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Abstract An affine Moser–Trudinger inequality, which is stronger than the Euclidean
Moser–Trudinger inequality, is established. In this new affine analytic inequality an affine
energy of the gradient replaces the standard Ln energy of gradient. The geometric inequality at
the core of the affine Moser–Trudinger inequality is a recently established affine isoperimetric
inequality for convex bodies. Critical use is made of the solution to a normalized version of
the Ln Minkowski Problem. An affine Morrey–Sobolev inequality is also established, where
the standard L p energy, with p > n, is replaced by the affine energy.

Mathematics Subject Classification (2000) 46E35 · 46E30

1 Introduction and main results

The standard Sobolev inequality in R
n , n ≥ 2, for p ∈ [1, n), provides an upper bound for

the L
np

n−p (Rn) norm of functions f from the Sobolev space W 1,p(Rn) in terms of the L p(Rn)
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420 A. Cianchi et al.

norm of the Euclidean length of their gradient,

‖∇ f ‖p =
⎛
⎝

∫

Rn

|∇ f (x)|pdx

⎞
⎠

1/p

. (1.1)

An optimal form of the Sobolev inequality, with sharp constant, reads

ap,n‖ f ‖ np
n−p

≤ ‖∇ f ‖p, for f ∈ W 1,p(Rn), (1.2)

and goes back to Federer and Fleming [21] and Maz’ya [42] for p = 1, and to Aubin [5]

and Talenti [52] for 1 < p < n. Here, ap,n = n
1
p (

n−p
p−1 )

1− 1
p [ωn�(

n
p )�(n + 1 − n

p )/�(n)]
1
n ,

where � is the gamma function, and ωn = π
n
2 /�

(
1 + n

2

)
is the n-dimensional volume

enclosed by the unit sphere Sn−1.
In [38,56], a strengthened version of the sharp Sobolev inequality was established (see

[41] for further extensions), where the customary norm ‖∇ f ‖p is replaced by a new invariant
(of functions) defined by

Ep( f ) = cn,p

⎛
⎜⎝

∫

Sn−1

‖Dv f ‖−n
p dv

⎞
⎟⎠

−1/n

. (1.3)

Here, cn,p = (
nωnωp−1
2ωn+p−2

)1/p(nωn)
1/n , and for each vector v ∈ Sn−1 the expression ‖Dv f ‖p

stands for the L p(Rn) norm of the directional derivative Dv f of f along v, namely

‖Dv f ‖p =
⎛
⎝

∫

Rn

|v · ∇ f (x)|pdx

⎞
⎠

1/p

, (1.4)

where “·” denotes the usual inner product in R
n . An important fact is that Ep( f ) is invariant

under affine transformations of R
n of the form x �→ Ax + x0, with x0 ∈ R

n and A ∈ SL(n).
Note that by contrast ‖∇ f ‖p is invariant only for A ∈ SO(n), rather than A ∈ SL(n). We
call the invariant Ep( f ) the L p affine energy of f .

The affine Sobolev inequality, established in [56] for p = 1 and in [38] for 1 < p < n,
states that

ap,n‖ f ‖ np
n−p

≤ Ep( f ), for f ∈ W 1,p(Rn). (1.5)

Observe that (1.5) is an affine inequality whereas the Sobolev inequality (1.2) is only Euclid-
ean. Inequality (1.5) improves the Sobolev inequality (1.2) because, by the Hölder inequality
and Fubini’s theorem, one easily sees that

Ep( f ) ≤ ‖∇ f ‖p (1.6)

for every f ∈ W 1,p(Rn) and p ≥ 1 [38, Inequality (7.1)]. In fact, the affine Sobolev
inequality (1.5) is essentially stronger than the Euclidean Sobolev inequality, because the
ratio Ep( f )/‖∇ f ‖p is not uniformly bounded from below by any positive constant, as f
ranges in W 1,p(Rn). This is demonstrated, for instance, by considering functions f having
the form f (x) = ϕ(Ax) for some fixed function ϕ and letting A vary in SL(n).

It is the aim of this note to complete the picture of affine Sobolev inequalities given in
[38,56], and deal with both the limiting case p = n and super-limiting case p > n.
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Affine Moser–Trudinger and Morrey–Sobolev inequalities 421

Functions f ∈ W 1,n(Rn), whose support sprt f has Lebesgue measure |sprt f | that is
finite, are known to be not merely in Lq(Rn) for every q < ∞, but to be even exponentially
summable [46,54,55]. The Moser–Trudinger inequality is the statement that there exists
mn > 0 such that

1

|sprt f |
∫

Rn

e(nω
1/n
n | f (x)|/‖∇ f ‖n)

n′
dx ≤ mn (1.7)

for every f ∈ W 1,n(Rn) with 0 < |sprt f | < ∞, where n′ = n/(n − 1) is the Hölder
conjugate of n. The constant nω1/n

n is best possible, in that inequality (1.7) would fail for
any real number mn if nω1/n

n were to be replaced by a larger number. Although not explicitly
known, the best constant mn on the right-hand side of (1.7) can be characterized as

mn = sup
φ

∞∫

0

eφ(t)
n′−t dt, (1.8)

where φ ranges among all non-decreasing locally absolutely continuous functions in [0,∞)

such that φ(0) = 0 and
∫ ∞

0 φ′(t)ndt ≤ 1.
The Moser–Trudinger inequality and close variants have attracted the attention of spe-

cialists in both the theory of function spaces and in partial differential equations; see e.g.,
[3–7,10,11,15,16,19,20,23,24,26,30,47].

Our first result deals with a stronger, in light of (1.6), affine version of (1.7):

Theorem 1.1 Suppose n > 1. Then for every f ∈ W 1,n(Rn) with 0 < |sprt f | < ∞,

1

|sprt f |
∫

Rn

e(nω
1/n
n | f (x)|/En( f ))n

′
dx ≤ mn . (1.9)

The constant nω1/n
n is best possible in that (1.9) would fail for any real number mn if nω1/n

n

were to be replaced by a larger number.

Carleson and Chang [10] proved that (spherically symmetric) extremals do exist for the
Moser–Trudinger inequality (1.7). As a consequence, since, by (1.6),

1

|sprt f |
∫

Rn

e(nω
1/n
n | f (x)|/‖∇ f ‖n)

n′
dx ≤ 1

|sprt f |
∫

Rn

e(nω
1/n
n | f (x)|/En( f ))n

′
dx ≤ mn

(1.10)

for each f ∈ W 1,n(Rn) with 0 < |sprt f | < ∞, extremals for the affine Moser–Trudinger
inequality (1.9) exist as well. Moreover, if f is an extremal for the Moser–Trudinger inequal-
ity (1.7), then not only is f also an extremal for the affine Moser–Trudinger inequality, but
since we are dealing with an affine inequality, composing f with any element of GL(n) will
also yield an extremal for the affine Moser–Trudinger inequality.

Let us now turn to the case when p > n. For these values of p, the Morrey–Sobolev
embedding theorem tells us that any function from W 1,p(Rn) is essentially bounded. An
optimal bound for ‖ f ‖∞ in terms of ‖∇ f ‖p is available, and states that

‖ f ‖∞ ≤ bn,p |sprt f | 1
n − 1

p ‖∇ f ‖p (1.11)
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422 A. Cianchi et al.

for every f ∈ W 1,p(Rn) such that |sprt f | < ∞. Here, bn,p = n− 1
p ω

− 1
n

n (
p−1
p−n )

1/p′
, where p′

is the Hölder conjugate of p. See Talenti [53]. The affine counterpart of (1.11) is contained
in the following result.

Theorem 1.2 If p > n, then for every f ∈ W 1,p(Rn) such that |sprt f | < ∞,

‖ f ‖∞ ≤ bn,p|sprt f | 1
n − 1

p Ep( f ). (1.12)

Equality holds in (1.12) whenever

f (x) = a
(

1 − |A(x − x0)|
p−n
p−1

)
+ (1.13)

for some a ∈ R, x0 ∈ R
n, and A ∈ GL(n).

Here, the subscript “+” stands for the “positive part”.

2 A symmetrization inequality for the affine energy

A key tool in our approach to Theorems 1.1 and 1.2 is an affine version of the Pólya–Szegö
principle regarding the decrease of gradient norms under symmetrization. Recall that, given
any measurable function f : R

n → R such that |{x ∈ R
n : | f (x)| > t}| < ∞ for every

t > 0, its distribution function µ f : (0,∞) → [0,∞) is defined by

µ f (t) = |{| f | > t}| for t > 0, (2.1)

its decreasing rearrangement f ∗ : [0,∞) → [0,∞] is defined by

f ∗(s) = sup{t > 0 : µ f (t) > s} for s ≥ 0, (2.2)

and its spherically symmetric rearrangement f � : R
n → [0,∞] is defined by

f �(x) = f ∗(ωn |x |n) for x ∈ R
n . (2.3)

Note that

µ f = µ f ∗ = µ f � , (2.4)

and hence

|sprt f | = |sprt f ∗| = |sprt f �|, (2.5)

‖ f ‖∞ = f ∗(0) = ‖ f �‖∞, (2.6)

and

∫

Rn

�(| f (x)|)dx =
∞∫

0

�( f ∗(s))ds =
∫

Rn

�( f �(x))dx (2.7)

for every continuous increasing function � : [0,∞) → [0,∞).
If f ∈ W 1,p(Rn) for some p ≥ 1, then the classical Pólya–Szegö principle (see [8,28,52])

asserts that then f ∗ is locally absolutely continuous, f � ∈ W 1,p(Rn), and

‖∇ f �‖p ≤ ‖∇ f ‖p. (2.8)
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In fact, a full analogue of (2.8) for the affine energy Ep turns out to hold. It was shown in
[38] that if 1 ≤ p < n, then

Ep( f �) ≤ Ep( f ) (2.9)

for every f ∈ W 1,p(Rn). An inspection of the proof given in [38] shows that the same
argument will work for p > n as well. Instead, the proof given in [38] breaks down when
p = n, exactly the case of interest for applications to Theorem 1.1. In this borderline sit-
uation, a limiting argument could be used to establish (2.9). However, a main aim of this
note is to present in Theorem 2.1 below a direct unified approach to inequality (2.9), which
yields (2.9) simultaneously for all p ≥ 1. Apart from its own interest, such an approach
makes the proof of Theorem 1.1 self-contained, and, by avoiding limiting arguments in p, is
useful in analyzing the equality cases, an issue of possible interest for future developments.
(In this connection, see e.g. [8,18,22,29], where the cases of equality in (2.8) and in related
inequalities are characterized.)

Theorem 2.1 Suppose n > 1 and p ≥ 1. If f ∈ W 1,p(Rn), then f � ∈ W 1,p(Rn), and

Ep( f �) ≤ Ep( f ). (2.10)

Note that the left-hand sides of (2.8) and (2.9) agree, since

Ep( f �) =
⎛
⎜⎝

|sprt f |∫

0

(
nω1/n

n s1/n′
(− f ∗′

(s))
)p

ds

⎞
⎟⎠

1/p

= ‖∇ f �‖p, (2.11)

if f ∈ W 1,p(Rn). Thus, in view of (1.6), Theorem 2.1 provides a strengthened version of
the standard Pólya–Szegö principle.

3 Elements of the L p Brunn–Minkowski theory

The proof of Theorem 2.1 relies on tools from the rapidly evolving L p Brunn–Minkowski
theory of convex bodies (see, e.g., [12,14,27,31–41,44,48–50]). In particular, on the affine
L p isoperimetric inequality [37] (see [9] for an alternate proof) and on the solution of the
normalized L p Minkowski problem [40]. We recall some basic facts from this theory that
will be needed in what follows.

A convex body is a compact convex set in R
n with nonempty interior, which, through-

out this paper, will be assumed to contain the origin in its interior. Each convex body K is
uniquely determined by its support function hK : R

n → [0,∞) defined by

hK (u) = max{u · x : x ∈ K } for u ∈ R
n .

For real p ≥ 1, real ε > 0 and convex bodies K and L , the Minkowski–Firey L p combi-
nation K+p εL is the convex body whose support function obeys

hK+p εL (·)p = hK (·)p + ε phL(·)p. (3.1)

When p = 1, the subscript in “+p” can be suppressed without causing any ambiguity — see
the observation following equation (3.5) below.

The L p-mixed volume Vp(K , L) of K and L is defined by

Vp(K , L) = p

n
lim
ε→0+

|K+p ε
1
p L| − |K |
ε

.
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424 A. Cianchi et al.

The existence of this limit was proved in [33]. In particular,

Vp(K , K ) = |K |, (3.2)

for every convex body K . The L p extension of the classical Minkowski inequality (estab-
lished in [33] for p > 1) states that

Vp(K , L)n ≥ |K |n−p|L|p, (3.3)

with equality, for p > 1, if and only if K = εL for some ε > 0, and equality, for p = 1, if
and only if K = x + εL for some x ∈ R

n and ε > 0. In [33] it is also shown that

Vp(K , L) = 1

n

∫

Sn−1

hL(v)
phK (v)

1−pd SK (v) (3.4)

for all convex bodies K and L , where SK is a Borel measure on Sn−1 called the surface area
measure of K (see, e.g. [51]).

The mixed volume V1(E, K ) of a compact set E and a convex body K in R
n is defined as

V1(E, K ) = 1

n
lim inf
ε→0+

|E + εK | − |E |
ε

. (3.5)

Here E +εK = {x +εy : x ∈ E and y ∈ K }. Notice that, if E is a convex body, the definition
of E + εK coincides with Definition (3.1) for p = 1. The Brunn–Minkowski inequality (see
e.g., [51] or [25]) states that

|E + K | 1
n ≥ |E | 1

n + |K | 1
n . (3.6)

Definition (3.5) and the Brunn–Minkowski inequality immediately give the Minkowski
inequality

V1(E, K ) ≥ |E | 1
n′ |K | 1

n . (3.7)

If E has a C1 boundary, then the following integral representation for V1(E, K ) holds:

V1(E, K ) = 1

n

∫

∂E

hK (ν(x))dHn−1(x), (3.8)

where ν(x) denotes the outward unit normal vector to ∂E at x , and Hn−1 is (n − 1)-dimen-
sional Hausdorff measure—see [56].

The L p-projection function of a convex body K is denoted by vp(K , ·) : R
n → (0,∞)

and is defined by

vp(K , u)p = 1

2

∫

Sn−1

|u · v|phK (v)
1−p d SK (v), for u ∈ R

n . (3.9)

The L p-projection body �p K of K is the convex body whose support function is vp(K , ·).
The polar �∗

p K of the convex body �p K is defined as

�∗
p K = {

x ∈ R
n : |x · y| ≤ 1 for all y ∈ �p K

}
.

On observing that

∂�∗
p K = {

vp(K , u)−1u : u ∈ Sn−1},
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Affine Moser–Trudinger and Morrey–Sobolev inequalities 425

and making use of polar coordinates, one sees that

|�∗
p K | = 1

n

∫

Sn−1

vp(K , u)−ndu. (3.10)

The L p Petty projection inequality [37] (see [9] for an alternate approach) is an affine iso-
perimetric inequality that states that for every convex body K in R

n ,

|K |(n−p)/n |�∗
p K |p/n ≤ ωnωp−1/ωn+p−2, (3.11)

with equality for p = 1 if and only if K is an ellipsoid and with equality for p > 1 if and
only if K is an ellipsoid centered at the origin.

The solution to the even normalized L p Minkowski problem [40] will play a key role in
our proof of Theorem 2.1. It states that with each p ≥ 1 and with each even Borel measure
λ on Sn−1, whose support does not lie in the intersection of Sn−1 with a proper subspace,
there is uniquely associated an origin-symmetric convex body K , such that

λ = 1

|K |h p−1
K

SK . (3.12)

4 Proof of Theorem 2.1

The proof follows roughly the same rearrangement argument used to prove the Euclidean
Sobolev inequality. In the Euclidean case, the proof reduces to applying the classical Euclidean
isoperimetric inequality to the level sets. In the affine case, we would like to apply the L p

affine isoperimetric inequality (3.11) instead. This cannot be done directly, because the L p

affine isoperimetric inequality applies only to convex bodies, and the level sets are not nec-
essarily convex. Even when the level sets are convex, the L p affine isoperimetric inequality
alone is not enough. Instead, it is necessary to write the L p gradient integrals over level sets
in terms of L p mixed volumes of convex bodies. This is done by solving a family of L p

Minkowski problems. Estimates for the L p gradient integrals then reduce to estimates for
L p mixed volumes of convex bodies. The L p affine isoperimetric inequality is crucial for
this.

Assume that p ≥ 1, and n > 1. Suppose that f ∈ C∞
0 (R

n), the space of infinitely
differentiable functions having compact support in R

n . By Sard’s Lemma, for a.e. t > 0,

{| f | > t} is a bounded open set with a C1 boundary, (4.1)

∂{| f | > t} = {| f | = t}, (4.2)

and

∇ f (x) �= 0, for x ∈ {| f | = t}. (4.3)

For every positive t satisfying (4.1)–(4.3), define vp( f, t, ·) : R
n → (0,∞) by

vp( f, t, u)p = 1

2

∫

{| f |=t}
|u · ∇ f (x)|p|∇ f (x)|−1dHn−1(x), for u ∈ R

n , (4.4)
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and, for each convex body Q, define Vp( f, t, Q) by

Vp( f, t, Q) = 1

n

∫

{| f |=t}
hQ(ν(x))

p|∇ f (x)|p−1dHn−1(x). (4.5)

Observe that, for each convex body Q,

V1( f, t, Q) = V1({| f | ≥ t}, Q) for a.e. t > 0. (4.6)

Lemma 4.1 If f ∈ C∞
0 (R

n), then for a.e. t > 0, there exists a unique origin-symmetric
convex body Kt = Kt ( f, p), such that

vp( f, t, u)p = vp(Kt , u)p

|Kt | , for u ∈ Sn−1, (4.7)

and

Vp( f, t, Q) = Vp(Kt , Q)

|Kt | , (4.8)

for every origin-symmetric convex body Q in R
n.

Proof Suppose t > 0 is such that (4.1)–(4.3) are fulfilled. Let λt be the even positive Borel
measure on Sn−1 satisfying

∫

Sn−1

g(v)dλt (v) =
∫

{| f |=t}
g(ν(x))|∇ f (x)|p−1dHn−1(x) (4.9)

for every even Borel function g : Sn−1 → R. Since, for fixed u ∈ Sn−1,

Hn−1 ({x : | f (x)| = t and u · ν(x) �= 0}) > 0,

and (4.3) holds, one has

∫

{| f |=t}
|u · ν(x)||∇ f (x)|p−1dHn−1(x) > 0. (4.10)

Hence, by (4.9),

∫

Sn−1

|u · v| dλt (v) > 0, for u ∈ Sn−1. (4.11)

Consequently, the measure λt is not supported in the intersection of Sn−1 with any subspace.
By the solution to the even normalized L p Minkowski problem (3.12), there exists a unique
origin-symmetric convex body Kt such that

λt = 1

|Kt |h p−1
Kt

SKt . (4.12)
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Equation (4.7) follows from the chain

vp( f, t, u)p = 1

2

∫

{| f |=t}

|u · ∇ f (x)|p

|∇ f (x)| dHn−1(x)

= 1

2

∫

{| f |=t}
|u · ν(x)|p|∇ f (x)|p−1dHn−1(x)

= 1

2

∫

Sn−1

|u · v|pdλt (v)

= 1

2|Kt |
∫

Sn−1

|u · v|phKt (v)
1−pd SKt (v)

= vp(Kt , u)p

|Kt | , (4.13)

for u ∈ Sn−1, where the second equality holds since ν(x) = ∇ f (x)/|∇ f (x)| for x ∈ {| f | =
t}, the third equality is a consequence of (4.9), the fourth equality is due to (4.12), and the
final identity is (3.9).

As for (4.8), note that by (4.5), (4.9), (4.12), and (3.4),

Vp( f, t, Q) = 1

n

∫

{| f |=t}
hQ(ν(x))

p|∇ f (x)|p−1dHn−1(x)

= 1

n

∫

Sn−1

hQ(v)
pdλt (v)

= 1

n|Kt |
∫

Sn−1

hQ(v)
phKt (v)

1−pd SKt (v)

= Vp(Kt , Q)

|Kt | . (4.14)

To see that Kt is unique, suppose that K ′
t is an origin-symmetric convex body that also

satisfies (4.8). Then

Vp(Kt , Q)

|Kt | = Vp(K ′
t , Q)

|K ′
t |

, (4.15)

for every origin-symmetric convex body Q in R
n . Choosing Q = Kt in (4.15), and making

use of (3.2) and (3.3) entail that |K ′
t | ≥ |Kt |. The same argument applied with Q = K ′

t in
(4.15) shows that |Kt | ≥ |K ′

t |. Thus, |K ′
t | = |Kt |, and the equality condition in (3.3), with

K = Kt and L = K ′
t , implies that necessarily Kt = K ′

t . �

We are now in a position to prove Theorem 2.1.

Proof of Theorem 2.1 We may assume that f does not vanish identically, otherwise the state-
ment holds trivially. The fact that f � ∈ W 1,p(Rn)whenever f ∈ W 1,p(Rn) is classical—see
e.g. Brothers and Ziemer [8]. To establish (2.10), let us first assume that f ∈ C∞

0 (R
n). From
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428 A. Cianchi et al.

the coarea formula and definition (4.4),

‖Dv f ‖p
p =

∫

Rn

|v · ∇ f (x)|pdx

=
∞∫

0

∫

{| f |=t}

|v · ∇ f (x)|p

|∇ f (x)| dHn−1(x) dt

= 2

∞∫

0

vp( f, t, v)pdt, (4.16)

for v ∈ Sn−1. Minkowski’s inequality for integrals tells us that
⎛
⎜⎝

∫

Sn−1

⎛
⎝

∞∫

0

vp( f, t, v)pdt

⎞
⎠

−n/p

dv

⎞
⎟⎠

−p/n

≥
∞∫

0

⎛
⎜⎝

∫

Sn−1

1

vp( f, t, v)n
dv

⎞
⎟⎠

−p/n

dt.

(4.17)

Let Kt = Kt ( f, p) be the unique origin-symmetric convex body guaranteed by Lemma 4.1
for a.e. t > 0. Owing to (4.7), (3.10), and (3.11), we have

⎛
⎜⎝ 1

n

∫

Sn−1

1

vp( f, t, v)n
dv

⎞
⎟⎠

−p/n

=
⎛
⎜⎝ 1

n

∫

Sn−1

|Kt |
n
p

vp(Kt , v)n
dv

⎞
⎟⎠

−p/n

= 1

|Kt | |�∗
p Kt | p

n

≥ ωn+p−2

ωnωp−1

1

|Kt | p
n

(4.18)

for a.e. t > 0. Thanks to (4.8) applied with Q = Kt , and (3.2), one gets

Vp( f, t, Kt ) = Vp(Kt , Kt )

|Kt | = 1, for a.e. t > 0. (4.19)

Assume, for the time being, that p > 1. From Eq. (4.19), Hölder’s inequality, Eq. (3.8) and
inequality (3.7), we deduce that, for a.e. t > 0,

n1/p

⎛
⎜⎝

∫

{| f |=t}

1

|∇ f (x)|dHn−1(x)

⎞
⎟⎠

1
p′

= (
nVp( f, t, Kt )

) 1
p

⎛
⎜⎝

∫

{| f |=t}

1

|∇ f (x)|dHn−1(x)

⎞
⎟⎠

1
p′

=
⎛
⎜⎝

∫

{| f |=t}
hKt (ν(x))

p|∇ f (x)|p−1dHn−1(x)

⎞
⎟⎠

1
p
⎛
⎜⎝

∫

{| f |=t}

1

|∇ f (x)|dHn−1(x)

⎞
⎟⎠

1
p′
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≥
∫

{| f |=t}
hKt (ν(x))dHn−1(x)

= nV1({| f | > t}, Kt )

≥ n|{| f | > t}| 1
n′ |Kt | 1

n

= nµ f (t)
1
n′ |Kt | 1

n . (4.20)

By the coarea formula again,

µ f (t) = |{| f | > t} ∩ {∇ f = 0}| +
∞∫

t

∫

{| f |=τ }

1

|∇ f (x)|dHn−1(x) dτ, for t > 0,

(see, e.g. [8]), and since the non-increasing function µ f is the sum of two nonincreasing
functions, we have

− µ′
f (t) ≥

∫

{| f |=t}

1

|∇ f (x)|dHn−1(x) for a.e. t > 0. (4.21)

Combining (4.20) and (4.21) yields

1

|Kt | p
n

≥ µ f (t)p− p
n

(−µ′
f (t)/n)p−1 for a.e. t > 0. (4.22)

Inequality (4.22) also holds for p = 1, since, by (4.19) and (4.6),

1 = 1

n

∫

{| f |=t}
hKt (ν(x))dHn−1(x) = V1({| f | ≥ t}, Kt ) ≥ |{| f | > t}| 1

n′ |Kt | 1
n

= µ f (t)
1
n′ |Kt | 1

n .

From (1.3), (4.16), (4.17), (4.18) and (4.22) we obtain

Ep( f )p = cp
n,p

⎛
⎜⎝

∫

Sn−1

‖Dv f ‖−n
p dv

⎞
⎟⎠

−p/n

= cp
n,p

⎛
⎜⎝

∫

Sn−1

⎛
⎝2

∞∫

0

vp( f, t, v)pdt

⎞
⎠

−n/p

dv

⎞
⎟⎠

−p/n

≥ 2

n p/n
cp

n,p

∞∫

0

⎛
⎜⎝ 1

n

∫

Sn−1

1

vp( f, t, v)n
dv

⎞
⎟⎠

−p/n

dt

≥ nωp/n
n

∞∫

0

1

|Kt | p
n

dt

≥ n pω
p/n
n

∞∫

0

µ f (t)p− p
n

(−µ′
f (t))

p−1 dt. (4.23)
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An inspection of the proof of (4.23) shows that, when f = f � and Kt = Kt ( f �, p), all
the inequalities turn into equalities, since Kt ( f �, p) is a ball centered at the origin for a.e.
t > 0 (in particular, equality holds in (4.21) if f = f �—see, e.g. [17, Lemmas 2.4 and 2.6]).
Consequently, since µ f = µ f � , we deduce that

Ep( f �)p = n pω
p/n
n

∞∫

0

µ f (t)p− p
n

(−µ′
f (t))

p−1 dt. (4.24)

The desired inequality (2.10) for f ∈ C∞
0 (R

n) now follows from (4.23) and (4.24).
To establish inequality (2.10) for an arbitrary f ∈ W 1,p(Rn), consider a sequence of

functions { fk}k∈N such that fk ∈ C∞
0 (R

n) for k ∈ N, and fk → f in W 1,p(Rn). We already
know that

Ep( f �k ) ≤ Ep( fk) for k ∈ N. (4.25)

It is easily seen that ‖Dv fk‖p → ‖Dv f ‖p uniformly for v ∈ Sn−1. Moreover, the function
v �→ ‖Dv f ‖p is strictly positive and (Lipschitz) continuous on Sn−1, and hence attains a
positive minimum on Sn−1. Consequently, 1/‖Dv fk‖n

p → 1/‖Dv f ‖n
p uniformly for v ∈

Sn−1, whence

lim
k→∞ Ep( fk) = Ep( f ). (4.26)

On the other hand, f �k → f � in L p(Rn), thanks to the contractivity of the spherically
symmetric rearrangement in L p(Rn) (see, e.g. [13]). Hence, one can infer that f �k ⇀ f �

weakly in W 1,p(Rn). Since Ep( f �k ) = ‖∇ f �k ‖p and Ep( f �) = ‖∇ f �‖p , and since the
L p(Rn) norm of the gradient is lower semicontinuous with respect to weak convergence in
W 1,p(Rn),

lim inf
k→∞ Ep( f �k ) ≥ Ep( f �). (4.27)

Inequality (2.10) follows from (4.25)–(4.27). �


5 Proof of Theorems 1.1 and 1.2

The finiteness of the quantity mn , as defined in (1.8), is the content of the following result
by Moser.

Lemma 5.1 Let p ∈ (1,∞), and let

m p = sup
φ

∞∫

0

eφ(s)
p′−sds, (5.1)

where φ ranges among all non-decreasing, locally absolutely continuous functions in [0,∞)

fulfilling φ(0) = 0 and
∫ ∞

0 φ′(s)pds ≤ 1. Then

m p < ∞. (5.2)

Incidentally, observe that the quantity m p given by (5.1) remains unchanged if the class of
trial functions is enlarged to include also not necessarily (positive and) monotone functions
φ, provided that φ(s)p′

is replaced by |φ(s)|p′
and φ′(s)p by |φ′(s)|p . This can be easily

seen on replacing φ(s) by
∫ s

0 |φ′(s)|ds.
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The original proof of Lemma 5.1 for p ≥ 2 contained in Moser [45] is rather involved.
A simplified approach, exploiting a technique of Garsia (see [2, Sect. 3.8]), is presented in
Adams [1], where an even more general result is established; a very similar proof, for p = 2,
can be found in Marshall [43], where the possibility of an extension to the case where p �= 2
is also mentioned. For completeness, we reproduce a proof of Lemma 5.1 along the same
lines as those of Adams [1] and Marshall [43].

Proof of Lemma 5.1 For each t ∈ R, define

Et =
{

s ≥ 0 : s − φ(s)p′ ≤ t
}
,

and let

cp = 7

1 − (1 + 21−p)
1

1−p

.

From the fact that φ(0) = 0, the Hölder inequality and the fact that
∫ ∞

0 φ′(s)pds ≤ 1, we
have that

φ(s)p′ =
⎛
⎝

s∫

0

φ′(r)dr

⎞
⎠

p′

≤ s for s > 0.

Hence,

Et = ∅, for t < 0. (5.3)

We now show that

|Et | ≤ (cp + 2)t, for t > 0. (5.4)

Inequality (5.4) trivially holds if Et ⊂ [0, 2t]. If this is not the case, then inequality (5.4)
will follow if we prove that

s2 − s1 ≤ cpt (5.5)

for every s1, s2 ∈ Et satisfying 2t ≤ s1 < s2. From the definition of Et and the Hölder
inequality,

s1 − t ≤
⎛
⎝

s1∫

0

φ′(r)dr

⎞
⎠

p′

≤ s1

⎛
⎝

s1∫

0

φ′(r)pdr

⎞
⎠

1
p−1

≤ s1

⎛
⎝1 −

∞∫

s1

φ′(r)pdr

⎞
⎠

1
p−1

.

Thus,

∞∫

s1

φ′(r)pdr ≤ 1 −
(

1 − t

s1

)p−1

. (5.6)
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From the definition of Et , the Hölder inequality again, and (5.6),

s2 − t ≤
⎛
⎝

s1∫

0

φ′(r)dr +
s2∫

s1

φ′(r)dr

⎞
⎠

p′

≤
⎡
⎢⎣s

1
p′

1

⎛
⎝

s1∫

0

φ′(r)pdr

⎞
⎠

1
p

+ (s2 − s1)
1
p′

⎛
⎝

s2∫

s1

φ′(r)pdr

⎞
⎠

1
p
⎤
⎥⎦

p′

≤
⎡
⎢⎣s

1
p′

1 + (s2 − s1)
1
p′

⎛
⎝

∞∫

s1

φ′(r)pdr

⎞
⎠

1
p
⎤
⎥⎦

p′

≤
⎡
⎣s

1
p′

1 + (s2 − s1)
1
p′

(
1 −

(
1 − t

s1

)p−1
) 1

p
⎤
⎦

p′

.

Therefore,

s2

s1
− t

s1
≤

⎡
⎣1 +

(
s2

s1
− 1

) 1
p′

(
1 −

(
1 − t

s1

)p−1
) 1

p
⎤
⎦

p′

. (5.7)

Set M = s2−s1
t and z = 1 − t

s1
. Then, 1

2 ≤ z < 1 and (5.7) can be rewritten as

M(1 − z)+ z ≤
(

1 + M
1
p′ (1 − z)

1
p′ (1 − z p−1)

1
p

)p′

. (5.8)

The convexity of the function τ �→ τ p′
entails that, for λ ∈ [0, 1],

(
1 + M

1
p′ (1 − z)

1
p′ (1 − z p−1)

1
p

)p′

≤ (1 − λ)1−p′ + λ1−p′
M(1 − z)(1 − z p−1)

1
p−1 .

(5.9)

Choosing λ = 1 − z2(p−1) and combining (5.8) and (5.9) yield

M ≤ (1 − λ)1−p′ − z

(1 − z)
(

1 − λ1−p′
(1 − z p−1)

1
p−1

) = z−2 + z−1 + 1

1 − (1 + z p−1)
1

1−p

≤ cp,

whence (5.5) follows.
The Layer Cake principle and a simple change of variables imply that

∞∫

0

e−g(s) ds =
∞∫

−∞
|{s > 0 : g(s) ≤ t}| e−t dt
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for every measurable function g : (0,∞) → R. Thus,

∞∫

0

eφ(s)
p′−sds =

∞∫

−∞
|Et |e−t dt ≤ cp + 2,

where the inequality is a consequence of (5.3) and (5.4). �


Proof of Theorem 1.1 By (2.7) and (2.5), we have

∫

Rn

e(nω
1/n
n | f (x)|)n′

dx =
|sprt f |∫

0

e(nω
1/n
n f ∗(s))n′

ds. (5.10)

On the other hand, (2.11) and (2.10) tell us that

En( f ) ≥ En( f �) =
⎛
⎜⎝

|sprt f |∫

0

(
nω1/n

n s1/n′
(− f ∗′

(s))
)n

ds

⎞
⎟⎠

1/n

. (5.11)

Owing to (5.10) and (5.11), the affine Moser–Trudinger inequality (1.9) will follow if we
show that, for each a > 0,

sup
ψ

1

a

a∫

0

e(nω
1/n
n ψ(s))n

′
ds = mn, (5.12)

as ψ ranges among all non-increasing locally absolutely continuous function ψ : (0, a] →
[0,∞) such that ψ(a) = 0 and

∫ a
0 (nω

1/n
n s1/n′

(−ψ ′(s)))nds ≤ 1. Given such a ψ , define
the non-decreasing function φ : [0,∞) → [0,∞) by

φ(t) = nω1/n
n ψ(ae−t ), for t > 0. (5.13)

Note that φ(0) = 0. The change of variable

s = ae−t (5.14)

gives

∞∫

0

φ′(t)n dt =
a∫

0

(
nω1/n

n s1/n′
(−ψ ′(s))

)n
ds ≤ 1,

and

∞∫

0

eφ(t)
n′

e−t dt = 1

a

a∫

0

e(nω
1/n
n ψ(s))n

′
ds.

Hence, Eq. (5.12) follows from Lemma 5.1, since, for each fixed a, the class of functions
appearing in definition (5.1) agrees with the class of functions φ given by (5.13) with ψ as
above.
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The sharpness of the constant nω1/n
n in (1.9) can be verified on testing the inequality on

the same sequence { fk}k∈N of (radially decreasing) functions as in Moser [45], namely

fk(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

k1/q′

nω1/n
n

if |x | ≤ e−k/n

k−1/q

ω
1/n
n

log
(

1
|x |

)
if e−k/n < |x | ≤ 1

0 otherwise.

Note that the sequence { fk(A(x − x0))} is also extremal in (1.9), for any x0 ∈ R
n and any

A ∈ GL(n), since inequality (1.9) is invariant under affine transformations in R
n . �


We conclude with the proof of Theorem 1.2.

Proof of Theorem 1.2 Similarly to the proof of Theorem 1.1, a crucial ingredient here is the
symmetrization inequality (2.9) for p > n. This inequality, together with (2.11), reads

Ep( f ) ≥ Ep( f �) =
⎛
⎜⎝

|sprt f |∫

0

(
nω1/n

n s1/n′
(− f ∗′

(s))
)p

ds

⎞
⎟⎠

1/p

(5.15)

for every f ∈ W 1,p(Rn) with |sprt f | < ∞. By the (local) absolute continuity of f ∗, and
by (2.6), (2.5) and the Hölder inequality,

‖ f ‖L∞(Rn) = f ∗(0) =
|sprt f |∫

0

(− f ∗′
(s))ds

≤
⎛
⎜⎝

|sprt f |∫

0

(
− f ∗′

(s)s1/n′)p
ds

⎞
⎟⎠

1/p ⎛
⎜⎝

|sprt f |∫

0

s−p′/n′
ds

⎞
⎟⎠

1/p′

= n1/p′
(

p − 1

p − n

)1/p′

|sprt f | 1
n − 1

p

⎛
⎜⎝

|sprt f |∫

0

(
− f ∗′

(s)s1/n′)p
ds

⎞
⎟⎠

1/p

.

(5.16)

Inequality (1.12) follows from (5.15) and (5.16).
Equality holds in (1.12) for any function having the form (1.13) with x0 = 0 and A = I ;

actually, any such function is spherically symmetric, so that equality holds in (5.15), and ren-
ders the inequality in (5.16) an equality. Equality continues to hold in (1.12) even if x0 �= 0
and A �= I in (1.13), owing to the invariance of (1.12) under affine transformations. �
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