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Abstract We present a family of first-order functionals which are displacement convex,
that is convex along the geodesics induced by the quadratic transportation distance on the
circle. The displacement convexity implies the existence and uniqueness of gradient flows of
the given functionals. More precisely, we show the existence and uniqueness of gradient-flow
solutions of a class of fourth-order degenerate parabolic equations with periodic boundary
data. Moreover, positivity of the absolutely continuous part of the solutions is preserved along
the flow.

Mathematics Subject Classification (2000) 35K55 · 35K30 · 35K25

1 Introduction

The notion of geodesic convexity of functionals on the space of probability measures endowed
with transportation distances was introduced by McCann [17] who named it displacement
convexity. In the same paper McCann discovered the three main classes of displacement
convex functionals on Euclidean space: the internal energy, the external potential energy,
and the interaction energy:

E1 =
∫

Rd

U (ρ) dx, E2 =
∫

Rd

V (x) dρ, and E3 =
∫

Rd

W ∗ ρ dρ.
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548 J. A. Carrillo, D. Slepčev

Here U : R
+ → R is the density of the internal energy, V : R

d → R is an external potential
and W : R

d → R is an interaction potential. The functionals are displacement convex under
appropriate conditions on U, V , and W .

Since McCann’s pioneering paper, an intriguing question was: Are there other displace-
ment-convex functionals, in particular are there ones that involve derivatives? Versions of this
question were asked by Villani [26, Open Problem 5.17] and [27, p. 892]. Here we present
first order functionals which are displacement convex in periodic setting in one dimension.
To the best of our knowledge, these are the first displacement convex functionals that involve
derivatives of the measure density. While the question on R

d remains open for any dimen-
sion, our examples show that there are no fundamental, structural obstructions to existence
of displacement convex functionals that involve derivatives.

We show that first-order functionals of the form

E(ρ) =
1∫

0

[(
1

ρβ

)
x

]2

dx, β �= 0 (1)

lead to well-defined displacement convex functionals on the set of probability measures
on the circle, P(S1), endowed with the quadratic Wasserstein distance, dW if and only if
β ∈ [

1, 3
2

]
. It is worth noting that there are several important functionals that can be written

in the above form. Namely the value β = −1 corresponds to the Dirichlet energy, while
β = − 1

2 corresponds to the Fisher information. However these functionals are not displace-
ment convex.

Geodesic convexity has important consequences for the existence and uniqueness of gra-
dient flows in the space of probability measures as recognized by Otto [20] and developed
by Ambrosio et al. [2], and others. Furthermore, uniform geodesic convexity provides quan-
titative information on asymptotics of gradient flows [20]. Moreover it implies a number of
important functional inequalities, see [26, Ch. 9] and references therein.

The existence of gradient flows in Wasserstein metric is based on variational schemes or
minimizing movements [1,2,12], first considered in this setting by Jordan, Kinderlehrer and
Otto. The application of the scheme is greatly simplified when the functional considered is
displacement convex. More importantly, the geodesic convexity induces quantitative contrac-
tion estimates between solutions of the gradient flows [2,10] and it implies the uniqueness
of these solutions. These results have found applications to nonlinear diffusion equations
with/without nonlocal interactions; see for instance [2,9] and the references therein.

In recent years there have been a number of developments regarding displacement convex-
ity. Carlen et al. [4], have studied displacement convexity of the internal and the interaction
energy in the setting of interfacial problems, where the configurations in the state space have
infinite mass. Displacement convexity on Riemannian manifolds for internal energy (under
Ricci curvature bounds) was predicted by Otto and Villani [21] and proved by Cordero-
Erausquin, McCann, and Schmuckenschläger in [8]. Recently Otto and Westdickenberg [22]
have introduced techniques that were further developed by Daneri and Savare [11] to show
geodesic convexity of functionals on manifolds using a purely local, Eulerian framework.
The connection between bounds on displacement convexity and bounds on Ricci curvature
has found important applications, see papers by Lott and Villani [16], Sturm and von Renesse
[25], Sturm [23,24] and references therein. Let us also mention important applications to geo-
metric flows, where convexity along optimal transportation paths is considered on manifolds
whose metric is being deformed by a geometric flow, for example the flow by Ricci curvature.
The reader can see works of Lott [15], McCann and Topping [19], and references therein.
Finally Lisini, Savaré and the authors [5] have considered an adapted notion of displacement
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Example of a displacement convex functional of first order 549

convexity to problems where the metric is a generalization of the quadratic transportation
distance with a nonlinear weight.

The geodesic convexity of functionals introduced by McCann, has lead to understanding
of gradient flows given by the equations of the form

∂ρ

∂t
= ∇ · [

ρ∇ (
U ′ (ρ) + V + W ∗ ρ

)]
, (2)

where the unknown ρ(t, ·) is a time-dependent probability measure on R
d (d ≥ 1). Using the

techniques of [2] we show existence and uniqueness of the gradient flow of (1). The gradient
flow solutions are weak (variational) solutions of the fourth-order diffusion equation:

∂ρ

∂t
= β2 (

ρ
[−θρθ−1ρ2

x − 2ρθρxx
]

x

)
x

(3)

with periodic boundary conditions, where θ = −2(β + 1).
The plan of this paper is as follows. We quickly review and discuss the optimal transport

on the circle in Sect. 2, and present a convenient form of the displacement interpolation.
We show the geodesic convexity of the functional (1) in Sect. 3. The statement is given in
Theorem 1, while the proof is divided in a sequence of lemmas. In the Sect. 3.2 we show that
when β �∈ [1, 3

2 ] the functional (1) is not displacement convex on S1. We also show that on
R the functional is either trivial or not convex. Section 4 is devoted to applying the theory
developed in [2] to the gradient flow of (1). In the Appendix we present a heuristic argument
for geodesic convexity in one dimension which produces a rich set of functionals that are
candidates for being displacement convex.

2 Optimal transport on S1

We consider the points on S1 as equivalence classes of real numbers: S1 = R/Z. We identify
functions on S1 with functions on R of period one. However, when convenient, we also iden-
tify the points on the circle with the interval [0, 1). The transportation cost we consider is the
square of the geodesic distance on S1. Let µ0 and µ1 be probability measures on S1, which
are absolutely continuous with respect to the Lebesgue measure, L. Let ρ0 and ρ1 their den-
sities. By results of McCann [18] there exists an optimal transportation map � : S1 −→ S1,
��µ0 = µ1.

Let us consider continuous positive densities ρ0 and ρ1:

ρ0 > 0 and ρ1 > 0,

then the map � is continuous, see [13] and the references therein. We can consider the
mapping � as a mapping from [0, 1] to R/Z.

Consider the mapping �̃ : [0, 1] −→ [− 1
2 , 3

2 ] such that �̃(x) is the smallest (often
unique) element of �(x) for which |�̃(x) − x | ≤ 1

2 . The Euclidean distance between x and
�̃(x) is always less than or equal to 1

2 and thus coincides with the geodesic distance on S1.
Let µ̃1 = �̃�µ0. Note that �̃ is the optimal transport with Euclidean quadratic cost between
µ0 and µ̃1. Thus �̃ is a monotone mapping. Let a = �̃(0). Then a+1 = �̃(1). Monotonicity
implies that Range(�̃) = [a, a + 1]. Furthermore regularity of optimal transportation maps
on R implies that �̃ is smooth. Since we could have considered an interval [b, b + 1] instead
of [0, 1] to define �̃, it follows that � is smooth.
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550 J. A. Carrillo, D. Slepčev

Note that displacement interpolation is represented by the diffeomorphisms �̃s : [0, 1]−→
[as, as + 1] defined by

�̃s(x) = (1 − s)x + s�̃(x) = x + s(�̃(x) − x).

The displacement interpolant is given by

µs = (�̃s)�µ0. (4)

Let

f (x) = �̃(x) − x .

If ρ0 and ρ1 are smooth then so is �̃ and consequently so are �̃s and ρs , the density of µs .
Then

ρs(y) = ρ0(x)

�̃ ′
s(x)

= ρ0(x)

1 + s f ′(x)
where y = �̃s(x). (5)

3 Displacement Convexity

Let us first consider the energy E : P(S1) → [0,∞] defined as follows: For β �= 0, if µ is
a probability measure with density ρ then

E(µ) =
1∫

0

[(
1

ρβ

)
x

]2

dx . (6)

where the derivative considered is the weak derivative. In the case that µ is not absolutely
continuous with respect to the Lebesgue measure or if the above expression is not defined
we define E(µ) = ∞. For convenience we will often write E(ρ) instead of E(µ).

The energy E is defined to be the lower-semicontinuous envelope of E with respect to the
Wasserstein distance:

E(µ) = inf
{

lim inf
n→∞ E(µn) | lim

n→∞ dW (µn, µ) = 0
}
. (7)

An important property of E is that if E(µ) < ∞ then E(µ) = E(µ). It follows from
Lemmas 5 and 6.

The following examples further illuminate the properties of the energy:

Example 1 For β > 1
2 there are measures with finite energy with densities which are not

bounded. In particular let ρ : [0, 1] → [0,∞] be symmetric about x = 1
2 with

ρ(x) = cxγ on

(
0,

1

2

]

where γ ∈ (−1,− 1
2β

) and c is chosen so that
∫ 1

0 ρdx = 1. Then

E(ρ) �
1/2∫

0

x−2−2βγ dx < ∞

since γ < − 1
2β

.
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Example 2 For β > 1
2 there are measures which are not in Pac(S1) with finite energies.

Using the construction of the previous example there exists a function f ∈ C∞((0, 1
4 ),

(0,∞)) of the form f (x) = axγ + b such that γ ∈ (−1,− 1
2β

),
∫ 1/4

0 f (x)dx = 1
3 and

f ( 1
4 ) = 1

6 . Let

µ = 1

4
δ0 + ρL.

where ρ is symmetric about 1
2 and

ρ(x) =
{

f (x) if x ∈ (0, 1
4 )

1
6 if x ∈ ( 1

4 , 1
2 ).

To show that E(µ) < ∞ it is enough to construct a sequence µn → µ as n → ∞ in

Wasserstein distance with E(µn) ≤ 2
∫ 1

4
0 ( f −β)2

x dx < ∞ for all n ≥ 2. Here is the required
construction: For n ≥ 2 let ρ̃n be symmetric about 1

2 with

ρ̃n(x) =
{ n

8 if x ∈ (0, 1
n )

ρ(x − 1
n + f −1( n

8 )) if x ∈ ( 1
n , 1

2 ).

Note that
∫ 1/2

0 ρ̃ndx < 1
2 . Thus there exists m < 1 such that for ρn = ρ̃n ∨ m we have∫ 1/2

0 ρndx = 1
2 . Furthermore note that ρn ∈ H1(S1), E(ρn) ≤ 2

∫ 1
4

0 ( f −β)2
x dx , and ρn

converges to ρ in Wasserstein distance as n → ∞.

Example 3 Corollary 10 implies that if µ = αδa + ρL, where ρ is continuous on S1\{a},
has finite energy, E(µ) < ∞, then

lim sup
x→a−

ρ(x) = lim sup
x→a+

ρ(x) = ∞.

This in particular implies E(δa) = ∞ and E( 1
2 δa + 1

2 L) = ∞.

The main result of this paper is the following theorem:

Theorem 1 Consider β ∈ [1, 3
2 ]. The functional E is displacement convex on P(S1).

Proof The proof relies on facts that we establish in a series of lemmas. In particular the proof
uses that:

(i) If E(µ) < ∞ then there exists a sequence of probability measures, {µn}n=1,2,... with
smooth densities such that µn converges to µ in Wasserstein distance and E(µn) con-
verges to E(µ) as n → ∞.

(ii) Convexity of E holds along geodesics connecting probability measures with smooth
densities.

The Claim (i) is included in Lemma 7 and it follows from Lemmas 4, 5, and 6. The Claim
(ii) is proved in Lemma 8 for E . It follows for E since for smooth measures E(µ) = E(µ),
by Lemma 6.

The geodesic convexity of E then follows by a standard approximation argument. In partic-
ular let µ0 and µ1 be probability measures with finite energy: E(µ0) < ∞ and E(µ1) < ∞.
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Then there exist approximation sequences {µ0,n}n=1,2,... and {µ1,n}n=1,2,... of measures with
smooth densities such that

dW (µi,n, µi ) → 0 and E(µi,n) → E(µi ) as n → ∞ for i = 0, 1.

Let πn be the optimal transportation plan between µ0,n and µ1,n . Stability of optimal
transportation plans (see [27, Theorem 5.20]) then implies that along a subsequence, which
can we assume to be the whole sequence,

πn → π as n → ∞ in the weak topology of measures

where π is an optimal transportation plan between µ0 and µ1. Let �1 and �2 be the projec-
tions S1×S1 −→ S1 to the first and the second coordinate respectively. Then the displacement
interpolant µs,n = [µ0,n, µ1,n]s is given by

µs,n = ((1 − s)�1 + s�2)�πn .

Therefore, for µs = [µ0, µ1]s ,

µs,n → µs as n → ∞ in the weak topology of measures.

Using the properties of E and the convexity of E

E(µs) ≤ lim inf
n→∞ E(µs,n)

≤ lim inf
n→∞ (1 − s)E(µ0,n) + s E(µ1,n)

= (1 − s)E(µ0) + s E(µ1).

��
The following lemma is a local estimate on the modulus of continuity.

Lemma 2 Let β > 0. Consider a probability measure µ with density ρ such that Eo =
E(ρ) < ∞. Then v = ρ−β is a continuous function and if ρ(x0) < ∞ then

ρ(x) ≤
(

1

ρ(x0)β
− √

Eo d(x, x0)

)− 1
β

if d(x, x0) <
1

Eo
ρ(x0)

−2β (8)

ρ(x) ≥
(

1

ρ(x0)β
+ √

Eo d(x, x0)

)− 1
β

for all x ∈ S1. (9)

Proof Since
∫

S1 v2
x dx = E(ρ) < ∞, v is a continuous function due to Sobolev embeddings.

Assume v(x0) > 0 and x ∈ [0, 1]. By reparameterizing the circle (translation and reflection)
we can assume that 0 < x0 < x ≤ x0 + 1

2 < 1. Other cases are analogous. Using that line
segment is the minimizer of Dirichlet energy for fixed boundary data one obtains:

Eo ≥
x∫

x0

v2
x (s)ds ≥

(
v(x) − v(x0)

x − x0

)2

(x − x0).

Therefore
(

1

ρ(x)β
− 1

ρ(x0)β

)2

≤ Eo (x − x0).
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Example of a displacement convex functional of first order 553

Hence

1

ρ(x0)β
− √

Eo (x − x0) ≤ 1

ρ(x)β
≤ 1

ρ(x0)β
+ √

Eo (x − x0)

which implies the desired inequalities. ��
As a corollary we obtain the following positive lower bound:

Corollary 3 Assume β > 0 and Eo = E(ρ) < ∞. Then

ρ ≥
(

1

1 + √
Eo

) 1
β

on S1. (10)

Proof Since
∫

S1 ρdx = 1 there exists x0 such that ρ(x0) ≥ 1. The desired inequality follows
by applying the estimate (9) to arbitrary x ∈ S1 and using that d(x, x0) < 1. ��

Next two lemmas provide tools for approximating measures with finite energy E , by
smooth measures:

Lemma 4 Assume β > 0. Consider a probability measure µ with density ρ such that
E(ρ) < ∞. For every ε > 0 there exists a probability measure with density ρ̃ ∈ H1(S1)

such that

E(ρ̃) ≤ E(ρ) and d2
W (ρ, ρ̃) < ε.

Proof Let ε > 0. Given m ≥ 0 let σ−(m) = ∫ 1
0 (m − ρ(x))+dx . Note that σ− is a nonde-

creasing Lipschitz continuous function with σ−(m2) − σ−(m1) ≤ m2 − m1 for m2 > m1.
Consider also σ+(M) = ∫ 1

0 (ρ(x) − M)+dx , whose properties mirror those of σ−.
Note that σ−(1) = σ+(1). Let ε0 = σ−(1). If ε0 = 0 then ρ ≡ 1, so we can consider the

case ε0 > 0. We can assume ε < ε0. Since σ−(0) = 0 and σ−(1) > ε there exists mε < 1
such that σ−(mε) = ε. Analogously there exists Mε > 1 such that σ+(Mε) = ε. Now define

ρ̃ = (ρ ∨ mε) ∧ Mε.

Construction ensures
∫ 1

0 ρ̃ = 1 and d2
W (ρ, ρ̃) < ε.

Let ṽ(x) = ρ̃−β . Since v = ρ−β ∈ H1(S1) and

ṽ = (v ∨ M−β
ε ) ∧ m−β

ε

then ṽ ∈ H1(S1), as a composition of an H1 and a Lipschitz function. Note that
∫ 1

0 (ṽx )
2dx ≤∫ 1

0 v2
x dx and that ṽ is bounded by positive numbers from below and above. Since ρ̃ = (ṽ)−1/β

and the function s → s−1/β is Lipschitz on the range of ṽ the function ρ̃ is in H1(S1) by the
chain rule. ��
Lemma 5 Assume β > 0. Consider a probability density ρ ∈ H1(S1) for which E(ρ) < ∞.
Then

E(ρ) = β2

1∫

0

ρθ ρ2
x dx where θ = −2(β + 1).

Moreover, there exists a sequence of probability measures with smooth densities ρn such that

dW (ρn, ρ) → 0 and E(ρn) → E(ρ) as n → ∞.
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Proof Continuity of ρ and Corollary 3 imply that ρ is bounded by positive numbers from
below and above:

0 < m ≤ ρ ≤ M < ∞
Thus v = ρ−β is also bounded from below and above. Since

∫ 1
0 v2

x = E(ρ) < ∞, we

conclude that v ∈ H1(S1). Given that v = ρ−β and that z → z−β is Lipschitz on range of
ρ we can use the chain rule to obtain that vx = −β

ρx
ρβ+1 .

Let η be a smooth compactly supported mollifier. Let ηδ = 1
δ
η

( ·
δ

)
and ρn = η 1

n
∗ ρ

where convolution is computed on S1. Note that dW (ρn, ρ) → 0 as n → ∞, since support
of η 1

n
is shrinking to a point. Furthermore,

|E(ρn) − E(ρ)| = β2

∣∣∣∣∣∣
1∫

0

ρθ
n (ρn)2

x − ρθ
n ρ2

x + ρθ
n ρ2

x − ρθρ2
x )dx

∣∣∣∣∣∣

≤ mθβ2

1∫

0

|(ρn)2
x − ρ2

x |dx + m2θβ2

1∫

0

|ρ−θ
n − ρ−θ |ρ2

x dx .

The first term on the right-hand side converges to zero as n →= in f t y, since ρn converges
to ρ in H1, while the second term converges to zero since the H1 convergence on ρn implies
L∞ convergence. ��

We now prove the lower-semicontinuity of E in the following sense:

Lemma 6 Assume β > 0. Let {µn}n=1,2,..., be a sequence of probability measures with
densities in H1(S1), converging in the weak topology to a probability measure µ:

dW (µn, µ) → 0 as n → ∞.

Assume E(µ) < ∞ then E(µ) ≤ lim infn→∞ E(µn).

Proof Consider µ and {µn}n=1,2,... satisfying the assumptions of the lemma. Since E(µ)

and E(µn) are finite µ,µn ∈ Pac(S1) and thus we can consider their densities ρ, ρn . Let
Eo = lim infn→∞ E(µn). We can assume without a loss of generality that Eo < ∞ and
that limn→∞ E(µn) = Eo. We can furthermore assume that E(µn) is bounded from above
by Eo + 1. Let vn = ρ

−β
n . Boundedness of E(ρn) implies that

∫ 1
0 (vn)2

x dx is bounded.
Corollary 3 implies that vn are uniformly bounded in L∞ and consequently in H1. Therefore
there exists a subsequence, which we can assume to be the whole sequence, such that as
n → ∞

vn ⇀ v in H1, vn → v a.e., and vn → v in L∞.

We claim that |{v = 0}| = 0. To show this note that vn ≥ 0 and
∫ 1

0 v
−1/β
n dx = 1 imply

|{vn < εβ}| = |{εv−1/β
n > 1}| ≤ ε

1∫

0

v
−1/β
n dx = ε

for all n and all ε > 0. Therefore |{|vn − v| ≥ εβ}| ≥ |{v = 0}| − ε. Since vn → v in
L∞, taking n → ∞ and then ε → 0, implies |{v = 0}| = 0. Therefore ρn converge almost
everywhere to ρ̃ = v−1/β :

ρn → ρ̃ a.e. as n → ∞.
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If ρ̃ = ρ then the weak lower semicontinuity in H1 of the Dirichlet energy yields that

E(ρ) =
1∫

0

v2
x dx ≤ lim

n→∞

1∫

0

(vn)2
x dx = lim

n→∞ E(ρn).

To show that ρ̃ = ρ consider a point xo such that ρn(xo) → ρ̃(xo) < ∞ as n → ∞. It suffices
to show that ρ̃ = ρ in some neighborhood of xo. We can assume that ρn(xo) < ρ̃(xo)+1 = M
for all n. By estimate (8) of Lemma 2, for δ−1 = 2eM2β > 0 for all n

ρn(x) ≤ 2M on (xo − δ, xo + δ).

Therefore ρn is bounded in L∞ on the interval (xo − δ, xo + δ). Thus, it has a subsequence,
{ρnk }k=1,2,... converging weakly in L1.

ρnk ⇀ ρ̃ in L1((xo − δ, xo + δ)) as k → ∞.

Since weak L1 convergence implies convergence in the weak topology of measures, and
since ρn converges to ρ in the weak topology of measures, we conclude that ρ̃ = ρ on
(xo − δ, xo + δ). ��

Let us remark that Lemmas 5 and 6 imply that E(µ) = E(µ) whenever E(µ) < ∞.

Lemma 7 assume β > 0. If E(µ) < ∞ then there exists a sequence of probability measures,
{µn}n=1,2,... with smooth densities such that µn converges to µ in Wasserstein distance and
E(µn) converges to E(µ) as n → ∞.

Proof We first assume that E(µ) < ∞ and thus µ = ρL. Due to Lemma 5 we can construct
a sequence of densities ρn ∈ H1(S1) such that

E(ρn) ≤ E(ρ), and dW (ρ, ρn) <
1

n

for all n. Therefore, we have a sequence of measures µn = ρnL with H1(S1) densities
converging to µ in dW sense, and thus Lemma 6 implies that

lim sup
n→∞

E(µn) ≤ E(µ) ≤ lim inf
n→∞ E(µn),

from which we deduce there exists a sequence of probability measures µn with densities in
H1(S1) satisfying the desired properties. Now, the approximation Lemma 5 allows one to
replace densities in H1(S1) by smooth densities in the above statement.

Finally, let us assume that E(µ) < ∞, then by the definition of the lower semicontinuous
envelope of E , there exists {µn}n=1,2,... with E(µn) < ∞ such that E(µ) = limn→∞ E(µn)

and dW (µ,µn) → 0. Taking into account the first part of this proof, for any ε > 0, we can
find a probability density with smooth density µ̃n = ρ̃nL for all n such that

|E(µn) − E(µ̃n)| < ε and dW (µn, µ̃n) < ε.

Thus, the desired result follows. ��

We end the sequence of lemmas needed to prove Theorem 1 by showing the displacement
convexity of E functional in the smooth setting.
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Lemma 8 Letβ ∈ [1, 3
2 ]. Consider probability measuresµ0 andµ1 with smooth and positive

densities ρ0 and ρ1. Let µs be the displacement interpolant defined by (4). Then the function

s → E(µs)

is convex on [0, 1].

Proof Let E(s) = E(µs). It is enough to show that E ′′(s) ≥ 0 for all s. Since µs has smooth
density for all s ∈ [0, 1] and since interpolation between µs and µ1 is given by a linear
reparameterization of {µr }r∈[s,1], it suffices to show that E ′′(0) ≥ 0. Since ρs is smooth

E(s) =
1∫

0

⎡
⎣

(
1

ρ
β
s

)

y

⎤
⎦

2

dy = β2

as+1∫

as

ρθ
s (ρs)

2
ydy

where θ = −2(β + 1). Let ρ = ρ0. Using the change of variables y = x + s f (x) we obtain

E(s) = β2

1∫

0

ρθ (x)

(
ρx − sρ(x) f ′′(x)

1 + s f ′(x)

)2 1

(1 + s f ′(x))3+θ
dx .

Differentiating twice gives

E ′′(0) = β2

1∫

0

ρθ [2A2 + 4(4 + θ)AB + (4 + θ)(3 + θ)B2]dx

where

A = ρ f ′′ and B = ρ′ f ′.

The quadratic form in A and B is nonnegative if

2(4 + θ)(3 + θ) ≥ 1

4
42(4 + θ)2

that is if

(θ + 4)(θ + 5) ≤ 0

which holds precisely when

θ ∈ [−5,−4]
which is the case when

β ∈
[

1,
3

2

]
.

��

Let us complement the previous result by several corollaries and remarks.
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3.1 Bounds from below for densities

We can show the following generalizations of Corollary 3:

Corollary 9 Assume Eo = E(µ) < ∞. Let ρac the absolutely continuous part of the mea-
sure µ. Then

ρac ≥
(

1

1 + √
Eo

) 1
β

a.e. on S1. (11)

Proof Lemma 7 implies that there exists a sequence of absolutely continuous measures µn ,
with continuous densities ρn such that:

dW (µn, µ) → 0 and E(ρn) → E(µ) as n → ∞.

Using the Corollary 3, for every ε > 0,

ρn ≥
(

1

1 + √
Eo + ε

) 1
β

on S1

for all n large enough. Since µn → µ in the weak topology of measures

µ ≥
(

1

1 + √
Eo + ε

) 1
β

on S1.

Taking ε → 0 and considering the absolutely continuous parts of the left and the right-hand
side implies the conclusion of the corollary. ��

Corollary 10 Consider a probability measure µ on S1 that has an atom at x = a. Let ρac

be the absolutely continuous part of the measure µ. If Eo = E(µ) < ∞ then

ρac(x) ≥ (Eo d(x, a))
− 1

2β .

Proof Definition of the energy (7) and Lemmas 4 and 5 imply that there exists a sequence
of absolutely continuous measures µn , with continuous densities ρn such that:

dW (µn, µ) → 0 and E(ρn) → E(µ) as n → ∞.

Since µ ≥ αδa for some α > 0, for every ε > 0 there exists n0 such that for all n ≥ n0 there
exists xn ∈ B(a, ε) such that ρn(xn) > 1

ε
. Then Lemma 2 implies

ρn(x) ≥
(
εβ + √

Eo (d(x, a) + ε)
)− 1

β
.

Taking n → ∞ implies that

µ ≥
(
εβ + √

Eo (d(x, a) + ε)
)− 1

β
.

The conclusion of the corollary now follows by considering the absolutely continuous parts
of the measures and taking ε → 0. ��
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Fig. 1 Schematic illustration of the example of lack of convexity (for θ > −4)

3.2 Lack of displacement convexity

We first present an example that shows that for β �∈ [1, 3
2 ], β �= 0 the functional (6) is

not displacement convex even if only geodesics between smooth densities are considered.
For β = −1 the functional corresponds to the Dirichlet energy. The lack of displacement
convexity of the Dirichlet energy was known in the community, but we are not aware of a
published reference.

Example 1 Assume β �∈ [1, 3
2 ] and β �= 0. We use computations of Lemma 8 to build our

example. In particular it suffices to find ρ and f sufficiently smooth and such that

E ′′(0) = β2

1∫

0

ρθ [2(ρ f ′′)2 + 4(4 + θ)ρρ′ f ′ f ′′ − (4 + θ)(3 + θ)(ρ′ f ′)2]dx < 0

Here θ = −2(β + 1) �∈ [−5,−4]. Let h = f ′. then

E ′′(0) = β2

1∫

0

ρθ
[
2

(
ρh′ + (4 + θ)ρ′h

)2 − (4 + θ)(5 + θ)(ρ′h)2
]

dx . (12)

Let us denote by �(x) the integrand in the above integral. It suffices to find ρ and h which are
periodic, Lipschitz and such that

∫
S1 h = 0 (so that f is periodic) for which E ′′(0) < 0. The

existence of a smooth example follows via mollification. We first define auxiliary functions
ρ̃ and h̃ on the interval [0, 2M] for some M > 1. Let c = e−(4+θ). We require ρ̃ and h̃ to be
symmetric with respect to x = M , so we only need to define them on [0, M]. Let

ρ̃(x) =
{

ex for x ∈ [0, 1]
e for x ∈ [1, M], (13)

h̃(x) =
⎧⎨
⎩

e−(4+θ)x for x ∈ [0, 1]
−(x − l − 1) c

l for x ∈ [1, 1 + 2l]
−c for x ∈ [1 + 2l, 1 + 2l + L].

(14)

where M = 1 + 2l + L and l and L are to be determined. The functions ρ̃ and h̃ on [0, M]
are represented graphically on Fig. 1.

First note that on [0, 1]
ρ̃h̃′ + (4 + θ)ρ̃′h̃ = 0
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and thus, since (4 + θ)(5 + θ) > 0,

I =
1∫

0

�̃(x)dx < 0

where �̃ is the integrand in (12) with ρ and h replaced by ρ̃ and h̃. Note that on [1, 1 + 2l]

I I =
1+2l∫

1

�̃(x)dx =
1+2l∫

1

2e2+θ c2

l2 dx �
1

l
.

Choose l large enough to ensure I + I I < 0. Choose L so that
∫ M

0 h̃(x)dx = 0 Note that

I I I =
1+2l+L∫

1+2l

�̃(x)dx = 0.

Therefore

M∫

0

�̃(x)dx < 0.

Now define ρ and h on S1:

ρ(x) = λρ̃(2Mx), h = h̃(2Mx)

where λ > 0 is chosen so that
∫ 1

0 ρ(x) = 1. Due to homogeneity of the terms in � we have
that E ′′(0) < 0.

We now show that the energy (6) is not displacement convex on R. We first show that
if β ≥ 1

2 then there are no probability densities ρ with finite energy. Namely Lemma 2

(when modified to apply on R) implies that ρ(x) > ax
−1
2β ≥ ax−1 for some a > 0 and all x

sufficiently large. But such ρ cannot be integrable. If β = 0 then E is identically equal to 0.
So it suffices to provide an example of lack of convexity for β < 1

2 , β �= 0.

Example 2 We follow the procedure and notation above. Let us choose γ ∈ (− 1
2β

,−1) if

0 < β < 1
2 and γ < −1 if β < 0. We define

ρ̃(x) =
⎧⎨
⎩

ex for x ∈ [0, 1]
e for x ∈ [0, l]
e(x − l)γ for x > l + 1,

(15)

h̃(x) =
⎧⎨
⎩

e−(4+θ)x for x ∈ [0, 1]
−(x − l − 1) c

l for x ∈ [1, 1 + l]
0 for x > l + 1.

(16)

where l needs to be set. We extend ρ̃ and h̃ to R to be symmetric about x = 1. We define
ρ(x) = λρ̃(x) and h(x) = h̃(x), with λ chosen so that

∫
R

ρ = 1. The choice of γ ensures
that ρ is integrable and that E(ρ) is finite. Verifying that for l large the construction gives
E ′′(0) < 0 is as in Example 1.
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4 Gradient flow

As a consequence of the convexity along geodesics of the functional E , we can apply the
general theory developed in [2] for gradient flows in the space of probability measures. We
need to set up some notations to elaborate the consequences of this theory.

Given an initial measure µ0 ∈ P(S1) and time-step τ > 0, let us consider the variational
scheme or minimizing movement scheme [1,2,12] recursively defined by µτ

0 = µ0 and

µτ
n+1 ∈ arg minµ∈P(S1)

{
E(µ) + 1

2 τ
d2

W (µτ
n, µ)

}
, (17)

for all n ∈ N. The scheme is well defined since the functional is non-negative, lower semi-
continuous with respect to dW convergence, and its sub-level sets are relatively compact with
respect to dW since we are dealing with probability measures on a compact set.

Moreover, there is a well-defined notion of the subdifferential ∂ E(µ) of the functional E
for any µ ∈ P(S1) as developed in [2, Section 10.3]. Actually, due to geodesic convexity
of E , the minimal slope of the functional is lower semicontinuous with respect to dW and
thus our functional satisfies the weak lower semicontinuity assumption in [2, Assumption
11.3.1]. Under these conditions, the existence of gradient flows is ensured by [2, Theorem
11.3.2]. More precisely, let us define the interpolating measure curve

µτ (t) := µτ
n for t ∈ ((n − 1)τ, nτ ]

for all t > 0 with µτ (0) := µ0.

Theorem 11 (Existence of the Gradient Flow) Given any µ0 ∈ P(S1) such that E(µ0) <

∞, then the sequence of measures µτ (t) converges to µt locally uniformly in [0,∞) with
µ ∈ AC2

loc((0,∞); P(S1)) where µ is a solution of the gradient flow equation

vt = −∂o(µt ), ‖vt‖L2(µt ;S1) = |µ′|(t) a.e. t > 0

with µt → µ0 as t → 0, where vt is the tangent vector to the curve µt . Moreover, the tangent
vectors satisfy the energy identity

b∫

a

∫

S1

|vt (x)|2 dµt (x) dt + E(µb) = E(µa)

for all 0 ≤ a ≤ b < ∞.

We refer to the book [2] for all the notation and discussion of the ingredients in the theorem
above. Let us just mention that ∂o is the minimal selection in the subdifferential, that is, the
vector in the subdifferential with minimal norm and |µ′|(t) is the metric derivative of the
curve µt . Moreover, let us recall that L2(µt ; S1) is the set of L2 integrable functions with
respect to µt containing the set of tangent vectors, tangent bundle, to the curve of measures
µt given by

T anµP(S1) := {ϕx : ϕ ∈ C∞(S1)}L2(µt ;S1)
.

In fact, let us remember that due to [2, Theorem 8.3.1], we deduce from ‖vt‖L2(µt ;S1) =
|µ′|(t) that

∂µt

∂t
+ (vtµt )x = 0
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in distributional sense in [0,∞)× S1. Finally, let us recall that the set AC2
loc((0,∞); P(S1))

consists of absolutely continuous curves µt in P(S1) such that |µ′| ∈ L2
loc(0,∞).

The geodesic convexity of the functional also plays an important role for the uniqueness
of solutions of gradient flows. The following result follows readily from [2, Theorem 11.1.4].

Theorem 12 (dW -Contraction) Given two gradient flow solutions µ1
t and µ2

t in the sense of
the theorem above, then

dW (µ1
t , µ

2
t ) ≤ dW (µ1

0, µ
2
0)

for all t ≥ 0. In particular, we have a unique gradient flow solution for any given µ0 ∈ P(S1)

with E(µ0) < ∞. Moreover, the gradient flow solution is characterized by a system of evo-
lution variational inequalities:

d

dt
d2

W (µt , σ ) ≤ E(σ ) − E(µt ) a.e. t > 0,

for all σ ∈ P(S1) such that E(σ ) < ∞.

In order to apply this theory to the underlying partial differential equation, we have to
characterize the minimal selection element in the subdifferential of the functional E . This
point in our case is more involved than the known zero-order functionals since we do not
have a good characterization of the lower semicontinuous envelope of E which is the case
for the internal energy in [2, Subsection 10.4.3]. Let us mention that in smooth setting the
strong subdifferential characterization, and thus the minimal slope, is obtained in [2, Lemma
10.4.1]. More precisely, if we assume that the measure µ has a positive smooth density ρ,
i.e., µ = ρL, then

∂o(µ) =
(

δE

δρ

)
x

with

δE

δρ
:= β2 (

θρθ−1ρ2
x − 2(ρθρx )x

) = −β2 (
θρθ−1ρ2

x − 2ρθρxx
)
.

where θ = −2(β + 1). As a consequence, assuming that the solutions of the gradient flow
are smooth and positive for all times, then they correspond to solutions of the fourth-order
partial differential equation

∂ρ

∂t
= β2 (

ρ
[−θρθ−1ρ2

x − 2ρθρxx
]

x

)
x
. (18)

It remains open to give the full characterization of the minimal selection in the subdif-
ferential. However, we should mention that Theorem 12 is the first result of uniqueness of
solutions, in this gradient flow sense, for a fourth-order diffusion equation that we are aware
of.

Let us finally mention that, using the bound proved in Corollary 9, we conclude that the
solutions of the gradient flow which are positive and have finite energy at t = 0, remain
positive for all times, with a constant-in-time positive bound from below for their absolutely
continuous with respect to Lebesgue parts. On the other hand, due to the existence of non
absolutely continuous measures for which the functional E is finite, we cannot exclude the
possibility that blowup in L∞-sense or delta mass formation happens starting from smooth
data.
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to the Center for Nonlinear Analysis (NSF grants DMS-0405343 and DMS-0635983) for its support during
the preparation of this paper. J. A. Carrillo acknowledges IPAM—UCLA and Center for Nonlinear Analysis
at Carnegie Mellon University where part of this work was done.

Appendix

We present a heuristic argument for displacement convexity of functionals in one dimension
that applies to much broader class of functionals than (1). In particular the result of Lemma 8
is a special case of the result below. However the arguments below are applicable only to the
one-dimensional setting, while the point of view we took to prove Lemma 8 can be applied
in any dimension. Below we use the representation of the displacement interpolation using
the inverse of the distribution function to a one-dimensional measure. Such representation
has been used in for nonlinear diffusions [6] and granular media models [14] for instance,
see a review in [7,26]. Its application to the problem at hand was suggested to us by Brenier
[3]. We present it below applied to measures on a circle; the technique and calculations are
applicable to measures on R as well. Let us also remark that, while we only consider first
order functionals, the technique is applicable to higher order functionals in one dimension
as well.

We consider energies of the form: Let U ∈ C((0,∞)×R, R). For measure µ with density
ρ let

E(µ) =
1∫

0

U

(
ρ(x)−1, ρ(x)−3 d

dx
ρ(x)

)
ρ(x)dx .

Note that the functional (1) corresponds to U (p, q) = pαq2 with α ∈ [−1, 0] when β ∈
[1, 3

2 ].

Lemma 13 Assume that U is jointly convex. Consider probability measures on a circle, µ0

and µ1, with smooth and positive densities ρ0 and ρ1. Let µs be the displacement interpolant
defined by (4). Then the function

s → E(µs)

is convex on [0, 1].

Proof Let a be as defined in Sect. 2 and let ρs be the displacement interpolants, defined by
(5). Since ρs are smooth, and since the displacement interpolation between ρs1 and ρs2 is just
a linear reparemeterization of (a part of) the displacement interpolation between ρ0 and ρ1,
to show the convexity it suffices to show that

E(ρs) ≤ (1 − s)E(ρ0) + s E(ρ1) for all s ∈ [0, 1]
for arbitrary ρ0 and ρ1 as above. Let for s ∈ [0, 1], on [as, as + 1], Fs(x) = ∫ x

as ρs(y)dy.
Since ρs are smooth and positive Fs are invertible and have smooth inverses. Let Gs = F−1

s .
Then for z ∈ [0, 1], see for instance [26], we have that the geodesic is given by Gs(z) =
(1 − s)G0(z) + sG1(z). Taking the first and second derivative in z one obtains
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ρs(Gs(z))
−1 = (1 − s) ρ0(G0(z))

−1 + s ρ1(G1(z))
−1

ρs(Gs(z))
−3 dρs

dx
(Gs(z)) = (1 − s) ρ0(G0(z))

−3 dρ0

dx
(G0(z))

+s ρ1(G1(z))
−3 dρ1

dx
(G1(z))

Therefore, using the change of variables z = Fs(x) and the convexity of U

E(ρs) =
1+as∫

as

U

(
ρs(x)−1, ρs(x)−3 d

dx
ρs(x)

)
ρs(x)dx

=
1∫

0

U

(
ρs(Gs(z))

−1, ρs(Gs(z))
−3 d

dx
ρs(Gs(z))

)
dz

≤ (1 − s)E(ρ0) + s E(ρ1).

��
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