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Abstract We study the finite-horizon optimal control problem with quadratic functionals
for an established fluid-structure interaction model. The coupled PDE system under investi-
gation comprises a parabolic (the fluid) and a hyperbolic (the solid) dynamics; the coupling
occurs at the interface between the regions occupied by the fluid and the solid. We establish
several trace regularity results for the fluid component of the system, which are then applied
to show well-posedness of the Differential Riccati Equations arising in the optimization prob-
lem. This yields the feedback synthesis of the unique optimal control, under a very weak
constraint on the observation operator; in particular, the present analysis allows general func-
tionals, such as the integral of the natural energy of the physical system. Furthermore, this
work confirms that the theory developed in Acquistapace et al. (Adv Diff Eq, [2])—crucially
utilized here—encompasses widely differing PDE problems, from thermoelastic systems to
models of acoustic-structure and, now, fluid-structure interactions.

Mathematics Subject Classification (2000) 35B37 · 49J20 · 74F10 · 49N10 ·
35B65 · 35M20 · 93C20

1 Introduction

In this paper we consider the optimal control problem with quadratic functionals for a
fluid-structure interaction model. Of major concern is well-posedness of the Riccati
equations arising in the minimization problem, along with the feedback synthesis of the
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(unique) optimal control. The fluid-structure interaction is modeled by a system of coupled
partial differential equations (PDE) comprising a Stokes system (the fluid) and a three-dimen-
sional system of dynamic elasticity (the solid). The coupling occurs at an interface separating
two regions occupied, respectively, by the fluid and the solid. It is assumed that the motion
of the solid is driven by infinitesimal displacements with rapid oscillations. Accordingly, the
fluid–solid interface is stationary; this and other modeling issues are discussed, e.g., in [17].
The mathematical description of the PDE system, that is the boundary control problem (2.1),
as well as further literature will be given in the next section. Our main goal is to establish the
validity of a Riccati theory that would allow to control the structure, via boundary controls,
acting as forces applied to the interface.

It is well known that—even in the case of a single PDE—one of the main difficulties
in a rigorous derivation of the feedback synthesis of the optimal control is the presence of
boundary controls (or, more generally, unbounded control actions), combined with the lack
of smoothing effects propagated by the dynamics (see, e.g., [10, 23]). In fact, while the linear-
quadratic control problem with unbounded control operator has a complete solution in the
case of PDE models whose free dynamics is governed by an analytic semigroup, this solution
may be out of reach in the case of other kind of dynamics. In particular, the case of purely
hyperbolic PDE with boundary/point control is peculiarly different1 from the parabolic case:
it would suffice to recall that in finite time horizon problems the Riccati operator (or optimal
cost operator) P(t) does not satisfy the differential Riccati equations, unless the observation
operator possesses a suitable smoothing property.

On the other hand, certain interconnected PDE systems that combine parabolic and
hyperbolic effects may give rise to an abstract control system y′ = Ay + By which yields
a singular estimate for the operator eAt B, near t = 0. This property—which is an intrinsic
feature of control systems ruled by analytic semigroups—has been first identified in the anal-
ysis of an acoustic-structure interaction (where the overall semigroup was not analytic); see
[3]. The essence of such estimates is the following: the parabolic component does induce a
singular estimate (as a consequence of analyticity of the corresponding semigroup), while hy-
perbolicity ‘transports’ this estimate across the system through the coupling. Thus, if one can
show that a singular estimate is valid for the entire system, then the theory in [21,22] ensures
a feedback control law with bounded (in the state space) gain operator, along with well-posed
Riccati equations. This theory has been successfully applied to diverse composite PDE mod-
els, including some thermoelastic systems, beside to various acoustic-structure interactions.
Several illustrations are contained in [22] and [24]; see also [14,15], and the recent [12].

For the fluid-structure interaction under investigation, which comprises a parabolic and a
hyperbolic PDE, it was shown in [26] that a singular estimate (for the corresponding abstract
evolution) is satisfied in the finite energy space, as long as the penalization in the quadratic
functional does not involve the mechanical energy at a truly energy level. More precisely, the
study in [26] established specific singular estimates and hence well-posedness of the Riccati
equations in the special case of penalization of the mechanical variables below the energy
level (say, sub-critical penalization), yet allowing full penalization of the fluid variable.

The situation becomes mathematically much more difficult and more interesting in
physical applications when the mechanical variables are penalized at the critical level of
the energy (see the functional (2.10)). In fact, not only the regularity results of [25] do not
apply, but the theory pertaining to control systems which yield singular estimates [24,25] is

1 In the infinite time horizon case the so called gain (or feedback) operator B∗ P is intrinsically unbounded
and the analysis of the algebraic Riccati equations is subtle; see [19,33], and the subsequent improvements in
[7,32].
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Optimal boundary control with critical penalization for a PDE model 219

no longer valid. (Indeed, if it were so, the gain operator would be bounded on the state space,
while we will show that this is not the case; see Remark 2.9.)

The present work addresses the issue of solvability of the optimal control problem with
general quadratic functionals (i.e. including critical penalization) for the PDE model (2.1).
As we shall see, we provide (a positive) answer to the question remained open in [26,
Remark 6.1]. This will follow in light of the theory introduced in [2], which is shown to
cover the present case in view of the set of trace regularity results established and collected in
Theorem 2.10. The theory developed in [2] is more effective in capturing the relevant proper-
ties of the dynamics, especially the ones which emanate from hyperbolicity. These ultimately
allow to define the gain operator as a densely defined—though still unbounded—operator
acting on a physically relevant (finite energy) state space. Thus, the pathology discovered in
[32,33] (where a boundary control problem for a simple hyperbolic equation yields a gain
operator which is not densely defined on the state space) does not occur in the present case,
and the optimal synthesis resulting from variational principles is consistent with the one
generated by the Riccati equation. It is important to emphasize that this is not always the
case; see [32] and [33]. (In this respect, the variational aspect of the minimization process
along with the theory developed in [2] are critical ingredients in order to justify the arguments
leading to well-posedness of Riccati equations and the associated Riccati synthesis.)

Let us recall that the optimal control theory in [2], while relaxing the ‘singular estimate
requirement’, postulates other regularity conditions of global nature. This makes it possible
to obtain meaningful solutions to the differential Riccati equations, despite the gain operator
is not bounded on the state space. This, however, does not affect the synthesis, as the opti-
mal solution still belongs to the domain of the gain operator. Originally arisen in the study
of boundary control problems for an established system of thermoelasticity [1], so far this
theory has been shown to apply as well in the case of certain acoustic-structure interaction
model including thermal effects [13].

The paper is organized as follows. In Sect. 2 we introduce the boundary control problem
under investigation, along with the statements of our main results, namely Theorems 2.6
and 2.10. Moreover, we briefly record some necessary notation and the fundamental well-
posedness result pertaining to the uncontrolled counterpart of the PDE system. Section 3 is
entirely devoted to the proof of Theorem 2.10, which establishes the novel, distinct bound-
ary regularity properties (of the solutions to the PDE system) which will ultimately result
in solvability of the optimization problem, i.e. Theorem 2.6. Section 4 contains the proof
of Theorem 2.6, based upon the application of the theory in [2]. Finally, a short Appen-
dix collects the statements of the regularity results pertaining to the elastic component of
the system—recently obtained in [8] and [26]—which are crucially utilized in the proof of
Theorem 2.10.

2 The PDE model, statement of main results

The PDE model. The PDE model under investigation describes the interaction of a (very
slow) viscous, incompressible fluid, with an elastic body in a three dimensional bounded
domain. Although the introduction of such models dates back to [27], their PDE analysis has
increased significantly only in the past decade. A mathematical description of the composite
PDE system is given below. By � f and �s we denote the open smooth domains occupied
by the fluid and the solid, respectively. Then � ⊂ R

3 denotes the entire solid-fluid region,
i.e. � is the interior of � f ∪ �s . The boundary of �s is the interface between the fluid
and the solid, and is denoted by �s = ∂�s . We finally denote by � f the outer boundary of
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� f , namely � f = ∂� f \∂�s . It is assumed that the motion of the solid is entirely due to
infinitesimal (but ‘fast’) displacements, and hence that the interface �s is fixed.

The velocity field of the fluid is represented by a vector-valued function u, which satisfies
a Stokes system in � f ; the scalar function p represents, as usual, the pressure. In the solid
region �s the displacement w satisfies the equations of linear elasticity. (The density and
the kinematic viscosity which usually appear in the Navier–Stokes equation are set equal to
one, just to simplify the notation). The coupling takes place on the interface �s . We recall
from [17] that the interface condition u = wt on �s (in place of the usual no-slip boundary
condition u = 0) accounts for the fact that although the displacement of the elastic body is
small, its velocity is not (small, yet rapid oscillations). Thus, the PDE system is given by

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ut − div ε(u)+ ∇ p = 0 in Q f := � f × (0, T )

div u = 0 in Q f

wt t − div σ(w) = 0 in Qs := �s × (0, T )

u = 0 on � f := � f × (0, T )

wt = u on �s := �s × (0, T )

σ (w) · ν = ε(u) · ν − pν − g on �s

u(0, ·) = u0 in � f

w(0, ·) = w0, wt (0, ·) = w1 in � f .

(2.1)

In the above coupled PDE system, σ and ε denote the elastic stress tensor and the strain
tensor, respectively, that are

σi j (u) = λ

3∑

k=1

εkk(u)δi j + 2µεi j (u), εi j (u) = 1

2

(
∂ui

∂x j
+ ∂u j

∂xi

)

, (2.2)

where λ,µ are the Lamé constants and δi j is the Kronecker symbol.
Since the present work is focused on the optimization problem, the subtle questions related

to the modeling of fluid-structure interaction phenomena, as well as to the analysis of well-
posedness of the corresponding coupled PDE systems, will not be discussed here. Yet, well-
posedness of the boundary value problem (2.1), with g ≡ 0 (that is the uncontrolled system
(2.3) below), is a prerequisite for the study of the associated optimal control problems. Thus,
although many authors have contributed to the PDE analysis of nonlinear fluid-structure
interaction models (where the dynamics of the fluid is ruled by a Navier–Stokes equation),
existence of finite energy weak solutions—even for the simpler Stokes-Lamé system (2.3)—
has been an open question until [8, Theorem 2.2]. The reader is referred to [8,9] for the
analysis of well-posedness of the coupled PDE system (2.3); in addition, [9] includes a very
clear introduction to the (nonlinear) fluid-structure interaction problem, along with a tech-
nical comparison with the previous mathematical literature. In Sect. 2.1 we shall recall, for
the reader’s convenience, the theory in [8] that is needed for our purposes.

We finally note that while the present study follows the variational approach of [8], exploit-
ing the novel boundary regularity results established therein, semigroup well-posedness and
stability properties of the linear model have been investigated in [4]; see the survey paper
[5] and its references. For the uniform stabilization problem, see [6].

Further references. There is a large literature on coupled fluid-structure evolution problems.
Most works address the issue of developing models for specific physical problems and/or
their numerical simulation. Two main different scenarios arise from the applications: the case
in which the fluid is flowing in a tube with elastic walls, such as the blood through arteries,
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Optimal boundary control with critical penalization for a PDE model 221

and the case where one or more elastic bodies are immersed in a fluid flow. The PDE model
under investigation pertains to a physical situation falling under the latter category.

A very nice introduction to fluid-structure interaction problems is provided by [17]. Recent
treatises with focus on modeling and numerical analysis are [30] and [29]. An in-depth PDE
analysis of well-posedness of these nonlinear models has indeed appeared only recently.
Relevant contributions to this problem are given (without any claim of completeness) by
[18,31], the aforesaid [8,9,11,16,17], and, lastly, [20]. For more information on this subject,
see the bibliography therein.

2.1 Variational and semigroup formulation

Before giving the statement of our main results, let us preliminarily recall from [8] some
basic notation, and the chief facts which pertain to the uncontrolled problem, that is system
(2.1) with g ≡ 0. Further technical results obtained in [8] and [26] will be needed in the
proof of our main result; these will be recorded in an Appendix for convenience.

The uncontrolled model. Let us introduce the free system corresponding to (2.1), namely
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ut − div ε(u)+ ∇ p = 0 in Q f := � f × (0, T )

div u = 0 in Q f

wt t − div σ(w) = 0 in Qs := �s × (0, T )

u = 0 on � f := � f × (0, T )

wt = u on �s := �s × (0, T )

σ (w) · ν = ε(u) · ν − pν on �s

u(0, ·) = u0 in � f

w(0, ·) = w0, wt (0, ·) = w1 in � f .

(2.3)

The energy space for the PDE problem (2.3) is

Y = H × H1(�s)× L2(�s),

where H is defined as follows:

H := {
u ∈ L2(� f ) : div u = 0, u · ν|� f = 0

}
.

In addition, we denote by V the space defined as follows:

V := {
v ∈ H1(� f ) : div u = 0, u|� f = 0

} ;
we shall use the following distinct notation for the various inner products which will occur
throughout the paper:

(u, v) f :=
∫

� f

uv d� f , (u, v)s :=
∫

�s

uv d�s, 〈u, v〉 :=
∫

�s

uv d�s .

The space V is topologized with respect to the inner product given by

(u, v)1, f :=
∫

� f

ε(u)ε(v)d� f ;

the corresponding (induced) norm | · |1, f is equivalent to the usual H1(� f ) norm, in view
of Korn inequality and the Poincaré inequality.
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Remark 2.1 The norm ‖ · ‖Hr (D) in the Sobolev space Hr (D) will be shortly denoted by
| · |r,D throughout the paper. Note that all the Sobolev spaces Hr related to u and w are
actually (Hr )3: the exponent is omitted just for the sake of simplicity.

Let us recall from [8] the definition of weak solutions to the (uncontrolled) PDE
system (2.3).

Definition 2.2 (Weak solution) Let (u0, w0, w1) ∈ Y and T > 0. We say that a triple
(u, w,wt ) ∈ C([0, T ], H × H1(�s)× L2(�s)) is a weak solution to the PDE system (2.1)
if

• (u(·, 0), w(·, 0), wt (·, 0)) = (u0, w0, w1),
• u ∈ L2(0, T ; V ),
• σ(w) · ν ∈ L2(0, T ; H−1/2(�s)), d

dt
w|�s = u|�s ∈ L2(0, T ; H1/2(�s)), and

• the following variational system holds a.e. in t ∈ (0, T ):
⎧
⎨

⎩

d
dt
(u, φ) f + (ε(u), ε(φ)) f − 〈σ(w) · ν + g, φ〉 = 0

d
dt
(wt , ψ)s + (σ (w), ε(ψ))s − 〈σ(w) · ν, ψ〉 = 0,

(2.4)

for all test functions φ ∈ V and ψ ∈ H1(�s).

Remark 2.3 It is important to emphasize that the regularity properties of the normal stresses
(see the third item of Definition 2.2) do not follow from the interior regularity of the fluid-
structure variables. It is an independent regularity result, showing the exceptional behavior
of hyperbolic traces. This regularity property is necessary in order to justify the variational
definition of weak solutions (see (2.4)). While there are other definitions of solutions to non-
linear PDE models of fluid-structure interactions which do not require additional regularity
on the boundary (see, e.g., [4,17,27]), yet these definitions are not adequate to variationally
decouple the (finite energy) weak solutions of the two equations. On the other hand, this
decoupling is crucially important in the present analysis, aimed at identifying the distinctive
regularity properties of the overall dynamics, that play a major role in the study of the associ-
ated optimal control problems. Exploiting the distinct features (analyticity and hyperbolicity)
of the decoupled dynamics makes it possible to establish the sharpest results for the coupled
PDE system. (This fact was recently utilized in [20], as well.) Consequently, the issue of
“hidden” regularity of the hyperbolic component is central to the problem studied and its
solution.

Existence of weak (global) solutions of a nonlinear generalization of the PDE problem
(2.3) has been established in [8].

Theorem 2.4 (Existence of weak solutions, [8]) Given any initial datum (u0, w0, w1) ∈ Y
and any T > 0, there exists a weak solution (u, w,wt ) to the system (2.3) such that

∇w∣
∣
�s

∈ L2(0, T ; H−1/2(�s)),
d

dt
w

∣
∣
∣
�s

= wt
∣
∣
�s

∈ L2(0, T ; H1/2(�s)).

The control system, semigroup formulation. Aiming to apply the optimal control theory
pertaining to a general class of evolutions—in the present case, the one developed in [2]—it
is convenient to recast the boundary value problem (2.1) as an abstract control system in a
Hilbert space. Accordingly, let us introduce the fluid dynamic operator A : V → V ′, defined
by

(Au, φ) = −(ε(u), ε(φ)) ∀φ ∈ V, (2.5)
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and the (Neumann) map N : L2(�s) → H defined as follows:

Ng = h ⇐⇒ (ε(h), ε(φ)) = 〈g, φ〉 ∀φ ∈ V .

We just recall from [26] that the operator A defined by (2.5) may be considered as acting on
H with domain D(A) := {u ∈ V : |(ε(u), ε(φ))| ≤ C |φ|H }. Thus, A : D(A) ⊂ H → H
is a self-adjoint, negative operator and therefore is the infinitesimal generator an analytic
semigroup eAt , t ≥ 0, on H . Then, the fractional powers of −A are well defined; to simplify
the notation, we shall denote them by Aα (rather than by (−A)α) throughout. Other chief
properties of the operators A and N will be recalled in the Appendix.

Then, if we set y = (u, w,wt ), the boundary value problem (2.1) reduces to the linear
control system

{
y′ = Ay + Bg in [D(A∗)]′
y(0) = y0

(2.6)

where the (dynamic) operator A : D(A) ⊂ Y → Y is defined by

A =
⎛

⎝
A ANσ( · ) · ν 0
0 0 I
0 div σ(·) 0

⎞

⎠ , (2.7)

with domain

D(A) = {
y = (u, w, z) ∈ Y : u ∈ V, A(u + Nσ(w) · ν) ∈ H, z ∈ H1(�s),

div σ(w) ∈ L2(�s), z|�s = u|�s

}
,

and the (control) operator B : L2(�s) = U → [D(A)]′ reads as

B =
⎛

⎝
AN
0
0

⎞

⎠ . (2.8)

With the dynamics (2.6) we associate the following quadratic cost functional over a given
time interval [0, T ], 0 < T < ∞:

J (g) =
T∫

0

(|Ry(t)|2Z + |g(t)|2U
)

dt, (2.9)

where Z is another Hilbert (output) space. The optimal control problem (linear-quadratic, or
LQ-problem) is to minimize the functional (2.9), over all control functions g ∈ L2(0, T ; U ),
with y solution to (2.6) corresponding to g. As pointed out in the Introduction, we aim to
include in the present analysis non-smoothing observation operators R, such as the identity
operator; hence, R is initially assumed to satisfy just R ∈ L(Y, Z). By doing so we admit
natural quadratic functionals such as the following,

J (g) = 1

2

T∫

0

{
|u(t)|20,� f

+ (σ (w(t)), ε(w(t)))s + |wt (t)|20,�s
+ |g(t)|20,�s

}
dt (2.10)

which penalizes the full quadratic energy E(t) of the system.
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Remark 2.5 We already emphasized that the study performed in [26] did not provide
solvability of optimal control problems with general quadratic functionals: in particular,
it did not cover the case of natural functionals such as (2.10). On the other hand, the analysis
carried out in [26]—despite the final constraint on the observation operator R—included the
case of Bolza problems, where the penalization affects also the state at the final time T < ∞,
namely, when the functional to be minimized is given by

J (g) =
T∫

0

(|Ry(t)|2Z + |g(t)|2U
)

dt + (Gy(T ), y(T ))W . (2.11)

Note that the LQ-problem with Bolza-type quadratical functionals is not discussed here. In
fact, the LQ-problem with quadratic functionals of the form (2.11) (with G �= 0) for the class
of control systems (2.6) described by the Assumptions 4.1, has not been investigated yet.

2.2 Statement of the main results

The main result of the present work is the proof of well-posedness of the (differential) Riccati
equations corresponding to the optimal control problems associated with the fluid-structure
model (2.1), along with all the inherent assertions about solvability of the optimization
problem; see Theorem 2.6. This variational result, however, critically relies on the novel
trace regularity results established specifically for the (uncontrolled) PDE system (2.3) in
Theorem 2.10, which thus constitute the major technical contribution of the present work.
As we shall see, the proof of this set of regularity results is based on the interplay between
the maximal parabolic regularity of the fluid component with the ‘hidden’ regularity of the
traces of the hyperbolic (solid) component. Indeed, the fact that the coupling is of hyper-
bolic/parabolic type will be critically utilized.

2.2.1 The solution to the optimization problem

With reference to the PDE model introduced in the previous section, let us consider the
optimal control problem (2.6)–(2.9), that is

Minimize the functional J (g) in (2.9), over all g ∈ L2(0, T ; L2(�s)), where y(·) =
y(·; y0, g) solves the control system (2.6).

Then we have the following.

Theorem 2.6 Consider the optimal control problem (2.6)–(2.9), with A and B given by (2.7)
and (2.8), respectively. Let us assume that the observation operator R satisfies

R∗R ∈ L(D(Aε),D(A∗ε)), (2.12)

where ε > 0 can be taken arbitrarily small. Then the following assertions hold true.

(1) For any initial state y0 ∈Y there exists a unique optimal control g0(·) ∈ L2(0, T ; L2(�s))

such that

J (g0) = min
g∈L2(0,T ;L2(�s ))

J (g).

The optimal pair (g0(·), y0(·)) has the following additional regularity:

y0(·) = [u0(·), w0(·), w0
t (·)] ∈ C([0, T ]; H × H1(�s)× L2(�s));

g0(·) ∈
⋂

1≤p<∞
L p(0, T ; L2(�s)).

(2.13)
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Optimal boundary control with critical penalization for a PDE model 225

(2) There exists a non-negative, selfadjoint operator (the Riccati operator) P(t) ∈ L(Y ),
t ∈ [0, T ], defined explicitly in terms of the data, such that

J (g0) = (P(0)y0, y0)Y ;
more precisely P(·) ∈ L(Y,C([0, T ], Y )).

(3) The gain operator B∗ P(·) satisfies B∗ P(·) ∈ L(D(Aε),C([0, T ], L2(�s))); moreover,
one has (the feedback synthesis of the optimal control) a.e. in [0, T ]:

g0(t) = −B∗ P(t)y0(t), ∀y0 ∈ Y. (2.14)

(4) The operator P(t) is the unique—within the class of selfadjoint, positive operators
such that B∗ P(·) ∈ L(D(Aε),C([0, T ], L2(�s)))—solution of the Differential Riccati
Equation satisfied for 0 ≤ t < T and x = (x1, x2, x3), y = (y1, y2, y3) ∈ D(A),

d

dt
(P(t)x, y)Y+(A∗ P(t)x, y)Y+(P(t)Ax, y)Y+(Rx,Ry)Y=(B∗ P(t)x,B∗ P(t)y),

(2.15)

with

lim
t→T −(P(t)x, x) = 0, ∀x ∈ Y.

Remark 2.7 According to Theorem 2.6, the gain operator B∗ P(t) is bounded from D(Aε) to
the control space U , hence densely defined on the state space Y . Formula (2.14) shows that
the optimal feedback synthesis is consistent with the Riccati feedback synthesis, where the
operator P(t) is determined via the Riccati equation (2.15). This is in striking contrast with
the counterexample discussed in [32,33], where the feedback representation of the optimal
control cannot be obtained by means of the Riccati operator P(t).

Remark 2.8 Since here the dynamics operator A is the generator of a s.c. contraction
semigroup with A−1 ∈ L(Y ), then the domains of fractional powers D(Aε) in (2.12) may be
computed as intermediate spaces between D(A) and Y . The same holds for D(A∗ε). (For a
comprehensive list of cases where the identity [D(A), Y ]1−θ = D(Aθ ) holds true, see, e.g.,
[23, § 0.2.1]). Then, it is not difficult to show that in the present case D(A∗ε) ≡ D(Aε),
provided ε is sufficiently small. Therefore, assumption (2.12) is satisfied, with a non-smooth-
ing observation operator, such as R = I . This natural situation was indeed left as an open
problem in [26].

Remark 2.9 Observe that the optimal pair does not display the typical regularity (in time)
exhibited in the case of control systems whose underlying semigroup is analytic (or, more
in general, when singular estimates are satisfied). In particular, the optimal control is not
continuous. This is not surprising, in view of the influence of both hyperbolic and parabolic
effects on the overall behavior of the solutions.

Moreover, the gain operator B∗ P(t) is no longer bounded on the state space Y , but just
densely defined. However, this does not affect the final result, as the feedback formula holds
for any initial state in the finite energy space. Thus, the observation operator R need not have
regularizing effects, and R can be critical.

The above observations also explain why the previous Riccati theories are intrinsically
unapplicable in the critical case, as they lead to bounded gain operators, in contrast with the
case under examination.
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2.2.2 Trace estimates

The fundamental analytic tool which will enable us to show Theorem 2.6 is a complex of
boundary regularity results pertaining to the fluid component of the PDE problem (2.3).
These traces’ regularity estimates of u (and ut ) on the interface �s are the “PDE counterpart”
of the abstract regularity properties of the (unbounded) operator B∗eA∗t needed to invoke the
optimal control theory of [2]. These regularity estimates are, however, also of independent
interest.

Theorem 2.10 (Traces’ regularity) Consider the uncontrolled Stokes-Lamé system, namely
the PDE system (2.3). Let y(t) = (u(t), w(t), wt (t)) be the solution corresponding to ini-
tial data y0 = (u0, w0, w1). Then the fluid component u admits a decomposition u(t) =
u1(t) + u2(t), and the following statements pertain to the regularity of the traces of u1, u2

and ut on �s , respectively.

(i) The component u1 satisfies a pointwise (in time) “singular estimate”, namely there
exists a positive constant CT such that

|u1(t)|L2(�s ) ≤ CT

t1/4+δ |y0|Y ∀y0 ∈ Y, ∀t ∈ (0, T ] (2.16)

(with arbitrarily small δ > 0).
(ii) The component u2 satisfies the following regularity:

(iia) if y0 ∈ Y , then u2|�s ∈ L p(0, T ; L2(�s)) for all (finite) p ≥ 1;
(iib) Let y0 ∈ D(Aε), where ε > 0 can be taken arbitrarily small, but positive. Then

u2|�s ∈ C([0, T ], L2(�s)).

(iii) Let now y0 ∈ D(A1−θ ), with θ ∈ (0, 1
4 ). Then, the fluid component u of corresponding

solution satisfies, for some q ∈ (1, 2),

ut |�s ∈ Lq(0, T ; L2(�s)) (2.17)

continuously with respect to y0, that is there exists a constant CT such that

‖ut‖Lq (0,T ;L2(�s )) ≤ CT ‖y0‖D(A1−θ ). (2.18)

The exponent q will depend on θ : more precisely, given θ ∈ (0, 1
4 ), one has

1 < q <
4

3 + 4θ
. (2.19)

The remainder of the paper is devoted to the proof of the two main results stated in
Theorem 2.6 and Theorem 2.10. Section 3 deals with the above boundary regularity results,
which will be next utilized in Sect. 4 to establish Theorem 2.6.

3 Proof of the trace regularity results

This section is entirely devoted to the proof of our main contribution, that is Theorem 2.10.

Proof of Theorem 2.10 Our starting point is the equation satisfied by u(·), namely ut =
Au + ANσ(w) · ν, whose solutions are given by

u(t) = eAtu0 +
t∫

0

eA(t−s)ANσ(w)(s, ·)ν ds; (3.1)
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the above expression yields the natural splitting u(t) = u1(t)+ u2(t), with

u1(t) := eAtu0, u2(t) :=
t∫

0

eA(t−s)ANσ(w)(s, ·)ν ds. (3.2)

In view of N∗ Au = −u|�s (see Lemma A.1), the corresponding traces on �s read as

u1|�s = −N∗ Au1(t) = −N∗ AeAtu0,
(3.3)

u2|�s = −N∗ Au2(t) = −N∗ A

t∫

0

eA(t−s)ANσ(w)(s, ·)ν ds,

respectively.
(i) The singular estimate in (2.16) follows as an immediate consequence of the well known
estimates pertaining to analytic semigroups:

∣
∣u1(t)|�s

∣
∣
U = |N∗ AeAtu0| = |N∗ A3/4−δA1/4+δeAtu0|

≤ ‖N∗ A3/4−δ‖ |A1/4+δeAtu0|Y ∼ CT t−1/4−δ|u0|. (3.4)

This shows the validity of assertion (i).

(ii) Let initially y0 = (u0, w0, w1) ∈ Y . In view of (3.3), it is clear that the sharp regularity
theory pertaining to the wave component will play a central role in the study of the regularity
of the traces of u2(t) on�s . More precisely, we shall utilize the recent trace results obtained in
[8, Theorem 3.3] and refined in [26, Lemma 5.2]; see Lemma A.2 in the Appendix. Accord-
ingly, following the decomposition of σ(w) · ν established in Lemma A.2, it is convenient
to introduce a further splitting, namely

u2(t) =
t∫

0

eA(t−s)ANσ(w1)(s, ·)ν ds

︸ ︷︷ ︸
u21(t)

+
t∫

0

eA(t−s)ANσ(w2)(s, ·)ν ds

︸ ︷︷ ︸
u22(t)

. (3.5)

Thus, one has first

N∗ Au21(t) = N∗ A

t∫

0

eA(t−s)ANσ(w1)(s) · ν ds

= [N∗ A3/4−ε]A1/4+ε+1/2

t∫

0

eA(t−s) A1/2 Nσ(w1)(s) · ν
︸ ︷︷ ︸

f (s)

ds

where f ∈ C([0, T ], L2(�s)) in view of Lemma A.2 and Lemma A.1. Consequently,

t∫

0

eA(t−s) f (s) ds ∈ C([0, T ], D(A1−σ )), (3.6)

with arbitrarily small σ > 0; see, e.g., [23, Proposition 0.1, p. 4]. Therefore N∗ Au21 ∈
C([0, T ], L2(�s)), and a fortiori we obtain

N∗ Au21 ∈ L p(0, T ; U ) ∀p ≥ 1. (3.7)
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As for the second summand N∗ Au22(t), because of the different regularity of σ(w2)(s) ·ν
we rewrite in a different fashion:

N∗ Au22(t) = [
N∗ A3/4−ε] A1/2+2ε

t∫

0

eA(t−s) [A3/4−εNσ(w2)(s) · ν]
︸ ︷︷ ︸

ϕ(s)

ds.

Notice now that the above integral is the convolution

t∫

0

K (t − s)ϕ(s) ds,

with ϕ ∈ L2(0, T ; U ) and the kernel K such that ||K (s)|| ∼ 1
s1/2+2ε , where ε can be taken

arbitrarily small. Hence K ∈ L2−σ (0, T ; U ) for arbitrarily small σ > 0. Thus, the Young
inequality yields

N∗ Au22 ∈ L p(0, T ; U ) ∀p ≥ 1. (3.8)

Thus, (3.8) combined with (3.7) shows the validity of assertion (i ia).
Let now y0 ∈ D(Aε), ε > 0. In this case, by Lemma A.3 it follows u|�s ∈ H ε(�s),

provided that ε < 1
4 . This enables us to apply the second part of Lemma A.2, which gives

σ(w1) · ν ∈ C([0, T ], H−1/2(�s)), σ (w2) · ν ∈ H ε(�s). (3.9)

Now, the analysis of N∗ Au21 follows closely the one in item (iia), yielding the conclusion
N∗ Au21 ∈ C([0, T ], L2(�s)) (this is justified by the membership (3.6)). Instead, on the basis
of the novel regularity of σ(w2) · ν in (3.9), from parabolic theory it follows that

u22 ∈ H ε+3/2,ε/2+3/4(Q f ),

so that

N∗ Au22 ∈ H ε+1,ε/2+1/2(�s) ⊂ H1/2+ε/2(0, T ; L2(�s)) ⊂ C([0, T ], L2(�s)).

As both N∗Au21 and N∗ Au22 belong to C([0, T ], L2(�s)), then N∗ Au2 ∈ C([0, T ], L2(�s))

and (iib) is proved.

(iii) In this last step we aim to ascertain the regularity of the boundary traces of the time
derivative ut on �s . We return to the mild solution (3.1) and compute

ut (t) = AeAtu0︸ ︷︷ ︸
v1(t)

+

v2a
︷ ︸︸ ︷

A

t∫

0

eA(t−s)ANσ(w)(s, ·)ν ds +
v2b

︷ ︸︸ ︷
ANσ(w)(t, ·)ν

︸ ︷︷ ︸
v2(t)

(3.10)

which can also be rewritten as

ut (t) = AeAtu0︸ ︷︷ ︸
v1(t)

+

v21(t)
︷ ︸︸ ︷

t∫

0

eA(t−s)ANσ(ws)(s, ·)ν ds +
v22(t)

︷ ︸︸ ︷

AeAt Nσ(w)(0, ·)ν
︸ ︷︷ ︸

v2(t)

. (3.11)
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The plan we aim to carry out is to discuss first the regularity of the function v2 := ∂u2
∂t

when y0 ∈ D(A) by using its expression in (3.11). Next, when y0 ∈ Y , we would rather
utilize (3.10), and then use interpolation arguments to establish the regularity corresponding
to initial data in D(A1−ε). Only subsequently we shall derive the trace regularity of v2 by
applying the operator −N∗ A.

When y0 ∈ D(A), by standard semigroup arguments, using the commutativity of the
generator with the semigroup, we obtain that σ(wt ) · ν exhibits the same regularity as that
of σ(w) · ν when y0 ∈ Y , i.e. (invoking once again Lemma A.2)

σ(wt ) · ν = σ1 + σ2 ∈ C([0, T ], H−1/2(�s)) + L2(0, T ; L2(�s)).

To pinpoint the regularity of v21, we now utilize the above splitting and follow the analysis
carried out in the proof of (i i). More precisely, combining elliptic regularity (in particular,
Lemma A.1), with the analyticity of the semigroup eAt , along with the (singular) estimates
pertaining to AαeAt , we first obtain, for any t and any δ < 1/2,

∣
∣A1/2−δ

t∫

0

eA(t−s)ANσ1(s) ds
∣
∣ = ∣

∣A1−δ
t∫

0

eA(t−s)A1/2 Nσ1(s) ds
∣
∣

≤ C

t∫

0

1

(t − s)1−δ ds ‖σ1‖C([0,T ],H−1/2(�s ))
≤ C‖σ1‖C([0,T ],H−1/2(�s ))

. (3.12)

As for the latter term, we apply as well A1/2−δ and rewrite as follows:

A1/2−δ
t∫

0

eA(t−s)ANσ2(s) ds =
t∫

0

[A3/4−δ/2eA(t−s)] [A3/4−δ/2 N ] σ2(s) ds, (3.13)

where it is clear now that the integral is the convolution of L4/3 and L2 (in time) functions,
respectively. On the strength of the Young’s inequality, we get L4-regularity in time, so that

v21 ∈ C([0, T ], D(A1/2−δ)) + L4(0, T ; D(A1/2−δ)), 0 < δ <
1

2
.

This implies the membership

v21 ∈ L4(0, T ; D(A1/2−δ)), 0 < δ <
1

2
. (3.14)

On the other hand, still with y0 ∈ D(A), one has just σ(w) · ν ∈ C([0, T ], H−1/2(�s))

which suggests us to rewrite v22 as follows:

v22(t) = A1/2eAt (
A1/2 Nσ(w)(0, ·)ν) ;
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then, again in view of Lemma A.1 and of the usual singular estimates pertaining to analytic
semigroups, it follows

v22 ∈ Lq(0, T ; D(A1/2−δ)), (3.15)

provided that q(1−δ) < 1. Therefore, (3.14) combined with (3.15) yields, for any 0 < δ1 <
1
2

y0 ∈ D(A) �⇒ v2 ∈ Lq1(0, T ; D(A1/2−δ1)) ≡ Lq1(0, T ; H1−2δ1(� f )), (3.16)

where q1 ∈ (1, 2) depends on δ1; more precisely,

q1 <
1

1 − δ1
. (3.17)

Let now y0 ∈ Y . In this case we use the decomposition (3.10), and begin with the analysis
of v2a . Setting w = w1 + w2 (according with Lemma A.2), one has

A

t∫

0

eA(t−s)ANσ(w1)(s, ·)ν ds

= A1/2+ε1 A1−ε1

t∫

0

eA(t−s)A1/2 Nσ(w1)(s, ·)ν ds ∈ C([0, T ], [D(A1/2+ε1)]′),

while

A

t∫

0

eA(t−s)ANσ(w2)(s, ·)ν ds

= A1/4+ε2 A

t∫

0

eA(t−s)A3/4−ε2 Nσ(w2)(s, ·)ν ds ∈ L2(0, T ; [D(A1/4+ε2)]′)

where both ε1 and ε2 can be taken arbitrarily small. As a result,

v2a ∈ L2(0, T ; [D(A1/2+ε)]′), 0 < ε <
1

2
. (3.18)

As for the term v2b, readily

ANσ(w1)(t, ·)ν = A1/2 A1/2 Nσ(w1)(t, ·)ν ∈ C([0, T ], [D(A1/2)]′)
while

ANσ(w2)(t, ·)ν = A1/4+ε[A3/4−εN ]σ(w2)(t, ·)ν ∈ L2(0, T ; [D(A1/4+ε)]′),
and since ε can be taken arbitrarily small, we deduce as well

v2b = ANσ(w)(t, ·)ν ∈ L2(0, T ; [D(A1/2)]′). (3.19)

On the basis of (3.18) and (3.19), we obtain

y0 ∈ Y �⇒ v2 = v2a +v2b ∈ L2(0, T ; [D(A1/2+δ2)]′)≡ L2(0, T ; [H1+2δ2(� f )]′), (3.20)

if 0 < δ2 <
1
4 .
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Thus, (3.20), combined with (3.16), gives by interpolation

y0 ∈ D(A1−θ ) �⇒ v2 ∈ Lq1(0, T ; W ), (3.21)

where q1 is as in (3.17) and W is the interpolation space

W = (H1−2δ1(� f ), [H1+2δ2(� f )]′)θ ≡ Hs(� f ),

if

s = (1 − 2δ1)(1 − θ)− θ(1 + 2δ2) = 1 − 2δ1 − 2θ(1 + δ2 − δ1) ≥ 0;
see [28, Theorem 12.5]. Notice that by taking, for instance, δ1 = δ2 =: δ, one has s ≥ 1/2
provided that

θ + δ ≤ 1

4
. (3.22)

In this case v2 ∈ Hs(� f )with s ≥ 1/2 and hence its trace on �s is well defined. Notice that,
in view of the constraint (3.22), we need to require 0 < θ < 1

4 . Consequently, given any θ
such that 0 < θ < 1

4 , choosing, e.g., δ = 1/4 − θ in view of (3.22), from (3.21) it follows

y0 ∈ D(A1−θ )) �⇒ N∗ Av2 ∈ Lq1(0, T ; L2(�s)) ∀q1 <
4

3 + 4θ
. (3.23)

It remains to establish the regularity of the first summand N∗ Av1(t) = N∗ AeAt Au0 when
y0 ∈ D(A1−θ ). In this case u0 ∈ (H1(� f ), L2(� f ))θ = H1−θ (� f ), and from

N∗ Av1(t) := N∗ AeAt Au0 = [N∗ A3/4−ε]A1/4+ε+1/2+θ/2eAt A(1−θ)/2u0,

it immediately follows

y0 ∈ D(A1−θ ) �⇒ N∗ Av1 ∈ Lq2(0, T ; L2(�s)) ∀q2 <
4

3 + 2θ + 4ε
. (3.24)

Notice that in the above membership the Sobolev exponent q2 belongs to (1, 2), as well. In
conclusion, since ε in (3.24) can be taken arbitrarily small, the regularity Lq1(0, T ; L2(�s))

combined with Lq2(0, T ; L2(�s)) (in (3.23) and (3.24), respectively) imply the membership

y0 ∈ D(A1−θ ) �⇒ ut |�s =: v|�s ∈ Lq(0, T ; L2(�s)) ∀q <
4

3 + 4θ
, (3.25)

which concludes the proof. ��

4 Proof of Theorem 2.6

The conclusions stated in Theorem 2.6 will follow from [1, Theorem 2.3], once we verify
the standing assumptions, which are recorded below for the reader’s convenience.

Assumption 4.1 For each t ∈ [0, T ], the operator B∗eA∗t can be represented as

B∗eA∗ty0 = F(t)y0 + G(t)y0, t ≥ 0, y0 ∈ D(A∗), (4.1)

where F(t) : Y → U and G(t) : D(A∗) → U , t > 0, are bounded linear operators satisfying
the following assumptions:

1. there is γ ∈ ( 1
2 , 1) such that ‖F(t)‖L(Y,U ) ≤ C t−γ for all t ∈ (0, T ];
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2. the operator G(·) belongs to L(Y, L p(0, T ; U )) for all p ∈ [1,∞), with

‖G(·)‖L(Y,L p(0,T ;U )) ≤ cp < ∞ ∀p ∈ [1,∞); (4.2)

3. there is ε > 0 such that:

(a) the operator G(·)A∗−ε belongs to L(Y,C([0, T ],U )), with

‖A−εG(t)∗‖L(U,Y ) ≤ c < ∞ ∀t ∈ [0, T ]; (4.3)

(b) the operator R∗R belongs to L(D(Aε),D(A∗ε));
(c) there is q = q(ε) ∈ (1, 2) such that the operator B∗eA∗·R∗RAε has an extension

belonging to L(Y, Lq(0, T ; U )).

Remark 4.2 Aiming to apply Theorem 2.6, the main task is to find a value of ε which
conforms to the potentially conflicting requirements in 3(a) and 3(c). In the present case,
we shall show that while condition 3(a) is satisfied for arbitrarily small (positive) ε, when
ε → 0 condition 3(c) yields q → 3/4 ∈ (1, 2).

Remark 4.3 Note that the set of requirements in Assumptions 4.1 involves the regularity in
time of the operator B∗eA∗t , both locally at the origin (with singularity controlled by γ ), and
globally (in L p sense). It is this latter regularity that results from the hyperbolic propagation
of the analytic singular estimate.

We now prove that the regularity results established in Theorem 2.10 imply all the require-
ments in Assumptions 4.1, with suitable values of γ , ε and q .

Verification of Assumptions 4.1. Following [26, Proof of Theorem 5.1], it is not difficult
to verify that given any initial state y0 = (u0, w0, w1) ∈ D(A∗), one has B∗eA∗ty0 =
N∗ Aû(t) = −û(t)|�s , where û(t) is the first component of the solution ŷ := (û, ŵ, ŵt ) to
the (homogeneous) adjoint system

{
ŷ′(t) = A∗ŷ(t)
ŷ(0) = y0.

The abstract adjoint system yields a system of coupled PDE which is essentially the same as
the original boundary value problem (2.3), except for few changes of sign in the equations.
As a consequence, the regularity results established by Lemma A.2 and Lemma A.3 readily
produce analogues, by replacing D(A) and y = (u, w,wt ) by D(A∗) and ŷ = (û, ŵ, ŵt ),
respectively. Similarly, the fluid component û of the solution ŷ to the dual PDE system
satisfies—mutatis mutandis—the regularity properties in Theorem 2.10.

1. In light of the decomposition of û found in Theorem 2.10, let us set

F(t)y0 := û1(t)
∣
∣
�s
, G(t)y0 := û2(t)

∣
∣
�s
.

Then, the first statement in Theorem 2.10, along with the estimate (2.16), provides us
with the sought-after singular estimate, with (optimal) exponent γ = 1/4 + δ, and the
first of Assumptions 4.1 is satisfied.

2. Assertion (iia) in Theorem 2.10 is nothing but the regularity condition 2. of the Assump-
tions 4.1, valid for all p ∈ [1,∞).

3. Condition (iib) of Theorem 2.10 translates into G(t)A∗−εy0 ∈ C([0, T ], L2(�s)), which
in turn gives the assertion (3a) of the Assumption 4.1, with no constraints on ε. It remains
to verify the tricky assertion (3c) of Assumption 4.1. This will be implied by condition
(iii) in Theorem 2.10. We first claim that the estimate (2.18) in (iii) of Theorem 2.10
yields, for any θ ∈ (0, 1/4), the following one:
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‖B∗eA∗tA∗θy0‖Lq (0,T ;L2(�s )) ≤ C |y0|Y , y0 ∈ D(A∗θ ), 1 < q <
4

3 + 4θ
. (4.4)

This is easily seen if one just observes that if y0 ∈ D(A∗θ ) one has

B∗eA∗tA∗θy0 = B∗eA∗tA∗ (A∗θ−1y0) = B∗ d

dt
eA∗t z0 = ût |�s ,

where now z0 := A∗θ−1y0 ∈ D(A∗1−θ ). Then, in view of the assumption (3b) on the
observation operator R, one concludes

‖B∗eA∗tRR∗Aθy0‖Lq (0,T ;L2(�s )) = ‖B∗eA∗tA∗θA∗−θRR∗Aθy0‖Lq (0,T ;L2(�s ))

≤ C |y0|Y , y0 ∈ D(Aθ ),

i.e. condition (3c) is satisfied with ε = θ , 0 < θ < 1/4, for any q such that 1 < q <

4/(3 + 4θ). This completes the proof of Theorem 2.6. ��
Acknowledgements This research was started while the second author was visiting the Centro di Ricerca
Matematica Ennio De Giorgi of the Scuola Normale Superiore in Pisa, whose support is acknowledged. The
first author acknowledges partial support of the Università degli Studi di Firenze, within the 2008 Project
“Calcolo delle variazioni e teoria del controllo”, as well as partial support of the Italian MIUR, within the
PRIN Project 2007WECYEA. The second author acknowledges support of the National Science Foundation
under Grant DMS-060666882.

Appendix

For completeness’ sake and for the reader’s convenience we record the statements of some
results which are used frequently or critically in the proof of our main result. Lemma A.1 is
Proposition 4.3 in [26]. Lemma A.2 and Lemma A.3 are specialized versions of Lemma 5.2
and Lemma 5.3 in [26].

Lemma A.1 ([26]) The Green (Neumann) map N : L2(�s) → H satisfies the following
regularity results.

(i) One has N∗ Au = −u|�s , u ∈ V , where the adjoint is computed with respect to the
L2-topology.

(ii) N ∈ L(L2(�s),D(A3/4−δ)) ∩ L(H−1/2(�s),D(A1/2)) for any δ, 0 < δ < 3
4 .

Lemma A.2 Let y0 = (u0, w0, w1) ∈ D(Aα)with 0 ≤ α ≤ 1
4 , and let (u(t), w(t), wt (t)) be

the corresponding strong solution with f ≡ u|�s ∈ L2(0, T ; H1/2(�s)). Then, the solution
of the initial/boundary value problem

⎧
⎪⎨

⎪⎩

wt t − div σ(w) = 0 in Qs
d
dt
w|�s = f on �s

w(0, ·) = w0, wt (0, ·) = w1 in �s

(A.1)

can be decomposed as w = w1 + w2, where σ(w1) · ν ∈ C([0, T ], H−1/2(�s)), while
σ(w2) · ν ∈ L2(0, T ; L2(�s)). If, in addition, f ∈ Hα(�s), then σ(w2) · ν ∈ Hα(�s).
Moreover, the following estimates hold true.

‖σ(w1) · ν‖2
C([0,T ],H−1/2(�s ))

≤ C1
(|w0|21,�s

+ |w1|20,�s
+ | f |L2(0,T ;H1/2(�s ))

)

‖σ(w2) · ν‖2
Hα(�s )

≤ C2
(|y0|D(Aα) + | f |Hα(�s )

)
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Lemma A.3 ([26]) Consider the uncontrolled counterpart of the PDE problem (2.1), that is
(2.1) with g ≡ 0. Let initial data satisfy y0 = (u0, w0, w1) ∈ D(Aα), 0 ≤ α ≤ 1

4 . Then, for
any T < ∞ we have u|�s ∈ Hα(�s) and the following estimate holds true:

|u|Hα(�s ) ≤ C |y0|D(Aα). (A.2)
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