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Abstract We prove higher integrability and differentiability results for local minimizers
u: R

2 ⊃ � → R
M , M ≥ 1, of the splitting-type energy

∫
�
[h1(|∂1u|)+ h2(|∂2u|)] dx. Here

h1, h2 are rather general N -functions and no relation between h1 and h2 is required. The
methods also apply to local minimizers u: R

2 ⊃ � → R
2 of the functional

∫
�
[h1(|div u|)+

h2(|εD(u)|)] dx so that we can include some variants of so-called nonlinear Hencky-materials.
Further extensions concern non-autonomous problems.

Mathematics Subject Classification (2000) 49N60 · 74B20 · 74G40 · 74G65

1 Introduction

Over the last two decades increasing attention has been paid to the question of interior regu-
larity (i.e. higher integrability of the gradient or even continuity of the first weak derivatives)
of local minimizers u: R

n ⊃ � → R
M of variational integrals

I [u,�] =
∫

�

H(∇u) dx (1.1)

with anisotropic energy density H : R
nM → [0,∞). Here, roughly speaking, H is called an

anisotropic integrand if we have

λ(|Z |)|Y |2 ≤ D2 H(Z)(Y, Y ) ≤ �(|Z |)|Y |2 (1.2)
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168 M. Bildhauer, M. Fuchs

with functions λ, �: [0,∞) → [0,∞), which do not satisfy an estimate of the form

c1 ≤ �

λ
≤ c2 (1.3)

with positive constants c1, c2. Much of the literature is devoted to the investigation of the
scalar case (i.e. M = 1) and to the closely related situation that M > 1 together with the
requirement that H depends on the modulus of the gradient. We refer to the papers of Choe
[17], of Fusco and Sbordone [24], of Marcellini [28,29], of Marcellini and Papi [30], of
Mingione and Siepe [31] as well as to the work [3] and the references quoted therein, where
the interested reader will find interior regularity theorems for a variety of anisotropic ener-
gies. If n ≥ 3 together with M ≥ 2, then mainly the partial regularity of local minimizers
is discussed as done for example by Acerbi and Fusco [1], Cupini et al. [19], Esposito et al.
[20], Passarelli Di Napoli and Siepe [32] and the authors [5,10]. In these papers so-called
anisotropic (p, q)-growth is considered, which means that

λ(|Z |) ≈ |Z |p−2, �(|Z |) ≈ |Z |q−2 (1.4)

holds for exponents 1 < p ≤ q < ∞, and almost everywhere regularity follows if in addition
to (1.4) we have an estimate of the form

q < c(n)p, (1.5)

where c(n) is large for low dimensions n, but c(n) → 1 as n → ∞. Let us note that under
some extra assumptions on the structure of H (1.5) can be replaced by weaker restrictions
at least if the case of locally bounded local minimizers is considered. For an overview on
the history as well as for a collection of recent contributions mainly concerning anisotropic
(p, q)-growth we refer to [4].

A very natural class of anisotropic problems arises if we consider integrands H(∇u)
which split into a sum of strictly convex functions, each of them depending on different
partial derivatives, for example

H(∇u) = H1(∇̃u)+ H2(∂nu), ∇̃u := (∂1u, . . . , ∂n−1u), (1.6)

where H1 and H2 might be of power growth with different growth rates p̄ and q̄ in the sense
that

D2 H1(ξ̃ ) ≈ |ξ̃ | p̄−2, D2 H2(ξn) ≈ |ξn |q̄−2, ξ = (ξ̃ , ξn) ∈ R
nM . (1.7)

Let 2 < p̄ < q̄. Then from (1.6) and (1.7) we deduce the validity of (1.2) and (1.4) with
p := 2 and q := q̄ , and (1.5) reads as q̄ < 2c(n), which means that we cannot benefit in
any way from the value of p̄ if we reduce the setting described above through (1.6) and (1.7)
to the unstructured requirement (1.2) together with (1.4) and (1.5). In the papers [9–11,13]
and [14] we showed how to get much better results by working with techniques based on
the splitting structure of the integrand, for example in the scalar case and under the natural
hypothesis that the local minimizer is locally bounded we could show interior C1,α-regularity
for local minimizers of the energy with density H(∇u) =∑n

i=1(1+|∂i u|2)pi /2 independent
of the choices of pi > 1.

In the present paper we now concentrate on splitting integrals (1.6) in two dimensions
including the vectorial situation (i.e. M > 1) and working with the following hypotheses: let
for Z ∈ R

2M

H(Z) = h1(|Z1|)+ h2(|Z2|) (1.8)
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Differentiability and higher integrability results 169

with functions h1, h2: [0,∞) → [0,∞) of class C2 s.t. for h = h1 and h = h2 it holds

h is strictly increasing and convex together with (A1)

h′′(0) > 0 and lim
t→0

h(t)

t
= 0 ;

there is a constant k̄ > 0 s.t. h(2t) ≤ k̄h(t) for all t ≥ 0; (A2)

for an exponent ω ≥ 0 and a constant a ≥ 0 it holds (A3)

h′(t)
t

≤ h′′(t) ≤ a(1 + t2)
ω
2

h′(t)
t

for all t ≥ 0.

Let us draw some conclusions from (A1)–(A3):

(i) (A1) implies that h(0) = 0 = h′(0) and h′(t) > 0 for t > 0. From (A3) it follows
that t 
→ h′(t)/t is increasing, moreover we get h(t) ≥ h′′(0)t2/2. In particular h is
a N -function (see [2]) of at least quadratic growth.

(ii) The (	2)-property stated in (A2) implies

h(t) ≤ c(tm + 1)

for some exponent m ≥ 2, hence by the convexity of h

h′(t) ≤ c(tm−1 + 1),

where here and in the following “c” denotes a constant whose value may vary from
line to line.

(iii) Combining (A2) with the convexity of h we see that

1

k̄
h′(t)t ≤ h(t) ≤ th′(t), t ≥ 0. (1.9)

(iv) For Y = (Y1, Y2), Z = (Z1, Z2) ∈ R
2M we have

2∑

i=1

min

[

h′′
i (|Zi |), h′

i (|Zi |)
|Zi |

]

|Yi |2 ≤ D2 H(Z)(Y, Y )

≤
2∑

i=1

max

[

h′′
i (|Zi |), h′

i (|Zi |)
|Zi |

]

|Yi |2,

so that by (A3)

2∑

i=1

h′
i (|Zi |)
|Zi | |Yi |2 ≤ D2 H(Z)(Y, Y ) ≤

2∑

i=1

a(1 + |Zi |2) ω2 h′
i (|Zi |)
|Zi | |Yi |2, (1.10)

and for a suitable exponent q̄ > 2 it follows

c|Y |2 ≤ D2 H(Z)(Y, Y ) ≤ C(1 + |Z |2) q̄−2
2 |Y |2, (1.11)

the first inequality being a consequence of (i).
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170 M. Bildhauer, M. Fuchs

Definition 1.1 Let � ⊂ R
2 and let H from (1.8) satisfy (A1)–(A3). Then a function u ∈

W 1
1,loc(�; R

M ) is called a local minimizer of the functional I from (1.1) iff I [u,�′] < ∞
and I [u,�′] ≤ I [v,�′] for all v ∈ W 1

1,loc(�; R
M ) such that spt(u − v) ⊂ �′, where �′ is

any subdomain of � with compact closure in �.

For a definition of the Sobolev classes W k
p,loc(�; R

M ) and related spaces we refer the reader
to [2]. Our first result is the following

Theorem 1.1 Let n = 2 and let H satisfy (1.8) together with (A1)–(A3). Suppose further
that u ∈ W 1

1,loc(�; R
M ) locally minimizes the functional I from (1.1). Then we have:

(i) ∇u belongs to Lt
loc(�; R

2M ) for any finite t .
(ii) If (A3) holds with ω < 2, then u ∈ C1,α(�; R

M ) for any 0 < α < 1.

Remark 1.1 We emphasize that in (i) no restriction on the value of ω is required.

Remark 1.2 From the proof it will become clear that the results of Theorem 1.1 are also
true for local minimizers of

∫
�
[h1(|∇u|)+ h2(|∂2u|) dx or of

∫
�
[h1(|∂1u|)+ h2(|∇u|)] dx

provided (A1)–(A3) hold for h1 and h2.

Remark 1.3 Let us compare Theorem 1.1 to our previous works on splitting functionals on
plane domains:

(i) In [8] we discussed the case of densities H1(∂1u) + H2(∂2u) with functions Hi :
R

M → [0,∞) s.t. for i = 1, 2 and Y , Z ∈ R
M

λ(1 + |Z |2) pi −2
2 |Y |2 ≤ D2 Hi (Z)(Y, Y ) ≤ �(1 + |Z |2) pi −2

2 |Y |2
for exponents 2 ≤ p1 ≤ p2 < ∞ and proved part (ii) of Theorem 1.1 under the
assumption p2 < 2p1.

(ii) This result was improved in [9], Theorem 1, (c) and Remark 4, by showing that the
hypothesis p2 < 2p1 can be dropped in case that 2 < p1 ≤ p2 < ∞.

(iii) In [11], Theorem 2.2, we considered the density H(∇u) = h1(|∂1u|) + h2(|∂2u|),
where h1, h2 satisfy (A1)–(A3) with ω = 0 and where h1(t) ≤ h2(t) for large values
of t is required. Then we obtained the result of Theorem 1.1(i). Now, in the present
setting, we impose no ordering relation like h1 ≤ h2 on h1 and h2, moreover—at least
for part (i) of the theorem—there is also no limitation on the value of ω.

Next we pass to non-autonomous densities of the form H(x, Z)=h1(x, |Z1|)+h2(x,|Z2|),
x ∈ �, Z = (Z1, Z2) ∈ R

2M , with functions hi (x, t) satisfying (A1)–(A3) uniformly in
x ∈ � (replacing h′

i by ∂
∂t hi , etc.) and for which (α, i = 1, 2)

∣
∣
∣
∣
∂

∂xα

∂

∂t
hi (x, t)

∣
∣
∣
∣ ≤ c

∂

∂t
hi (x, t) , x ∈ �, t ≥ 0 (A4)

holds. Then we have

Theorem 1.2 Let H(x, Z) satisfy the modified set of assumptions (1.8), (A1)–(A3) and let
(A4) hold. Then, if u ∈ W 1

1,loc(�; R
M ) locally minimizes

∫

�

H(x,∇u) dx =
∫

�

h1(x, |∂1u|) dx +
∫

�

h2(x, |∂2u|) dx,

the statements of Theorem 1.1 continue to hold.
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Differentiability and higher integrability results 171

Remark 1.4 An example, to which Theorem 1.2 applies, is the energy
∫
�
[h1(x, |∂1u|) +

h2(x, |∂2u|)] dx with densities hi (x, t) of the form

hi (x, t) = (ai (x)+ t2)
pi
2 − ai (x)

pi
2 or

hi (x, t) = (1 + ai (x)t
2)

pi
2 − 1.

Here pi are exponents in the interval [2,∞) and ai :� → (0,∞) denote sufficiently regular
functions. In the more interesting situation that hi (x, t) = (1 + t2)pi (x)/2 − 1 with variable
exponents pi : � → [2,∞) condition (A4) is violated, and we can not deduce regularity
from Theorem 1.2. However it should be noted that for the isotropic variant, i.e. for energies
like

∫
�

|∇u|p(x) dx, smoothness results are due to Coscia/Mingione [18].

Remark 1.5 Since we deal with local minimizers and discuss interior regularity, it is suffi-
cient to know that in the non-autonomous case the bounds (A1)–(A4) are uniform in x ∈ �′
for subdomains �′ � �.

As an application of the arguments used for the proof of Theorem 1.1 we also obtain
regularity results for a certain class of nonlinear elastic materials in 2D. Let n = M = 2.
Then, according to [33], the energy functional of a nonlinear Hencky material is given by

E[u,�] :=
∫

�

[
λ

2
(div u)2 + ϕ(|εD(u)|)

]

dx,

where λ denotes a positive constant and where ε(u) is the symmetric part of the gradient of
the deformation u: � → R

2. εD(u) := ε(u) − 1
2 div u1 is the deviatoric part of ε(u), and

since the above model is used as an approximation for plasticity, the density ϕ usually is of
nearly linear growth which means ϕ(t) = t ln(1 + t) or ϕ(t) = (1 + t2)s/2 − 1 for some
s > 1 close to 1. From the work of Frehse and Seregin [22] the interior C1,α-regularity of
local minimizers of the functional E follows for the logarithmic case as well as for the power
growth case with s ≤ 2. In [7] we gave a slight extension up to s < 4 and for any s under the
additional hypothesis that (for some reason) we have the information div u ∈ Ls

loc(�). Now
we can remove these restrictions, which enables us to discuss energies having rather general
growth w.r.t. div u and εD(u), precisely:

Theorem 1.3 Let n = M = 2, let (A1)–(A3) hold for the functions h1, h2, and consider a
local minimizer u of the energy

∫

�

[
h1(|div u|)+ h2(|εD(u)|)

]
dx.

Then ∇u is in the space Lt
loc(�; R

2×2) for any finite exponent t . If ω < 2 holds in (A3),
then this can be improved to u ∈ C1,α(�; R

2) for any α < 1. In particular we have interior
differentiability for the choices h1(t) = t2, h2(t) = (1 + t2)s/2 − 1 with s ≥ 2.

Remark 1.6 Of course a “non-autonomous” variant of Theorem 1.3 can be obtained in the
spirit of Theorem 1.2.

Our paper is organized as follows: in Sect. 2, we give the proof of Theorem 1.1, the neces-
sary adjustments concerning the non-autonomous case are presented in Sect. 3. In Sect. 4, we
briefly sketch the situation for functionals related to the energy modeling nonlinear Hencky-
materials. A class of energies satisfying our hypotheses is shortly discussed in the Appendix.
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172 M. Bildhauer, M. Fuchs

2 Proof of Theorem 1.1

Let (A1)–(A3) hold and consider a local minimizer u of the functional I from (1.1). As out-
lined for example in [8] the following calculations can be justified by working with a local
regularization with exponent q̄ introduced in (1.11) having a sufficient degree of regularity,
which follows from the results of [15] or [26].

Let η ∈ C∞
0 (�). Then we have (from now on summation w.r.t. indices repeated twice and

this convention is used both for Greek and for Latin indices)

0 =
∫

�

∂α[DH(∇u)] : ∇(η2∂αu) dx,

hence an integration by parts yields
∫

�

D2 H(∇u)(∂α∇u, ∂α∇u)η2 dx = −
∫

�

∂α[DH(∇u)] : (∇η2 ⊗ ∂αu) dx

=
∫

�

DH(∇u) : ∂α[∇η2 ⊗ ∂αu] dx. (2.1)

Here “:” is the scalar product of matrices and “⊗” denotes the tensor product of vectors.
From the first inequality in (1.11) we deduce

l.h.s. of (2.1) ≥ c
∫

�

|∇2u|2η2 dx. (2.2)

For the r.h.s. of (2.1) we observe (w.l.o.g. 0 ≤ η ≤ 1)
∣
∣
∣
∣
∣
∣

∫

�

DH(∇u) : ∂α[∇η2 ⊗ ∂αu] dx

∣
∣
∣
∣
∣
∣

≤ c

⎡

⎣
∫

�

h′
i (|∂i u|)|∇2u|η|∇η| dx +

∫

�

h′
i (|∂i u|)|∇u||∇2η2| dx

⎤

⎦

≤ ε

∫

�

η2|∇2u|2 dx + c(ε)
∫

�

|∇η|2 (h′
1(|∂1u|)2 + h′

2(|∂2u|)2) dx

+ c
∫

�

[
h′

1(|∂1u|)2 + h′
2(|∂2u|)2 + |∇u|2] |∇2η2| dx,

where ε > 0 is arbitrary and where we have used Young’s inequality several times. If
ε is small enough and if we use (2.2), the ε-term can be absorbed in the l.h.s. of (2.1).
Recalling the lower bound hi (t) ≥ ct2, we arrive at

∫

�

η2 D2 H(∇u)(∂α∇u, ∂α∇u) dx

≤ c
∫

�

(|∇η|2 + |∇2η|) (h′
1(|∂1u|)2 + h′

2(|∂2u|)2 + H(∇u)
)

dx. (2.3)
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The r.h.s. of (2.3) is handled using ideas of [23]: let us fix a subdomain �∗ � � and
consider discs Br (z) ⊂ BR(z) ⊂ �∗. Let further η ≡ 1 on Br (z), spt η ⊂ BR(z) and
|∇lη| ≤ c(R − r)−l , l = 1, 2. Denoting by c(�∗) constants depending on the (finite) energy
of u over �∗, we get from (2.3)

∫

Br (z)

D2 H(∇u)(∂α∇u, ∂α∇u) dx

≤ (R − r)−2

⎡

⎢
⎣c(�∗)+ c

∫

BR(z)

(
h′

1(|∂1u|)2 + h′
2(|∂2u|)2) dx

⎤

⎥
⎦ . (2.4)

For any L > 0 we have using (1.9)
∫

BR(z)

h′
1(|∂1u|)2 dx =

∫

BR(z)∩[|∂1u|≤L]
h′

1(|∂1u|)2 dx +
∫

BR(z)∩[|∂1u|>L]
h′

1(|∂1u|)2 dx

≤ h′
1(L)

2πR2 + cL−2
∫

BR(z)∩[|∂1u|>L]
h1(|∂1u|)2 dx

≤ πR2h′
1(L)

2 + cL−2
∫

BR(z)

h1(|∂1u|)2 dx,

and the same estimate is true for h2. Let L := 1
λ

1
R−r for some 0 < λ ≤ 1 and with R ≤ 1.

Recalling that in this case

h′
i (L)

2 ≤ cL2m−2,

we deduce from (2.4) and the above inequalities for a suitable positive exponent β
∫

Br (z)

D2 H(∇u)(∂α∇u, ∂α∇u) dx ≤ c(�∗, λ)(R − r)−β

+ cλ2
∫

BR(z)

(
h1(|∂1u|)2+h2(|∂2u|)2) dx, (2.5)

and (2.5) is valid for all 0 < λ ≤ 1 and all discs BR(z) ⊂ �∗, R ≤ 1.
Let ρ ∈ (0, R) and define r = (ρ + R)/2. With η ∈ C∞

0 (Br (z)), 0 ≤ η ≤ 1, η ≡ 1 on
Bρ(z) and |∇η| ≤ c/(r − ρ) (= 2c/(R − ρ)) we find with Sobolev’s inequality
∫

Bρ(z)

(
h1(|∂1u|)2 + h2(|∂2u|)2) dx

≤
∫

Br (z)

(ηh1(|∂1u|))2 dx +
∫

Br (z)

(ηh2(|∂2u|))2 dx

≤ c

⎡

⎢
⎣

∫

Br (z)

|∇η|hi (|∂i u|) dx +
∫

Br (z)

h′
1(|∂1u|)|∇∂1u| dx +

∫

Br (z)

h′
2(|∂2u|)|∇∂2u| dx

⎤

⎥
⎦

2
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≤ c(R − ρ)−2

⎡

⎢
⎣

∫

BR(z)

H(∇u) dx

⎤

⎥
⎦

2

+c

⎡

⎢
⎣

∫

Br (z)

h′
1(|∂1u|)|∇∂1u| dx +

∫

Br (z)

h′
2(|∂2u|)|∇∂2u| dx

⎤

⎥
⎦

2

≤ c(�∗)(R − ρ)−2 + c[. . . ]2.

In [. . . ]2 we can apply Hölder’s inequality to get (again using (1.9))

[. . . ]2 ≤
∫

Br (z)

h′
1(|∂1u|)
|∂1u| |∇∂1u|2 dx

∫

Br (z)

|∂1u|h′
1(|∂1u|) dx

+
∫

Br (z)

h′
2(|∂2u|)
|∂2u| |∇∂2u|2 dx

∫

Br (z)

|∂2u|h′
2(|∂2u|) dx

≤ c
∫

Br (z)

H(∇u) dx

⎧
⎪⎨

⎪⎩

∫

Br (z)

h′
1(|∂1u|)
|∂1u| |∇∂1u|2 dx +

∫

Br (z)

h′
2(|∂2u|)
|∂2u| |∇∂2u|2 dx

⎫
⎪⎬

⎪⎭

≤ c(�∗){. . . }.
If we use the first inequality in (1.10) with the choices Z = ∇u and Y = ∂1∇u, ∂2∇u, then

{. . . } ≤
∫

Br (z)

D2 H(∇u)(∂α∇u, ∂α∇u) dx,

and from (2.5) we finally deduce
∫

Bρ(z)

(
h1(|∂1u|)2 + h2(|∂2u|)2) dx

≤ c(�∗)(R − ρ)−2 + c(�∗, λ)(R − r)−β + c(�∗)λ2
∫

BR(z)

(
h1(|∂1u|)2 + h2(|∂2u|)2) dx.

Since R − r = 1
2 (R − ρ) and since we may assume that β ≥ 2, the above inequality implies

after appropriate choice of λ
∫

Bρ(z)

(
h1(|∂1u|)2 + h2(|∂2u|)2) dx≤c(�∗)(R−ρ)−β + 1

2

∫

BR(z)

(
h1(|∂1u|)2 + h2(|∂2u|)2) dx,

which means (see [25, Lemma 3.1, p. 161]) that h1(|∂1u|)2 + h2(|∂2u|)2 is in the space
L1

loc(�) (uniformly w.r.t. the “hidden” approximation). But then (2.5) shows the same for

D2 H(∇u)(∂α∇u, ∂α∇u) and as remarked before (2.2) this yields u ∈ W 2
2,loc(�; R

M ) (again
uniform w.r.t. the approximation). Sobolev’s theorem finally implies part (i) of Theorem 1.1.

For proving (ii) we proceed similar to Theorem 1, (c) in [9] by reducing the situation to
a “lemma on higher integrability” established in [12]. With η ∈ C∞

0 (�) and P ∈ R
2M we
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have

0 =
∫

�

∂α[DH(∇u)] : ∇(η2∂α[u − P(x)]) dx

and from this equation we obtain
∫

�

η2�2 dx = −2
∫

�

ηD2 H(∇u)(∂α∇u, ∂α[u − P(x)] ⊗ ∇η) dx, (2.6)

where we have abbreviated

� := D2 H(∇u)(∂α∇u, ∂α∇u)
1
2 .

Note that by the foregoing calculations � is in the space L2
loc(�). On the r.h.s. of (2.6) we

apply the Cauchy-Schwarz inequality to the bilinear form D2 H(∇u) and get from (2.6) after
choosing η s.t. η ≡ 1 on Br (z0), 0 ≤ η ≤ 1, spt η ⊂ B2r (z0), |∇η| ≤ c/r for a disc
B2r (z0) ⊂ �∗ � �

∫

Br (z0)

�2 dx ≤ c

r

∫

B2r (z0)

�|D2 H(∇u)| 1
2 |∇u − P| dx. (2.7)

The second inequality in (1.10) shows

|D2 H(∇u)| 1
2 ≤ c

⎡

⎣(1 + |∂1u|2) ω4
√

h′
1(|∂1u|)
|∂1u| + (1 + |∂2u|2) ω4

√
h′

2(|∂2u|)
|∂2u|

⎤

⎦

=: c
[
ψ̃1 + ψ̃2

]
,

and if we let ψ̃ := (ψ̃2
1 + ψ̃2

2 )
1/2, then exactly the same arguments leading to (30) in [9]

enable us to derive from (2.7) the inequality

⎡

⎢
⎣

∫
−

Br (z0)

�2 dx

⎤

⎥
⎦

1
2

≤ c

⎡

⎢
⎣

∫
−

B2r (x0)

(ψ̃�)
4
3 dx

⎤

⎥
⎦

3
4

. (2.8)

Note that during the proof of (2.8) one needs the information that |∇2u| ≤ c� ≤ c�ψ̃ which
follows from our assumptions concerning h1, h2. In order to proceed as in [9] we have to
check that

exp(βψ̃2) ∈ L1
loc(�

∗) (2.9)

is true for any β > 0. Let us define

ψ1 :=
|∂1u|∫

0

√
h′

1(t)

t
dt , ψ2 :=

|∂2u|∫

0

√
h′

2(t)

t
dt.

The first inequality in (1.10) shows

|∇ψ1|2 + |∇ψ2|2 ≤ c�2,
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so thatψ1 andψ2 belong to W 1
2,loc(�) and thereforeψ := (ψ2

1 +ψ2
2 )

1/2 is in the same space.
By Trudinger’s inequality (see Theorem 7.15 of [27]) we find β0 > 0 s.t. for discs Bρ ⊂ �∗
we have

∫

Bρ

exp(β0ψ
2) dx ≤ c(ρ). (2.10)

We have a.e. on [|∂1u| ≥ 1] (recalling (1.9))

ψ̃1 ≤ c|∂1u| ω2
√

h′
1(|∂1u|)
|∂1u| = c|∂1u| ω2 −1 (|∂1u|h′

1(|∂1u|)) 1
2

≤ c|∂1u| ω2 −1h1(|∂1u|) 1
2 ,

whereas

ψ1 ≥
|∂1u|∫

|∂1u|/2

√
h′

1(t)

t
dt ≥ ch1(|∂1u|) 1

2

[see (A2), (1.9)], hence ψ̃1 ≤ c|∂1u| ω2 −1ψ1 on [|∂1u| ≥ 1]. At the same time it holds

ψ1 ≤ ch1(|∂1u|) 1
2 ≤ c|∂1u| m

2 ,

and for small δ we obtain

ψ̃1 ≤ cψ1−δ
1 |∂1u| ω2 −1+δ m

2 (2.11)

on [|∂1u| ≥ 1]. Since we assume ω < 2 in part (ii) of Theorem 1.1, we can fix δ s.t. we have
ω
2 − 1 + δ m

2 < 0. Young’s inequality applied on the r.h.s. of (2.11) then gives for any µ > 0

ψ̃2
1 ≤ µψ2

1 + c(µ) on [|∂1u| ≥ 1]. (2.12)

On [|∂1u| ≤ 1] we just observe

ψ̃2
1 ≤ c ≤ c + ψ1 ≤ µψ2

1 + c(µ),

hence the inequality (2.12) holds on �, and obviously the same arguments apply to ψ2, ψ̃2.
This shows

ψ̃2 ≤ µψ2 + c(µ) a.e. on � (2.13)

for any µ > 0. Let us fix β > 0. Then (by (2.13))

∫

Bρ

exp(βψ̃2) dx ≤ c(µ, β)
∫

Bρ

exp(βµψ2),

and if we choose µ = β0/β, then the desired claim (2.9) follows from (2.10). Now we can
complete the proof of Theorem 1.1, (ii) as done in [9]. ��
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3 Proof of Theorem 1.2

Let us first assume that u is sufficiently regular so that we do not have to argue with solutions
of regularized problems or with difference quotients.

Then, with the notation H = H(x, P), the counterpart of (2.1) reads as

∫

�

D2
p H(·,∇u)(∂α∇u, ∂α∇u)η2 dx +

∫

�

[
∂

∂xα
Dp H

]

(·,∇u) : η2∂α∇u dx

=
∫

�

Dp H(·,∇u) : ∂α(∇η2 ⊗ ∂αu) dx,

where the second term on the l.h.s. is the new one. However, due to assumption (A4), the
behavior of this term is of the same quality as of the r.h.s. and we therefore have (2.5). The
next step in Sect. 2 is to make use of Sobolev’s inequality, which in the non-autonomous case
just gives uncritical new terms and as before we arrive at |∇u| ∈ Lt

loc(�) for all t < ∞.
Now, following the arguments of Sect. 2 leading to part (ii) of Theorem 1.1, we again

obtain some extra terms in the non-autonomous case under consideration.
But in Section 4 of [12] and Section 6 of [8] it is described in detail how these extra terms

can be handled leading to a generalized version of (2.8) to which Lemma 1.2 of [12] still is
applicable. Thus, as sketched in Sect. 2, the proof of Theorem 1.2 would be complete if our
“smoothness assumption” can be guaranteed.

As outlined in [21] the usual local regularization procedure cannot be applied, which
means that if we fix a disk B compactly contained in � and consider the mollification (u)ε
of our local minimizer, then the convergence

∫

B

H(x,∇(u)ε) dx →
∫

B

H(x,∇u) dx as ε → 0 (3.1)

may fail to hold due to the possibility of the occurrence of Lavrentiev’s phenomenon. In the
autonomous case (3.1) easily follows from Jensen’s inequality and enables us to study the
regularized problems (as done in Sect. 2)

∫

B

Hδ(∇w) dx → min in (u)ε+
◦

Wq̄
1(B; R

M ),

where Hδ = δ(1 + | · |2)q̄/2 + H with q̄ from (1.11) and δ = δ(ε) being defined in a suitable
way. In fact, (3.1) is the key ingredient for proving that the (regular) solutions uδ of the
auxiliary problems converge towards our local minimizer u on the disk B so that all uniform
estimates obtained for the sequence {uδ} finally continue to hold for u.

In the non-autonomous case we now follow ideas of Marcellini [29] and of Cupini et
al. [19] by introducing a “regularization from below”, which means the integrand H(x, P) is
replaced by an appropriate sequence H�(x, P) of integrands having quadratic growth w.r.t.
P ∈ R

2M and s.t. H�(x, P) ↑ H(x, P) as � → ∞. We note that a related type of approx-
imations also occurs in Section 3 of [6] but we cannot refer to this since now the setting is
different.

Let us pass to the details by recalling that H(x, P) = h1(x, |P1|) + h2(x, |P2|), where
h(x, t) := hi (x, t), i = 1, 2, satisfies (A1)–(A4). Since the approximation procedure is done
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w.r.t. the second variable t we just write h(t). Then we define

g(t) := h′(t)
t
, i.e. h(t) =

t∫

0

sg(s) ds,

and by (A1) and (A3) g is increasing and satisfies g(0) = h′′(0) > 0. Now we fix� > 0 and
consider η = η� ∈ C1([0,∞)) s.t. 0 ≤ η ≤ 1, η′ ≤ 0, |η′| ≤ c/�, η ≡ 1 on [0, 3�/2] and
η ≡ 0 on [2�,∞). Moreover, for all t ≥ 0 we let

g�(t) := g(0)+
t∫

0

η(s)g′(s) ds ≤ g(t),

h�(t) :=
t∫

0

sg�(s) ds ≤ h(t).

We claim the validity of (A1)–(A4) for the functions h� with constants being independent
of �.

The properties h� ∈ C2([0,∞)), h�(t) = h(t) for all t ≤ 3�/2 and lim�→∞ h�(t) =
h(t) for any fixed t ∈ [0,∞) are easily verified, and it is immediate that (A1) holds for h�.

Ad (A3). We have for all t ≥ 0

h′′
�(t) = g�(t)+ tg′

�(t) ≥ g�(t) = h′
�(t)

t
,

hence the first inequality of (A3) is true. For proving the second one we observe that g�(t) =
h′
�(t)/t gives

h′′
�(t) = h′

�(t)

t
+ tg′

�(t) = h′
�(t)

t
+ tη(t)g′(t) = h′

�(t)

t
+ tη(t)

th′′(t)− h′(t)
t2

= h′
�(t)

t
+ η(t)

[

h′′(t)− h′(t)
t

]

≤ h′
�(t)

t
+ η(t)a(1 + t2)

ω
2

h′(t)
t
,

where the r.h.s. of (A3) for h and the non-negativity of η(t), h′(t)/t are used for the last esti-
mate. The r.h.s. of (A3) for h� then follows (with constant 1 + a and unchanged exponent)
from

η(t)
h′(t)

t
= g(0)+

t∫

0

d

ds
(η(s)g(s)) ds = g(0)+

t∫

0

η(s)g′(s) ds +
t∫

0

η′(s)g(s) ds

together with the observation that the second integral on the r.h.s. is non-positive by the sign
of η′, i.e. we have

η(t)
h′(t)

t
≤ g�(t) = h′

�(t)

t
.

Ad (A2). Here it is to show that h� satisfies the (	2)-property with a constant not depend-
ing on �. We first write

h�(2t) =
2t∫

0

sg�(s) ds = 4

t∫

0

sg�(2s) ds (3.2)
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and

g�(s) = g(0)+
s∫

0

d

du
(ηg) du −

s∫

0

η′(u)g(u) du

= η(s)g(s)−
s∫

0

η′(u)g(u) du,

and from the monotonicity of η we deduce

g�(2s) = η(2s)g(2s)−
2s∫

0

η′(u)g(u) du

≤ η(s)g(2s)+
s∫

0

(−η′(u))g(u) du +
2s∫

s

(−η′(u))g(u) du, (3.3)

where both integrals on the r.h.s. have a positive sign. Now observe recalling (1.9) and (A2)
(valid for h)

g(2s) = h′(2s)

2s
= h′(2s)2s

(2s)2
≤ c

h(2s)

(2s)2
≤ c

h(s)

s2 ≤ c
h′(s)s

s2 = cg(s),

which gives using (3.3)

g�(2s) ≤ c

⎡

⎣η(s)g(s)+
s∫

0

(−η′(u))g(u) du

⎤

⎦+
2s∫

s

(−η′(u))g(u) du

= cg�(s)+
2s∫

s

(−η′(u))g(u) du.

Returning to (3.2) it is finally shown that

h�(2t) ≤ c

t∫

0

sg�(s) ds

︸ ︷︷ ︸
=h�(t)

+4

t∫

0

s

2s∫

s

(−η′(u))g(u) du ds

︸ ︷︷ ︸
=:ξ

, (3.4)

with ξ satisfying

ξ ≤ c

t∫

0

s

2s∫

s

1

�
χ[3�/2,2�](u)g(u) du ds

≤ c

t∫

0

s
1

�
g(2s) |[3�/2, 2�] ∩ [s, 2s]| ds =: ξ∗.

In case that t ≤ 3�/4 we have 2s ≤ 3�
2 for all s ∈ [0, t], hence ξ∗ vanishes and we have

h�(2t) ≤ ch�(t) on account of (3.4).
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If t ∈ [3�/4, 2�], then (1.9) and (A2) give

ξ∗ ≤ c

2�∫

0

s
1

�
g(2s)� ds ≤ c�2g(4�) ≤ ch′(4�)4� ≤ ch(4�) ≤ ch(�/2)

= ch�(�/2) ≤ ch�(t)

and again we are done.
Finally for t > 2� we note

ξ∗ = c

t∫

3�/4

s
1

�
g(2s) |[3�/2, 2�] ∩ [s, 2s]| ds

= c

2�∫

3�/4

s
1

�
g(2s) |[3�/2, 2�] ∩ [s, 2s]| ds + c

t∫

2�

s
1

�
g(2s) |[3�/2, 2�] ∩ [s, 2s]| ds

︸ ︷︷ ︸
=0

≤ c�2g(4�),

and as in the second case we have �2g(4�) ≤ ch(�) = ch�(�) ≤ ch�(t). This finally
proves (A2) for h� with a uniform constant.

Ad (A4). Returning to the full notation and recalling the definition of h� = h�(x, t) we
have

∣
∣
∣
∣∇x

∂

∂t
h�(x, t)

∣
∣
∣
∣ =

∣
∣
∣
∣
∣
∣
t∇x

⎡

⎣g(x, 0)+
t∫

0

η(s)
∂

∂s
g(x, s) ds

⎤

⎦

∣
∣
∣
∣
∣
∣

and

∇x

⎡

⎣g(x, 0)+
t∫

0

η(s)
∂

∂s
g(x, s) ds

⎤

⎦ = ∇x

⎡

⎣η(t)g(x, t)−
t∫

0

η′(s)g(x, s) ds

⎤

⎦

= η(t)∇xg(x, t)−
t∫

0

η′(s)∇xg(x, s) ds

= η(t)
1

t
∇x

∂

∂t
h(x, t)−

t∫

0

η′(s)1

s
∇x

∂

∂s
h(x, s) ds.

The sign of η′ implies together with (A4)

∣
∣
∣
∣∇x

∂

∂t
h�(x, t)

∣
∣
∣
∣ ≤ η(t)

∣
∣
∣
∣∇x

∂

∂t
h(x, t)

∣
∣
∣
∣− t

t∫

0

η′(s)1

s

∣
∣
∣
∣∇x

∂

∂s
h(x, s)

∣
∣
∣
∣ ds

≤ c

⎡

⎣η(t)
∂

∂t
h(x, t)− t

t∫

0

η′(s)1

s

∂

∂s
h(x, s) ds

⎤

⎦
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= c

⎡

⎣g(x, 0)+
t∫

0

η(s)
∂

∂s
g(x, s) ds

⎤

⎦ t

= c
∂

∂t
h�(x, t),

which is (A4) uniformly for h�(x, t). ��
We now let (with an obvious meaning of hi,�, i = 1, 2)

H�(x, P) := h1,�(x, |P1|)+ h2,�(x, |P2|), x ∈ �, P = (P1, P2) ∈ R
2M ,

and observe H� ≤ H as well as

lim
�→∞ H�(x, P) = H(x, P).

Moreover, we have the ellipticity estimate (in the sense of bilinear forms)

c ≤ D2 H�(x, P) ≤ �(�), c := inf
x∈�

min
i=1,2

∂2hi

∂t2 (x, 0) > 0,

which follows from (A3) and the definition of H�. Therefore H� is of quadratic growth, and
since u belongs to the class W 1

2,loc(�; R
M ), the problem

∫

B

H�(x,∇w) dx → min in u+ ◦
W2

1(B; R
M )

admits a unique solution u� on each fixed disk B � �, whose interior differentiability can
be deduced from Campanato’s work [16], comments after Theorem 3, which clearly extends
to the non-autonomous case. Alternatively, the smoothness of u� follows from the results in
Section 6 of [8]. Thus we can carry out the calculations described at the beginning of this
section for the functions u� with the results (B ′ � B)

‖∇u�‖Lt (B′) ≤ c

⎛

⎝t, B ′,
∫

B

H(x,∇u) dx

⎞

⎠ < ∞ (3.5)

for any finite t , and – assuming ω < 2 –

‖u�‖C1,α(B′) ≤ c

⎛

⎝α, B ′,
∫

B

H(x,∇u) dx

⎞

⎠ < ∞ (3.6)

for all α ∈ (0, 1), where of course the constant c on the r.h.s. of (3.5) and (3.6) also depends
on the uniform constants occurring in (A1)–(A4). From the construction it is immediate that

sup
�

‖u�‖W 1
2 (B)

< ∞,

hence u� ⇁ ū in W 1
2 (B; R

M ) for some function ū ∈ u+ ◦
W2

1(B; R
M ). We claim that ū = u.

Let � ≥ 2k. Then η� ≥ ηk , hence hi,� ≥ hi,k and in conclusion H� ≥ Hk . For k fixed the
lower semicontinuity of Hk implies

∫

B

Hk(·,∇ū) dx ≤ lim inf
�→∞

∫

B

Hk(·,∇u�) dx,
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and at the same time

lim inf
�→∞

∫

B

Hk(·,∇u�) dx ≤ lim inf
�→∞

∫

B

H�(·,∇u�) dx.

The minimality of u� shows
∫

B

H�(·,∇u�) dx ≤
∫

B

H�(·,∇u) dx ≤
∫

B

H(·,∇u) dx,

hence
∫

B

Hk(·,∇ū) dx ≤
∫

B

H(·,∇u) dx,

and Fatou’s lemma implies
∫

B

H(·,∇ū) dx ≤
∫

B

H(·,∇u) dx,

from which our claim follows. Since (3.5) and (3.6) obviously extend to the weak limit ū,
the proof of Theorem (1.2) is complete. ��

4 Proof of Theorem 1.3

For symmetric (2 × 2)-matrices ε we write

H(ε) = h1(|tr ε|)+ h2(|εD|)
and obtain for any ψ ∈ C∞

0 (�; R
2)

0 =
∫

�

∂α(DH(ε(u))) : ε(ψ) dx,

in particular by letting ψ = η2∂αu, η ∈ C∞
0 (�),

0 =
∫

�

∂α(DH(ε(u))) : ε(η2∂αu) dx, (4.1)

where again the sum is taken w.r.t. indices repeated twice. Here we remark that (4.1) can be
justified along the same lines as inequality (10) in [7]. Alternatively we may use a regulari-
zation from below as done in the previous section. (4.1) yields

∫

�

η2 D2 H(ε(u))(∂αε(u), ∂αε(u)) dx =
∫

�

DH(ε(u)) : ∂α[∇η2 � ∂αu] dx, (4.2)

“�” being the symmetric product of vectors. We remark that by (1.10)

h′
1(|div u|)
|div u| |∇div u|2 + h′

2(|εD(u)|)
|εD(u)| |∇εD(u)|2 ≤ D2 H(ε(u))(∂αε(u), ∂αε(u)) , (4.3)

and using the inequality

|∇2u| ≤ c|∇ε(u)| ≤ c
[
|∇div u| + |∇εD(u)|

]
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as well as the properties of hi , we see that |∇2u|2 is bounded by the l.h.s. of (4.3), hence

|∇2u|2 ≤ cD2 H(ε(u))(∂αε(u), ∂αε(u)). (4.4)

As in Sect. 2 we estimate

|r.h.s. of (4.2)| ≤ c

⎡

⎣
∫

�

η|∇η||∇2u|
(

h′
1(|div u|)+ h′

2(|εD(u)|)
)

dx

+
∫

�

|∇2η2||∇u|
(

h′
1(|div u|)+ h′

2(|εD(u)|)
)

dx

⎤

⎦

≤ τ

∫

�

η2|∇2u|2 dx +
∫

�

(
c(τ )|∇η|2 + c|∇2η2|)

×
(

h′
1(|div u|)2 + h′

2(|εD(u)|)2
)

dx + c
∫

�

|∇2η2||∇u|2 dx,

where we have used Young’s inequality and where τ > 0 is arbitrary. We note that due to
the growth of hi we have H(ε(u)) ≥ c|ε(u)|2, and therefore Korn’s inequality shows that
|∇u| ∈ L2

loc(�). Choosing τ sufficiently small and quoting (4.4), we deduce from (4.2),
(4.4) and the above estimates the following variant of (2.4)

∫

Br (z)

D2 H(ε(u))(∂αε(u), ∂αε(u)) dx

≤ (R − r)−2

⎡

⎢
⎣c(�∗)+ c

∫

BR(z)

(
h′

1(|div u|)2 + h′
2(|εD(u)|)2

)
dx

⎤

⎥
⎦ ,

and exactly the same arguments as applied after (2.4) turn this inequality into the appropriate
version of (2.5). Using the same notation as after (2.5) we obtain
∫

Bρ(z)

(
h1(|div u|)2 + h2(|εD(u)|)2

)
dx

≤ c(�∗)(R − ρ)−2 + c

⎡

⎢
⎣

∫

Br (z)

h′
1(|div u|)|∇div u| dx +

∫

Br (z)

h′
2(|εD(u)|)|∇εD(u)| dx

⎤

⎥
⎦

2

and with Hölder’s inequality it follows

[. . . ]2 ≤ c(�∗)
∫

Br (z)

(
h′

1(|div u|)
|div u| |∇div u|2 + h′

2(|εD(u)|)
|εD(u)| |∇εD(u)|2

)

dx

≤ c(�∗)
∫

Br (z)

D2 H(ε(u))(∂αε(u), ∂αε(u)) dx,

where (4.3) is used to derive the latter estimate. As in Sect. 2 this gives

h1(|div u|), h2(|εD(u)|) ∈ L2
loc(�),

123



184 M. Bildhauer, M. Fuchs

hence |∇ε(u)| ∈ L2
loc(�) and Korn’s inequality shows u ∈ W 2

2,loc(�; R
2). This proves that

|∇u| ∈ Lt
loc(�) for any finite t . Let us consider the case ω < 2. (2.7) reads as

∫

Br (z0)

�2 dx ≤ c

r

∫

B2r (z0)

�|DH(ε(u))||∇u − P| dx,

� := D2 H(ε(u))(∂αε(u), ∂αε(u))
1
2 .

The auxiliary functions ψ1, . . . have to be modified in an obvious way, and during the cal-
culations leading now to (2.8) we again benefit from the fact that |∇2u| ≤ c|∇ε(u)|. (2.9)
then follows without further changes, and the proof of C1,α-regularity can be completed by
repeating the arguments after (15) in [7]. ��

Appendix A: An example of a function h with (A1)–(A3)

Here we are going to construct an example of a function h with (A1)–(A3) based on ideas
already used in Sect. 3: let g be a function [0,∞) → [0,∞) of class C1 satisfying g(0) > 0
and g′(t) ≥ 0 for all t ≥ 0. Then we immediately have (A1) for the function

h(t) :=
t∫

0

sg(s) ds.

For the first inequality in (A3) we just observe h′′(t) ≥ g(t) = h′(t)/t . Given ω ≥ 0, the
second inequality of (A3) is satisfied if and only if

tg′(t) ≤ ctωg(t) for all t � 1. (A.1)

Now suppose that we have sequences of positive numbers {ai }, {εi } s.t. g′ = 0 outside the
union of the intervals Ii = (ai − εi , ai + εi ), g′(ai ) = aω−1

i and g′ is linear on (ai − εi , ai )

as well as on (ai , ai + εi ). Moreover, it is supposed that ai → ∞ and that the intervals Ii are
disjoint. Then we have

g(t) = g(0)+
t∫

0

g′(s) ds ≤ g(0)+
∞∫

0

g′(s) ds

≈ g(0)+
∞∑

i=1

εi a
ω−1
i (A.2)

and with an appropriate choice of εi the r.h.s. of (A.2) is bounded. This clearly implies the
validity of (A.1), and it is not possible to replace ω by an exponent ω̃ < ω in (A.1). If the
r.h.s. of (A.2) is bounded, i.e.

0 < g(0) ≤ g(t) ≤ c,

then we have

g(2t) ≤ c

g(0)
g(t)
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and by the definition of h

h(2t) =
2t∫

0

sg(s) ds = 4

t∫

0

sg(2s) ds ≤ c

t∫

0

sg(s) ds = ch(t),

i.e. the function h has the (	2) property.
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