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Abstract We prove a I'-convergence result for an energy functional related to some
fractional powers of the Laplacian operator, (—A)*® for 1/2 < s < 1, with two singu-
lar perturbations, that leads to a two-phase problem. The case (—A)'/? was considered by
Alberti-Bouchitté—Seppecher in relation to a model in capillarity with line tension effect.
However, the proof in our setting requires some new ingredients such as the Caffarelli—Sil-
vestre extension for the fractional Laplacian and new trace inequalities for weighted Sobolev
spaces.

Mathematics Subject Classification (2000) 49J45 - 35]20 - 82B26 - 47G30

1 Introduction and statement of the theorem

Let £2 be a bounded domain in R with smooth C> boundary 92 and let /2 : 2 — R be the
distance function to the boundary. Fix a real number —1 < a < 0. Leta, B, a’, B’ € R such
that < B, @’ < B’ and consider two double-well potentials W, V : R — [0, 0o) such that
W only vanishes at &, 8, and V only vanishes at «’, 8. For a function « defined in §2, denote
its trace on 952 by Tu. Given € > 0, we study the following energy functional

1
Fou) := el_“/|Vu|2h“+F/W(u)h_“+A5/V(Tu). (1.1)
2 2 82

The aim of the present paper is to understand the I"-convergence of this functional when
€ - O0and A — oo.
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174 M. d. M. Gonzélez

Note that (1.1) generalizes the two-phase model of Alberti—-Bouchitté—Seppecher consid-
ered in [6] in relation to capillarity energy with line tension. They studied the I"-convergence
of

Fe[u] ::e/|Vu|2+é/W(u)+A2/V(Tu), (1.2)
2 2 082

where )»8 — 00 is a sequence with some specific behavior as € — 0.

Historically, this type of models appeared when studying phase transitions. Consider a
container £2 C R which is filled with two immiscible and incompressible fluids, or two
different phases of the same fluid; equilibrium is achieved when we minimize

Elu] = oH(S,) (1.3)

among all the admissible configurations u € BV (£2, {«, B}) with fixed volume f o U= M.
Here H? is the two-dimensional Hausdorff measure of Su, the singular set of #, and o is a con-
stant parameter. The classical work by Modica [17] established that the following variational
model for u : 2 — [a, B, [ u = Mo, given by

Eclu] =e/|w|2+é/w<u>, (1.4)
2 2

I"-converges to E, foro :=2 ff JW(t)dt.

Here we consider the generalization given by (1.1), where the weight 2 is singular at the
boundary 952 since —1 < a < 0. With this modification, ¢ becomes the energy functional
related to some fractional powers of the Laplacian, plus two double-well potential terms.
Indeed, if s = lg“, then the Euler—-Lagrange equation of the functional

Jlu] = / IVul? y* dxdy (1.5)

xeR", yeRt

isjust (—A)*(Tu) = 01in R”, as it has been shown in the recent work by Caffarelli-Silvestre
[9].

On the other hand, the boundary potential term in (1.1) constitutes a very interesting
modification from (1.4), and adds new terms in the I"-limit. The first result involving bound-
ary integrals was obtained by Modica [18], when A, = 1. Other works can be found in
Cabré and Sold-Morales [8], where they look at layer solutions for boundary reactions of the
half-Laplacian (s = 1/2). A refinement of the I"-convergence result for s = 1/2 is being
studied by Cabré and Cénsul [7]. In addition, in the current work [20] by Monneau and the
present author, we look at an homogenization problem for a reaction-diffusion equation with
half-Laplacian, where we try to understand the interaction energy that appears in the problem.

The main theorem in the present paper states that the I"-convergence of the sequence
F¢, for some suitable scaling A, has a similar behavior to the case s = 1/2 of Alberti—
Bouchitté—Seppecher considered in [6]. However, the proof needs some new results on the
fractional Laplacian: Sect. 4 contains a result on singular perturbations of the norm H*(9£2),
that is indeed the norm of traces of functions in a weighted Sobolev space W12(£2, w,) for a
suitable weight w,. The second main ingredient, in Sect. 5, deals with this trace embedding,
and gives a more precise control of the Sobolev constant. In particular, in Theorem 19 we
understand the relation between the functional (1.5) in Ri and the non-local energy of the
trace Tu in H*(R) given by
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Gamma convergence of an energy functional related to the fractional Laplacian 175

N 2
/ |Tu(x) Tu(x)| dx'doc.

|X/ _ x|l+2s

RxR
The proof uses the interesting characterization of the fractional Laplacian in R as an extension
problem to R x R, given by Caffarelli-Silvestre in [9].

Let us fix some notation. Set —1 < a < 0. Let I := {a, B}, I’ :== {a’, B’}. Assume that
there exists m such that —m < «, @', B, B’ < m. Assume that both W and V are positive,
increasing in [m, +00) and decreasing in (—oo, —m], with growth at least linear at infinity.
As we have mentioned, W only vanishes at the two wells o < 8, and V only ato’ < 8'.

Consider the background space X := L'(£2) x L'(382). Fix h : £ — [0, +00) be the
distance to the boundary of £2. Fix the singular weight in £2 given by w, := h¢, and consider
the weighted Sobolev space W12(£2, w,) with norm

||M||%}Vl,2(_(27wa) ::/|u|2ha+/|vu|2ha.
2 2

Note that the trace on 92 of a function u € W12(£2, w,) is well defined (see Theorem 3);
denote it by T'u.
We define the functional F¢ as

Fu] €7 [ IVuPh® + 5 [o Wh™ + he [y V(Tu),u € WH(2, w) N X,
€ 400, elsewhere in X.
(1.6)
On the other hand, givenu € BV (£2, 1) and v € BV (352, I'), set
D (u,v) = o H*(S.) + / IW(Tu) = W)l + ks H' (S,), (1.7)
Y,
and
a . inf{®w,v) :ve BV(©£2,1))}, ifue BV(2,1),
Fou) = [—i—oo, elsewhere in X. (1.8)

Here H' denotes the i-dimensional Hausdorff measure, that in this case is well defined
because of the hypothesis on the bounded variation of u, v. Also, S, is the set of all points
where u is essentially discontinuous, and the same for S,. The main result of the present
paper states that /¢ is the I"-limit of the functionals F¢, for suitable positive constants o, k
and a function W.

Finally, we set

l—a

A =€ a . (1.9)
It will become clear in Sects. 4 and 6.3 that this is the natural scaling for the problem.
‘We have that, under the above conditions:
Theorem 1 Fix —1 <a < 0,5 = I_T“, and assume that
1
e (1.10)

Then there exist constants o, ks > 0 such that the functionals F¢ defined in (1.6) I'-converge
to the functional F* given in (1.8) and any sequence (u¢) with bounded energy is precompact
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176 M. d. M. Gonzélez

in X. Moreover, o := W(B) — W(a) where W is a primitive of 2/ W, and ks is a constant
depending only on s, V whose exact value is given in (4.2).

Let us motivate the previous theorem. The potential in the interior, W, forces the minimizer
u. to take values near the two wells «, 8, while the gradient term in the functional penalizes
the jump of the function; thus we create two bulk phases in the interior of the container £2,
namely, {u = «}, {u = B}, with interphase S,,. Whene — 0, u, — u and Tu, — v. On the
other hand, the second double-well potential V forces the trace to take values near &', B, and
thus it creates two boundary phases {v = «’}, {v = B’}, separated by S, C 952. However,
we usually have Tu # v, and thus additional terms appear in the limit functional (1.7). Note
that, although many of the arguments would work for a domain §2 contained in R” for any
n > 3, we restrict ourselves to dimension three so that the energy on 92 occurring from the
boundary phases concentrates over a one-dimensional set S, of 92.

We remark here that the proof of the Gamma-convergence result in general follows some
well established steps (see Alberti et al. [6] or Palatucci [22]). However, in our case the shape
of the functional requires a deep understanding of the singular factor in the energy and its
relation to the fractional Laplacian operator - this is precisely the main new idea of the present
article.

The result is true if either W or V are identically zero. Indeed, if V is zero, we are in the sit-
uation of Sect. 3, while if W is zero, then we can ignore the first two terms in the I"-limit (1.7).

Palatucci (cf. [22], or his Ph.D. thesis [23]), has considered the I"-convergence of the
super-quadratic functional

PPlu] := 6”_2/|Vu|p+ ; /W(u)—l—é/V(Tu)
Q 2

€r FYe,

when p > 2. The main difference with ours is the lack of trace inequalities as in Theorem
19 for the case p > 2.

It has come to our attention that the generalization of the super-quadratic functional PZ
including a singular weight at the boundary 92 is being completed by Palatucci and Sire
[24]. It uses some of the results of the present article.

Several open questions arise: first, when 0 < s < 1/2 we do not know yet how to formu-
late a Gamma-convergence result due to the lack of layer solutions for the functional (4.1). It
may even happen that some other new non-local quantities appear. Also, not much is known
in the anisotropic case.

The outline of the paper is the following: in Sect. 2 we give some general background on
I'-convergence and on the fractional Laplacian. In Sect. 3 we study the problem in the interior
ignoring the boundary interaction. The following two sections contain the main ingredients:
in Sect. 4 we look at a singular perturbation result for the norm H*(E) where E is an interval
in R, while the next section deals with some new trace embeddings for weighted Sobolev
embeddings. Section 6 contains several technical results that are needed in the main proof,
including a dimension reduction argument. Finally, we prove Theorem 1 in the last section.

2 Some background

In order to make this paper self-contained, we present to the reader some standard back-
ground. We will denote by € — 0 any countable sequence converging to zero. The integrals
in a domain 2 are taken with respect the standard Lebesgue measure, while the integrals on
a£2 are with respect to the standard Hausdorff measure on the boundary. First, let us give the
definition of I"-convergence.
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Gamma convergence of an energy functional related to the fractional Laplacian 177

Definition 2 Let X be a metric space, and for € > 0, consider the functional F, : X —
[0, +o00]. We say that the sequence F Gamma-converges to F' on X ase — 0 if the following
conditions hold:

i. Lower bound inequality: for every u € X and every sequence (i) such that u — u in
X, there holds

liminf Fclue] > Flul.
e—0

ii. Upper bound inequality: for every u € X there exists () such that u¢ — u in X and

lim Fcluc] = Flul.
e—0

Together with conditions i. and ii. a compactness condition is usually proved:
iii. Given a sequence (#¢) when € — 0 such that Fc[u.] is bounded, then (u) is pre-
compact in X.

Consider a sequence of functionals F, that I"-converges to F. If u, is a minimizer for F,
then conditions i and ii. imply that any limit point of the sequence (i) is a minimizer for F.
Condition iii. assures that this limit point exists in X.

The definition and properties of bounded variation functions can be found in [10] or [15].
Let £2 be an open subset of R”. Note that if 32 is Lipschitz, the trace of a bounded variation
function on 942 is well defined and it belongs to L'(3£2). Given f € BV (82, 1), we define
Su to be the set of all points where u is essentially discontinuous, that is, it has no approximate
limit, and it agrees with the measure theoretic boundary of the set {u = «} in £2.

Now we give the relation between weighted Sobolev spaces and their traces. Let n > 0,
k > 0 be integers, and a, p real numbers, | < p < oo. Let §£2 be a non-empty, open,
bounded subset of R”. Let M be a closed subset of 92 and let djs (x) be the distance func-
tion, dy (x) := dist(x, M). For simplicity we shall write d(x) instead of dys(x). For an
integer m, 1 <m < n, weset Q, = (0, 1)".

We shall write (£2, M) € B(k,n) for1 <k <n —1,n > 2 if and only if there exists a
bi-Lipschitz mapping B : Q,, — §2 such that B(Qy) = M.

By C(£2) we denote the set of real functions « defined on §2 such that the derivatives
D®u can be continuously extended to §2 for all multi-indexes «. Consider the weight w = d*.
Define the weighted Sobolev space WP (2, w) as the closure of C>(§2) with respect to the
norm

||M||]V7V1,p(9’w) :=/|u|pwdx+/|Du|pwdx.
2 2

These norms have been well studied for a certain class of weights, called A, weights (see
[12,26]). We will also need some other norms for functions v defined on an interval E C R
given by
2
2 2 v —v@)|
1o o) = Mol + [ o v

E?

forO<s < 1.
Although it can be stated more generally, we are just interested in the case k = n — 1:
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178 M. d. M. Gonzélez

Theorem 3 (theorem 2.8 in [21]) Letn > 2, —1 <a < p— 1 and (2, M) € B(n — 1, n).
Then there exists a unique bounded linear operator

T W@, w) — W' () 2.1)
such that Tu = u|y for allu € C*°(Q,).
In the special case that p =2, s = 1%“ the trace operator (2.1) reads precisely
T: W' (2, w) — H(M).

The classical reference for the fractional Laplacian (—A)* is the book by Landkof [16],
although a good reference is the Ph.D. thesis by Luis Silvestre [25]. Given s € (0, 1) we
define the fractional Laplacian of a function f : R” — R, as a pseudo-differential operator
by

(—A) (&) =517 f(©).

i.e., its principal symbol is |£|%*. It can also be written as the singular integral

(—A) F(x) = C / J&) = fE) = VI - (x = Exp—tl<y
RV!

dE.

e — g

Caffarelli-Silvestre have developed in [9] an equivalent definition using an extension
problem, that is crucial in the present work. For a function f : R® — R, we construct the
extension u : R" x [0, +00) — R, u = u(x, y), as the solution of the equation

[ Ayu + %Byu + dyyu =0 forx e R", y € [0, +00), 22)

u(x,0) = f(x),

1—a

for s = 5. This type of degenerate elliptic equations have been studied in [11]. Then the
fractional Laplacian of f can be recovered as

(_A)Sf = Cn,s lim yaayua
y—0

i.e., we are looking at a non-local Dirichlet-to-Neumann operator. Note that Eq. (2.2) can be
written in divergence form as

div(y*Vu) =0,
which is the Euler—Lagrange equation for the functional
Jlu] = / [Vu|?y* dxdy.
xeR” y>0

To finish, just mention that the Poisson kernel for the fractional Laplacian (—A)* is given by

yl—a
P(x,y) = cpy———i s (2.3)

l—a
(PP +1y1%) 2

and thusu = P %, f.
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3 I'-convergence in the interior

The theory of phase transitions (see Modica [17], Modica and Mortola [19] for the classical
references, or Alberti [3], for a very well written survey), studies the interface between two
fluids in a container §2 neglecting the interaction with the boundary. In particular, it is proven
that the functionals E, defined in (1.4), I"-converge to E given in (1.3). In this section we
consider the generalization to E¢ given in (3.1), that involves a singular weight w, := h“.
However, since the interaction with the boundary is neglected and the weight is regular in the
interior, the behavior of E¢ is going to be very similar to E.. Indeed, we can easily modify
the argument of Modica to prove:

Proposition 4 Let A be a domain contained in $2, h := dist(-, 982), w, := h®. Assume, in
addition, that dist(A, 082) > r for some r > 0 fixed. Set

' 1
Elu, A] = 61*“/ IVul*h + = /W(u)h*“ 3.1)
A A

and
E%u, Al := o H*(S, N A) 3.2)
foro = 2ff ~W. Then
i. Yue BV(A,I), V() C WV2(A, wy) such that ue — u in L' (A), we have

liminf El[ue, Al = 0 E“[u, A].
e—>0

ii. VYu e BV(A,]I), there exists (ue) C WY2(A, wg) such that uc — u in L'(A) and

lim sup E¢[ue, A] < 0 E“[u, A].
e—0
Moreover, when S, is a closed Lipschitz surface in A, the functions uc may be required
to be Lipschitz continuous with constant el’#r‘” and to converge uniformly to u in every
set with positive distance from S,, and away from the boundary.
iii. Any sequence (u¢) C WL2(A, w,) with uniformly bounded energies E¢[uc, Al is pre-
compact in X and every cluster point belongs to BV (A, I).

Proof The proof is essentially the one of Modica and can be found in Alberti [3]. By a well
known truncation argument [4, lemma 1.14], we can assume thatu : A — [«, 8]. Now, use the
: o2 2 : _ (-a))2 a/2 _ —(l—a)/2yy1/2 —a/2
inequality xi + x5 > 2x1x2 with x| =€ [Vulh*/<and xp = € W (u)h ,
then

El[u, A] > 2/\/W(u)|Vu| = / IVOW())!, (3.3)
A A

where W : [, B] — R is a primitive of 2«/W. This gives iii. and i. using standard arguments,
and can be found exactly in [3, paragraph 4.5].

For ii. we need to take care of the weight w, in the construction. Let u € BV (A, I).
Without loss of generality, we can assume that its singular set S, is a Lipschitz surface in
A, even a polyhedral surface of dimension 2 (see [15, theorem 1.24]). We would like to
construct a sequence of functions u. that converges to u in L' (A). First, it is possible to give
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180 M. d. M. Gonzélez

coordinates (e(x), w) in £2 such that @ parameterizes S,, and e(x) € R is just the signed
distance to S, (positive where u = 8 and negative where u = o). Next, solve the ODE

0'=W(®) (3.4

with initial condition 8(0) = # This 6 is the well known optimum profile for the case
a = 0. In order to take into account the weight w, we set, for every fixed w, (note that (0, w)
is any point in S,),

1
Now, foreach e > 0, lett = e(x)/el’“ and
e (x) = o (:f—f)) . (3.6)

When € — 0 we can compute that

1
IVuel () = =7 [#6,0? + R(@, Do(D)]..

Then we can use the coarea formula to calculate the energy of this function:

1

Efuc, Al = 61*“/|VM€|2h”+F/W(uE)h*“
A A

1

elfa

/ [(¢;J(t))2 K dx + W (e (t)h™® + 0(1)] dx

A
+00
/ / [(8,00)° 1 + W @u()h™ + 0(1)] do .

- Eglfa,

When € — 0, the level set X,1-, converges to S, N A, and if x is written in the new coor-

dinates (e(x), w), then i (¢, ) converges to dist((0, w), 02) = h(0, w). Taking the limit we
have that

+0oo
lim sup E¢ [ue, A] = / / [(q&;)(t))zh”((),w) + W(d)w(t))h*”(O,a))] dwdt.

e—0
—00 §,NA

But because of (3.4) and (3.5), both terms in the above integration are equal. Then the
inequality xl2 + x22 > 2x1x, for two positive numbers x| = x, becomes an equality and thus

+00
lim sup E [ue, A] = / / 24/ W(¢w(t))¢£o(t) dtdw

0 SyNA —o0
B
= / /2% drdw = O’HZ(SM NA)
SyNA o
as we wished. The Lipschitz constant of u, is computed from (3.5) and (3.6). ]
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Gamma convergence of an energy functional related to the fractional Laplacian 181

4 Perturbation of the norm H*

Let 1/2 < s < 1.In this section we consider a singular perturbation of the norm H* (E) when
E is a bounded interval in R. As usual, denote s = I_T” so—1 <a<0,and " :={o', B'}.
Consider a double-well potential V : R — [0, co) vanishing only at I’, with the same
hypothesis as in the introduction.

More precisely, we will study the I"-convergence of the functional

e o) — v
€ v(x ,
Giv, E]:= D. / IR dx'dx + A / V(v)dx, 4.1)
E2

E
when € — 0. Although D could be any positive constant in this section, we will fix its value
as given in (5.20).
The functional G¢ presents the following scaling property that justifies the election of A¢
in (1.10). Indeed, if we set u€(x) := u(Aex), Ec := {x : Acx € E}, then we immediately
see that

Gelu, E]1 = G{[u®, E].

It is interesting to observe the deterioration of A when a — 0. In particular, the functional
for s = 1/2, a = 0 studied in [5] reads

N 2
Gelv, E]: 6/|U(X)U(X)|dx’dx+)L2/V(v)dx,

- 2T |)C,—.X|2
E? E

forlime_melogkg =K,0< K < o0.
It is natural then to consider profiles on the whole real line that minimize the energy, i.e.,
we consider the following optimal profile problem

2
. 1 v(x) — v(x’)
Ks = inf Dq/||x—x/|1+25| dxdx/—l—/V(v) dx ¢, 4.2)
’ RZ R

where the infimum is taken among all the functions in the set
[veH‘?(R): lim v(x) =¢/, lim v(x):ﬁ’].
X——00 x—+00
Then we can prove:

Proposition 5 Let E be an interval in R. The functional defined on L' (E) given by

Gélv, El, if ve H(E),

~a .
Gelv, E] = ’ 400, otherwise,

I"-converges in L'(E) to

ks HO(Sy) if ve BV(E, I,

~a —
Gylv, E] = [ +o00, otherwise,

where H'(S,) represents number of points in the singular set of v € BV (E, I'). The constant
ks > 0is given by the optimal profile problem (4.2). Moreover, every sequence (ve) C L' (E)
with uniformly bounded energies G¢[ve, E] is precompact in L' (E) and every cluster point
belongs to BV(E, I').
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The proof of this proposition is similar to the work of Garroni and Palatucci [13, theorem
2.1]. Indeed, they considered the functional

_ n|P
Gp[v E] = éP™ 2/ |v(x) v(x)| dxdx’+é/V(U) dx (4.3)

lx —x'|P
E
for p > 2. Our case is analogous if we take p = 25 4+ 1 and € = A, since the exponent of
the term |v(x) - v(x/)| does not play any special role in their proof.

We remark that the case s = 1/2 was considered in [5]. The main difference with respect
to the case 1/2 < s < 1, is that here the optimal profile is characterized by the equipartition
of the energy between the two terms in the functional. Instead, the logarithmic scaling for
s = 1/2 produces no equipartition of the energy: the limit comes only from the non-local
part and does not depend on V, i.e., any profile is optimal as far as the transition occurs on
a layer of order A.. This does not happen in our case; both terms of the energy (4.1) are
equally important.

A related result on Gamma-convergence and optimal profiles was obtained by
Alberti—Bellettini [4] for anisotropic singularities that are integrable, unlike our m

The proof of Proposition 5 is given in the following, and it is divided into three parts: first
we show compactness, then we give some preliminary results on the optimal profile problem
(4.2), and in the last part we show the upper and lower bounds of the I"-convergence.

4.1 Compactness

We start with a (non-optimal) bound from below:

Lemma 6 Let § be given such that 0 < § < (B’ — 8')/2. For every interval J C E, € > 0,
and (ve) C LY(E), let Ac and B be the sets of all points x € J such that ve(x) < o +§
and ve (x) > B’ — 6, respectively. Set

|[Ac N J| |Bc N J|
de = elT, bG = elT (44)
Then
“ —a - (B — ' —28)? 1 1
Gelve )z €O e U= s o T (49

where the constant Cs, does not depend on €, and Cs only depends on s.

Proof First note that the non-local part of the energy decreases under monotone rearrange-
ments (see Lemma 7). Set J = (ao, bp). Then, if we define v* to be the non-decreasing
rearrangement of v, we have that

/Iv(x)—v(X)I I dx /|v ) — v ()| I d

|x/ _x|l+25 x/ _x|1+23

ao+aelJ| bo
/ ’ 2 1 /
>2(B —a —26) / / —————dx'dx

|x _x/|1+2x
a bo—belJ|
2B — o/ —20)2 [1 1 1 N 1 }
2525 — D |JE! (1 —ad)>»=1  A=b)>1  (1—ac—b)>- 1]
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Gamma convergence of an energy functional related to the fractional Laplacian 183

On the other hand, let ms := inf {V (1) : &/ + 8 <t < B’ — 5§}, we obtain

/V(v)dx >ms |J| (1 —ae — be),
J

so then

2(B — o —268)2

Gve, J] > €'
ere 25(2s — 1)Dy |J|>!

+ Aemgs |J| (1 —ae — be) .

Minimizing with respect to |J| (1 — a. — b¢), and taking into account that s = 1?4 we get

—a 28— —28)? [ 1 1 ]
1—- — .
25(2s — 1) Dy |J >~ (I —ao)>=1 (1 =be)»~!

Gelve, J1 = €

B Y. 2 A
25 (25) 5 (B —a —28)5mg”>
+
2s — 1

for every 0 < § < (B’ — @’)/2, and the lemma is proved. O

As we have mentioned, the main ingredient in the proof above is the following rearrange-
ment result. In particular, it tells us that the infimum of the functional must be attained at a
non-decreasing function.

Lemma 7 [14] Let

1 1
v(x) —v(x)
Iw,p(U)Z//‘I/( — )dxdx’,
s px —x’)

where ¥ and p are restricted as follows:

1. W(t)isdefined and continuous on R and ¥ (t) = W (—t) is strictly increasing as |t| — o00.

2. p(t) is defined an continuous on (—1, 1) and p(u) = p(—u) is strictly decreasing as
[t] = O.

3. W(e") is convex.

We also define the non-decreasing rearrangement of f as
f*(x) =inf {A :mfr: f(t) > A} < x}.
Then
Ly p(f*) < Ly p(f).
Now we are ready to prove compactness:

Proposition 8 Let (ve) be a sequence in H* (E) with equibounded energy G¢[ve, E] < C.
Then (ve) is precompact in L'(E) and every cluster point belongs to BV (E, I').

Proof Once we have the estimate from Lemma 6, it is a standard argument that we rewrite
here for completeness (see theorem 4.4, part (i), in [6]), and to show how the estimate (4.5)
is used. First, the condition G¢[v,, E] < C implies that

/ V(ve)dx < Cr7 L, (4.6)
E
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and we obtain that V (v¢) — 0in L!(E) when € — 0. Thanks to the growth assumption on
V, (ve) is weakly relatively compact in L'(E), and some subsequence, still denoted by (v¢),
converges weakly in L' (E) to some v.

In order to prove that this convergence is strong in LY(E) and that v € BV (E, I'), we
need to use the properties of Young measures (see the notes [27]). Let v, be the Young
measure associated with (v¢). Since V is a non-negative continuous function in R, then

//V(t)dvx(t) < limi(r)lf/V(vE) dx.
ER )

E

Hence, by (4.6) we have that
/ V(t)dvy(t) =0, ae.x € E.
R

Since V() = 0 if and only if t = ' or t = B/, the probability measure vy is supported on
1" = {o/, B’} for a.e. x. In other words, there exists a function § : E — [0, 1] such that

ve(dt) = 0(0)80 (dt) + (1 — 0)()dg/(dr). x € E.
and
v(x) =0x)a’ + (1 —-60(x))p, x€E.

It remains to prove that 6 belongs to BV (E, {0, 1}). Let us consider the set S of the points
where the approximate limits of 6 is neither 0 nor 1. For every N < H%(S), we can find N

disjoint intervals {J;} =1, ..y such that J; NS # 0 and such that the quantities al and bg

,,,,,

defined by (4.4) replacing J by J; satisfy
al - aje(0,1) and b/ — b; € (0,1) ase — 0.

Then we can apply Lemma 6 in the interval J; and, taking the limit as € — 0 in the inequality
(4.5) we obtain that

lim inf G%[ve, J;] > Cs.
e—>0

Finally, we use the sub-additivity of G¢, and we get

N
.. a .. a ‘
hgg(r)lfGe[ve, E] > E] h?l,l(l)lfo[Ue’ Jjl > NCs.
j=

Since (v¢) has equi-bounded energy, this implies that S is a finite set. Hence,0 € BV (E, {0, 1})
and the proof of the compactness for G¢ is complete. O

4.2 The optimal profile

We remind the reader that we have set the following optimal profile problem
ks :=inf {G{[v,R]: v € H*R), lim v(x)=d/, lim v(x) = ,3’] . @
X—>—00 X—>—+00
We would like to show that this infimum is attained.
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Lemma9 Let0 < § < %(,B/ — ') and set
ms :=min{V():a' +8 <t <p —§}.

Then, for any v € H*(R) with limy_, oo v(x) = &' and lim,_, 1 v(x) = B, it holds that

Gilv,R] >

25 25—1
(ZS) (,3 —o' —28)Fm,® > 0.

Proof 1t is analogous to proposition 3.1. in [13] for the super-quadratic case, and follows
the lines of Lemma 6. Fix § > 0 and fix v € H}{ (R) such that lim, . v(x) = o,
lim, — oo v(x) = B’ and G{[v, R] < oo. Define

={xeR:v(x)<d +68 and Igp:={xeR:v(x)>p -4},

and also Js5 := R\ (/s Ulg). Notice that I/, Ig- and Js are non-empty, and that J; is bounded,
for every fixed § € (0, (8" — ’)/2). Consider the truncated function

vs(x) :== (v(x) V (&' +8)) A (B —8) forevery x € R.

It is easy to see that the non-local energy decreases under truncation and then it follows that

2
G[v,R] = / Wwdxdx/+/V(v)dx

lx — x/|1+2s
RXR R
2
s (x) — vs (x| ,
RxR
We set
Xo =min{x : v(x) > &' + 8}, xp :=max{x:v(x) < B’ —8}.

Since vs(x) = o + 8 for every x < x and vs(x) = B’ — § for every x > xpr, for any
interval J D [xy/, xg] the non-decreasing rearrangement vy of vs in J does not depend on
J. Because the rearrangement decreases the non-local energy (Lemma 7), we have that

* — ¥y 2
/ ‘U(S(x)_va(x)‘ 12077 20 I ax dx/Z / Md}cd}{/

|1+2s |x _x/|1+2s
RxR
*
|v5(x)—v5(x)| /
g dxdx,
— x|
00 x

where x, := sup{x : vj(x) = '+ 4} and x;, = inf{x : v} (x) = B’ —§8}. So from (4.8) we
deduce that

ot 400 |
G‘ll[v, R] > (,3/ — (X/ — 28)2 / / mdxdx/ + mg |J§|
—00 X;,
(ﬂ/ —a - 25)2

2525 — D) |21 sl
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Minimizing with respect to |Js| we obtain
—1

2s
2s) 2-1
(2S) 1 (ﬂ/_a/_za)%mslt >O’
s —

and the lemma is proved. O

G{lv,R] >

Corollary 10 The constant k; is strictly positive.

We also need an auxiliary optimal profile problem: for every 7 > 0, we minimize

k! = inf {G{[v,R]: ve H'R), v(x)=a'Vx<T, v(x)=p Vx=>T}.

N

Proposition 11 The minimum is achieved by a function ¢7 € HS(R) which is non-
decreasing and satisfies o' < ¢T < B'. Moreover the sequence kT

s Is non-increasing in
: T
T and limy_ 100 k; = K.

Proof This is essentially proposition 3.2 in [13]. O
Then we have that

Proposition 12 The infimum for the optimum profile problem (4.7) is achieved by a non-
decreasing function ¢ satisfying o’ < ¢ < .

Proof It is a straightforward modification of proposition 3.3 in [13]. Let T > 0 and let ¢7
be a non-decreasing minimizer for /csT . Since the functions ¢T are monotone and bounded,
by Helly’s theorem, there exist a subsequence ¢+ of ¢ and a non-decreasing function ¢,
bounded by o’ and g/, such that ¢7+ converges pointwise in R to ¢. By Fatou’s lemma and
Proposition 11 we also have

2
() — ()] o
/ W dxdx’ +/V(¢) dx < kli)ngo,cxk =K.

RxR R

This ¢ is the minimizer we seek. m]

4.3 Lower and upper bound inequalities

The proof of the upper and lower bound inequalities of Proposition 5 use the optimal profile
obtained in Proposition 12. The lower bound inequality is a consequence of the following:

Proposition 13 Let J be an open interval of R. Let (ve) be a non-decreasing sequence in
H*(J) and assume that there exista, b € J, a < b, such that for every § > 0, there exists €5
such that

ve(@) <o’ +8 and ve(b) > B —38, Ve <es.
Then

lim inf G¢[ve, J] = k5.
e—0

Proof 1t is exactly the same as proposition 5.1 in [13] with the modifications indicated after
(4.3) and we do not find it necessary to include it here. O
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Clearly, an analog proposition holds in the case of . non-increasing satisfying the hypoth-
esis with @ > b. Next, thanks to the compactness result for G¢ from Proposition 8, we may
assume that the sequence (v, ) converges in L' (E) to some v € BV (E, I'). Hence, the jump
set S, is finite and we can find N := H°(S,) disjoint subintervals {J;};=1,... n such that
SyNJj#@Pforevery j=1,...,N.

Now, let us consider the monotone rearrangement v j of ve in J;. This rearrangement is
non- decreasing if v is non- decreasing in J;, and non-increasing otherwise. With this choice,
clearly v} ¢,j converges to v inL'(J ;) and thus it satisfies the assumptions of Proposition 13
with J replaced by J;. Then, forevery j =1, ..., N, we may conclude that

,,,,,

lim inf G¢[ve, J;] > liminf G¢[v} i Jil = ks
e—0 ’ e—0
Finally, using the subadditivity of G¢[v., -], we get
N
liminf G¢[ve, J1 > D" Gelve, J;1 = Ny = kHO(Sy).
e—0 1
]=

The lower bound is shown.
We prove first the upper bound inequality for a v of the form

;.
o, if x <xg,

v(x) = .

) [,8’, if x > xp.

Let T > 0 be fixed and let ¢7 € H; (R) be the minimizer for KST found in Proposition 11.
It satisfies ¢7 (x) = o forallx < —T, ¢7 (x) = g’ forall x > T and G{[¢T ,R] = «.
Let us define, for every € > 0, ve(x) = @7 (" X") for every x € E. We have that

ve — vin L'(E) and
Gllve, E1 = G{I¢", (E — x0)/Ac] < Gil¢" Rl =«
By Proposition 11 again, we get

lim lim sup G%[ve, E] < k.
T—+00 ¢0
Then, by a diagonalization argument, we can construct a sequence v, converging to v in
L' (E), which satisfies,

lim sup G¢[Ue, E] < k.
e—0
The optimal sequence for an arbitrary v € BV(E, I) can be easily obtained gluing the
sequences constructed above for each single jump of v and taking into account that the long
range interactions decay as € — 0.

5 Some new trace inequalities

It is well known that traces of functions in some Sobolev spaces are represented by functions
in Besov spaces (see the book [ 1, chapters 4 and 7]). Here we would like to consider extensions
of this result to weighted Sobolev spaces, for the case of domains in R?. Let —1 < a < 0,
and 2 C R%r a bounded domain with Lipschitz boundary. Theorem 3 gives that the class of
traces on M, a piece of 952, of the space Wl’z(.Q, wy) is just the space H*(M). However,
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Nekvinda’s proof does not give an exact value of the constant in the embedding. We seek to
give a precise inequality between functions in W1-2(£2, w,) and their traces.

This section is divided into four parts. First we summarize some lemmas that will be needed
in the proof. In the second part, we prove the embedding inequality when £2 is the half-plane
Ri (Lemma 17). Next, we localize the inequality for a domain £2 = (—1, 1) x (0, 1); this
is the main result of the section and it is contained in Theorem 19. Last, we show that the
inequality is optimal in some sense.

5.1 Technical lemmas

In order to understand the energy term related to the fractional Laplacian, first we need to
study Eq. (2.2). We prove a basic auxiliary result:

Lemma 14 Consider the following ODE defined for y € R :
a
—o(y) + ;‘Py()’) + )y (y) =0.

It has two linearly independent solutions. In particular,

o) =y lei () + 2K (»)] (5.1)

for constants c1,cy € R. Here Iy, K are the modified Bessel functions, their asymptotic
behavior is given precisely in (5.3) and (5.4).

Proof We actually have explicit formulas for the solution. Indeed, the change ¢ (y) = y*{(y)
gives that ¥y must be a solution of the modified Bessel equation

v ¢ = (2 45Dy =0. (5.2)

The books [2,28] are classical references for this equation. There are two independent solu-
tions of (5.2): I, the modified Bessel function of the first kind, and K, the modified Bessel
function of second kind (see 9.6.1. in [2]). In particular, they have the following asymptotic
behavior (cf. 9.6.7 and 9.7.1 in [2]):

1 A r'es) (2)° +
I ~— (= K ~ — hi 0. 53
0~ oy (5) - K~ (y) when y — (5.3)

And when y — 400,
1 T

I ~ Y, K ~ | —e 7. 5.4
» me » ,/2y€ (5.4)
|

We show now a result from [9] that characterizes the minimizers of the energy in ]Rﬁ_:

Lemma 15 Given v € H*(R) for 1/2 < s < 1, there exists a minimizer uq of the following
variational problem

Ju) = / |VulPw, (5.5)
RL

in the space Y = {u € LIZOC(R2 ,wg) © Vu € LERZ, wy)}, subject to the constraint

u(x,0) = v(x) forall x € R, and the weight is taken as w, := y*. Moreover,

ug = P %, v,
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where P is the Poisson kernel defined in (2.3) and

2 1 0s
/|vMo|2wa dxdy = e [ [0@P1EP d

2
R R

for some positive constant e, depending only on s, whose precise value is given in (5.8).

Proof The Euler-Lagrange equation of J is

(5.6)

div(y*Vu) = 0in R%,
u =vonR x {0}.

The main idea is to reduce (5.6) to an ODE by taking Fourier transform in x. We obtain

—EPAE y) + %ﬁy@, ¥) + iy (5, y) =0,

that is ODE for each fixed value of &.
On the other hand, consider the one-dimensional functional for each ¢ : [0, +00) — R
given by

Jlel = / {@PO+¢* O} ar
subject to the conditions ¢(0) = 1 and lim;_, 4, ¢ (¢) = 0. Its Euler-Lagrange equation is
given by
a
—o(y) + ;Wy(y) + o) = 0,

that has been well understood in Lemma 14. Indeed, if ¢ is the minimizer of J, its precise
formula is given by (5.1) with ¢; = 0, ¢c3 = cst(s).

Thus we conclude that the minimizer we seek in the present lemma satisfies (&, y) =
(&) (|&] y). Next, just compute

[ivuoityt = [ [ (1P faof + fa,of’) s* dyas
R O
/]

8©17 1P (10081 I + w41 ) y* dyde

=/|ﬁ<s>|2|§|‘*“/(|¢o<r)|2+|¢5(o|2) 1 didg
R 0
96| 151" de. (5.7)
The lemma is proved, for a constant
e := Jgol. (5.8)

[m}
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The following result allows to compare the energies in Ri and in R x (0, M) for big M.

Lemma 16 Given v € H*(R), consider the functionals

J[u]:/qulzwadxdy and Jylu] = / |Vu|2wadxdy
R%— Rx(0,M)

subject to the constraint Tu = v in R. Let ug be the minimizer of J and u y; be the minimizer
of Ju, in their corresponding weighted function spaces. Given € > 0, there exists M > 0
depending only on € and not on v such that
|Viup|Pwa dxdy > (1 — e)/ |Vuo|>wy dxdy.
Rx(0,M) R
Proof We use the ideas of Lemma 15 in order to reduce the two dimensional problem to an

ordinary differential equation through Fourier transform. The Euler—Lagrange equation of
Jy is

div(y?Vu) = 0in R2,
du=00onR x {M}, (5.9)
u =vonR x {0},

while the one for J is given by (5.6). Taking Fourier transform in x, we immediately realize
that both minimizers ug, u ) must satisfy the ODE (for each value of &)

—EPac. y) + %ﬁy@, ¥) + iy (5. y) = 0.

Now consider the two one-dimensional functionals for each ¢ : [0, +00) — R,
= 2 = 2
Jle] = / (Iw/l + wz) y*dy and Jylp] = / (|<p/| + soz) y*dy
E. ©.M)

subject to the condition ¢(0) = 1. Let ¢ and @y be the minimizers of J and Jjy, respec-

tively. Then iig(§, y) = 0(§)¢o(I§] y) and io(§, y) = 0(§)em (1§] y) because both ¢y and
oum satisfy the Euler equation

— e+ ggoy(w + oy () = 0. (5.10)

with boundary conditions

9 (0) =1, ¢ (y) -0 when y — 400,

on©) =1, (M) =0. .11
Thus Lemma (14) gives that
P00 =" [l + KO, euG) =" el L + A K]
M

If we impose the boundary conditions (5.11) at y = 0, we obtain the value of c; = ¢; =
cst(s). Now, note that 9, (M) = 0 while ¢ decays at infinity, this fixes ¢y, c{”. In particu-
lar, c{” — ¢1 = 0 exponentially. We have then that ¢)s converges to ¢g and ¢}, to ¢, when
M — o0, and thus, also

Iulem] — Jlgol. (5.12)
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Then, the computation in (5.7) gives that

= a2 _
[ 19w, = gl [ focef i1~ ae (5.13)
2 R
while
a2 _
0@ 15 ds. (5.14)
Rx(0,M)
The lemma is proved by comparing (5.14) and (5.13), because of (5.12). ]

5.2 Inequality for a half-plane

Denote by R the half-plane R x (0, +00), and consider the weight in R? < givenby wq (x, y):=
y* forx e R, y > 0. When a = 0, Fourier transform methods qu1ckly give that a function u
defined on Ri has a well defined trace on R x {0} and moreover (see [6, lemma 6.2])

/

R2

v(x) —v(x’) 2

x —x’

dxdx' < 2n/ |Vul? dxdy. (5.15)
2

This constant 27 is sharp.

Trace inequalities for the general case —1 < a < 0 require the characterization of the
fractional Laplacian by Caffarelli and Silvestre [9] as a Dirichlet-to-Neumann operator. The
first result of this subsection deals with the generalization of (5.15).

Lemma 17 Let u be a function in L10C (Ri, wy) with derivative in Lz(Ri, wy). Then the
trace of u on R x {0}, call it v, is a well defined function v € leoc (R). Moreover,

_ A
/'U(x) v dxdx’5D5/|Vu|2wa dxdy, (5.16)

X |1+2Y A
R+

where Dy is a constant depending only on s but not on u, and it is given precisely in (5.20).

Proof First we assume that u is smooth. The result will then follow by approximation. Next,
if we apply Plancherel theorem for the Fourier transform we obtain

|U(x)—v(x’)} , i 1
/ X — [ dxdx =/ /|U(X-i-h)—v(X)|2 dx J1+2s dh

R LR

. 2 1
=/ /’ﬁ(é)(eh’hé—l)‘ a5 | oz dh

LR
2 —2cos(2mhé) 2
- [ 22 ) e
R LR
= d, (27{)2Y 2118 d, (5.17)
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for

2 —2cosz

R

On the other hand, let ug be the minimizer of the functional
1w = [ ulu,
52

found in Lemma 15. Then

/|Vu0|2wa dxdy = es/ BE)| g1 de. (5.19)
R R
We set
Dy = d;(27m)% /ey, (5.20)

where ¢ is given in (5.8) and d; in (5.18).
The proof of (5.16) is completed from (5.17), (5.19), and using the fact that ug is a
minimizer of J. m]

Corollary 18 Inequality (5.16) is achieved when u = P %y v.
Proof Indeed, the minimizer u is given precisely by ug = P %, v. O
5.3 Inequality of a bounded domain

Now we would like to localize inequality (5.16) in a bounded domain £2 C ]R?F such that part
of its boundary, say M C 952 lies on R x {0}. Again, we fix the weight w, := y¢. Nekv-
inda’s work, summarized in Theorem 3, assures that the trace of a function u € W12 (82, wg)
belongs to the Besov space H* (M), but it does not give the explicit value of the constant in
the embedding.

Here we claim that this constant can be taken as the constant in Ri, the D found in the
previous subsection:

Theorem 19 Let 2 := (—1,1) x (0, 1) C R and u € W'(82, w,). Then the trace of
uon (—1,1) x {0}, call it v, is a well defined function v € H*(—1, 1) and, for the same
constant Dy as in the Lemma 17, we have

o) — v , 5
T s dxdx = Dy [ [Vulfw, dxdy. (5.21)

(—1,1)2 2

Proof First note that Theorem 3 quickly gives that v € H*(—1, 1). Moreover, it is enough
to prove inequality (5.21) foru € C®(2).

Fixed € > 0, consider the constant M > 0 given in Lemma 16, that is independent of
u, v. We will show first that

/ |Vul*w, dxdy > D;'(1 - €) /

2y (=M, M)?

|v(x) — v()c’)|2

/
— o dxdxs G2)

|x
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i.e., that the inequality holds in a domain 2y := (—M, M) x (0, M) up to epsilon. Because
the inequality (5.22) is invariant under the rescaling (X, y) := ﬁ(x, y), it also holds for
(—1,1) x (0, 1), up to €. This would finish the proof of (5.21).

We compare the energy of u to the energy of 1, the minimizer of the functional

Jo,ul = / |Vul|*w, dxdy,
2u

subject to the restriction Tu; = v. We now try to extend «; defined on £2) to the whole RZ,
in order to use Lemma 17. We do it in several steps.

First, because u satisfies a zero Neumann condition on the boundary {—M, M} x (0, M),
it is possible to reflect it evenly N times to obtain a solution on 2y = Ayy x (0, M)
where Ay is an interval of length N M. We still denote that extension by u;. Call v; to be
the trace of u1 on y = 0. Now we would like to extend u to the whole R x (0, M). For this,
first extend vy continuously to R such that the extension, call it v, belongs to H*(R), and
solve the Caffarelli-Silvestre extension problem

div(y*Vuz) =0inR%
ur» = vy onR x {0}.

Let B := [b; — 1,b1] U [b2, by + 1] where by = inf(Annm), by = sup(Aypy), and let
n : R — RT be a smooth cutoff such that # = 1in Ayy and n = 0 outside Ay U B.
Consider the function obtained by the gluing

uz = nuy + (1 — nuy,
it is defined on R x (0, M).
Next, let uy : R x (0, M) — R be the minimizer of the functional
Iylul = / |Vul|*w, dxdy
Rx (0,M)

and ug : R% — R be the minimizer of

J[u]=/|Vu|2wadxdy,
R

both subject to the condition Tu = vy on y = 0. In particular, we can use the Poisson kernel
(2.3) to write ug = P *, vy. Lemma 16 implies that

|Vuz*w, > / \Vuml*w, > (1—e>/|wo|2wa. (5.23)
Rx(0,M) Rx(0,M) R2

Applying Corollary 18 to ug = P *, vz, we obtain that

2
5 1 [v2(x) — v2(x)|
/|VMO| Wq = DJ / dedx/
R2 RxR
2
» lv(x) — v(x)] ,
> NDS / dedx , (524)
(=M, M)?
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where the last inequality holds just by dropping part of the domain of integration. On the
other hand, because of our gluing construction,

/|W#W=N/Wm%ﬁ-/|W#m

Rx(0,M) 2u Bx(0,M)
+ /' Vi P
[R\(AxaUB)]x (0. M)
=N / \Vui*wa + I3 + bb. (5.25)
2m

We would like to show that the last two terms I,, I3 above are bounded independently of
N. First of all, we can use the Poisson kernel (2.3) to write explicit formulas for uy = P *, va,

ie.,
I-a, mx —z
uz(x, y) :C2,s/ : > 2(5)2 =dE= CZ’S/% dz
J xR+ 1y (2+1)7

after the change z = 5 Because the original v was differentiable, we have that v, has
bounded derivative (it is smooth except perhaps at the reflection points). Then

/ J—
deuz(x, y) = c/ Rink) NP
5 (2+1)2
and
—2)Vh(x —z
dyur(r,y) =€ [ T2RE D)
R (Z2+1) :

In the following, C will be a positive constant that may change from line to line. We consider
the following auxiliary term / and can compute, using Holder, that

I:= / [Vua|?y* dxdy

x€(by,+00),ye(0,M)

<C

/ _ 2 2
/y“ (V5 = 2] max {1, Iz D dzdxdy.  (526)

2 1 2—a
x€(br,+00),ye(0,M) zeR (Z T )
We could have extended v; to constant (or very decaying to constant) on the interval [by, +00).
Thus it is enough to consider the change 6 = x — zy — b; so that

1, |z|?
,SC/E?ng ¥ / V36 + bo)? dbdydz
R (Z +1) ye(O,M)  0e(—zy.0)
1|z
MW / yHidy. 5.27)
(2241)

zeR ye(0,M)

This last integral is bounded independently of N because —1 < a < 0. Similar arguments
give that the terms /5, I3 from (5.25) are o(N).
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Then, combining (5.23), (5.24) and (5.25) we obtain that

v(x) —v(x’
N/'VM1|2U)a +0o(N)> (1 —e)D'N / ()ll(H)dedx’.
X

(=M, M)?

Divide the previous inequality by N and let N — o0, so that
) . p@ —ve)
[Vui|"we = (1 —€)D; ErET= dxdx’. (5.28)

2um (=M, M)2

To finish just note that

/qulzwadxdyz / |Vui|?w, dxdy (5.29)

2um 2u

because 11 was a minimizer of Jg,,. The proposition follows from (5.28) and (5.29), after
rescaling back. O

5.4 Optimality

In the remaining of the section we would like to show that the constant Dy in (5.21) is optimal
in some sense.

Proposition 20 For each € > 0, there exists a function u defined on (—1, 1) x (0, 1) such
that

2
Tuc(x) — Tue(x')
6176{ |Vu€|2wa — Dflelfa | € € |
s |x _x/|1+23
(=1,1D)x(0,1) (-1,1)?

dxdx"+ R. (5.30)

with lim¢_¢ |R¢| = 0, and this term is of lower order when € — .

Proof Fix a domain 2 = (—1, 1) x (0, 1), and for each € > 0 consider the scaling Ac > 0
given by (1.9). Set ve : (—1,1) — R to be the function that satisfies ve(x) = 0 if x €
(=1, —A¢/2],ve(x) = 1ifx € [A¢/2, 1), and linear in the interval [— A /2, A¢/2]. Extend
it to R, by making it constant on (—oo, —1) and (1, 400), and denote this extension by

¥ = V.. Now construct a function u := u. defined on ]Ri with trace U as u = P %, 0.
Corollary 18 tells that for u constructed this way,
(x) — 0(x’ )
Rz RxR

We try now to restrict the domain of integration to §2 by estimating the remaining terms. Let
e = ((—1,—Ac/2] U [A/2, 1)) x (Ae/2, 1). A straightforward computation from the
Poisson formula

D)
u(x,y)ZC/ —ap2 98
S (=gl 4y
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gives that
C 1
/ |Vu|2wa dxdy = 7/\2‘“] +o0 (Tzsfl) ,
o € €
while
1
/ |Vu|2wa dxdy — / |Vu|2wa dxdy =o (F) .
R2 2 ‘

On the other hand, let A, = (—1, A¢/2], Bc = [A¢/2, 1). We also have

~ ~ 2
|5(x) — 5 (x")]| , c 1
[ = e (e

Ae X Be

while

~ ~ 2
|5() — 3] , |
/ |x _ x/|1+2S dde =0 Ags—l

R2\((Ae x Bo)U(Be X A))

Because of equality (5.31), the previous estimates, and the fact that

1
el —S =1
AL’
we conclude that the u., ve we have constructed satisfy (5.30). ]

Remark 1 We have constructed a piecewise linear function. However, the above proposition
is still true as long as the transition occurs on a layer of length A..

6 Preliminary results

We are going to prove the main Theorem 1 by localizing the functional into several regions.
Section 3 takes care of the behavior of the functional in the interior of the domain 2. Thus,
it remains to study the interaction the interaction with the wall of the container d£2. In the
present section we give some preliminary results in that regard.

First, we look at a small neighborhood of x € 952, and reduce the problem to the study
of a small neighborhood B, x (0,r) C Ri. Then we reduce the dimension from three to
two through a slicing argument, so that it is enough to consider a subdomain 2 = (—r, r) X
(0, r) C R2, and thus, the results of Sects. 4 and 5 can be applied.

Let us remind the reader that the Gamma-limit is going to be expressed in terms of the
functional (1.7), whose exact expression is

@ (u, v) == o H>(Sy) + / IW(Tu) — WW)| + s H (Sy).
982

The first term in @ comes from the behavior in the interior (Sect. 3). In Proposition 26 we will
consider the “wall effect”, that explains the presence of the second term; while the remaining
of the section is devoted to the “boundary effect”, that deals with the third term.
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We define the localization of the functional F¢ as follows. For every open set A C £2 and
any A’ C 9A, we set

a / 1—a 2 1 -1
Fllu,A, Al =€ IVul“w, + I Www, " +re | V(Tu). (6.1)
€
A

—a
A A’

Note that we easily recover the original functional as F¢[u] = F&[u, 2, 952].

6.1 Reduction to the flat case

Fixed x € 952, we will consider small “cubical” neighborhoods Q, (x) near the boundary, of
size r, such that £2 N O, (x) is equivalent to the cylinder D, := B, x (0, r). Here B, is the
two-dimensional ball of radius r centered an the origin. Let E, be the boundary part given
by E, := B, x {0}. In order to evaluate the error in the deformation, we need to introduce
the notion of isometry defect.

Given two domains Aj, A» C R and a bi-Lipschitz homeomorphism ¥ : A} = Ay, the
isometry defect § (&) of ¥ is the smallest constant § such that

dist(D¥ (x), 0(3)) <§ forae.x € Aj. (6.2)

Here O (3) is the set of linear isometries on R?, and D¥ (x) is regarded as a linear mapping
of R? into R3. Let I be the identity map on R3. The distance between linear mappings is

induced by the norm ||-||, which for every linear map 7 is defined as
T = sup [Tv|.
lvl=<1

The following proposition shows that the localized energy F[u, 2N Q,(x), 02N Q,(x)]
can be replaced by the energy F/[u, D,, E,].

Proposition 21 Let 2 be a domain in R3 with C? boundary 982 in C2. Then for every x € 382
and every positive r smaller than a certain critical value ry > 0, there exists a diffeomorphism
v, : D, —> 2N Q,(x) such that

1. Y, takes D, onto 2 N Q,(x) and E, onto 982 N Q,(x).
2. W, is of class ¢! on D, and |D®, — Id| < 8, everywhere on D,, where §, — 0 as
r — 0.

In particular, the isometry defect of ¥, vanishes as r — 0. Moreover,

Flu, Qr(x) N2, 0r(x) N0R2] = (1 = 8(¥,))° Flu o ¥, Dy, E, .

Proof 1t is essentially contained in propositions 4.9 and 4.10 from [6], although in our case
we need to make some modifications due to the presence of a weight.

Because of the smoothness assumptions on 9 £2, we can parameterize a small neighborhood
of x € 92 with coordinates (¢, p), where p = dist(-, 3§2), ¢ is the coordinate parameterizing
each level set of p and such that p € (0, r), and ¢ € B,. The change of coordinates map, call
it ¥, is a diffeomorphism with D, (x) = I. Itis clear than

§:=8,)— 0, whenr — 0. (6.3)
Moreover,

[D(uo W) < (1+8)|(Du)o¥,]. (6.4)
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Let J be the Jacobian determinant of ¥, on D, and J’ be the one of ¥,|g,. They satisfy

7], J’| <1+ 8)3 a.e.. Using the change of variable formula and (6.4) we see that
FlluoW,, D, E,] =€ / V(o W) Jdpdt
DV
1
+—= / W oW,)p *Jdodt + Ac / V(T (uoW,))J dt
€
D, E,
< (1+8%,))° Flu, 0, (x) N 2, Qr(x) N 3£2],

as we wished, because ﬁ >1-4. O

Remark 2 The regularity of d£2 could be reduced to ¢ and still have (6.3).

6.2 Dimension reduction

The next step is to reduce the problem from three to two dimensions through slicing. Before
we give the main result, we state some classical slicing results in R”:

We fix m > 0 and assume that every function in this subsection takes values in [—m, m].
Let A be a bounded open subset of R", e is a unit vector in R"” and u a function on A. We
denote by M the orthogonal complement of e, and by A, the projection of A onto M. For
every z € M, we set A := {t € R: z 4 te € A}; and u’ to be the trace of u on AZ, that is
ui = u(z +te).

Proposition 22 (section 5.10, p. 216, in [10]) Let B C A be a given Borel set. If B has finite
perimeter in A, then B} has finite perimeter in AS and d(B: N AZ) = (0B N A); for a.e.
z € A, and

/Ho(asg NAYdz = / (vg, e). (6.5)
Ae IBNA

Conversely, B has finite perimeter in A if there exist n linearly independent unit vectors e
such that the integral ofHO(aBj N AZ) overall z € A, is finite.

From here we can establish a connection between the compactness of a family of functions
in L'(R3) and the compactness of the traces of these functions. For every family F of func-
tions of A, we set 77 := {u : u € F}, so that 7 is a family of functions on AZ. We say that
a family F' is 8-dense in  if F lies in a 8-neighborhood of ' with respect to the L' (A)
topology. Then

Theorem 23 (theorem 6.6 in [6]) Let F be a family of functions v : A — [—m,m] and
assume that there exist n linearly independent unit vectors e which satisfy the following

property:

For every § > 0 there exists a family Fs8-dense in F such that (F3)% is pre-compact
in L (AZ) for H' ! ae. z € A,.

Then F is precompact in L' (A).

Now we can give the main proposition of the subsection, where we slice a cylinder
D, = B, x (0,r) C Ri. We drop the subindex r in the notation. We set coordinates in D
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as (xq, x2, y) where x1, xo parameterize B, and y € (0,r). Then E = {y =0} N D. Fix an
arbitrary unit vector e in the plane {y = 0}, and let E, the projection of the set E. We will
slice D in the direction of y, perpendicularly to e. The slice corresponding for each z € E,
is denoted by D?; let E* its projection onto the plane {y = 0}. For a nice picture, see figure
41in [6].

Proposition 24 Let (uc) C WH2(D, w,) be a sequence with uniformly bounded energies
Fllue, D, E). Thenthe traces of uc are pre-compact in LY(E) and every cluster point belongs
to BV(E, I"). Moreover, if Tue — v in LY(E), then

lim inf F¢uc, D, E] > ks / vy | dH, (6.6)
€—

ENS,

where the constant k is defined in (4.2).

Proof We slice the region D using Fubini’s theorem, so then

Flue, D, E] > el_"/|Vu€|2wa+)»E/V(Tu)
D E

/ &jﬂw%ﬂ+&/ﬂmgd1 ©.7)

E. D: E*

v

Next, we use the trace inequalities of Sect. 5 in each domain D%, E* (note that the inequalities
are invariant by rescaling). Indeed, because of (5.21), we have the estimate

z _ 20 |2
F®lue., D, E]z/ lmap! / |Tu?(x) — Tu? (x")] +)»E/V(Tuz) iz

lx — x/|l+2s
E, E<xE* Ez
=/@UﬂEW; (6.8)
E.

This last functional G¢ has been well studied in Sect. 4 when E< is an interval in R.

The rest of the proof follows exactly as proposition 4.7 in [6]. For commodity of the
reader, we give the main ideas. We check first that (T'u,) is pre-compact in L' (E). Thanks
to Theorem 23, it suffices to show that the family F := (T u) satisfy the following property:
for every § > 0, there exists a family Fsd-dense in F such that (F5)5 is pre-compact in
LY(E) for H?-ae. z € E,. By assumption F¢[ue, D, E] < C, so that (6.8) implies also that

/Gg[ug, Ef] <C. (6.9)
E,

Fix § > 0. For every § > 0, define v : E — [—m, m] such that

v (6.10)

€ " /

z._ Tu:, ifzeE, and Gl[uZ, E*] <2mrC/$
o, otherwise.

By (6.8), (6.9), (6.10), we have vZ = Tu; for all z € E, apart from a subset of measure
smaller than §/(2mr). Hence v = Tu, in E up to a set of measure smaller than §/m. So,
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from |Tuc| < m, we deduce that [|ve — Tuell 1) < J. Therefore, the family Fs := {vc} is
S-dense in F.

Next, by (6.10), we have that G¢[v¢, E*] < 2mrC/é forevery z € E, and every €. Hence,
Theorem 5 implies that the sequence (v?) is pre-compact in L'(E?). Thus F satisfies the
hypothesis of Theorem 23 for every e, and the sequence (Tu.) is pre-compact in LY(E).

It remains to prove that if Tu, — E in L' (E), thenv belongs to BV (E, I'), and inequal-
ity (6.6) holds. We have (up to a subsequence), that Tu: — v* in L' (E) forae. z € E,
(remark 6.7 in [6]). Then, Proposition 5 yields v¢ € BV (E?, I') and

tim inf F¢fuc, D, E] = /KSHO(sz)dz. (6.11)

E,

The right-hand side of the formula above is finite, so then Proposition 22 implies that v
belongs to BV (E, I'), and that S,z agrees with S, N E* for a.e. 7 € E.. Then, by (6.5) we
may rewrite (6.11) as

limint e, D E1 = k[ ()t

ENS,

Finally, (6.6) follows by choosing a suitable unit vector e in the expression above. O

6.3 The boundary effect

In the previous arguments we have reduced the dimension from three to two, so it is enough
to understand the following functional on ]Ri. Set D =(—1,1) x (0,1), E =(—1,1), we
define

H'w, D, E] :=el_“/|Vw|2y“ dxdy+k€/V(Tw).
D E

Trace inequalities allow to quickly relate this functional to the optimal profile obtained in
Proposition 12. This link is precisely the missing ingredient in [22] for the superquadratic
case.

Let ¢ : R — [o, B'] be such optimal profile. It achieves the infimum of

ks :=inf {G{[v,R]: v € H*R), lim v(x)=d/, lim v(x)=pg"}.
X—>—00 X—>—+00
Now let wy := P *x, ¢. We rescale

x oy
= =, =), 12
We (X, y) 1= wy (Ae’ Ae) (6.12)

and
X
g =9 ().
Note that we = P *y @e.

Lemma 25 [n the hypothesis above, we have that

Hfwe, D, E]l = ks +0(1), whene — 0.
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Proof We note that, because of our rescaling,
Hf[we, D, E] = H{'[w1, D/A¢, E/Ac].
But we can compute explicitly that
H{[we, D/Ac, E/Ac] = Hf [wi, R2, R] — o(1).
On the other hand, because of the definition of wi, we have equality in Corollary 18, and

thus

H{[wi, R}, R] = /Wx) o[

|1+2S

dxdx' + / V(p) dx = G{[¢, R] = «;.

R

The lemma is proved. O

6.4 The wall effect
Here we deal with the second term in the limit functional (1.7):

Proposition 26 Let A C 2 C R3 be a domain with piecewise C' boundary, and A’ =
9A N 882 with Lipschitz boundary. Letu € BV (A, 1), v € BV(A', I') be given. Then

i. For every sequence (u¢) C WL2(A, wy) such that uc — u in L'(A) and Tue — v in

L'(a),

liminf £¢[uc, A] z/|W(Tu)—W(v)|.
€e—

ii. Ifvisconstanton A’ and u is constant in A withu = o or u = B, there exists a sequence
(ue) such that Tue = v in A, (u¢) converges to u, uniformly on every set with positive
distance from A" and

lim sup E¢[ue, A /IW(TM) W()|.

e—>0

Moreover, the function u. may be required to be % (’é)fa—Lipschitz continuous in
Ay i={x € A :dist(x,dA) <r}.

Proof The proof is a modification of propositions 1.2 and 1.4 in [18], and it is very well
written for the case p > 2 in Palatucci’s Ph.D. thesis [23, proposition 4.3]. Here we indicate
the steps required, and only give the proof for the ones that require any modification.

We may assume that E¢[u., A] < C. For every € > 0, let us denote

we(x) := Woue)(x), forx e A. (6.13)

Step 1: We claim that f 4 |Dwe| < constant. Indeed, by Young’s inequality we have

/|Dwg| =/|w/<ue>||Dug| =2/\/W<ug>|Due| < ESfu., Al < C.
A A A

Step 2: we — Wou € BV(A) in L1(A).
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Step 3: The functional

Go(2) ::/IDz(x)|+/|Tz—W(v)|dH2
A

is 1.s.c. on BV (A) with respect to the topology in L1 (A).
Step 4: Proof of statement i. Applying lower semi-continuity of the functional G to the
sequence w, defined by (6.13) we obtain the following inequality

/|D<Wou>(x)|+/|w<m>— W) dH?
< llmlnf /|D(W oue)(x)| + / W(Tue) — W(v)| d'Hz

< lim i(I)lf Elfue, Al + / IW(Tue) — W) dH? | , (6.14)
€—
0A

by Young’s inequality. Next, since Tu, — v in L' (A’), we deduce that

lim i(I)lf/ W(Tue) — W) dH* = 0. (6.15)
€—>
3A
From (6.14) and (6.15) we obtain the lower bound inequality i.
Step 5: Proof of the upper bound ii. The weight w, needs to be taken into account. Without

loss of generality, consider the case u = f and v = y with ¢ < y < f; the other cases are
similar. Let 0 : [0, +00) — [y, B] be the solution of the ODE written as

0 =JW(@O)
‘0(0) =y. (6.16)
Let d(x) = dist(x, A") = dist(x, 082). We set ¢ (1) := 0(w) for w = ’11 Z and u.(x) =
¢ (@) Then
1
Elfuc, A] = €' / Vue*h + —— / Wue)h™,
€
A A
that can be written by the coarea formula as
E%uc, A / / [¢/(1)* 1" + W(p (1)t ™] dodt,
Rt Xet
and after the change w = tll%; we get
et a1= [ [ [0/(@)? + WO (w)] dodo,
z

1
e((l—a)w) I=
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where Xy is the set of points in A at a distance exactly s from A’. When € — 0, we know
that X () — A’, and thus we have that

Elfuc, A] —> //[9’(w)2+ WO (w)]dodw.
Rt A

But because 0 satisfies the ODE (6.16), then both terms in the above expression are equal,
so the inequality x% + x% > 2x1x2 becomes an equality and we can conclude that

Efue, Al — //2«/W(9)9’dwda =/[W(/3)—W(y)]da,
A’ R+ A’

where we take W to be a primitive of 2+/W. To finish the proof of the proposition, just note
that

—a

sup |Vue| < T

7 Proof of Theorem 1

Once we have the main ingredients from the previous sections, we can give the proof of the
main theorem.

7.1 Compactness

Let (u¢) be a sequence in WL2(£2, w,) such that F¢[u¢] is bounded. Using the localization
defined (6.1) and the functional E¢ from (3.1) we know that

Flluel = Flue, 2,91 = E{[ue, 2.

By statement iii. of Proposition 4 we conclude that (u,) is precompact in L'(£2) and there
exists u € BV (£2, I) such that uc — u in L1(£2).

It remains to prove that (Tu.) is pre-compact in L' (9£2) and every cluster point belongs
to BV (982, 1'). Thanks to Proposition 21, we can cover 9§2 with finitely many “cubes”
(Qj)jeJ, centered on 082, of radius r, such that for every j € J, there exists a bi-Lipschitz
map ¥; with isometry defect §(¥;) < 1, which satisfies ¥;(D,; N Q;) = £ N Q; and
Vi(E,; N Qj) =082 NBj.

We show that (Tuc) is pre-compact in L' (352 N Q;) forevery j € J. For every fixed j,
let us set uf := ue o ¥;. We have that

5 .
Fllue, 20 Q02N Q;1= (1 —8W))” Fllul. Dy, N By, Er; N Bj],

so we conclude that F¢ [ugi, Dy; N Bj, Er; N Bj] is uniformly bounded in epsilon. Hence,
the compactness of the traces Tui in L'(E r;) follows from Proposition 24. Finally, using the

invertibility of ¥;, we have that (Tu.) is pre-compact in L'(3£2) and that its cluster points
arein BV (052, I').

7.2 Lower bound inequality

Now we continue with the proof of the theorem. Parts i. and iii. follow by putting together
the results in the interior (Sect. 3) and the boundary (Sects. 4, 6).
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Let (u¢) be a sequence in wi2(2, w,) satisfying u € BV (82, I),v € BV (352, I'), and
such that uc — u in L1(2), Tue — v in L1(3£2). We have to show that

liminf Ff'[uc] > @ (u, v), (7.1)
e—>0
where @ is given by (1.7). Assume, without loss of generality, thatlim infe_,o F&[uc] < +o00.

For every € > 0, let . be the energy distribution associated with F¢ with configuration
Ue, 1.€., U 1S the positive measure given by

1
€
2NB 2NB a2NB

we(B) =€ / [Vul?h® + —— / W (u)h™ + e / V(Tu),

for every B C R3. Similarly, we define
w!(B) := o H* (S, N B),

1 (B) = / IW(Tu) = W) dH?,
92NB
w(B) == kyH' (S, N B).
The total variation [|u¢|| of the measure p. is equal to F¢[uc], and e+ 1120+ el
is equal to @ (u, v). Note that |||l is bounded, so we can assume that p. converges in the

sense of measure to some finite measure p. Then, by the lower semicontinuity of the total
variation we have

liminf F¢[uc] = liminf ||pell > Il
e—0 e—0

Since the measures 4! are mutually singular, we obtain the lower bound inequality (7.1) if
we prove that

Mlei fori =1,2,3.

It is enough to show that ;(B) > ! (B) for all sets B C R> such that B N £2 is a Lipschitz
domain and ©(0B) = 0.
First, because of Proposition 4 we have that

n(B) = limoué(B) > limigf Fouc, 2N B, ¥ > oH*(S, N B) = u'(B).
e— €e—
Similarly, we can prove that y« > 1>, More precisely,

p(B)=lim puc(B) = liminf F{[ue, 2N B. 0] = / IW(T (1)) — W) dH> =pu>(B),
€—> €—>
02NB

where we have used Proposition 26 with A = BN 2 and A’ = BN 3S2.

The inequality 4« > u? requires a different argument. Notice that 13 is the restriction of
H' to the set S, multiplied by the factor k. Thus, if we prove that

iminf 22D S ae xe s, (7.2)

r—0 2r
for Q,(x) as in Proposition 21, we obtain the required inequality. Note that, in any case, u
is supported on £2.

Let us fix x € S, such that there exists lim,_,q W and S, has one-dimensional

density equal to 1. We denote by v, the unit normal at x. For  small enough, we choose a
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map ¥, as in Proposition 21. Set it := u¢ o W, and ¥ := vo ¥,. Hence, Tiic — vin L'(E,)
and v € BV(E,, I'). Moreover,

n(Qr(x)) = Elg}}) me(Qr(x))
= lin}) Fllue, 2N Qr(x), 92N Qr(x)]
> lim inf (1 — 8(¥,))> Fiie, Dy, E,]. (7.3)

On the other hand, by Proposition 24, we have that

lim inf F¢'liie, Dy. Er] > s /uvdﬁl.
SzNE,

Finally, notice that 6 (¥,) — 0 as r — 0, and that

/ deHl =2r +o(r).
S;NE,

Thus we obtain that

MZKS(H@), asr - 0,
2r 2r

that implies i > u3. The proof of the lower bound inequality is completed.

7.3 Upper bound inequality

For the proof of ii., we use a standard construction piece by piece. We will require an extension
lemma

Lemma 27 Let A be a domain in R3, that is contained in the strip {r < dist(-,082) < 2r},
andlet A’ C 9A, v: A" — [—m, m] a Lipschitz function. Then, for every € > 0, there exists
an extension u : A — [—m, m] such that

Lipu) = -2 + Lip(v)
and
Eflu, A1 S [(€7r Lip@) +1)" + Cu | (H2@4) + 0(D) 2, as e 0.
where
Cp = max W(), z=min{l|lv—alic,|lv—PBlpc}
tel—m,m]

Proof 1t follows the ideas of lemma 4.11 in [6], but we need to take care of the weight .
First, we assume without loss of generality, that A” = dA. In fact, we can extend v to d A
without increasing its Lipschitz constant. We additionally suppose that z = ||[v — «||; the
other case z = ||[v — Bl 1s similar.

Lets = e¢!=9r4 and set

| v(x), ondA,
”(")"’a, on A\Ag,
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where A; is the set of all x in A such that 0 < dist(x, dA) < ¢. Then, u is (% + Lip(v))
-Lipschitz continuous on A\A_s. Finally, u can be extended to A, without increasing its
Lipschitz constant. We have

E%u, A] = €'~¢ / IVul?h + % / W (u)h™
Az ¢ Azs
1 2 1
5 |AZS| |:61a (E +LiP(U)) r¢ + Ncmra:|

< [(H*@4) + o(1)) BLip(v) + 1)* + Cn]z, ase — 0,
where we have used that |A;| = ¢ (7—[2(8A) + 0(1)) ast — 0. O

Now we are ready for the proof of the upper bound in Theorem 1. Fix u € BV (£2, 1)
and v € BV (352, I'). It is enough to assume that the singular sets of u and v, S, and S,
respectively, are closed manifolds of class C> without boundary. This is so because every pair
(u,v) € BV(2,1) x BV (352, I) can be approximated in € LY(2)x L'(382) by pairs that
fulfils those regularity assumptions (see theorem 1.24 of [15]). We assume that # and v, up
to modifications on negligible sets, are constant in each connected component of £2\ S, and
082\ S, respectively.

The idea is to construct a partition of £2 into four subsets, and to use the preliminary
convergence results of the previous sections to obtain the upper bound inequality.

For every x € £2, setd(x) = dist(x, 0§2) and d’ : 32 — R is the oriented distance from
S, defined by

dist(x, Sy) ifx € {v=p},

d'(x) = [ —dist(x, Sy) ifx € {v=0d}.

For every r > 0, set
I = {x € 2 : dist(x, 082) = r}.

Fix r > O such that I, and I, are Lipschitz surfaces and S, N I} is a Lipschitz curve. With
this is mind, we construct a partition of £2. Let
B = {x € £ :dist(x, S, U (S, N T})) < 3r},
Ap = {x € 2\By :d(x) < r},
B, ={x ¢ .Q\Bl r<dx) < 2r},
Ar = {x € 2\By : 2r <d(x)}.
We will construct a Lipschitz function u. := u,, for every € < r, piece by piece, with
controlled Lipschitz constant.
Step 1: In the set Ay, we take u. as in part ii. of Proposition 4. We extend it to d A, by

continuity. Hence u, is ﬁ-Lipsehitz on Az, ue converges pointwise to u in A, uniformly
on 0A> N 9By, and

Filue, Ay, ] = E%ue, A2l < o H (S, N A2) + o(1) < o'H*(S,) — o H? (S, \A2) + o(1)

ase — 0.

Step 2: Now we consider the set Aj. The function u is constant (equal to « or §) in every
connected component A of Aj on A N 3£2, and the function v is constant (equal to o’ or
B’)on 9A N 352. Then we can use Proposition 26 to get a function u, such that Tu, = v on
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0A N34S and u, converges to u pointwise in A| and uniformly on every subset with positive
distance from dA N 0§2. By the same proposition, we also have that u. is -Lipschitz

l a a
continuous on A, and we can extend it to dA| by continuity. Since the dlstance of two
connected components of A is larger than r and m > % choosing C > max{2m, Cy},
it follows that u. is m—LlpSChltZ continuous on A; and agrees with v on dA; N 2.
Moreover, the functlon uc satisfies

Fllue, A1, 0A1 N382] = El[ue, A1] < / W(Tue) = W) +o(l), ase— 0.
dA1N3S2

Step 3: Note that in the previous steps we have constructed an optimal sequence in
Ay U A, that is m-LlpSChltZ continuous, in particular, it is defined and Lipschitz on
((0A1 UdA2) NIB), for every connected component B of B;.

By virtue of Lemma 27, we can extend u, to every B, obtaining a -
tinuous function that satisfies

C

—LlpSChltZ con-

F&lue, Bo, ] = Efue, B2 < ze ((C +2)* + Cp) (HA(@B2) + o(1)) = o(1)

as € — 0, where we have used that z. := inf(54,u94,)n98, lUe — u|l = o(1), since uc is
constant on each connected components of B;.

Step 4: To construct the function in the piece Bj is the most delicate step. First, we need
some preliminaries: construct a function on the whole Ri with suitable behavior.

Consider the rescalings
1—a

NAe << 0 << pe << €

for some o, = €?, pe = €. Let w; be the function on R2 defined in Proposition 20 and its

rescaling we (x, y) 1= w; ( A A ) We also consider the function w; from Lemma 25 and

its rescaling we (x, y) := wy ( [’f i ) We glue them, so that we obtain a function defined

in the whole Rﬁ_, as

P P if (x, y) € Dg,
DT o if(x,y) e RE\D,,

and smooth in between, with its corresponding rescaling

Be(x, y) _wl(j j) (7.4)

Because pe >> 0. >> A, we can apply Lemma 25 to obtain
Hga[wés Dpev Epe] =Ky —o(1)

when € — 0.
Now we pass from two to three dimensions. In particular, we set iz, on S, x ]Rﬁ_ to be

Ue(x,y,7) := we(x,y) foreveryz e S, (x,y) € Rf_. (7.5)
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where W, is defined in (7.4). In addition, for any function # defined on S, x D, we define
the following functional.

I:"f[ll, Sy x D, Sy, x E] := ¢ / |Vﬁ|2y“ dxdydz

SyxD
1
+—= / W(i)y™® dxdydz + A / V(T#) dxdz.
€
SyxD SyxE

For the i, we have constructed in (7.5), Fubini’s theorem implies that

Fiiie, Sy X Dp., Sy x Ep ]

- 1 -
= Hl(sv) Hea[wea Dy ,Ep 1+ — / W (we)y “ dxdy

6l—a
Dﬂe
<H'(S,) | H e, D, . E,, 1 + e Yy~ dxdy
XE(—pe,pe),y€(0,pe)
1 c
=H (Sy) (Hf[zbe, Dy, Ep 1+ 617_(1,06_“). (7.6)

We choose 1 —a < p < g < 17;; and ¢ > ;%Z Then from (7.6) we obtain that
Flliic, Sy x Dy, Sy x Ep.] < H'(8)) [ks + 0(1)] (7.7)

ase — 0.

Now we transplant the function i, obtained to our remaining piece Bjp. Since S, is a
boundary in 92, we can construct a diffeomorphism between the intersection of a tubular
neighborhood U of S, and §2 and the product of S, with a half-disk. More precisely, for
every r > 0, we set

Sy i={x € 2:0 < dist(x, Sy) <r}.
For every x € £, define
U(x) = (", d'(x), dist(x, 982)),

where x’ is a projection of x on 92 and x” is a projection of x” on S,. The function ¥
is well-defined and is a diffeomorphism of class C> on £ N U, and satisfies the following
properties:

- ¥(@2nNU)CS, xRZ,

- v@2NnU)CS, xR x{0},

— Y(x) =x forevery x € 052.

— DY (x) is an isometry,

— lim,_0 6, = 0, where §, is the isometry defect of the restriction of ¥ to S,.

We construct i, on S := gpe /2. With small modifications, we can assume that S is a “cubical”
neighborhood such that for € small, the function ¥ maps S into S, x D,, and S N 952 into
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Sy x E,,_, Then we define u, := itc o ¥, where we is defined in (7.5). Thus Proposition 21
and (7.7) give that

Fue, S,9SN 321 < (1 —8)  F[e, Sy x Dy, Sy x Ep,]
< H'(Sy) (k5 + o(1))

as € — 0, because d¢ := §(¥|s,, ) tends to zero as € — 0.

Notice that for € small enough, ¥ is 2-Lipschitz continuous. Using again Lemma 27, we
can extend u, by setting u, = v on the remaining part of d B N d£2. We have that u. is equal
to v on 082\ S. Thus, we can extend u. on the whole B1\S to a jﬂfrl{, -Lipschitz continuous
function, which satisfies

Félue, BI\S, 8(B1\S) N 982] = H{'[ue, Bi\S]
< (C +2)* + Cw) (H*(@B1) + o(1)) 2m

as € — 0, where we have used |lue — @lloo A e — Bllo < 2m.
Step 5: We recall that for every r > 0 and every € < r we have constructed a function u,
defined on the whole 2 such that

limsup [lue — ull 1) < 2m (|B1| + |B2])

e—0

and

limsup [|[Tue — vl 150y = 0.
e—>0

Since |B;| and | B>| have order r2 and r respectively, we get that u, — u in L(£2), first
taking € — 0 and then r — O.
Combining all the results above, we obtain

lim sup F[ue] < on(Su) + / W(Tu(x)) —W((x))| dH* + KSHI(SU)
e—0
02

—oH (S \A2) + ((2C +2)* + C) (HA(@B1) + o(1)) 2m.

Since H*(3B)) has order r, taking » — 0 above we deduce the upper bound inequality.
Finally, applying a suitable diagonalization argument, to the sequence u, := u, , we obtain
the desired sequence u.. Proof of ii. is completed.
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