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Abstract We prove existence of u ∈ Ck(�; R
n) satisfying{

det ∇u(x) = f (x) x ∈ �

u(x) = x x ∈ ∂�

where k ≥ 1 is an integer, � is a bounded smooth domain and f ∈ Ck(�) satisfies∫
�

f (x)dx = meas �

with no sign hypothesis on f.
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1 Introduction

In this article, we discuss the existence of u : � ⊂ R
n → R

n such that{
det ∇u(x) = f (x) x ∈ �

u(x) = x x ∈ ∂�
(1)

where � is a bounded smooth domain. Clearly the divergence theorem implies that a neces-
sary condition for solving (1) is ∫

�

f (x)dx = meas �. (2)
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252 G. Cupini et al.

When f > 0, this problem has generated a considerable amount of work since the seminal
article of Moser [11], notably by Banyaga [1], Dacorogna [3], Reimann [12], Tartar [15],
Zehnder [17]. The next important step appeared in Dacorogna-Moser [6], where the regular-
ity problem was handled, in particular it was shown that if f ∈ Cr,α(�), then a mapping u
can be found in Cr+1,α(�;�). Posterior contributions can also be found in Burago-Kleiner
[2], Mc Mullen [9], Rivière-Ye [13] and Ye [16]. It should be emphasized that, when f > 0,

the solution is necessarily a diffeomorphism.
The aim of this article is to remove the hypothesis f > 0 and to consider any f satisfying

(2), with no restriction on its sign. Of course the solution will then not be a diffeomorphism;
although if f ≥ 0, and under further restrictions, it can be a homeomorphism. Our main
result is the following (cf. Theorem 2 for a more general statement).

Theorem 1 Let k ≥ 1 be an integer, � ⊂ R
n be the unit ball and f ∈ Ck(�) with∫

�

f (x)dx = meas �.

Then there exists u ∈ Ck(�; R
n) verifying{
det ∇u(x) = f (x) x ∈ �

u(x) = x x ∈ ∂�.

Our proof cannot use the flow method introduced by Moser and does not use either the
fixed point method developed in [6]. It is more constructive. Some extensions of this theorem,
in particular to more general domains �, are considered below (cf. Propositions 11 and 12).
We also point out that our method does not produce, as the one in [6] did when f > 0, a
gain in regularity.

We should also emphasize that when f is negative in some part, then it might be that
u(�) �⊂ �. This indeed happens if f < 0 in some part of ∂� (cf. Proposition 4).

We would now like to conclude with a qualitative remark. If g > 0 and∫
�

f (x)dx =
∫
�

g(x)dx,

then the theorem is still valid (cf. Theorem 2) and there exists a solution of{
g(u(x)) det ∇u(x) = f (x) x ∈ �

u(x) = x x ∈ ∂�
(3)

with no restriction on the sign of f. However if g vanishes in at least one point, and even if
f ≡ 1, then the problem becomes, in general, unsolvable. More precisely, if f ≡ 1 (or more
generally if f > 0), then the following assertions are true (see Proposition 8).

(i) If g has at least one zero, then there is no C1 solution of (3).
(ii) If g ≥ 0 and has only a countable number of zeroes, then there exists a continuous

(but not C1) weak solution of (3).

2 Notations

We gather here the main notations that will be used throughout the article. We let �, O ⊂ R
n

be bounded open sets.
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On the equation det ∇u = f with no sign hypothesis 253

– Balls in R
n are denoted by

Bε(x) := {y ∈ R
n : |y − x | < ε}

and when x = 0 we just write Bε instead of Bε(0).

– For g ∈ C0(Rn), � ∈ C1(�; R
n) and x ∈ �, we let, as in differential geometry,

�∗(g)(x) := g(�(x)) det ∇�(x).

– The set diffeomorphisms of class (k, α), k ≥ 1 an integer and α ∈ [0, 1], is denoted by

Diffk,α(�; O) :=
{
� : � ∈ Ck,α(�; O) and �−1 ∈ Ck,α(O;�)

}
.

If α = 0, we simply write Diffk(�; O).

– For homeomorphisms, we let

Hom(�; O) := {
� : � ∈ C0(�; O) and �−1 ∈ C0(O;�)

}
.

– For A ⊂ R
n, the characteristic function of A is defined as

1A(x) :=
{

1 if x ∈ A
0 if x /∈ A.

– In many instances, we will write, for g ∈ Ck(Rn) and f ∈ Ck(�), supp(g − f ) ⊂ �

meaning that the support of
[

g|� − f
]

is contained in �.

3 Main result

The main result of our paper (also valid in the framework of Hölder spaces Ck,α) is the
following one.

Theorem 2 Let k ≥ 1 be an integer and � ⊂ R
n be an open set, such that � is Ck+1-

diffeomorphic to B1. Let also g ∈ Ck(Rn) and f ∈ Ck(�) be such that

inf
x∈Rn

g(x) > 0 and
∫
�

f =
∫
�

g.

Then there exists � ∈ Ck(�; R
n) such that{

�∗(g) = f in �

� = id on ∂�.

Moreover � has the extra following three properties.

(i) If supp(g − f ) ⊂ �, then � can be defined so that supp(� − id) ⊂ �.

(ii) If f ≥ 0, then � can be chosen so that � ∈ Ck(�;�).

(iii) If f ≥ 0 and f −1(0)∩� is countable, then � can be defined so that � ∈ Hom(�;�).

Remark 3 (i) By “� is Ck+1-diffeomorphic to B1 ” we mean that there exists �1 ∈
Diffk+1(Rn; R

n) such that

�1(B1) = �

and

inf
x∈Rn

det ∇�1(x) > 0.

123



254 G. Cupini et al.

In particular B1 is Ck+1-diffeomorphic to B1.

(ii) Throughout the article we will assume n ≥ 2. When n = 1, the result is trivial and
the solution is unique.

(iii) If f is negative in some part of ∂�, then any � must go out of � (cf. Proposition 4).
However if, for example, f > 0 on ∂�, then � can be chosen so that �(�) = �. For
details we refer to Kneuss [8]. Note that when n = 1, the condition f > 0 on ∂�, is
not sufficient to guarantee that �(�) ⊂ �.

The proof is rather long and relies on the results of Sects. 5–7. However in order to moti-
vate all the technical lemmas of these sections, we now give the proof of the theorem, based
on these intermediate results.

Proof We split the proof into seven steps. In the course of the proof, we use several times
(32), namely

(� ◦ �)∗ = �∗ ◦ �∗.

Step 1. Since � is Ck+1-diffeomorphic to B1, there exists �1 ∈ Diffk+1(Rn; R
n) with

�1(B1) = � and

inf
x∈Rn

det ∇�1(x) > 0.

Step 2 (Positive radial integration). Applying Lemma 26 to �∗
1( f ) ∈ Ck(B1), we find

that there exists �2 ∈ Diff∞(B1; B1) satisfying

(�1 ◦ �2)
∗( f )(0) > 0 and supp(�2 − id) ⊂ B1

with
r∫

0

sn−1(�1 ◦ �2)
∗( f )

(
s

x

|x |
)

ds > 0, for every x �= 0 and r ∈ (0, 1]. (4)

Notice that ∫
B1

(�1 ◦ �2)
∗( f ) =

∫
B1

�∗
1( f ) =

∫
�

f.

Step 3 (Radial solution). Applying Lemma 17 to �∗
1(g) and (�1 ◦ �2)

∗( f ), we infer that
there exists �3 ∈ Ck(B1; R

n) such that{
(�1 ◦ �3)

∗(g) = (�1 ◦ �2)
∗( f ) in B1

�3 = id on ∂ B1.

This is possible, since inf x∈Rn �∗
1(g)(x) > 0, (�1 ◦ �2)

∗( f )(0) > 0,

∫
B1

�∗
1(g) =

∫
�

g =
∫
�

f =
∫
B1

�∗
1( f ) =

∫
B1

(�1 ◦ �2)
∗( f )

and (4) holds.
Step 4 (Conclusion). By the previous steps, we have that

� := �1 ◦ �3 ◦ �−1
2 ◦ �−1

1 ∈ Ck(�; R
n)
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On the equation det ∇u = f with no sign hypothesis 255

satisfies {
�∗(g) = f in �

� = id on ∂�

since

�∗(g) = [
(�1 ◦ �2)

−1]∗ ◦ [�1 ◦ �3]∗ (g)

= [
(�1 ◦ �2)

−1]∗ ◦ [�1 ◦ �2]∗ ( f ) = f.

Step 5. We now discuss (i). If supp(g − f ) ⊂ �, then

supp(�∗
1(g) − (�1 ◦ �2)

∗( f )) ⊂ B1.

Therefore, by Lemma 17 (i), we can define �3 such that

supp(�3 − id) ⊂ B1.

Finally, we get

supp(� − id) ⊂ �.

Thus Statement (i) is established.
Step 6. We now consider Statement (ii). Since f ≥ 0, we have (�1 ◦ �2)

∗( f ) ≥ 0 and
then by Lemma 17 (ii), we can choose �3 ∈ Ck(B1; B1). Eventually we get � ∈ Ck(�;�).

Step 7. As far as (iii) is concerned, we have from Lemma 17 (iii) that �3 ∈ Hom(B1; B1).

Since �1 ∈ Diffk+1(B1;�) and �2 ∈ Diff∞(B1; B1), we have the claim. �

4 Remarks, extensions and related results

In this section � ⊂ R
n is a bounded connected open set.

We start by showing that if f < 0 in some parts of ∂�, then any solution of{
�∗(g) = f in �

� = id on ∂�
(5)

must go out of �, more precisely �(�) �⊂ �.

Proposition 4 Let � ⊂ R
n be a bounded open set of class C1 and � ∈ C1(�; R

n) with
� = id on ∂�. If there exists x ∈ ∂� such that det ∇�(x) < 0 then

�(�) �⊂ �. (6)

Proof Step 1 (simplification). By hypothesis there exists� ∈ Diff1(B1;�(B1)) with �(0) =
x and

(i) �(B1 ∩ {xn = 0}) ⊂ ∂�

(ii) �(B1 ∩ {xn > 0}) ⊂ �

(iii) �(B1 ∩ {xn < 0}) ⊂ (�)c.

Therefore using that �(x) = x, we can choose ε > 0 small enough so that �̃ : Bε ∩
{xn ≥ 0} → R

n,

�̃(x) := �−1(�(�(x)))

is well defined. We observe that �̃ satisfies

�̃ = id on Bε ∩ {xn = 0} and det ∇�̃(0) = det ∇�(x) < 0. (7)

123
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To prove (6) it is enough to show that

�̃(Bε′ ∩ {xn > 0}) ⊂ {xn < 0}, (8)

for a certain 0 < ε′ ≤ ε.

Step 2. We now show (8). Using (7), we immediately obtain

∂�̃n

∂xn
(0) = det ∇�̃(0) = det ∇�(x) < 0

and therefore by continuity, there exists 0 < ε′ ≤ ε such that

∂�̃n

∂xn
< 0 in Bε′ . (9)

Combining (9) and the fact that �̃n(0) = 0 (by (7)) we get (8). �
We next prove, under suitable assumptions, that a classical solution of (5) is necessarily a

weak solution (see Definition 5 and Lemma 7). We then prove that g and f do not play the
same role in (5) (see Proposition 8).

Definition 5 Let g, f ∈ C0(�). We say that � ∈ Hom(�;�) is a weak solution of (5) if{∫
�(E)

g = ∫
E f for every open E ⊂ �

� = id on ∂�.
(10)

Remark 6 If � /∈ Hom(�;�), then the right notion of weak solution of (5) is with the first
equation in (10) replaced (see [7, page 106]) by∫

E

f (x)dx =
∫
Rn

g(y) deg(�, E, y)dy

where deg stands for the topological degree (see Appendix).

Lemma 7 Suppose that g, f ∈ C0(�) and � ∈ C1(�;�) ∩ Hom(�;�). Then � is a
classical solution if and only if � is a weak solution.

Proof It will be seen in Proposition 31 that, if � ∈ C1(�;�) ∩ Hom(�;�) and � = id on
∂�, then det ∇�(x) ≥ 0 and

int((det ∇�)−1(0)) = ∅. (11)

(i) Suppose that � is a classical solution of (5) and let E ⊂ � be an open set. Consider

E+ := E ∩ {x ∈ � : det ∇�(x) > 0}
E0 := E ∩ {x ∈ � : det ∇�(x) = 0}.

Since g(�(x)) det ∇�(x) = f (x), we have f ≡ 0 in E0. By Sard theorem (see (72))

meas(�(E0)) = 0.

Thus, by the change of variables formula and � being one to one, we obtain∫
�(E)

g =
∫

�(E+∪E0)

g =
∫

�(E+)

g +
∫

�(E0)

g

=
∫

�(E+)

g =
∫

E+

f =
∫
E

f.
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On the equation det ∇u = f with no sign hypothesis 257

Hence � is a weak solution of (5).
(ii) Assume now that � is a weak solution of (5). Let x ∈ � be such that det ∇�(x) > 0.

Then � ∈ Diff1(Br (x);�(Br (x))) for some suitable small r. By the assumptions and the
change of variables formula, for every 0 < ρ < r, we have∫

Bρ(x)

g(�(y)) det ∇�(y)dy =
∫

�(Bρ(x))

g(z)dz =
∫

Bρ(x)

f (z)dz.

Letting ρ → 0 we obtain

g(�(x)) det ∇�(x) = f (x).

By continuity, we conclude that the above equality holds true for every

x ∈ closure {y ∈ � : det ∇�(y) > 0} = �

in view of (11). �
We now show that in our problem (5), the functions g and f do not play the same role.

Proposition 8 The following three statements hold true.

(i) If g ∈ C0(Rn), f ∈ C0(�), f > 0 and g−1(0)∩� �= ∅, then there exists no solution
� ∈ C1(�; R

n) to (5).
(ii) Let f, g ∈ C0(�) satisfy

f > 0, g ≥ 0 and
∫
�

f =
∫
�

g.

If there exists a weak solution of (5), then

int(g−1(0) ∩ �) = ∅. (12)

(iii) Let � be C2-diffeomorphic to B1 and f, g ∈ C1(�) be such that

f > 0, g ≥ 0, g−1(0) ∩ � is countable and
∫
�

f =
∫
�

g.

Then there exists a weak solution of (5).

Proof (i) We proceed by contradiction. Assume that � ∈ C1(�; R
n) is a solution of (5).

Since � = id on ∂�, then (see (74))

�(�) ⊃ �.

Thus, there exists z ∈ � such that �(z) ∈ � and g(�(z)) = 0, which is the desired
contradiction, since

g(�(z)) det ∇�(z) = f (z) > 0.

(ii) Let � ∈ Hom(�;�) satisfy (10) with f > 0. If (12) is not true, then there exists
Bε(z) such that

Bε(z) ⊂ g−1(0) ∩ �.
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Let E = �−1(Bε(z)) ⊂ � which is open (and non-empty) by continuity of �. From (10)
we get that

0 <

∫
E

f =
∫

�(E)

g = 0,

which is absurd.
(iii) From Theorem 2(iii) we find that there exists � ∈ C1(�;�) ∩ Hom(�;�), such

that

�∗( f ) = g and � = id on ∂� .

For every open set E ⊂ � we have, from Lemma 7,∫
�(E)

f =
∫
E

g.

Then, � := �−1 satisfies (10). �
In the following proposition, we state a necessary condition (see (13)) for the existence

of a one to one solution of (5). Moreover, we show that not all solutions of (5), verifying
(13), are one to one. Notice that Lemma 28 shows that if � ∈ C0(�; R

n) is one to one and
� = id on ∂�, then � ∈ Hom(�;�).

Proposition 9 Let

g ∈ C0(Rn), f ∈ C0(�), inf
x∈Rn

g(x) > 0 and
∫
�

f =
∫
�

g.

Then the following claims hold true.

(i) If � ∈ C1(�; R
n) is a one to one solution of (5), then

f ≥ 0 and int( f −1(0)) = ∅. (13)

(ii) If f satisfies (13), then not all solutions � ∈ C1(�; R
n) of (5) are one to one.

Proof (i) By Lemma 28, we have that � ∈ Hom(�;�). Applying Proposition 31, we have
the claim.

(ii) We provide a counterexample in two dimensions. Let f ∈ C1(B1) be such that f ≥ 0,

f −1(0) = {(t, 0) : t ∈ [1/2, 3/4]}, f ≡ 1 on a neighborhood of 0

and, for x �= 0,

1∫
0

s f

(
s

x

|x |
)

ds = 1

2
.

Define next α : B1\{0} → [0, 1], through

α(x)2

2
=

|x |∫
0

s f

(
s

x

|x |
)

ds.
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On the equation det ∇u = f with no sign hypothesis 259

As in the proof of Lemma 17, the function

�(x) := α(x)
x

|x |
is in C1(B1; B1) with

�∗(1) = f and � = id on ∂ B1.

Since �(1/2, 0) = �(3/4, 0), then � is not one to one. �
The next proposition can be proved with the same techniques as the one developed here

and we refer to [8] for details.

Proposition 10 Let k ≥ 1 be an integer, g ∈ Ck(Rn) and f ∈ Ck(B1) satisfy

inf
x∈Rn

g(x) > 0 and
∫
B1

g =
∫
B1

f.

Then there exist γ = γ (n, k, g, f ) and ε = ε(n, k, g, f ) such that for every h1, h2 ∈ Ck(B1)

satisfying ∫
B1

hi =
∫
B1

g and ‖hi − f ‖Ck ≤ ε, i = 1, 2,

there exist �hi ∈ Ck(B1; R
n), i = 1, 2, with

�∗
hi

(g) = hi and �hi = id on ∂ B1

and

‖�h1 − �h2‖Ck ≤ γ ‖h1 − h2‖Ck .

We conclude this section with two extensions of Theorem 2 (cf. [8]) to more general
domains �. For example domains with a finite number of holes or general domains but with
only a finite number of connected components where f is not positive.

Proposition 11 Let k ≥ 1 be an integer. Let � be an open set such that � is Ck+1-
diffeomorphic to

B1\
N⋃

i=1

Bδi (xi )

with Bδi (xi ) pairwise disjoint and contained in B1, and denote by �1 such a diffeomorphism.
If g ∈ Ck(Rn) and f ∈ Ck(�) satisfy

inf
x∈Rn

g(x) > 0, f > 0 in �−1
1 (

⋃N
i=1∂ Bδi (xi ))

and ∫
�

f =
∫
�

g,

then there exists � ∈ Ck(�; R
n) verifying (5).
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The following three properties also hold.

(i) If supp(g − f ) ⊂ �, then � can be defined so that supp(� − id) ⊂ �.

(ii) If f ≥ 0 or if f > 0 on ∂�, then � can be chosen so that � ∈ Ck(�;�).

(iii) If f ≥ 0 and f −1(0)∩ � is countable, then � can be defined so that � ∈ Hom(�;�).

Proposition 12 Let k ≥ 1 be an integer. Let � be an open set of class Ck and suppose that
f, g ∈ Ck(�) satisfy

g > 0 in �, f > 0 on ∂� and
∫
�

f =
∫
�

g.

Suppose that W1, . . . , Wm are open sets such that⎧⎨
⎩

Wi ⊂ � and Wi is Ck+1 diffeomorphic to B1 1 ≤ i ≤ m
Wi ∩ W j = ∅ 1 ≤ i �= j ≤ m

f −1((−∞, 0]) ⊂ ⋃m
i=1 Wi .

Then, there exists � ∈ Ck(�;�) solution of (5).
Moreover, if supp(g − f ) ⊂ �, then � can be defined so that supp(� − id) ⊂ �.

5 Preliminary results

We now recall a result of [6].

Theorem 13 (Dacorogna-Moser theorem) Let k ≥ 1 be an integer, � be a bounded con-
nected open set of class Ck and let f, g ∈ Ck(�) be such that

f · g > 0 in � and
∫
�

f =
∫
�

g.

Then there exists � ∈ Diffk(�;�) such that{
�∗(g) = f in �

� = id on ∂�.

Furthermore, if supp(g − f ) ⊂ �, then � can be chosen so that supp(� − id) ⊂ �.

We have as an immediate corollary the following.

Corollary 14 Let k ≥ 1 be an integer, f, g ∈ Ck(�) and let V ⊂ � be a connected open
set such that

f · g > 0 in V,

∫
V

f =
∫
V

g and supp( f − g) ⊂ V .

Then there exists � ∈ Diffk(V , V ) such that

�∗(g) = f in V and supp (� − id) ⊂ V .

Proof We surely can find an open set W of class Ck such that

W ⊂ V and supp ( f − g) ⊂ W.

Using Theorem 13, we have the claim. �

123



On the equation det ∇u = f with no sign hypothesis 261

Proposition 15 Let k ≥ 1 be an interger and R > 1. Let also f, g ∈ Ck(BR) be such that
f, g > 0 in BR and ∫

B1

f =
∫
B1

g,

∫
BR

f =
∫
BR

g.

There exists � ∈ Diffk(BR; BR) such that{
�∗(g) = f in BR

� = id on ∂ B1 ∪ ∂ BR.
(14)

Proof We decompose the proof into two steps.
Step 1. Since f − g ∈ Ck(BR), then, for example, f − g ∈ Ck−1,1/2(BR); therefore,

using Lemma 16, there exists u ∈ Ck,1/2(BR; R
n) (in particular in Ck(BR; R

n)) such that{
div(u) = f − g in BR

u = 0 on ∂ B1 ∪ ∂ BR .

Step 2. Let v ∈ Ck([0, 1] × BR; R
n), v(t, x) = vt (x), be defined by

vt (x) := u(x)

tg(x) + (1 − t) f (x)
.

We then define �t (x) : [0, 1] × BR → R
n as the solution of{

d
dt [�t (x)] = vt (�t (x)) t > 0

�0(x) = x .

Using classical results about ODE, recalling that vt ≡ 0 on ∂ B1 ∪ ∂ BR, we have, for every
t ∈ [0, 1], that

�t ∈ Diffk(BR; BR) and �t = id on ∂ B1 ∪ ∂ BR .

Finally, it can be easily shown, see e.g. [5, p. 540], that � := �1 verifies (14). �
In Proposition 15 we used the following lemma.

Lemma 16 Let k ≥ 0 be an integer, α ∈ (0, 1) and R > 1. Let also f ∈ Ck,α(BR) be such
that ∫

B1

f =
∫
BR

f = 0.

There exists u ∈ Ck+1,α(BR; R
n) such that{
div(u) = f in BR

u = 0 on ∂ B1 ∪ ∂ BR.
(15)

Proof We split the proof into four steps.
Step 1. Using a classical result about the divergence, see e.g. [5, p. 531], there exist

w1 ∈ Ck+1,α(B1; R
n) and v ∈ Ck+1,α(BR; R

n) such that{
div(w1) = f in B1

w1 = 0 on ∂ B1
(16)
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and {
div(v) = f in BR

v = 0 on ∂ BR .
(17)

Step 2. Let w2 ∈ Ck+1,α(B1; R
n) be defined by w2 := w1 − v. Using (16) and (17), we

obtain {
div(w2) = 0 in B1

w2 = −v on ∂ B1.
(18)

Since div(w2) = 0, there exists, by Poincaré lemma (see e.g. [4]),

H = (Hi j )1≤i< j≤n ∈ R
n(n−1)/2

with Hi j ∈ Ck+2,α(B1) and

w2 = rot∗ H

where

rot∗ H = ((rot∗ H)1, . . . , (rot∗ H)n)

and

(rot∗ H)i =
i−1∑
j=1

∂ Hji

∂x j
−

n∑
j=i+1

∂ Hi j

∂x j
.

Step 3. For all 1 ≤ i < j ≤ n let H̃i j ∈ Ck+2,α(BR) be such that

H̃i j = Hi j in B1.

Let also φ ∈ C∞(Rn) be such that
{

φ ≡ 1 in B(1+R)/2
φ ≡ 0 in (B(1+2R)/3)

c.

Finally let w ∈ Ck+1,α(BR; R
n) be defined by w := rot∗(φ H̃).

Step 4. Let us show that u ∈ Ck+1,α(BR; R
n) defined by u := v + w verifies (15). Using

(17), we have

div(u) = div(v) + div(w) = f + 0 = f in BR .

Using the definition of φ we have w = 0 on ∂ BR and therefore, using (17),

u = v + w = 0 on ∂ BR .

Using again the definition of φ we obtain w = rot∗(H̃) = rot∗(H) = w2 in B1. Combining
this with (16) and (18) we have

u = v + w = v + w2 = w1 = 0 on ∂ B1,

which concludes the proof of the lemma. �

In Step 3 of the proof of our main theorem (Theorem 2), we used the following lemma.
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Lemma 17 (Radial solution) Let k ≥ 1 be an integer, g ∈ Ck(Rn) and f ∈ Ck(B1) be such
that inf x∈Rn g(x) > 0, f (0) > 0, ∫

B1

g =
∫
B1

f

and, for every x �= 0 and r ∈ (0, 1],
r∫

0

sn−1 f

(
s

x

|x |
)

ds > 0. (19)

Then there exists � ∈ Ck(B1; R
n) verifying{

�∗(g) = f in B1

� = id on ∂ B1.

The three following statements are also valid.

(i) If supp(g − f ) ⊂ B1 then � can be chosen so that

supp(� − id) ⊂ B1.

(ii) If for every x �= 0 and r ∈ [0, 1],
1∫

r

sn−1 f

(
s

x

|x |
)

ds ≥ 0 (20)

then � can be assumed in Ck(B1; B1). In particular (20) is always verified if f ≥ 0.

(iii) If

f ≥ 0 and f −1(0) ∩ B1 is countable, (21)

then � can be assumed in Hom(B1; B1).

Remark 18 Notice that the assumption f −1(0) ∩ B1 countable can be weakened as

f −1(0) ∩
[

0,
x

|x |
]

does not contain intervals for every x �= 0.

Proof Step 1 (definition of an auxiliary function). Since f (0) > 0 and (19) holds, we can
find 0 < ε < 1/6 such that

f > 0 in B2ε and min
x �=0

1∫
2ε

sn−1 f

(
s

x

|x |
)

ds > 0. (22)

We define η ∈ C∞([0, 1]; [0, 1]) as

η(s) =
{

1 if 0 ≤ s ≤ ε

0 if 2ε ≤ s ≤ 1.
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If supp(g − f ) ⊂ B1 (in particular f > 0 on ∂ B1) we modify the definition of ε and η as
follows. We assume that

η(s) =
{

1 if 0 ≤ s ≤ ε or 1 − ε ≤ s ≤ 1
0 if 2ε ≤ s ≤ 1 − 2ε

where 0 < ε < 1/6 is such that

f > 0 in B2ε ∪ (
B1\B1−2ε

)
and min

x �=0

1−2ε∫
2ε

sn−1 f

(
s

x

|x |
)

ds > 0. (23)

Define next f : B1\{0} → R as

f (x) = f

(
x

|x |
)

:=
∫ 1

0 sn−1(1 − η(s)) f
(

s x
|x |

)
ds∫ 1

0 sn−1(1 − η(s))ds
.

It is easy to see that f ∈ Ck(B1\{0}) and, by (22) or (23), f > 0. We now define

h(x) := η(|x |) f (x) + (1 − η(|x |)) f (x).

Observe that h satisfies⎧⎨
⎩

h > 0 on B1, h = f in Bε∫ 1
0 sn−1h

(
s x

|x |
)

ds = ∫ 1
0 sn−1 f

(
s x

|x |
)

ds, for every x �= 0
(24)

and is in Ck(B1). Furthermore, if supp(g − f ) ⊂ B1 then h = f in a neighborhood of ∂ B1.

Step 2. Define

h0 := min
x∈B1

h(x), g0 := inf
x∈Rn

g(x) > 0,

m := min{g0, h0}/2 and A := max
x �=0

max
r∈(0,1]

r∫
0

sn−1 f

(
s

x

|x |
)

ds < ∞.

Define R > 1 large enough in order to have

m Rn

n
> A.

We now construct a function g̃ ∈ Ck(BR) such that g̃ ≥ m in BR,

g̃ = h in B1,∫
B1

g =
∫
B1

g̃ and
∫
BR

g =
∫
BR

g̃. (25)

Using (24), we first observe
∫

B1
h = ∫

B1
g and so the first identity in (25) is automatically

verified. Let h ∈ Ck(BR) be an extension of h such that h > m in BR . For all ε > 0 let
ρε ∈ C∞(Rn) be such that 0 ≤ ρε ≤ 1 and

ρε ≡
{

1 in B1;
0 in (B1+ε)

c.
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For all ε > 0 small enough, it is clear that there exists a unique D(ε) ∈ R such that the
function

g̃ε := ρεh + (1 − ρε)D(ε) ∈ Ck(BR)

verifies ∫
BR

g̃ε =
∫
BR

g.

It is easy to see that we can choose ε1 small enough in order to have

D(ε1) > m.

The function g̃ := g̃ε1 has all the required properties.
Since g, g̃ > 0, g, g̃ ∈ Ck(BR) and (25) holds, there exists, using Proposition 15, �1 ∈

Diffk(BR; BR) such that {
�∗

1(g) = g̃ in BR

�1 = id on ∂ B1 ∪ ∂ BR .
(26)

Since g̃ ≥ m in BR , we have, by definition of R, that

R∫
0

sn−1g̃

(
s

x

|x |
)

ds > A. (27)

Step 3 (radial solution). Let α : B1\{0} → R be such that

α(x)∫
0

sn−1 g̃

(
s

x

|x |
)

ds =
|x |∫

0

sn−1 f

(
s

x

|x |
)

ds. (28)

Since g̃ > 0, by (19), (27) and the definition of A, α is well defined and satisfies α ∈ [0, R].
Moreover using again (19), α(x) > 0 if x ∈ B1\{0}. Using (24) (and the fact that g̃ = f in
a neighborhood of ∂ B1 if supp(g − f ) ⊂ B1), we get

(i) α(x) = |x | in Bε,

(ii) α(x) = 1 on ∂ B1 (and α(x) = |x | in a neighborhood of ∂ B1 if supp(g − f ) ⊂ B1)),
(iii) if (20) holds then α ∈ [0, 1],
(iv) if (21) holds, then

α(x) �= α(r x), for every x ∈ B1\{0} and r ∈ [0, 1). (29)

Thus, by the implicit function theorem, we have that the function α ∈ Ck(B1\{0}), since
g̃ > 0 and α(x) > 0 if x ∈ B1\{0}. Moreover, since α(x) = |x | in Bε, in fact the function
x → α(x)/|x | is Ck(B1). Let us show that

�2(x) := α(x)

|x | x,

is in Ck(B1; R
n) and verifies {

�∗
2(g̃) = f in B1

�2 = id on ∂ B1.
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In fact, by the properties of α, it easily follows that �2 ∈ Ck(B1; BR) (and �2 ∈ Ck(B1; B1)

if (20) holds). We also see that �2 = id on ∂ B1 (and also on a neighborhood of ∂ B1 if
supp(g − f ) ⊂ B1). Appealing to Lemma 19, we obtain

det ∇�2(x) = αn−1(x)

|x |n
n∑

i=1

∂α(x)

∂xi
xi . (30)

Computing the derivative of (28) with respect to xi , we get

αn−1(x)g̃(�2(x))
∂α(x)

∂xi
+

n∑
j=1

α(x)∫
0

sn ∂ g̃

∂x j

(
s

x

|x |
)( |x |δi j − xi x j

|x |
|x |2

)
ds

= |x |n−1 f (x)
xi

|x | +
n∑

j=1

|x |∫
0

sn ∂ f

∂x j

(
s

x

|x |
)( |x |δi j − xi x j

|x |
|x |2

)
ds,

where δi j = 1 if i = j, δi j = 0 otherwise. Multiplying by xi the above equality, adding up
the terms with respect to i and using

n∑
i=1

xi

( |x |δi j − xi x j
|x |

|x |2
)

= 0, 1 ≤ j ≤ n,

we obtain

αn−1(x)g̃(�2(x))

n∑
i=1

xi
∂α

∂xi
(x) = |x |n f (x).

This equality, together with (30), implies that �∗
2(g̃) = f.

Step 4 (conclusion). Defining � ∈ Ck(B1; R
n) by

� = �1 ◦ �2,

it is obvious to see that {
�∗(g) = f in B1

� = id on ∂ B1.

Indeed

�∗(g) = (�1 ◦ �2)
∗(g) = �∗

2(�
∗
1(g)) = �∗

2(g̃) = f.

Step 5. It remains to prove the statement (iii). We claim that � is one to one. From (29),
we already know that it is one to one on B1\{0}. By (28) and the assumption (21), we obtain

0 = �(0) �= �(x), for every x ∈ B1\{0}.
Hence � is one to one. Moreover, by (74) in the Appendix, � is onto and thus � ∈
Hom(B1; B1). �

In Step 3 of the previous lemma, we used the following elementary result.

Lemma 19 Let λ ∈ C1(B1) and � ∈ C1(B1; R
n), �(x) := λ(x)x . Then

det ∇�(x) = λn(x) + λn−1(x)

n∑
i=1

xi
∂λ

∂xi
(x).
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In particular, if λ(x) = α(x)/|x |, for some α, then

det ∇�(x) = αn−1(x)

|x |n
n∑

i=1

xi
∂α

∂xi
(x).

Proof Since ∇� = λ Id +∇λ ⊗ x and ∇λ ⊗ x is a rank-one matrix, the first equality holds
true. The second one easily follows. �

6 Uniform concentration of mass

We start with an elementary lemma.

Lemma 20 Let c ∈ C0([0, 1]; B1). Then for every ε > 0 such that c([0, 1]) + Bε ⊂ B1,

there exists �ε ∈ Diff∞(B1; B1) satisfying

�ε(c(0)) = c(1) and supp (�ε − id) ⊂ c([0, 1]) + Bε .

Proof For every ε > 0 such that c([0, 1]) + Bε ⊂ B1 define ηε ∈ C∞
0 (Rn; [0, 1]) such that

ηε =
{

1 in Bε/4

0 in
(
Bε/2

)c
.

Set, for a ∈ R
n,

ηa,ε(x) := ηε(x − a).

We then have

δ‖∇ηa,ε‖C0 = δ‖∇ηε‖C0 ≤ 1/2, (31)

for a suitable δ = δ(ε) > 0. Let xi ∈ B1, 1 ≤ i ≤ N , with x1 = c(0), xN = c(1), be such
that {

xi ∈ c([0, 1]) 1 ≤ i ≤ N
|xi+1 − xi | < δ 1 ≤ i ≤ N − 1

and define

�i (x) := x + ηxi ,ε(x)(xi+1 − xi ), 1 ≤ i ≤ N − 1.

Since (31) holds and supp(�i − id) ⊂ c([0, 1]) + Bε ⊂ B1, we have det ∇�i > 0 and
�i = id on ∂ B1. Therefore �i ∈ Diff∞(B1; B1), by Theorem 29. Moreover �i (xi ) = xi+1.

Then the diffeomorphism �ε := �N−1 ◦ · · · ◦ �1 has all the required properties. �
Before stating the main result of this section, we need some notations and elementary

properties of pullbacks and connected components.

Notation 21 Let � ⊂ R
n be open and bounded. If f ∈ C0(�), we adopt the following

notations

F+ := f −1((0,∞)) and F− := f −1((−∞, 0)).

Moreover, if x ∈ F± then

F±
x is the connected component of F± containing x .
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In the following lemma we state, without proof, some basic properties of pullbacks.

Lemma 22 (Properties of pullbacks) Let � ⊂ R
n be open and bounded and f ∈ C0(�),

� ∈ Diff1(�;�) with det ∇� > 0, x ∈ F+, y ∈ F−. Letting f̃ := �∗( f ), we have

�−1(F+
x ) = F̃+

�−1(x)
, �−1(F−

y ) = F̃−
�−1(y)

and, for any open U ⊂ �,

∫
U

f =
∫

�−1(U )

�∗( f ).

In particular, if � = id on ∂U, the following holds

∫
U

f =
∫
U

�∗( f ).

Moreover, if �1,�2 ∈ C1(Rn; R
n), then

(�1 ◦ �2)
∗ = �∗

2 ◦ �∗
1. (32)

The following one is a trivial result about the cardinality of the connected components of
super (sub) level sets of continuous functions and we state it for the sake of completeness.

Lemma 23 Let f ∈ C0(B1). Let {F+
xi

}i∈I + and {F−
y j

} j∈I − be the connected components of

F+ respectively of F−. Then I + and I − are at most countable. Moreover, if |I +| = ∞ or
|I −| = ∞, then

lim
k→∞ meas

(
F+\

k⋃
i=1

F+
xi

)
= 0 or lim

k→∞ meas

⎛
⎝F−\

k⋃
j=1

F−
y j

⎞
⎠ = 0

respectively.

One of the key lemmas in our proof of the main theorem is the following, which allows
to concentrate the mass and to distribute it uniformly.

Lemma 24 (Uniform concentration of mass) Let k ≥ 1 be an integer, f ∈ Ck(B1) and
z ∈ F+. Suppose that A1 and A2 are two closed sets with non-empty interior such that

A1 ⊂ int(A2) ⊂ A2 ⊂ F+
z ∩ B1.
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Then, for every small ε > 0, there exists �ε, f,A1,A2 ∈ Diffk(B1; B1) (which will be simply
denoted �ε) satisfying the following properties

supp(�ε − id) ⊂ F+
z ∩ B1 and

∫

F+
z

�∗
ε ( f ) =

∫

F+
z

f

‖�∗
ε ( f )‖C0 is uniformly bounded with respect to ε (33)

�∗
ε ( f ) = Cε in A1, Cε constant (34)

0 < �∗
ε ( f ) ≤ Cε in A2\A1 (35)

lim
ε→0

�∗
ε ( f )(x) =

⎧⎨
⎩

∫
F+

z
f/ meas(A1) x ∈ A1

0 x ∈ (
F+

z ∩ B1
) \A1

f (x) elsewhere
(36)

Cε meas(A1) ≤
∫

F+
z

f and lim
ε→0

∫
A1

�∗
ε ( f ) =

∫

F+
z

f (37)

1∫
0

sn−1(1F+
z \A2

�∗
ε ( f ))

(
s

x

|x |
)

ds ≤ ε, x �= 0. (38)

Remark 25 A similar result holds true if A1, A2 ⊂ F−
y . The changes are straightforward. In

particular, (35), (37) and (38) are replaced by

Cε ≤ �∗
ε ( f ) < 0 in A2\A1,

Cε meas(A1) ≥
∫

F−
y

f and lim
ε→0

∫
A1

�∗
ε ( f ) =

∫

F−
y

f

and

1∫
0

sn−1(1F−
y \A2

�∗
ε ( f ))

(
s

x

|x |
)

ds ≥ −ε, x �= 0,

respectively.

Proof We split the proof into two steps.
Step 1 (simplification). Using Corollary 14, it is sufficient to prove the existence of fε ∈

Ck(B1), such that
⎧⎨
⎩

fε > 0 in F+
z

supp( f − fε) ⊂ F+
z ∩ B1∫

F+
z

fε = ∫
F+

z
f

satisfying also (33)–(38) with �∗
ε ( f ) replaced by fε .

Step 2 (definition of fε). In the following we adopt the following notations:

M := sup
B1

| f |, m :=
∫

F+
z

f and k := 1

2 max{1, M, 2m/ meas(A1)} .
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Let 0 < ε1 ≤ 1/4 be such that A1 + Bε1 ⊂ int(A2) and let ηε ∈ C∞(B1; [0, 1]), 0 < ε ≤ ε1,

satisfy

ηε = 1 in A1 and supp ηε ⊂ A1 + Bε .

We claim that there exists a family of closed sets Kε, such that

A2 ⊂ Kε ⊂ F+
z ∩ B1 (39)

Kε ⊂ Kε′ if ε′ < ε (40)⋃
ε>0

Kε = F+
z ∩ B1 (41)

f |(F+
z ∩B1−kε )\Kε

≤ kε. (42)

In fact since f = 0 in ∂ F+
z ∩ B1 and f is uniformly continuous, for every ε > 0 there exists

δ = δ(ε) > 0 such that

| f (y)| ≤ kε ∀y ∈ [(
∂ F+

z ∩ B1
) + Bδ

] ∩ B1.

Then it is clear that there exists a family of closed sets {Kε} satisfying (39)–(41) and(
F+

z ∩ B1−kε

) \Kε ⊂ [(
∂ F+

z ∩ B1
) + Bδ

] ∩ B1,

which implies (42).
Let fε, ε small, be defined as follows:

fε :=
{

ηεCε + (1 − ηε)kε in A2

ξεkε + (1 − ξε) f elsewhere

where ξε ∈ C∞(B1; [0, 1]) is such that

ξε = 1 in Kε, supp ξε ⊂ F+
z ∩ B1

and Cε is the constant which guarantees that∫

F+
z

fε =
∫

F+
z

f.

We claim that fε has all the required properties. Obviously fε ∈ Ck(B1), supp( f − fε) ⊂
F+

z ∩ B1 and (34) holds. Using

lim
ε→0

ηε = 1A1 and lim
ε→0

ξε = 1F+
z ∩B1

,

(the last one holding by (40) and (41)) the definition of Cε and the dominated convergence
theorem, we get

lim
ε→0

Cε = m/ meas(A1) (43)

and thus

lim
ε→0

fε =
⎧⎨
⎩

m/ meas(A1) x ∈ A1

0 x ∈ (
F+

z ∩ B1
) \A1

f elsewhere

and (36) follows.
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Let us prove (33) and (35). From (43), we can find ε2 ≤ ε1 such that for every ε ≤ ε2,

kε ≤ ε ≤ m/(2 meas(A1)) ≤ Cε ≤ 2m/ meas(A1).

Then, (35) follows by the very definition of fε, and, for every ε ≤ ε2, we get

fε > 0 in F+
z and ‖ fε‖C0 ≤ max{M, 2m/ meas(A1)} (44)

and (33) follows.
The properties in (37) are easily implied by (33), (36) and fε > 0 in F+

z . To prove (38),
first notice that, by definition of fε, fε = kε in Kε\A2. Then, using the definition of fε and
(42), we get that

fε |(F+
z ∩B1−kε )\A2

≤ kε.

This inequality, together with (44), implies that, for every ε ≤ ε2 and every x �= 0,

1∫
0

sn−1(1F+
z \A2

fε)

(
s

x

|x |
)

ds ≤
1−kε∫
0

(1F+
z \A2

fε)

(
s

x

|x |
)

ds +
1∫

1−kε

(1F+
z \A2

fε)

(
s

x

|x |
)

ds

≤
1−kε∫
0

kεds +
1∫

1−kε

max{M, 2m/ meas(A1)}ds

≤ kε + max{M, 2m/ meas(A1)}kε ≤ ε

and (38) follows. �

7 Positive radial integration

In this section, we show how to modify the distribution of mass of f ∈ Ck(B1) satisfying∫
B1

f > 0, in order to have strictly positive integrals on every radius. This is the central part
of our argument.

Lemma 26 (Positive radial integration) Let k ≥ 1 be an integer and f ∈ Ck(B1) be such
that ∫

B1

f > 0. (45)

Then there exists � ∈ Diff∞(B1; B1) such that �∗( f )(0) > 0, supp(� − id) ⊂ B1 and

r∫
0

sn−1�∗( f )

(
s

x

|x |
)

ds > 0, for every x �= 0 and r ∈ (0, 1]. (46)

Remark 27 (i) If f ≥ 0, the proof is straightforward; it already ends after Step 1.
(ii) If f1 satisfies (46) with a certain � as in the lemma, then every f ≥ f1 satisfies (46)

with the same �. Indeed,

�∗( f1)(x) = f1(�(x))det ∇�(x)︸ ︷︷ ︸
>0

≤ f (�(x)) det ∇�(x) = �∗( f )(x).
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(iii) If, in addition to (45), f > 0 on ∂ B1, we can find with a similar argument (see [8] for
details) � satisfying in addition

1∫
r

sn−1�∗( f )

(
s

x

|x |
)

ds ≥ 0, for every x �= 0 and r ∈ [0, 1].

Proof Since the proof is rather long, we divide it into nine steps. The following three facts
will be crucial.

(a) For fixed a, b ∈ B1, there exists, from Lemma 20, � ∈ Diff∞(B1; B1) such that
�(a) = b. This will be used in Steps 1 and 5.

(b) From Lemma 24, we concentrate the mass contained in connected components of F+
and F− in balls or sectors of cones. This will be used in Steps 6 and 8.

(c) From Remark 27 (ii), it is sufficient to prove the result for a function f1 ≤ f. This will
be used in Steps 2, 3 and 7.

Step 1. Without loss of generality, we can assume f (0) > 0. In fact, suppose that f (0) ≤ 0.

We prove that there exists a diffeomorphism �1 such that �∗
1( f )(0) > 0. Since

∫
B1

f > 0,

there exists a ∈ B1 such that f (a) > 0. By Lemma 20, there exists �1 ∈ Diff∞(B1; B1)

such that

supp(�1 − id) ⊂ B1 and �1(0) = a.

Since �∗
1( f )(0) = f (a) det ∇�1(0) > 0, we have the claim. From now on, we write f in

place of �∗
1( f ). Moreover, we assume F− �= ∅, otherwise the proof is already done.

Step 2. We show that we can assume that f ∈ C∞(B1). First extend f so that f ∈ Ck(Rn)

and let fε = f ∗ ϕε, where ϕ is a positive mollifier. For every σ > 0 there exists ε0(σ ) such
that

| fε(x) − f (x)| < σ for every ε ≤ε0(σ ) and every x ∈ B1 . (47)

Define hσ ∈ C∞(B1) by

hσ := fε0(σ ) − σ.

Using Step 1 and (47), there exists σ > 0 such that hσ verifies∫
B1

hσ > 0, hσ (0) > 0 and hσ ≤ f.

Using Remark 27 (ii) we have the assertion. For now on we write f instead of hσ .
Step 3. We now show that we can assume that∫

B1\F+
0

f > 0, (48)

where, we recall, F+
0 is the connected component of F+ containing 0. In fact, by Steps 1

and 2 and (45), if δ1 > 0 is small enough we have that B4δ1 ⊂ F+
0 and∫

B1\B4δ1

f > 0. (49)
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Let η ∈ C∞([0, 1]; [0, 1]) be such that

η(r) =
{

1 if r ≤ δ1 or 4δ1 ≤ r ≤ 1
0 if 2δ1 ≤ r ≤ 3δ1.

If H+
0 is the connected component containing 0 of

H+ := {x ∈ B1 : η (|x |) f (x) > 0},
we have that Bδ1 ⊂ H+

0 ⊂ B2δ1 . Using (49), we get∫

B1\H+
0

(η f ) ≥
∫

B1\B4δ1

(η f ) =
∫

B1\B4δ1

f > 0.

Since η f ≤ f, we may, according to Remark 27 (ii), proceed replacing f with η f.
Step 4 (choice of N connected components of F+\F+

0 ). Let F+
xi

, i ∈ I +, xi ∈ B1\F+
0 ,

be the pairwise disjoint connected components of F+\F+
0 . Notice that I + is not empty by

Step 3 and it is at most countable, see Lemma 23. We claim that there exists N ∈ N such that∫

∪N
i=1 F+

xi

f +
∫

F−
f > 0. (50)

In fact, suppose that I + is infinite (otherwise the assertion is trivial because of (48)) and let,
using (48), ε > 0 be such that ∫

B1\F+
0

f > ε. (51)

Then, since f is bounded, there exists N ∈ N such that (see Lemma 23)∫

F+\∪N
i=1 F+

xi

f −
∫

F+
0

f < ε. (52)

Combining (51) and (52), we deduce that (50) holds true.
Step 5. In this step we move the N connected components selected in the previous step, in

order that they contain sectors of cone having the same axis. Choose y ∈ F−, let F+
x1

, . . . , F+
xN

be the connected components of F+ defined in the previous step and let ρ > 0 be such that
Bρ ⊂ F+

0 .

Step 5.1 (displacement of the points xi ). Applying N + 1 times Lemma 20, it is easy to
define �2 ∈ Diff∞(B1; B1), with

supp(�2 − id) ⊂ B1\Bρ,

such that

x̃i := �−1
2 (xi ), 1 ≤ i ≤ N and ỹ := �−1

2 (y)

satisfying

ρ < |̃x1| < · · · < |̃xN | < |̃y| < 1 and
x̃i

|̃xi | = ỹ

|̃y| , 1 ≤ i ≤ N .

To be complete, we also define x0 = x̃0 = 0.
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Step 5.2 (definition of the sectors of cone). If δ > 0 let Kδ be the closed cone having
aperture δ, vertex 0 and axis R+ ỹ and define

f̃ := �∗
2( f ).

Since

f̃ (̃xi ) > 0, 0 ≤ i ≤ N and f̃ (ỹ) < 0,

then there exists δ > 0 small enough such that

|̃xi+1| − |̃xi | > 4δ, 0 ≤ i ≤ N − 1 and |̃y| − |̃xN | > 4δ

with ⎧⎪⎪⎪⎨
⎪⎪⎪⎩

B3δ ⊂ F̃+
0

K2δ ∩ (
B|̃xi |+2δ\B|̃xi |−δ

) ⊂ F̃+
x̃i

, 1 ≤ i ≤ N

K2δ ∩ (
B|̃y|+2δ\B|̃y|−δ

) ⊂ F̃−
ỹ .

Using Lemma 22 and (50), we get that f̃ satisfies∫

∪N
i=1 F̃+

x̃i

f̃ +
∫

F̃−

f̃ > 0. (53)

From now on we write f, xi and y in place of f̃ = �∗
2( f ), x̃i and ỹ, respectively (see the

figure).
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Step 6 (concentration of the positive mass in the cone sectors). From now on, if σ ∈
(−δ/2, δ] we use the following notations

⎧⎨
⎩

Sσ
0 := B2δ+σ

Sσ
i := Kδ+σ ∩ (

B|xi |+δ+σ \B|xi |−σ

)
, 1 ≤ i ≤ N

Sσ := Kδ+σ ∩ (
B|y|+δ+σ \B|y|−σ

)
.

For the sake of simplicity, if σ = 0 we write S0, Si and S in place of S0
0 , S0

i and S0,

respectively. Let

�3,ε := �ε, f,S0,Sδ
0
◦ �ε, f,S1,Sδ

1
◦ · · · ◦ �ε, f,SN ,Sδ

N
,

where �ε, f,Si ,Sδ
i
, i = 0, . . . , N , is the C∞ diffeomorphism obtained by Lemma 24 applied

to f, F+
xi

, A1 = Si , A2 = Sδ
i . Notice that supp(�3,ε − id) ⊂ B1. By (34), (37) and (53),

there exists ε̃ such that the constants Ci,̃ε satisfy the inequality

N∑
i=1

Ci,̃ε meas(Si ) +
∫

F−
f > 0.

Denoting h := �∗
3,̃ε ( f ) we have that h satisfies

h = f in B1\ ∪N
i=0 F+

xi
, H− = F−,

F+
xi

= H+
xi

,

∫

F+
xi

f =
∫

F+
xi

h, 0 ≤ i ≤ N ,

h ≡ Ci,̃ε > 0 in Si , 0 ≤ i ≤ N , (54)∫

∪N
i=1 Si

h +
∫

H−
h > 0. (55)

From now on, we write f,�3 and Ci in place of h,�3,̃ε and Ci,̃ε , 0 ≤ i ≤ N .

Step 7 (modification of f in order to have F− connected). Extend f so that f ∈ C∞(Rn),

define f̃ : R
n → R,

f̃ (x) := min{ f (x), 0}
and let f̃ε = f̃ ∗ ϕε, where ϕ is a positive mollifier. By continuity of f̃ , for every σ > 0
there exists ε0(σ ) such that

| f̃ε(x) − f̃ (x)| < σ for every ε ≤ε0(σ ) and every x ∈ B1 . (56)

Defining hσ ∈ C∞(B1), hσ = f̃ε0(σ ) − σ, we have, using (56), that

hσ (x) < f̃ (x) = min{ f (x), 0} ≤ f (x).

For every σ ∈ (0, δ/8), let ξσ ∈ C∞(B1; [0, 1]) be such that

ξσ ≡ 1 in ∪N
i=0 (Sσ

i \S−σ
i ) and supp ξσ ⊂ ∪N

i=0(S2σ
i \S−2σ

i )

and

{x ∈ B1\ ∪N
i=0 Si : ξσ (x) < 1} is connected. (57)
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Moreover let fσ : B1 → R be defined as

fσ (x) :=
{

(1 − ξσ (x)) f (x) if x ∈ ∪N
i=0Si

(1 − ξσ (x))hσ (x) if x ∈ (∪N
i=0Si )

c.
(58)

It is easy to verify that fσ is of class C∞ and that it satisfies the following properties:

fσ (x)

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

= hσ (x) < min{ f (x), 0} ≤ f (x) if x ∈ B1\ ∪N
i=0 S2σ

i ,

≤ 0 < f (x) if x ∈ ∪N
i=0(S2σ

i \Sσ
i ),

= 0 < f (x) if x ∈ ∪N
i=0(Sσ

i \S−σ
i ),

≤ f (x) if x ∈ ∪N
i=0(S−σ

i \S−2σ
i ),

= f (x) = Ci if x ∈ S−2σ
i , for some i ∈ {0, . . . , N },

where Ci are as in (54); in particular, fσ ≤ f. We moreover have

F−
σ = {x ∈ B1 : fσ (x) < 0} = {x ∈ B1\ ∪N

i=0 Si : fσ (x) < 0}
= {x ∈ B1\ ∪N

i=0 Si : (1 − ξσ (x))hσ (x) < 0}
= {x ∈ B1\ ∪N

i=0 Si : ξσ (x) < 1},
which is a connected set by (57); we thus have that

F−
σ ⊂ B1\ ∪N

i=0 Si and F−
σ is connected.

Notice that (55), (56) and (58) imply that we can choose σ such that

N∑
i=1

Ci meas(S−2σ
i ) +

∫

F−
σ

fσ =
∫

∪N
i=1 S−2σ

i

fσ +
∫

F−
σ

fσ > 0, (59)

since

lim
s→0+

⎧⎪⎪⎨
⎪⎪⎩

∫

∪N
i=1 S−2s

i

fs +
∫

F−
s

fs

⎫⎪⎪⎬
⎪⎪⎭

=
∫

∪N
i=1 Si

f +
∫

F−
f > 0.

From now on, we write f in place of fσ , since fσ ≤ f and Remark 27 (ii) holds.
Step 8 (concentration of the negative mass). We finally concentrate the negative mass

around y.

Step 8.1 (preliminaries). Let τ ∈ (0, σ/2]. Using Remark 25 (with A1 = S−2σ−τ and
A2 = S−2σ ) and recalling that, by Step 7, F−

y = F−, we have, for ε small enough, �τ
4,ε ∈

Diff∞(B1; B1) satisfying the following properties.

supp(�τ
4,ε − id) ⊂ F− ∩ B1∫

F−
(�τ

4,ε)
∗( f ) =

∫
F−

f

(�τ
4,ε)

∗( f ) = Cτ
ε < 0 in S−2σ−τ
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and

Cτ
ε ≤ (�τ

4,ε)
∗( f ) < 0 in S−2σ \S−2σ−τ (60)

lim
ε→0

(�τ
4,ε)

∗( f )(x) =
⎧⎨
⎩

∫
F− f/ meas(S−2σ−τ ) if x ∈ S−2σ−τ

0 if x ∈ (F− ∩ B1)\S−2σ−τ

f (x) elsewhere
(61)

Cτ
ε meas(S−2σ−τ ) ≥

∫
F−

f (62)

1∫
0

sn−1(1F−\S−2σ (�τ
4,ε)

∗( f ))

(
s

x

|x |
)

ds ≥ −ε, for every x �= 0. (63)

Step 8.2 (choice of ε and τ ). We first choose ε̃ small enough in order to have

2δ−2σ∫
0

sn−1C0 ds − ε̃ > 0. (64)

We claim that there exists τ̃ such that

N∑
i=1

Ci meas(S−2σ
i ) + C τ̃

ε̃ meas(S−2σ ) > 0. (65)

In fact, for every λ ∈ (0, 1) there exists τ ∈ (0, σ/2] such that

meas(S−2σ )

meas(S−2σ−τ )
≤ 1

1 − λ
. (66)

Using (62), we have that, for every λ ∈ (0, 1) and τ = τ(λ) as in (66),

Cτ
ε̃ meas(S−2σ ) = Cτ

ε̃ meas(S−2σ−τ )
meas(S−2σ )

meas
(
S−2σ−τ

)
≥ Cτ

ε̃

1

1 − λ
meas(S−2σ−τ ) ≥ 1

1 − λ

∫
F−

f.

By this inequality and (59), choosing λ sufficiently small, we have that there exists τ̃ such
that (65) holds true. From now on we write f, ε,�4 and C− in place of (�τ̃

4,̃ε )
∗( f ), ε̃, �τ̃

4,̃ε

and C τ̃
ε̃ .
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Step 8.3 (summary). Using (54), (60), (63), (64), (65) f satisfies the following properties

f ≡ C0 > 0 in S−2σ
0 = B2δ−2σ (67)

f ≡ Ci > 0 in S−2σ
i 1 ≤ i ≤ N (68)

f ≡ C− in S−2σ−τ̃ and C− ≤ f < 0 in S−2σ \S−2σ−τ̃ (69)
N∑

i=1

∫

S−2σ
i

f +
∫

S−2σ

f ≥
N∑

i=1

Ci meas(S−2σ
i ) + C− meas(S−2σ ) > 0 (70)

2δ−2σ∫
0

sn−1C0 ds +
1∫

0

sn−1 (1F−\S−2σ f
) (

s
x

|x |
)

ds > 0. (71)

Step 9 (conclusion). Let

� = �1 ◦ �2 ◦ �3 ◦ �4.

Note that by construction supp(�− id) ⊂ B1. Because of all successive replacements of f in
Steps 1-8 by new f, the lemma has to be proved for � = id . From (67), we have f (0) > 0.

We finally show (46). We split into three parts.
Step 9.1. If r ≤ 2δ − 2σ, (67) implies directly the assertion.
Step 9.2. Now, suppose that either x �∈ Kδ−2σ and r ∈ (2δ − 2σ, 1] or x ∈ Kδ−2σ and

r ∈ (2δ − 2σ, |y| + 2σ ]. Then (71) implies

r∫
0

sn−1 f

(
s

x

|x |
)

ds ≥
r∫

0

sn−1(1F+
0

f )

(
s

x

|x |
)

ds +
r∫

0

sn−1(1F− f )

(
s

x

|x |
)

ds

=
r∫

0

sn−1(1F+
0

f )

(
s

x

|x |
)

ds +
r∫

0

sn−1(1F−\S−2σ f )

(
s

x

|x |
)

ds

≥ C0

2δ−2σ∫
0

sn−1ds +
1∫

0

sn−1(1F−\S−2σ f )

(
s

x

|x |
)

ds > 0.

Step 9.3. It remains to consider the case x ∈ Kδ−2σ , r ∈ (|y| + 2σ, 1]. Under these
assumptions, we have

r∫
0

sn−1 f

(
s

x

|x |
)

ds

=
r∫

0

sn−1(1F+
0

f )

(
s

x

|x |
)

ds+
r∫

0

sn−1(1∪N
i=1 F+

xi
f )

(
s

x

|x |
)

ds+
r∫

0

sn−1(1F− f )

(
s

x

|x |
)

ds

≥
⎧⎨
⎩C0

2δ−2σ∫
0

sn−1ds +
1∫

0

sn−1(1F−\S−2σ f )

(
s

x

|x |
)

ds

⎫⎬
⎭

+
⎧⎨
⎩

1∫
0

sn−1(1∪N
i=1 S−2σ

i
f )

(
s

x

|x |
)

ds +
1∫

0

sn−1(1S−2σ f )

(
s

x

|x |
)

ds

⎫⎬
⎭ > 0.
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In fact, the positivity of the first sum follows from (71). The second one is also positive,
since, from (69)

1∫
0

sn−1(1∪N
i=1 S−2σ

i
f )

(
s

x

|x |
)

ds +
1∫

0

sn−1(1S−2σ f )

(
s

x

|x |
)

ds

≥
N∑

i=1

Ci

1∫
0

sn−11S−2σ
i

(
s

x

|x |
)

ds + C−
1∫

0

sn−11S−2σ

(
s

x

|x |
)

ds

and the positivity of the right hand side is guaranteed by (70) and the fact that S−2σ
i and S−2σ

are sectors of a radial cone centered at 0. This concludes the proof. �
Acknowledgments We have benefitted of several discussions with S. Bandyopadhyay. Long ago the second
author has discussed the problem considered in this paper with I. Fonseca and L. Tartar, but with different
arguments. Finally, we would like to thank D.Ye for several useful comments and for pointing out a mistake
in an earlier version. The present article was essentially completed while the first author was visiting EPFL.

Appendix

We begin recalling some results on the topological degree (see e.g. [7] or [14] for further
details).

Let � be a bounded open set of R
n, � ∈ C1(�; R

n) and

Z� := {x ∈ � : det ∇�(x) = 0}.
Then for every p ∈ R

n such that

p /∈ �(∂�) ∪ �(Z�),

we define the integer deg(�,�, p) as

deg(�,�, p) :=
∑

x∈�:�(x)=p

sign(det ∇�(x)),

with the convention deg(�,�, p) = 0 if {x ∈ � : �(x) = p} = ∅.

It is possible to extend the definition of deg(�,�, p) to � ∈ C0(�; R
n) and p /∈ �(∂�),

in particular using Sard theorem which states that

meas(�(Z�)) = 0. (72)

In this framework, the following two properties hold.

(i) If �,� ∈ C0(�; R
n) with � = � on ∂�, then for every p /∈ �(∂�),

deg(�,�, p) = deg(�,�, p). (73)

(ii) If � ∈ C0(�; R
n), p /∈ �(∂�) and deg(�,�, p) �= 0, then there exists x ∈ � such

that �(x) = p.

In particular, if � ∈ C0(�; R
n) and � = id on ∂�, then

�(�) ⊃ � and �(�) ⊃ �. (74)

As an application of these properties, we have the following lemma.
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Lemma 28 Let � be a bounded, connected and open set in R
n and let � ∈ C0(�; R

n) be
one to one, such that � = id on ∂�. Then � ∈ Hom(�;�).

Proof By the boundedness of � and the continuity of �, if F ⊂ � is closed then �(F) is
closed, too. Since � is one to one, then

� ∈ Hom(�;�(�)).

Let us prove that �(�) = �. Due to (74), it is enough to prove that �(�) ⊂ �. By a classical
result (see e.g. [7, Proposition 7.18]) we have that �(∂�) = ∂(�(�)). Thus, since � = id
on ∂�, we get

∂� = ∂(�(�)) and �(�) ∩ ∂� = ∅. (75)

Suppose by contradiction that �(x) ∈ (�)c for some x ∈ �. Since � is the identity map
on ∂�, we have that x ∈ �. Let now consider y ∈ � such that �(y) ∈ � (such a y surely
exists by (74)) and let c ∈ C0([0, 1];�) be a path connecting x and y. Then, by continuity,
there exists t ∈ (0, 1) such that �(c(t)) ∈ ∂�, contradicting (75). �

We now provide a sufficient condition for the invertibility of functions in C1(�; R
n). A

similar result can be found in Meisters-Olech [10].

Theorem 29 Let � be a bounded open set in R
n and let � ∈ C1(�; R

n) be such that

{
det ∇� > 0 in �

� = id on ∂�.

Then � ∈ Diff1(�;�).

Remark 30 Under the weaker hypotheses det ∇� ≥ 0,� = id on ∂� and Z� ∩ � does not
have accumulation point, it can be proved that � ∈ C1(�;�) ∩ Hom(�;�), see [8].

Proof We divide the proof into two steps.
Step 1. We first prove that �(�) = �. Using (74), we know that

�(�) ⊃ �.

Let us show the reverse inclusion, i.e., �(�) ⊂ �. We first prove that �(�) ⊂ � and then
conclude. By contradiction, let x ∈ � be such that �(x) /∈ �. By definition of the degree
and (73), we get

0 < deg(�,�,�(x)) = deg(id,�,�(x)) = 0;

which is absurd.
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To conclude, suppose that x ∈ � and �(x) ∈ �\� = ∂�. By the inverse function
theorem, which can be applied since det ∇�(x) > 0, there exists a neighborhood of x such
that the restriction of � on this set is one to one and onto a neighborhood of �(x) ∈ ∂�. In
particular, this implies the existence of y ∈ � such that �(y) /∈ �, which contradicts what
has just been proved.

Step 2. Since �(�) = � and � = id on ∂�, we have that

�(�) = �.

Moreover, �(∂�) ∩ �(�) = ∂� ∩ � = ∅. Thus, it suffices to show that the restriction of
� to � is one to one to conclude. We reason by contradiction. We assume that there exists
p ∈ � which is the image of at least two elements in �. By (73), it follows that

2 ≤ deg(�,�, p) = deg(id,�, p) = 1

which is the desired contradiction. �
We also have a necessary condition for � to be a C1 homeomorphism.

Proposition 31 Let � ⊂ R
n be a bounded open set and � ∈ C1(�;�) ∩ Hom(�;�) with

� = id on ∂�. Then

det ∇�(x) ≥ 0 in � and int(Z�) = ∅.

Proof We split the proof into two steps.
Step 1. We show that det ∇� ≥ 0. By contradiction, suppose that there exists y ∈ � such

that det ∇�(y) < 0. By continuity, without loss of generality, we can assume that y ∈ �.

In particular, y /∈ Z� and since � is one to one, we obtain

�(y) /∈ �(Z�) ∪ �(∂�) = �(Z�) ∪ ∂�.

By definition of deg(�,�,�(y)) and since � = id on ∂�, we have

1 = deg(�,�,�(y)) =
∑

z : �(z)=�(y)

sign(det ∇�(z)).

Since sign(det ∇�(y)) = −1 the above equality implies that �−1(�(y)) is not a singleton,
which is absurd.

Step 2. We prove that int(Z�) = ∅. By contradiction, suppose that int(Z�) �= ∅. By
continuity of �−1, we have

�(int(Z�)) = (�−1)−1(int(Z�)) �= ∅,

contradicting Sard theorem. �
We conclude with some other necessary conditions.

Proposition 32 Let � be a bounded open set in R
n and let � ∈ C1(�; R

n) be such that{
det ∇� ≥ 0 in �

� = id on ∂�.
(76)

Then

int(�(�)) = �. (77)
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Moreover, the following statement

int(Z�) = ∅, (78)

implies

�(�) = �. (79)

Finally, if (78) does not hold, then there exists � ∈ C1(�; R
n) such that �(�) ⊃

�=
�.

Proof We divide the proof into three steps.
Step 1. We already know that �(�) ⊃ � and thus

int(�(�)) ⊃ �.

Let us show the reverse inclusion. We proceed by contradiction and assume that int(�(�))∩
�c �= ∅. Therefore there exist y and ε such that

Bε(y) ⊂ int(�(�)) ∩ (
�
)c ⊂ �(�) ∩ (

�
)c

.

We also have, as in the proof of Theorem 29, that

�(x) ∈ �, if x /∈ Z� ∪ ∂�

which is equivalent to �((Z� ∪ ∂�)c) ⊂ �. This implies

Bε(y) ⊂ �(Z�)

which contradicts (72).
Step 2. Let us next show that (78) implies (79). If x ∈ Z� ∩ �, then there exists xν /∈

Z� ∪ ∂� such that xν → x . Using Step 1, we also have �((Z� ∪ ∂�)c) ⊂ � and hence
�(xν) ∈ �, which leads to �(x) ∈ �; and thus �(Z�) ⊂ �. Hence we have shown that
�(�) ⊂ �. Since the reverse inclusion �(�) ⊃ � is always true, we have (77).

Step 3. We show that (79) may fail if (78) does not hold. Set � = B(0, 1) and n = 2,

consider

�(x1, x2) := ρ(x2
1 + x2

2 )(x1, x2) + η(x2
1 + x2

2 )(x1, 0)

where ⎧⎪⎪⎨
⎪⎪⎩

ρ, η ∈ C∞([0, 1]; R+)

supp ρ ⊂ (1/2, 1], supp η ⊂ (0, 1/2)

ρ′ ≥ 0 in [0, 1], ρ ≡ 1 in [3/4, 1]
η(1/4) = 4.

Let us verify the hypotheses of the proposition. Obviously, � ∈ C1(�; R
n) and supp(� −

id) ⊂ B1. Let us now check that det ∇� ≥ 0. We separately consider two cases.
Case 1 (1/2 ≤ |x |2 ≤ 1). A straightforward computation implies that

det ∇�(x) = (2x2
1ρ′ + ρ)(2x2

2ρ′ + ρ) − 4x2
1 x2

2ρ′2

= 4x2
1 x2

2ρ′2 + 2 |x |2 ρρ′ + ρ2 − 4x2
1 x2

2ρ′2

= 2 |x |2 ρρ′ + ρ2 ≥ 0.

Case 2 (0 ≤ |x |2 ≤ 1/2). By definition of � it immediately follows that det ∇� = 0.

Thus, det ∇� ≥ 0.
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We have the claim, since

�(1/2, 0) = η(1/4)(1/2, 0) = (2, 0) /∈ B1.

This concludes the proof of the proposition. �
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