖ f0‖∞,B.

Theorem 6.4 There is a unique weak solution u ∈ W 1,p
loc (�) ∩ C(�) of (6.1) and (1.2).

Proof We choose a sequence {gk} ⊂ C1(�) such that, as k → ∞, gk → g0 uniformly
on � and Dgk → Dg0 locally uniformly in �. For each k ∈ N we consider the convex
minimization problem

inf{I (v) | v ∈ gk + W 1,p
0 (�)}, (6.2)

where k ∈ N and

I (v) =
∫

�

(
1

p
|Dv|p + f0v

)
dx .

It is a standard observation that for each k ∈ N, the minimization problem (6.2) has a unique
solution uk ∈ gk + W 1,p

0 (�) and it is a weak solution of (6.1).
According to Lemma 6.2, there are functions ψ± ∈ C∞(�) such that ψ+ (resp., ψ−) is

a weak supersolution (resp., subsolution) of (6.1) and ψ− ≤ gk ≤ ψ+ on � for all k ∈ N.
By an argument similar to the proof of Theorem 6.1, we see that ψ− ≤ uk ≤ ψ+ a.e. in
� for all k ∈ N. By Lemma 6.3, we may assume that uk ∈ C1,α(�) for all n and for some
α ∈ (0, 1) and that the sequence {uk} is precompact in C1(�). Thus, the sequence uk has
a subsequence {uk j } such that (uk j , Duk j ) → (u, Du) locally uniformly in � for some

function u ∈ C1,α(�) ∩ W 1,p
loc (�) as j → ∞. It is easily seen that u is a weak solution

of (6.1). We extend the domain of definition of u up to ∂� by setting u(x) = g0(x) for all
x ∈ ∂�.

We now show that u ∈ C(�). Fix any x ∈ ∂� and ε > 0. Let ψ±
x,ε ∈ C∞(�) be two

functions from Lemma 6.2. If k ∈ N is sufficiently large, then we have

ψ−
x,ε(z)− 2ε ≤ gk(z) ≤ ψx,ε(z)+ 2ε for all z ∈ �.

By comparison, we see that if k is sufficiently large, then

ψx,ε(z)− 2ε ≤ uk(z) ≤ ψ+
x,ε(z)+ 2ε for all z ∈ �,

which obviously implies that u is continuous at x . Thus u is a continuous function on �.
The uniqueness of weak solutions of (6.1) and (1.2) follows from Theorem 6.1. �

Theorem 6.5 Let u ∈ W 1,p
loc (�) ∩ USC(�) (resp., u ∈ W 1,p

loc (�) ∩ LSC(�)) be a weak
subsolution (resp., supersolution) of (6.1). Then it is a viscosity subsolution (resp., superso-
lution) of (6.1).

Proof Note that w ∈ W 1,p
loc (�)∩ LSC(�) is a weak (resp., viscosity) supersolution of (6.1)

if and only if −w ∈ W 1,p
loc (�) ∩ USC(�) is a weak (resp., viscosity) subsolution of (6.1)

with − f0 in place of f0. Hence, we need only to prove the subsolution part of the assertion.
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Let U ⊂ � be an open ball such that U ⊂ �. Suppose that u is not a viscosity subsolution
of (6.1) in U . Then there is a function φ ∈ Tp(U ) ∩ C(U ) such that u − φ attains a strict
maximum over U at some point x0 ∈ U and

{
�pφ(x0) < f0(x0) if Dφ(x0) �= 0,

0 < f0(x0) if Dφ(x0) = 0.

By replacing the function φ(x) by the function C |x − x0|β+1 with a sufficiently large C > 0
and a β > 1/(p − 1) if 1 < p < 2 and Dφ(x0) = 0, we may assume that |Dφ|p−2 Dφ ∈
C1(U ), and then it is easily checked that φ is a weak solution of (6.1) in a neighborhood V ⊂
U of x0. Adding a constant to u, we may assume that (u−φ)(x0) > 0 and max∂V (u−φ) < 0.
By the comparison theorem (Theorem 6.1), we find that u ≤ φ in V , which is a contradiction.
This guarantees that u is a viscosity subsolution of (6.1). �
Proposition 6.6 Let f1, f2 ∈ C(�) satisfy f1 > f2 on �. Let u ∈ USC(�) (resp., v ∈
LSC(�)) be a viscosity subsolution (resp., supersolution) of (6.1) with f1 (resp., f2) in place
of f0. Assume that u ≤ v on ∂�. Then u ≤ v in �.

Proof We argue by contradiction, and thus assume that max�(u − v) > 0. Fix a β ≥ 1 so
that β > 1/(p − 1), and set φ(x) = |x |β+1 for x ∈ R

n . For any α > 1 we consider the
function

u(x)− v(y)− αφ(x − y) on �×�

and choose a maximum point (xα, yα) of it. Restricting our attention to sufficiently large α,
we may assume that xα, yα ∈ �. Setting

qα := αDφ(xα − yα) = α(β + 1)|xα − yα|β−1(xα − yα),

noting that

0 ≤ D2φ(x) ≤ (β + 1)β|x |β−1 I for all x ∈ R
n,

and using, for instance, [5, Theorem 3.2], we find an n × n real matrix Xα such that

(qα, Xα) ∈ J
2,+

u(xα) and (qα, Xα) ∈ J
2,−
v(yα).

Here we refer the reader to [5] for the definition of semijets J
2,±

. Note that for every
ψ ∈ Tp(�), if Dψ(x) �= 0, then

�pψ(x) = |Dψ(x)|p−4 tr
(|Dψ(x)|2 D2ψ(x)+ (p − 2)(Dψ(x)⊗ Dψ(x))D2ψ(x)

)
.

Now, by the viscosity property of u and v, we get

|qα|p−4 tr
(|qα|2 Xα + (p − 2)(qα ⊗ qα)Xα

) ≥ f1(xα),

|qα|p−4 tr
(|qα|2 Xα + (p − 2)(qα ⊗ qα)Xα

) ≤ f2(yα)

if either p ≥ 2 or qα �= 0, and

0 ≥ f1(xα) and 0 ≤ f2(yα)

otherwise. From these, we see that f1(xα) ≤ f2(yα). Sending α → 0, we conclude that
f1(x0) ≤ f2(x0) for some x0 ∈ �, but this contradicts our assumption that f1 > f2 on �.

�
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The following Theorem improves the previous proposition.

Theorem 6.7 Let u ∈ USC(�) and v ∈ LSC(�) be, respectively, viscosity sub and super-
solutions of (6.1). Assume that u ≤ v on ∂�. Then u ≤ v in �.

Proof According to Theorem 6.4, there is a unique weak solution w ∈ W 1,p
loc (�) ∩ C(�) of

(6.1) and (1.2).
Now, we prove that u ≤ w in �. Fix any γ ∈ (0, 1), and let wγ ∈ W 1,p

loc (�) ∩ C(�) be
the unique weak solution of (6.1), with f0 − γ in place of f0, and (1.2).

Since wγ is a viscosity solution of (6.1) with f0 − γ in place of f0, applying Proposition
6.6, we see that u ≤ wγ on �.

Using Lemma 6.3, we deduce that there is a sequence γ j → 0 such that as j → ∞,
(wγ j , Dwγ j ) → (w0, Dw0) locally uniformly in � for some weak solution w0 of (6.1).

Let ψ+
x,ε ∈ C∞(�), with x ∈ ∂� and ε ∈ (0, 1), be those functions given by Lemma 6.2

with f0 − 1 in place of f0. By Theorem 6.1, we have

wγ (z) ≤ ψ+(z) := inf{ε + ψx,ε(z) | x ∈ ∂�, ε ∈ (0, 1)} for all z ∈ �.
Sinceψ+ = g0 on ∂� andψ+ ∈ USC(�), we see that if we setw0(x) = g0(x) for x ∈ ∂�,
then w0 ∈ C(�). Hence, by the uniqueness of weak solutions of (6.1) and (1.2), we find that
w0 = w. This shows that u ≤ w on �.

An argument similar to the above yields the inequality w ≤ v on �. The proof is now
complete. �

7 p-Laplace equation in the limit as σ → p

Throughout this section we assume that the uniform exterior sphere condition (H1) is satis-
fied, f0 ∈ C(�) is bounded on � and 1/2 ≤ σ < p. The last two assumptions assure, in
particular, that there are constants ε0 ∈ (0, 1) and C0 > 0, independent of σ , such that

| f0(x)| ≤ C0 (λ0 dist (x, ∂�))ε0(p−1)−σ for x ∈ �.
That is, condition (H2) is satisfied. Hence, according to Lemma 5.3, there are functions
ψ± ∈ C(�), independent of σ , such that ψ± = g0 on ∂�, ψ− ≤ ψ+ in � and ψ+ (resp.,
ψ−) is a supersolution (resp., subsolution) of (1.1). By virtue of Theorem 3.5, there is a
solution u of (1.1) (see also Theorem 5.1 and Remark 5.2) such that ψ− ≤ u ≤ ψ+ in �.
We fix such a solution and denote it by uσ . According to Theorem 5.1, under the additional
assumption that λ0 = 1 if p �= 2, uσ is a unique solution of the problem (1.1)–(1.2) and it is
continuous on �.

As the limit equation for (1.1), we introduce the p-Laplace equation

ν�pu(x) = f0(x) for x ∈ �. (7.1)

with the factor ν = νn,p given by

ν =
π

n−1
2 

(
p+1

2

)

(
n+p

2 )
. (7.2)

By Theorem 6.4, the Dirichlet problem (7.1) and (1.2) has a unique weak solution in
W 1,p

loc (�) ∩ C(�) which is also a unique viscosity solution of (7.1) and (1.2), by Theorems
6.5 and 6.7.
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Theorem 7.1 Let v ∈ W 1,p
loc ∩ C(�) be the unique weak solution of (7.1) and (1.2). Then

lim
σ→p− uσ (x) = v(x) uniformly on �.

Proof As usual in viscosity solutions theory, we introduce the half relaxed limits u± of uσ
by

u+(x) = lim
r→0+ sup{uσ (y) | y ∈ B(x, r) ∩�, p − r < σ < p} for x ∈ �,

u−(x) = lim
r→0+ inf{uσ (y) | y ∈ B(x, r) ∩�, p − r < σ < p} for x ∈ �.

Observe that u+ ∈ USC(�), u− ∈ LSC(�) and ψ− ≤ u− ≤ u+ ≤ ψ+ on �. We intend
to show that u+ (resp., u−) is a viscosity subsolution (resp., supersolution) of (7.1). Once
this was done, Theorem 6.7 guarantees that u− = u+ on � and, as σ → p−, uσ converges
uniformly on� to the unique viscosity solution of (7.1) and (1.2) which is equal to v, thanks
to Theorem 6.5. In fact, we prove here only that u+ is a viscosity subsolution of (7.1), and
leave it to the reader to check that u− is a viscosity supersolution of (7.1).

Let φ ∈ Tp(�), and assume that u+ − φ attains a strict maximum at x0 ∈ �. By trans-
lation, we may assume that x0 = 0, and then set q = Dφ(0) and A = D2φ(0). We
choose a constant δ0 ∈ (0, 1/2) so that B(0, 2δ0) ⊂ �. Fix a constant C1 > 0 so that
(1/2)|D2φ(x)ξ · ξ | ≤ C1|ξ |2 for all x ∈ B(0, 2δ0) and ξ ∈ R

n . It is easy to find a sequence
{σk} ⊂ (1/2, p) converging to p such that for each k ∈ N, u∗

σk
− φ attains a maximum

over B(0, 2δ0) at some point xk ∈ B(0, δ0), where xk converges to the origin. Note that
Mσk [u∗

σk
](xk) ≥ f0(xk) for all k ∈ N. We may assume that δ0 < ρ(x) for all x ∈ B(0, 2δ0).

We first consider the case where q = 0 and p �= 2. Note that�pφ(0) = 0 if p > 2. Thus
we need to show that f0(0) ≤ 0. If 1 < p < 2, we may replace the test function φ by a
function C |x |β+1, with some constants C > 0 and β > 1/(p − 1). Applying Theorem 2.2
or Theorem 2.6, we see that there is a constant C2 > 0, independent of σ , such that for any
0 < δ < δ0 and x ∈ B(0, δ), if p ≥ 2, then

Mσ [u∗
σk

](xk) ≤ C2(|Dφ(xk)| + δ)p−2δ p−σ +
∫

δ<|z|<ρ(xk )

G(C3)
p − σ

|z|n+σ dz,

and if 1 < p < 2, then

Mσ [u∗
σk

](xk) ≤ C2δ
(β+1)(p−1)−σ +

∫

δ<|z|<ρ(xk )

G(C3)
p − σ

|z|n+σ dz,

where C3 := ‖ψ+‖∞,� + ‖ψ−‖∞,�. From this observation, since Mσk [u∗
σk

](xk) ≥ f0(xk),
we find that f0(0) ≤ 0, which was to be shown.

Next, we consider the case where q �= 0 and will show that f0(0) ≤ ν�pφ(0). Fix any
ε ∈ (0, 1). We may assume by reselecting δ0 if needed that

|(A − D2φ(x))ξ · ξ | ≤ ε|ξ |2 for all x ∈ B(0, 2δ0) and ξ ∈ R
n .

We may also assume that |q|/2 ≤ |Dφ(x)| ≤ 2|q| for all x ∈ B(0, δ0).
Fix any x ∈ B(0, δ0). For each z ∈ B(0, δ0) we can choose a constant θ(z) ∈ (0, 1) so

that

φ(x + z)− φ(x) = qx · z + 1

2
D2φ(x + θ(z)z)z · z,
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where qx := Dφ(x), and note that

G(φ(x + z)− φ(x)) ≤ G

(
qx · z + 1

2
Aεz · z

)
,

where Aε := A + ε I . Let δ ∈ (0, δ0). We set C4 = C1 + 1 and

Wδ(x) = {z ∈ B(0, δ) | C4|z|2 < ε|qx · z|}.
Let z ∈ Wδ(x) and compute that

G(φ(x + z)− φ(x)) ≤ G(qx · z)G

(
1 + Aεz · z

2qx · z

)

= G(qx · z)

(
1 + G ′(1 + λ(z))

Aεz · z

2qx · z

)

= G(qx · z)+ (p − 1)|qx · z|p−2|1 + λ(z)|p−2 Aεz · z

2

for some λ(z) ∈ R satisfying

|λ(z)| ≤
∣∣∣∣ Aεz · z

2qx · z

∣∣∣∣ ≤ C4|z|2
2|qx · z| < ε.

Noting that if 1 < p < 2, then

(1 + ε)p−2 ≤ |1 + λ(z)|p−2 ≤ (1 − ε)p−2

and if p ≥ 2, then

(1 − ε)p−2 ≤ |1 + λ(z)|p−2 ≤ (1 + ε)p−2,

we find that
∣∣(|1 + λ(z)|p−2 − 1

)
Aεz · z

∣∣ ≤ ∣∣(1 + ε)p−2 − (1 − ε)p−2
∣∣ C4|z|2.

Setting γε = ε + ∣∣(1 − ε)p−2 − (1 + ε)p−2
∣∣ and Bε = A + γε I , we observe that

|1 + λ(z)|p−2 Aεz · z ≤ Bεz · z,

G(φ(x + z)− φ(x)) ≤ G(qx · z)+ (p − 1)|qx · z|p−2 Bεz · z

2
,

and limε→0 γε = 0.
Now, we write q̄x = qx/|qx | and reselect δ0, if needed, so small that C4δ0 ≤ ε|qx |/2.

Observe that if z ∈ B(0, δ)\Wδ(x), then

ε|qx · z| ≤ C4|z|2 = C4
(|z − (q̄x · z)q̄|2 + (q̄x · z)2

)
≤ C4

(|z − (q̄x · z)q̄x |2 + δ|q̄x · z|)
≤ C4|z − (q̄x · z)q̄|2 + ε

2
|qx · z|.

That is, for any z ∈ B(0, δ)\Wδ(x), we have ε|qx · z| ≤ 2C4|z − (q̄x · z)q̄x |2. Hence, setting

Vδ(x) = {
z ∈ B(0, δ)

∣∣ ε|qx · z| ≤ 2C4|z − (q̄x · z)q̄x |2
}
,

we get B(0, δ) ⊂ Wδ(x) ∪ Vδ(x).
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Next we observe that

I1(x) :=
∫

Wδ(x)

G(φ(x + z)− φ(x))K (z) dz

≤
∫

Wδ(x)

(
G(qx · z)+ p − 1

2
|qx · z|p−2 Bεz · z

)
K (z) dz

= p − 1

2

∫

Wδ(x)

|qx · z|p−2(Bεz · z)K (z) dz.

We make an orthogonal change of variables in the above integral. Indeed, for each x ∈ B(0, δ),
we introduce an orthogonal matrix Ux of order n for which Ux en = q̄x and compute as fol-
lows:

I1(x) ≤ p − 1

2

∫

W n
δ

|qx · Ux y|p−2(BεUx y · Ux y)K (y) dy

= p − 1

2
|qx |p−2

n∑
j=1

∫

W n
δ

|yn |p−2b j j (x)y
2
j K (y) dy

≤ p − 1

2
|qx |p−2

n∑
j=1

⎛
⎜⎝

∫

|y|<δ
|yn |p−2b j j (x)y

2
j K (y) dy

+
∫

V n
δ

|b j j (x)||yn |p−2 y2
j K (y) dy

⎞
⎟⎠ ,

where bi j (x) denotes the (i, j)-entry of the matrix U−1
x BεUx and

W n
δ := {y = (y′, yn) ∈ B(0, δ) | C4|y|2 < ε|qx ||yn |},

V n
δ := {y = (y′, yn) ∈ B(0, δ) | ε|qx ||yn | ≤ 2C4|y′|2}.

For 1 ≤ j ≤ n we compute

J1, j (x) :=
∫

|y|<δ
|yn |p−2 y2

j K (y) dy

= µδ p−σ
∫

|y|<1

|yn |p−2 y2
j |y|−n−σ dy.

We use Lemma 2.1, to find that if j < n, then

J1, j (x) =
µδ p−σ

( 3
2

)


( 1
2

)n−2


(
p−1

2

)


( n+p

2

)
1∫

0

t
p−σ

2 −1 dt = 2νδ p−σ

p − 1
,
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and

J1,n(x) =
µδ p−σ

( 1
2

)n−1


(
p+1

2

)


( n+p

2

)
1∫

0

t
p−σ

2 −1 dt = 2νδ p−σ .

Next, we set C5 = 4C4/(|q|ε), so that |yn | ≤ C5|y′|2 for y = (y′, yn) ∈ V n
δ . We compute

that for 1 ≤ j < n,

J2, j (x) :=
∫

V n
δ

|yn |p−2 y2
j K (y) dy

≤ 2µ
∫

|y′|<δ
|y′|2−n−σ dy′

C5|y′|2∫

0

y p−2
n dyn

= 2C p−1
5 µ

p − 1

∫

|y′|<1

|y′|2p−n−σ dy′ = 2C p−1
5 σn−1µ

(p − 1)(2p − 1 − σ)
.

Similarly we get

J2,n(x) :=
∫

V n
δ

|yn |p K (y) dy

≤ 2µ
∫

|y′|<δ
|y′|−n−σ dy′

C5|y′|2∫

0

y p
n dyn

= 2C p+1
5 µ

p + 1

∫

|y′|<1

|y′|2p+2−n−σ dy′

= 2C p+1
5 σn−1µ

(p + 1)(2p + 1 − σ)
<

2C p+1
5 σn−1µ

(p + 1)(2p − 1 − σ)
.

Furthermore, noting that

φ(x + z)− φ(x) ≤ qx · z + C4|z|2 for z ∈ B(0, δ)

and

|qx | · |yn | + C4|y|2 ≤ (2|q| + C4)|yn | + C4|y′|2 ≤ C6|y′|2 for y ∈ V n
δ ,
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where C6 := (2|q| + C4)C5 + C4, we compute that

I2(x) :=
∫

Vδ(x)

G(φ(x + z)− φ(x))K (z) dz

≤
∫

V n
δ

G(|qx ||yn | + C4|y|2)K (y) dy

≤ 2C p−1
6 µ

∫

|y′|<1

|y′|2p−2−n−σ dy′
C5|y′|2∫

0

dyn

≤ 2C5C p−1
6 µ

∫

|y′|<1

|y′|2p−n−σ dy′

≤ 2C5C p−1
6 σn−1µ

2p − 1 − σ
.

We combine the above observations, to obtain

lim sup
r→0+

∫

r<|z|<δ
G(φ(x + z)− φ(x))K (z) dz (7.3)

≤ |qx |p−2ν

⎛
⎝ n∑

j=1

b j j (x)+ (p − 2)bnn(x)

⎞
⎠ + C7µ

2p − 1 − σ
,

where C7 is a positive constant depending only on C1, p, |q|, ε and n. Since f0(xk) ≤
Mσk [u∗

σk
](xk), we have

f0(xk) ≤ lim sup
r→0+

∫

r<|z|<δ
G(φ(xk + z)− φ(xk))Kσk (z) dz

+
∫

δ<|z|<ρ(xk )

G(C3)Kσk (z) dz.

Here, as before, we have

lim
k→∞

∫

δ<|z|<ρ(xk )

G(C3)Kσk (z) dz = 0.

Observe that

n∑
j=1

b j j (x) = tr
(
U−1

x BεUx
) = tr Bε,

bnn(x) = U−1
x BεUx en · en = Bεq̄x · q̄x .

Now, from (7.3), we get

f0(0) ≤ ν
(|q|p−2 tr Bε + (p − 2)|q|p−4 Bεq · q

)
,
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and, because of the arbitrariness of ε > 0,

f0(0) ≤ ν
(|q|p−2�φ(0)+ (p − 2)|q|p−4 D2φ(0)q · q

) = ν�pφ(0),

which is the desired inequality.
It remains to check the case where p = 2 and q = 0. For each ε > 0, selecting δ0 > 0 as

in the previous case and setting Aε = (ai j ) := A + ε I , we have for any 0 < r < δ < δ0 and
any x ∈ B(0, δ0),

∫

r<|z|<δ
G(φ(x + z)− φ(x))K (z) dz ≤

∫

r<|z|<δ

(
qx · z + 1

2
Aεz · z

)
K (z) dz

= 1

2

n∑
j=1

∫

r<|z|<δ
a j j z

2
j K (z) dz.

By applying Lemma 2.1, we find that for any 1 ≤ j ≤ n,
∫

|z|<δ
z2

j K (z) dz = 2νδ2−σ .

Hence we have

lim sup
r→0+

∫

r<|z|<δ
G(φ(x + z)− φ(x))K (z) dz ≤ νδ2−σ tr Aε.

Using this and arguing as in the previous case, we see easily that f0(0) ≤ ν�φ(0). This
completes the proof. �

8 Final remarks

In this section we discuss a few possible extensions and variants of the formulations and
results presented in the previous sections.

Let c ∈ C(�) be a given function satisfying inf� c > 0. We consider the integral equation

Mσ [u](x) = c(x)u(x)+ f0(x) in �, (8.1)

together with the Dirichlet condition (1.2). The p-Laplace equation corresponding to (8.1) is

ν�pu(x) = c(x)u(x)+ f0(x) in �, (8.2)

where ν = νn,p is the constant given by (7.2). Because of the new term “cu”, two equations
(8.1) and (8.2) are tractable. Indeed, for the Dirichlet problem for (8.1)–(1.2), without the
restriction that λ0 = 1 if p �= 2, a comparison assertion similar to Theorem 4.1 and conse-
quently the existence of a unique continuous solution as in Theorem 5.1 hold true. Also, for
the Dirichlet problem (8.2)–(1.2), a comparison theorem for viscosity sub and supersolutions
similar to Proposition 6.7, but with f1 = f2, is valid. The same assertion as Theorem 7.1,
with (8.1) and (8.2) in place of (1.1) and (7.1) respectively, is valid.

A remark similar to the above applies to the evolution problem. The equations are now

Mσ [u(·, t)](x) = ut (x, t)+ f0(x, t) in QT , (8.3)
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and

ν�pu(x, t) = ut (x, t)+ f0(x, t) in QT , (8.4)

where 0 < T < ∞ is a fixed constant, QT := �× (0, T ), ut := ∂u/∂t and f0 ∈ C(QT ) is
a given function. The initial-boundary condition for (8.3) or (8.4) is of the form

u = g0 on the parabolic boundary, ∂p QT = �× {0} ∪ ∂�× (0, T ), (8.5)

where g0 ∈ C(∂p QT ). With an obvious modification (see for instance [11]) of the defini-
tion of spaces of test functions, we have well-posedness and convergence results similar to
those for (8.1) and (8.2). That is, the Cauchy–Dirichlet problems for (8.3) and for (8.4) are
well-posed in the space C(QT ) and the solution uσ of the problem (8.3) and (8.5) converges
uniformly on QT as σ → p− to the solution of the problem (8.4) and (8.5).

It would be interesting to treat the Neumann boundary problem for (1.1) as in [2], and we
hope to come back to this issue in a future publication.

Another interesting question would be to seek for the possibility of replacing the operator
Mσ , in the well-posedness problem of Sects. 3–5 or in the convergence problem of Sect. 6
for (1.1), by the operator

M̃σ [φ](x) := p.v.
∫

B(x)

G(φ(x + z)− φ(x))Kσ (z) dz,

where B(x), with x ∈ �, are given measurable subsets of R
n satisfying the condition that

x + B(x) ⊂ � for all x ∈ �.
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