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Abstract We prove a Γ -convergence result for an energy functional related to some
fractional powers of the Laplacian operator, (−∆)s for 1/2 < s < 1, with two singu-
lar perturbations, that leads to a two-phase problem. The case (−∆)1/2 was considered by
Alberti–Bouchitté–Seppecher in relation to a model in capillarity with line tension effect.
However, the proof in our setting requires some new ingredients such as the Caffarelli–Sil-
vestre extension for the fractional Laplacian and new trace inequalities for weighted Sobolev
spaces.

Mathematics Subject Classification (2000) 49J45 · 35J20 · 82B26 · 47G30

1 Introduction and statement of the theorem

Let Ω be a bounded domain in R
3 with smooth C2 boundary ∂Ω and let h : Ω → R be the

distance function to the boundary. Fix a real number −1 < a < 0. Let α, β, α′, β ′ ∈ R such
that α < β, α′ < β ′ and consider two double-well potentials W, V : R → [0,∞) such that
W only vanishes at α, β, and V only vanishes at α′, β ′. For a function u defined inΩ , denote
its trace on ∂Ω by T u. Given ε > 0, we study the following energy functional

Fa
ε [u] := ε1−a

∫

Ω

|∇u|2ha + 1

ε1−a

∫

Ω

W (u)h−a + λε

∫

∂Ω

V (T u). (1.1)

The aim of the present paper is to understand the Γ -convergence of this functional when
ε → 0 and λε → ∞.
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174 M. d. M. González

Note that (1.1) generalizes the two-phase model of Alberti–Bouchitté–Seppecher consid-
ered in [6] in relation to capillarity energy with line tension. They studied the Γ -convergence
of

Fε[u] := ε

∫

Ω

|∇u|2 + 1

ε

∫

Ω

W (u)+ λ0
ε

∫

∂Ω

V (T u), (1.2)

where λ0
ε → ∞ is a sequence with some specific behavior as ε → 0.

Historically, this type of models appeared when studying phase transitions. Consider a
container Ω ⊂ R

3 which is filled with two immiscible and incompressible fluids, or two
different phases of the same fluid; equilibrium is achieved when we minimize

E[u] = σH2(Su) (1.3)

among all the admissible configurations u ∈ BV (Ω, {α, β}) with fixed volume
∫
Ω

u = M0.
Here H2 is the two-dimensional Hausdorff measure of Su , the singular set of u, and σ is a con-
stant parameter. The classical work by Modica [17] established that the following variational
model for u : Ω → [α, β], ∫

Ω
u = M0, given by

Eε[u] = ε

∫

Ω

|∇u|2 + 1

ε

∫

Ω

W (u), (1.4)

Γ -converges to E , for σ := 2
∫ β
α

√
W (t)dt .

Here we consider the generalization given by (1.1), where the weight ha is singular at the
boundary ∂Ω since −1 < a < 0. With this modification, Fa

ε becomes the energy functional
related to some fractional powers of the Laplacian, plus two double-well potential terms.
Indeed, if s = 1−a

2 , then the Euler–Lagrange equation of the functional

J [u] =
∫

x∈Rn ,y∈R+

|∇u|2 ya dxdy (1.5)

is just (−∆)s(T u) = 0 in R
n , as it has been shown in the recent work by Caffarelli–Silvestre

[9].
On the other hand, the boundary potential term in (1.1) constitutes a very interesting

modification from (1.4), and adds new terms in the Γ -limit. The first result involving bound-
ary integrals was obtained by Modica [18], when λε = 1. Other works can be found in
Cabré and Solá-Morales [8], where they look at layer solutions for boundary reactions of the
half-Laplacian (s = 1/2). A refinement of the Γ -convergence result for s = 1/2 is being
studied by Cabré and Cónsul [7]. In addition, in the current work [20] by Monneau and the
present author, we look at an homogenization problem for a reaction-diffusion equation with
half-Laplacian, where we try to understand the interaction energy that appears in the problem.

The main theorem in the present paper states that the Γ -convergence of the sequence
Fa
ε , for some suitable scaling λε , has a similar behavior to the case s = 1/2 of Alberti–

Bouchitté–Seppecher considered in [6]. However, the proof needs some new results on the
fractional Laplacian: Sect. 4 contains a result on singular perturbations of the norm Hs(∂Ω),
that is indeed the norm of traces of functions in a weighted Sobolev space W 1,2(Ω,wa) for a
suitable weight wa . The second main ingredient, in Sect. 5, deals with this trace embedding,
and gives a more precise control of the Sobolev constant. In particular, in Theorem 19 we
understand the relation between the functional (1.5) in R

2+ and the non-local energy of the
trace T u in Hs(R) given by
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Gamma convergence of an energy functional related to the fractional Laplacian 175

∫

R×R

∣∣T u(x ′)− T u(x)
∣∣2

|x ′ − x |1+2s dx ′dx .

The proof uses the interesting characterization of the fractional Laplacian in R as an extension
problem to R × R+, given by Caffarelli–Silvestre in [9].

Let us fix some notation. Set −1 < a < 0. Let I := {α, β}, I ′ := {α′, β ′}. Assume that
there exists m such that −m ≤ α, α′, β, β ′ ≤ m. Assume that both W and V are positive,
increasing in [m,+∞) and decreasing in (−∞,−m], with growth at least linear at infinity.
As we have mentioned, W only vanishes at the two wells α < β, and V only at α′ < β ′.

Consider the background space X := L1(Ω) × L1(∂Ω). Fix h : Ω → [0,+∞) be the
distance to the boundary ofΩ . Fix the singular weight inΩ given bywa := ha , and consider
the weighted Sobolev space W 1,2(Ω,wa) with norm

‖u‖2
W 1,2(Ω,wa)

:=
∫

Ω

|u|2 ha +
∫

Ω

|∇u|2ha .

Note that the trace on ∂Ω of a function u ∈ W 1,2(Ω,wa) is well defined (see Theorem 3);
denote it by T u.

We define the functional Fa
ε as

Fa
ε [u] :=

{
ε1−a

∫
Ω

|∇u|2ha + 1
ε1−a

∫
Ω

W (u)h−a + λε
∫
∂Ω

V (T u), u ∈ W 1,2(Ω,wa) ∩ X,
+∞, elsewhere in X.

(1.6)

On the other hand, given u ∈ BV (Ω, I ) and v ∈ BV (∂Ω, I ′), set

Φ(u, v) := σH2(Su)+
∫

∂Ω

|W(T u)− W(v)| + κsH1(Sv), (1.7)

and

Fa(u) :=
{

inf{Φ(u, v) : v ∈ BV (∂Ω, I ′)}, if u ∈ BV (Ω, I ),
+∞, elsewhere in X.

(1.8)

Here Hi denotes the i-dimensional Hausdorff measure, that in this case is well defined
because of the hypothesis on the bounded variation of u, v. Also, Su is the set of all points
where u is essentially discontinuous, and the same for Sv . The main result of the present
paper states that Fa is the Γ -limit of the functionals Fa

ε , for suitable positive constants σ , κs

and a function W .
Finally, we set

Λε := ε
1−a
−a . (1.9)

It will become clear in Sects. 4 and 6.3 that this is the natural scaling for the problem.
We have that, under the above conditions:

Theorem 1 Fix −1 < a < 0, s = 1−a
2 , and assume that

λε = 1

Λε
. (1.10)

Then there exist constants σ, κs > 0 such that the functionals Fa
ε defined in (1.6) Γ -converge

to the functional Fa given in (1.8) and any sequence (uε)with bounded energy is precompact
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176 M. d. M. González

in X. Moreover, σ := W(β)− W(α) where W is a primitive of 2
√

W , and κs is a constant
depending only on s, V whose exact value is given in (4.2).

Let us motivate the previous theorem. The potential in the interior, W , forces the minimizer
uε to take values near the two wells α, β, while the gradient term in the functional penalizes
the jump of the function; thus we create two bulk phases in the interior of the container Ω ,
namely, {u = α}, {u = β}, with interphase Su . When ε → 0, uε → u and T uε → v. On the
other hand, the second double-well potential V forces the trace to take values near α′, β ′, and
thus it creates two boundary phases {v = α′}, {v = β ′}, separated by Sv ⊂ ∂Ω . However,
we usually have T u �= v, and thus additional terms appear in the limit functional (1.7). Note
that, although many of the arguments would work for a domain Ω contained in R

n for any
n ≥ 3, we restrict ourselves to dimension three so that the energy on ∂Ω occurring from the
boundary phases concentrates over a one-dimensional set Sv of ∂Ω .

We remark here that the proof of the Gamma-convergence result in general follows some
well established steps (see Alberti et al. [6] or Palatucci [22]). However, in our case the shape
of the functional requires a deep understanding of the singular factor in the energy and its
relation to the fractional Laplacian operator - this is precisely the main new idea of the present
article.

The result is true if either W or V are identically zero. Indeed, if V is zero, we are in the sit-
uation of Sect. 3, while if W is zero, then we can ignore the first two terms in theΓ -limit (1.7).

Palatucci (cf. [22], or his Ph.D. thesis [23]), has considered the Γ -convergence of the
super-quadratic functional

P p
ε [u] := ε p−2

∫

Ω

|∇u|p + 1

ε
p−2
p−1

∫

Ω

W (u)+ 1

ε

∫

∂Ω

V (T u)

when p > 2. The main difference with ours is the lack of trace inequalities as in Theorem
19 for the case p > 2.

It has come to our attention that the generalization of the super-quadratic functional P p
ε

including a singular weight at the boundary ∂Ω is being completed by Palatucci and Sire
[24]. It uses some of the results of the present article.

Several open questions arise: first, when 0 < s < 1/2 we do not know yet how to formu-
late a Gamma-convergence result due to the lack of layer solutions for the functional (4.1). It
may even happen that some other new non-local quantities appear. Also, not much is known
in the anisotropic case.

The outline of the paper is the following: in Sect. 2 we give some general background on
Γ -convergence and on the fractional Laplacian. In Sect. 3 we study the problem in the interior
ignoring the boundary interaction. The following two sections contain the main ingredients:
in Sect. 4 we look at a singular perturbation result for the norm Hs(E)where E is an interval
in R, while the next section deals with some new trace embeddings for weighted Sobolev
embeddings. Section 6 contains several technical results that are needed in the main proof,
including a dimension reduction argument. Finally, we prove Theorem 1 in the last section.

2 Some background

In order to make this paper self-contained, we present to the reader some standard back-
ground. We will denote by ε → 0 any countable sequence converging to zero. The integrals
in a domainΩ are taken with respect the standard Lebesgue measure, while the integrals on
∂Ω are with respect to the standard Hausdorff measure on the boundary. First, let us give the
definition of Γ -convergence.
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Gamma convergence of an energy functional related to the fractional Laplacian 177

Definition 2 Let X be a metric space, and for ε > 0, consider the functional Fε : X →
[0,+∞]. We say that the sequence Fε Gamma-converges to F on X as ε → 0 if the following
conditions hold:

i. Lower bound inequality: for every u ∈ X and every sequence (uε) such that uε → u in
X , there holds

lim inf
ε→0

Fε[uε] ≥ F[u].

ii. Upper bound inequality: for every u ∈ X there exists (uε) such that uε → u in X and

lim
ε→0

Fε[uε] = F[u].

Together with conditions i. and ii. a compactness condition is usually proved:
iii. Given a sequence (uε) when ε → 0 such that Fε[uε] is bounded, then (uε) is pre-

compact in X .

Consider a sequence of functionals Fε that Γ -converges to F . If uε is a minimizer for Fε ,
then conditions i and ii. imply that any limit point of the sequence (uε) is a minimizer for F .
Condition iii. assures that this limit point exists in X .

The definition and properties of bounded variation functions can be found in [10] or [15].
LetΩ be an open subset of R

n . Note that if ∂Ω is Lipschitz, the trace of a bounded variation
function on ∂Ω is well defined and it belongs to L1(∂Ω). Given f ∈ BV (Ω, I ), we define
Su to be the set of all points where u is essentially discontinuous, that is, it has no approximate
limit, and it agrees with the measure theoretic boundary of the set {u = α} in Ω .

Now we give the relation between weighted Sobolev spaces and their traces. Let n > 0,
k ≥ 0 be integers, and a, p real numbers, 1 < p < ∞. Let Ω be a non-empty, open,
bounded subset of R

n . Let M be a closed subset of ∂Ω and let dM (x) be the distance func-
tion, dM (x) := dist(x,M). For simplicity we shall write d(x) instead of dM (x). For an
integer m, 1 ≤ m ≤ n, we set Qm = (0, 1)m .

We shall write (Ω,M) ∈ B(k, n) for 1 ≤ k ≤ n − 1, n ≥ 2 if and only if there exists a
bi-Lipschitz mapping B : Qn → Ω such that B(Q̄k) = M .

By C∞(Ω̄) we denote the set of real functions u defined on Ω̄ such that the derivatives
Dαu can be continuously extended to Ω̄ for all multi-indexes α. Consider the weightw = da .
Define the weighted Sobolev space W 1,p(Ω,w) as the closure of C∞(Ω̄)with respect to the
norm

‖u‖p
W 1,p(Ω,w)

:=
∫

Ω

|u|p w dx +
∫

Ω

|Du|p w dx .

These norms have been well studied for a certain class of weights, called Ap weights (see
[12,26]). We will also need some other norms for functions v defined on an interval E ⊂ R

given by

‖v‖2
Hs (E) = ‖v‖2

L2(E) +
∫

E2

∣∣v(x ′)− v(x)
∣∣2

|x ′ − x |1+2s dx ′dx

for 0 < s < 1.
Although it can be stated more generally, we are just interested in the case k = n − 1:
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178 M. d. M. González

Theorem 3 (theorem 2.8 in [21]) Let n ≥ 2, −1 < a < p − 1 and (Ω,M) ∈ B(n − 1, n).
Then there exists a unique bounded linear operator

T : W 1,p(Ω,w) → W 1− 1+a
p ,p

(M) (2.1)

such that T u = u|M for all u ∈ C∞(Q̄n).

In the special case that p = 2, s = 1−a
2 , the trace operator (2.1) reads precisely

T : W 1,2(Ω,w) → Hs(M).

The classical reference for the fractional Laplacian (−∆)s is the book by Landkof [16],
although a good reference is the Ph.D. thesis by Luis Silvestre [25]. Given s ∈ (0, 1) we
define the fractional Laplacian of a function f : R

n → R, as a pseudo-differential operator
by

(̂−∆)s f (ξ) = |ξ |2s f̂ (ξ),

i.e., its principal symbol is |ξ |2s . It can also be written as the singular integral

(−∆)s f (x) = Cn,s

∫

Rn

f (x)− f (ξ)− ∇ f (x) · (x − ξ)χ{|x−ξ |<1}
|x − ξ |n+2s dξ.

Caffarelli–Silvestre have developed in [9] an equivalent definition using an extension
problem, that is crucial in the present work. For a function f : R

n → R, we construct the
extension u : R

n × [0,+∞) → R, u = u(x, y), as the solution of the equation
{
∆x u + a

y ∂yu + ∂yyu = 0 for x ∈ R
n, y ∈ [0,+∞),

u(x, 0) = f (x),
(2.2)

for s = 1−a
2 . This type of degenerate elliptic equations have been studied in [11]. Then the

fractional Laplacian of f can be recovered as

(−∆)s f = cn,s lim
y→0

ya∂yu,

i.e., we are looking at a non-local Dirichlet-to-Neumann operator. Note that Eq. (2.2) can be
written in divergence form as

div(ya∇u) = 0,

which is the Euler–Lagrange equation for the functional

J [u] =
∫

x∈Rn ,y>0

|∇u|2 ya dxdy.

To finish, just mention that the Poisson kernel for the fractional Laplacian (−∆)s is given by

P(x, y) = cn,s
y1−a

(|x |2 + |y|2) n+1−a
2

, (2.3)

and thus u = P ∗x f .
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Gamma convergence of an energy functional related to the fractional Laplacian 179

3 Γ -convergence in the interior

The theory of phase transitions (see Modica [17], Modica and Mortola [19] for the classical
references, or Alberti [3], for a very well written survey), studies the interface between two
fluids in a containerΩ neglecting the interaction with the boundary. In particular, it is proven
that the functionals Eε defined in (1.4), Γ -converge to E given in (1.3). In this section we
consider the generalization to Ea

ε given in (3.1), that involves a singular weight wa := ha .
However, since the interaction with the boundary is neglected and the weight is regular in the
interior, the behavior of Ea

ε is going to be very similar to Eε . Indeed, we can easily modify
the argument of Modica to prove:

Proposition 4 Let A be a domain contained in Ω , h := dist(·, ∂Ω), wa := ha. Assume, in
addition, that dist(A, ∂Ω) ≥ r for some r > 0 fixed. Set

Ea
ε [u, A] := ε1−a

∫

A

|∇u|2ha + 1

ε1−a

∫

A

W (u)h−a (3.1)

and

Ea[u, A] := σH2(Su ∩ A) (3.2)

for σ := 2
∫ β
α

√
W . Then

i. ∀u ∈ BV (A, I ), ∀(uε) ⊂ W 1,2(A, wa) such that uε → u in L1(A), we have

lim inf
ε→0

Ea
ε [uε, A] ≥ σ Ea[u, A].

ii. ∀u ∈ BV (A, I ), there exists (uε) ⊂ W 1,2(A, wa) such that uε → u in L1(A) and

lim sup
ε→0

Ea
ε [uε, A] ≤ σ Ea[u, A].

Moreover, when Su is a closed Lipschitz surface in A, the functions uε may be required
to be Lipschitz continuous with constant C

ε1−ara , and to converge uniformly to u in every
set with positive distance from Su and away from the boundary.

iii. Any sequence (uε) ⊂ W 1,2(A, wa) with uniformly bounded energies Ea
ε [uε, A] is pre-

compact in X and every cluster point belongs to BV (A, I ).

Proof The proof is essentially the one of Modica and can be found in Alberti [3]. By a well
known truncation argument [4, lemma 1.14], we can assume that u : A → [α, β]. Now, use the
inequality x2

1 + x2
2 ≥ 2x1x2 with x1 = ε(1−a)/2|∇u|ha/2 and x2 = ε−(1−a)/2W 1/2(u)h−a/2,

then

Ea
ε [u, A] ≥ 2

∫

A

√
W (u)|∇u| =

∫

A

|∇(W(u))| , (3.3)

where W : [α, β] → R is a primitive of 2
√

W . This gives iii. and i. using standard arguments,
and can be found exactly in [3, paragraph 4.5].

For ii. we need to take care of the weight wa in the construction. Let u ∈ BV (A, I ).
Without loss of generality, we can assume that its singular set Su is a Lipschitz surface in
A, even a polyhedral surface of dimension 2 (see [15, theorem 1.24]). We would like to
construct a sequence of functions uε that converges to u in L1(A). First, it is possible to give
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180 M. d. M. González

coordinates (e(x), ω) in Ω such that ω parameterizes Su , and e(x) ∈ R is just the signed
distance to Su (positive where u = β and negative where u = α). Next, solve the ODE

θ ′ = √
W (θ) (3.4)

with initial condition θ(0) = α+β
2 . This θ is the well known optimum profile for the case

a = 0. In order to take into account the weightwa we set, for every fixed ω, (note that (0, ω)
is any point in Su),

φω(t) := φ(t, ω) = θ

(
t

ha(0, ω)

)
. (3.5)

Now, for each ε > 0, let t = e(x)/ε1−a and

uε(x) := φω

(
e(x)

ε1−a

)
. (3.6)

When ε → 0 we can compute that

|∇uε |2(x) = 1

ε2(1−a)

[
φ′
ω(t)

2 + R(ω, t)o(1)
]
.

Then we can use the coarea formula to calculate the energy of this function:

Ea
ε [uε, A] = ε1−a

∫

A

|∇uε |2ha + 1

ε1−a

∫

A

W (uε)h
−a

= 1

ε1−a

∫

A

[(
φ′
ω(t)

)2
ha dx + W (φω(t))h

−a + o(1)
]

dx

=
+∞∫

−∞

∫

Σ
ε1−a t

[(
φ′
ω(t)

)2
ha + W (φω(t))h

−a + o(1)
]

dω dt.

When ε → 0, the level set Σε1−a t converges to Su ∩ A, and if x is written in the new coor-
dinates (e(x), ω), then h(t, ω) converges to dist((0, ω), ∂Ω) = h(0, ω). Taking the limit we
have that

lim sup
ε→0

Ea
ε [uε, A] =

+∞∫

−∞

∫

Su∩A

[(
φ′
ω(t)

)2
ha(0, ω)+ W (φω(t))h

−a(0, ω)
]

dωdt.

But because of (3.4) and (3.5), both terms in the above integration are equal. Then the
inequality x2

1 + x2
2 ≥ 2x1x2 for two positive numbers x1 = x2 becomes an equality and thus

lim sup
ε→0

Ea
ε [uε, A] =

∫

Su∩A

+∞∫

−∞
2
√

W (φω(t))φ
′
ω(t) dtdω

=
∫

Su∩A

β∫

α

2
√

W (r) drdω = σH2(Su ∩ A)

as we wished. The Lipschitz constant of uε is computed from (3.5) and (3.6). ��
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Gamma convergence of an energy functional related to the fractional Laplacian 181

4 Perturbation of the norm H s

Let 1/2 < s < 1. In this section we consider a singular perturbation of the norm Hs(E)when
E is a bounded interval in R. As usual, denote s = 1−a

2 , so −1 < a < 0, and I ′ := {
α′, β ′}.

Consider a double-well potential V : R → [0,∞) vanishing only at I ′, with the same
hypothesis as in the introduction.

More precisely, we will study the Γ -convergence of the functional

Ga
ε [v, E] := ε1−a

Ds

∫

E2

∣∣v(x ′)− v(x)
∣∣2

|x ′ − x |1+2s dx ′dx + λε

∫

E

V (v)dx, (4.1)

when ε → 0. Although Ds could be any positive constant in this section, we will fix its value
as given in (5.20).

The functional Ga
ε presents the following scaling property that justifies the election of λε

in (1.10). Indeed, if we set uε(x) := u(Λεx), Eε := {x : Λεx ∈ E}, then we immediately
see that

Ga
ε [u, E] = Ga

1[uε, Eε].
It is interesting to observe the deterioration of λε when a → 0. In particular, the functional
for s = 1/2, a = 0 studied in [5] reads

Gε[v, E] := ε

2π

∫

E2

∣∣v(x ′)− v(x)
∣∣2

|x ′ − x |2 dx ′dx + λ0
ε

∫

E

V (v)dx,

for limε→0 ε log λ0
ε = K , 0 < K < ∞.

It is natural then to consider profiles on the whole real line that minimize the energy, i.e.,
we consider the following optimal profile problem

κs := inf

⎧⎪⎨
⎪⎩

1

Ds

∫

R2

∣∣v(x)− v(x ′)
∣∣2

|x − x ′|1+2s dxdx ′ +
∫

R

V (v) dx

⎫⎪⎬
⎪⎭ , (4.2)

where the infimum is taken among all the functions in the set{
v ∈ Hs(R) : lim

x→−∞ v(x) = α′, lim
x→+∞ v(x) = β ′

}
.

Then we can prove:

Proposition 5 Let E be an interval in R. The functional defined on L1(E) given by

Ḡa
ε [v, E] :=

{
Ga
ε [v, E], if v ∈ Hs(E),

+∞, otherwise,

Γ -converges in L1(E) to

Ḡa
0[v, E] :=

{
κsH0(Sv) if v ∈ BV (E, I ′),
+∞, otherwise,

where H0(Sv) represents number of points in the singular set of v ∈ BV (E, I ′). The constant
κs > 0 is given by the optimal profile problem (4.2). Moreover, every sequence (vε) ⊂ L1(E)
with uniformly bounded energies Ga

ε [vε, E] is precompact in L1(E) and every cluster point
belongs to BV (E, I ′).
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The proof of this proposition is similar to the work of Garroni and Palatucci [13, theorem
2.1]. Indeed, they considered the functional

G̃ p
ε̃
[v, E] := ε̃ p−2

∫

E2

∣∣v(x)− v(x ′)
∣∣p

|x − x ′|p dxdx ′ + 1

ε̃

∫

E

V (v) dx (4.3)

for p > 2. Our case is analogous if we take p = 2s + 1 and ε̃ = Λε since the exponent of
the term

∣∣v(x)− v(x ′)
∣∣ does not play any special role in their proof.

We remark that the case s = 1/2 was considered in [5]. The main difference with respect
to the case 1/2 < s < 1, is that here the optimal profile is characterized by the equipartition
of the energy between the two terms in the functional. Instead, the logarithmic scaling for
s = 1/2 produces no equipartition of the energy: the limit comes only from the non-local
part and does not depend on V , i.e., any profile is optimal as far as the transition occurs on
a layer of order Λε . This does not happen in our case; both terms of the energy (4.1) are
equally important.

A related result on Gamma-convergence and optimal profiles was obtained by
Alberti–Bellettini [4] for anisotropic singularities that are integrable, unlike our 1

|x−x ′|1+2s .

The proof of Proposition 5 is given in the following, and it is divided into three parts: first
we show compactness, then we give some preliminary results on the optimal profile problem
(4.2), and in the last part we show the upper and lower bounds of the Γ -convergence.

4.1 Compactness

We start with a (non-optimal) bound from below:

Lemma 6 Let δ be given such that 0 < δ < (β ′ − δ′)/2. For every interval J ⊂ E, ε > 0,
and (vε) ⊂ L1(E), let Aε and Bε be the sets of all points x ∈ J such that vε(x) ≤ α′ + δ

and vε(x) ≥ β ′ − δ, respectively. Set

aε := |Aε ∩ J |
|J | , bε := |Bε ∩ J |

|J | . (4.4)

Then

Ga
ε [vε, J ] ≥ ε1−aCs

(β ′ − α′ − 2δ)2

|J |2s−1

{
1 − 1

(1 − aε)2s−1 − 1

(1 − bε)2s−1

}
+ Cδ, (4.5)

where the constant Cδ , does not depend on ε, and Cs only depends on s.

Proof First note that the non-local part of the energy decreases under monotone rearrange-
ments (see Lemma 7). Set J = (a0, b0). Then, if we define v∗ to be the non-decreasing
rearrangement of v, we have that

∫

J 2

∣∣v(x ′)− v(x)
∣∣2

|x ′ − x |1+2s dx ′dx ≥
∫

J 2

∣∣v∗(x ′)− v∗(x)
∣∣2

|x ′ − x |1+2s dx ′dx

≥ 2(β ′ − α′ − 2δ)2
a0+aε |J |∫

a0

b0∫

b0−bε |J |

1

|x − x ′|1+2s
dx ′dx

= 2(β ′ − α′ − 2δ)2

2s(2s − 1) |J |2s−1

[
1 − 1

(1 − aε)2s−1 − 1

(1 − bε)2s−1 + 1

(1 − aε − bε)2s−1

]
.
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On the other hand, let mδ := inf
{

V (t) : α′ + δ ≤ t ≤ β ′ − δ
}
, we obtain

∫

J

V (v)dx ≥ mδ |J | (1 − aε − bε),

so then

Ga
ε [vε, J ] ≥ ε1−a 2(β ′ − α′ − 2δ)2

2s(2s − 1)Ds |J |2s−1 + λεmδ |J | (1 − aε − bε) .

Minimizing with respect to |J | (1 − aε − bε), and taking into account that s = 1−a
2 we get

Ga
ε [vε, J ] ≥ ε1−a 2(β ′ − α′ − 2δ)2

2s(2s − 1)Ds |J |2s−1

[
1 − 1

(1 − aε)2s−1 − 1

(1 − bε)2s−1

]

+2
1
2s (2s)

2s−1
2s (β ′ − α′ − 2δ)

2
2s m

2s−1
2s
δ

2s − 1

for every 0 < δ < (β ′ − α′)/2, and the lemma is proved. ��
As we have mentioned, the main ingredient in the proof above is the following rearrange-

ment result. In particular, it tells us that the infimum of the functional must be attained at a
non-decreasing function.

Lemma 7 [14] Let

IΨ,p(v) =
1∫

0

1∫

0

Ψ

(
v(x)− v(x ′)

p(x − x ′)

)
dxdx ′,

where Ψ and p are restricted as follows:

1. Ψ (t) is defined and continuous on R andΨ (t) = Ψ (−t) is strictly increasing as |t | → ∞.
2. p(t) is defined an continuous on (−1, 1) and p(u) = p(−u) is strictly decreasing as

|t | → 0.
3. Ψ (ex ) is convex.

We also define the non-decreasing rearrangement of f as

f ∗(x) = inf {λ : m{t : f (t) ≥ λ} ≤ x} .
Then

IΨ,p( f ∗) ≤ IΨ,p( f ).

Now we are ready to prove compactness:

Proposition 8 Let (vε) be a sequence in Hs(E) with equibounded energy Ga
ε [vε, E] ≤ C.

Then (vε) is precompact in L1(E) and every cluster point belongs to BV (E, I ′).

Proof Once we have the estimate from Lemma 6, it is a standard argument that we rewrite
here for completeness (see theorem 4.4, part (i), in [6]), and to show how the estimate (4.5)
is used. First, the condition Ga

ε [vε, E] ≤ C implies that∫

E

V (vε)dx ≤ Cλ−1
ε , (4.6)

123



184 M. d. M. González

and we obtain that V (vε) → 0 in L1(E) when ε → 0. Thanks to the growth assumption on
V , (vε) is weakly relatively compact in L1(E), and some subsequence, still denoted by (vε),
converges weakly in L1(E) to some v.

In order to prove that this convergence is strong in L1(E) and that v ∈ BV (E, I ′), we
need to use the properties of Young measures (see the notes [27]). Let νx be the Young
measure associated with (vε). Since V is a non-negative continuous function in R, then

∫

E

∫

R

V (t)dνx (t) ≤ lim inf
ε→0

∫

E

V (vε) dx .

Hence, by (4.6) we have that
∫

R

V (t)dνx (t) = 0, a.e. x ∈ E .

Since V (t) = 0 if and only if t = α′ or t = β ′, the probability measure νx is supported on
I ′ = {α′, β ′} for a.e. x . In other words, there exists a function θ : E → [0, 1] such that

νx (dt) = θ(x)δα′(dt)+ (1 − θ)(x)δβ ′(dt), x ∈ E,

and

v(x) = θ(x)α′ + (1 − θ(x))β ′, x ∈ E .

It remains to prove that θ belongs to BV (E, {0, 1}). Let us consider the set S of the points
where the approximate limits of θ is neither 0 nor 1. For every N ≤ H0(S), we can find N
disjoint intervals {J j } j=1,...,N such that J j ∩ S �= 0 and such that the quantities a j

ε and b j
ε

defined by (4.4) replacing J by J j satisfy

a j
ε → a j ∈ (0, 1) and b j

ε → b j ∈ (0, 1) as ε → 0.

Then we can apply Lemma 6 in the interval J j and, taking the limit as ε → 0 in the inequality
(4.5) we obtain that

lim inf
ε→0

Ga
ε [vε, J j ] ≥ Cδ.

Finally, we use the sub-additivity of Ga
ε , and we get

lim inf
ε→0

Ga
ε [vε, E] ≥

N∑
j=1

lim inf
ε→0

Ga
ε [vε, J j ] ≥ NCδ.

Since (vε)has equi-bounded energy, this implies that S is a finite set. Hence, θ ∈ BV (E, {0, 1})
and the proof of the compactness for Ga

ε is complete. ��
4.2 The optimal profile

We remind the reader that we have set the following optimal profile problem

κs := inf

{
Ga

1[v,R] : v ∈ Hs(R), lim
x→−∞ v(x) = α′, lim

x→+∞ v(x) = β ′
}
. (4.7)

We would like to show that this infimum is attained.
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Lemma 9 Let 0 < δ < 1
2 (β

′ − α′) and set

mδ := min{V (t) : α′ + δ ≤ t ≤ β ′ − δ}.
Then, for any v ∈ Hs(R) with limx→−∞ v(x) = α′ and limx→+∞ v(x) = β ′, it holds that

Ga
1[v,R] ≥ (2s)

2s−1
2s

2s − 1
(β ′ − α′ − 2δ)

2
2s m

2s−1
2s
δ > 0.

Proof It is analogous to proposition 3.1. in [13] for the super-quadratic case, and follows
the lines of Lemma 6. Fix δ > 0 and fix v ∈ Hs

loc(R) such that limx→−∞ v(x) = α′,
limx→+∞ v(x) = β ′ and Ga

1[v,R] < ∞. Define

Iα′ := {x ∈ R : v(x) ≤ α′ + δ} and Iβ ′ := {x ∈ R : v(x) ≥ β ′ − δ},
and also Jδ := R\(Iα′ ∪ Iβ ′). Notice that Iα′ , Iβ ′ and Jδ are non-empty, and that Jδ is bounded,
for every fixed δ ∈ (0, (β ′ − α′)/2). Consider the truncated function

vδ(x) := (v(x) ∨ (α′ + δ)) ∧ (β ′ − δ) for every x ∈ R.

It is easy to see that the non-local energy decreases under truncation and then it follows that

Ga
1[v,R] ≥

∫

R×R

∣∣vδ(x)− vδ(x ′)
∣∣2

|x − x ′|1+2s dxdx ′ +
∫

R

V (v)dx

≥
∫

R×R

∣∣vδ(x)− vδ(x ′)
∣∣2

|x − x ′|1+2s dxdx ′ + mδ |Jδ| . (4.8)

We set

xα′ := min{x : v(x) > α′ + δ}, xβ ′ := max{x : v(x) < β ′ − δ}.
Since vδ(x) = α′ + δ for every x < xα′ and vδ(x) = β ′ − δ for every x > xβ ′ , for any
interval J ⊃ [xα′ , xβ ′ ] the non-decreasing rearrangement v∗

δ of vδ in J does not depend on
J . Because the rearrangement decreases the non-local energy (Lemma 7), we have that

∫

R×R

∣∣vδ(x)− vδ(x ′)
∣∣2

|x − x ′|1+2s dxdx ′ ≥
∫

R×R

∣∣v∗
δ (x)− v∗

δ (x
′)
∣∣2

|x − x ′|1+2s dxdx ′

≥
x∗
α′∫

−∞

+∞∫

x∗
β′

∣∣v∗
δ (x)− v∗

δ (x
′)
∣∣2

|x − x ′|1+2s dxdx ′,

where x∗
α′ := sup{x : v∗

δ (x) = α′ + δ} and x∗
β ′ := inf{x : v∗

δ (x) = β ′ − δ}. So from (4.8) we
deduce that

Ga
1[v,R] ≥ (β ′ − α′ − 2δ)2

x∗
α′∫

−∞

+∞∫

x∗
β′

1

|x − x ′|1+2s dxdx ′ + mδ |Jδ|

= (β ′ − α′ − 2δ)2

2s(2s − 1) |Jδ|2s−1 + mδ |Jδ| .
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Minimizing with respect to |Jδ| we obtain

Ga
1[v,R] ≥ (2s)

2s−1
2s

2s − 1
(β ′ − α′ − 2δ)

2
2s m

2s−1
2s
δ > 0,

and the lemma is proved. ��
Corollary 10 The constant κs is strictly positive.

We also need an auxiliary optimal profile problem: for every T > 0, we minimize

κT
s := inf

{
Ga

1[v,R] : v ∈ Hs(R), v(x) = α′ ∀x ≤ T, v(x) = β ′ ∀x ≥ T
}
.

Proposition 11 The minimum is achieved by a function φT ∈ Hs(R) which is non-
decreasing and satisfies α′ ≤ φT ≤ β ′. Moreover the sequence κT

s is non-increasing in
T and limT →+∞ κT

s = κs .

Proof This is essentially proposition 3.2 in [13]. ��
Then we have that

Proposition 12 The infimum for the optimum profile problem (4.7) is achieved by a non-
decreasing function φ satisfying α′ ≤ φ ≤ β ′.

Proof It is a straightforward modification of proposition 3.3 in [13]. Let T > 0 and let φT

be a non-decreasing minimizer for κT
s . Since the functions φT are monotone and bounded,

by Helly’s theorem, there exist a subsequence φTk of φT and a non-decreasing function φ,
bounded by α′ and β ′, such that φTk converges pointwise in R to φ. By Fatou’s lemma and
Proposition 11 we also have

∫

R×R

∣∣φ(x)− φ(x ′)
∣∣2

|x − x ′|1+2s dxdx ′ +
∫

R

V (φ) dx ≤ lim
k→∞ κ

Tk
s = κs .

This φ is the minimizer we seek. ��
4.3 Lower and upper bound inequalities

The proof of the upper and lower bound inequalities of Proposition 5 use the optimal profile
obtained in Proposition 12. The lower bound inequality is a consequence of the following:

Proposition 13 Let J be an open interval of R. Let (vε) be a non-decreasing sequence in
Hs(J ) and assume that there exist ā, b̄ ∈ J , ā < b̄, such that for every δ > 0, there exists εδ
such that

vε(ā) ≤ α′ + δ and vε(b̄) ≥ β ′ − δ, ∀ε ≤ εδ.

Then

lim inf
ε→0

Ga
ε [vε, J ] ≥ κs .

Proof It is exactly the same as proposition 5.1 in [13] with the modifications indicated after
(4.3) and we do not find it necessary to include it here. ��
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Clearly, an analog proposition holds in the case of uε non-increasing satisfying the hypoth-
esis with ā > b̄. Next, thanks to the compactness result for Ga

ε from Proposition 8, we may
assume that the sequence (vε) converges in L1(E) to some v ∈ BV (E, I ′). Hence, the jump
set Sv is finite and we can find N := H0(Su) disjoint subintervals {J j } j=1,...,N such that
Sv ∩ J j �= ∅ for every j = 1, . . . , N .

Now, let us consider the monotone rearrangement v∗
ε, j of vε in J j . This rearrangement is

non-decreasing if v is non-decreasing in J j , and non-increasing otherwise. With this choice,
clearly v∗

ε, j converges to v in L1(J j ) and thus it satisfies the assumptions of Proposition 13
with J replaced by J j . Then, for every j = 1, . . . , N , we may conclude that

lim inf
ε→0

Ga
ε [vε, J j ] ≥ lim inf

ε→0
Ga
ε [v∗

ε, j , J j ] ≥ κs .

Finally, using the subadditivity of Ga
ε [vε, ·], we get

lim inf
ε→0

Ga
ε [vε, J ] ≥

N∑
j=1

Ga
ε [vε, J j ] ≥ Nκs = κsH0(Sv).

The lower bound is shown.
We prove first the upper bound inequality for a v of the form

v(x) =
{
α′, if x ≤ x0,

β ′, if x > x0.

Let T > 0 be fixed and let φT ∈ Hs
loc(R) be the minimizer for κT

s found in Proposition 11.
It satisfies φT (x) = α′ for all x ≤ −T , φT (x) = β ′ for all x ≥ T and Ga

1[φT ,R] = κT
s .

Let us define, for every ε > 0, vε(x) := φT
(

x−x0
Λε

)
, for every x ∈ E . We have that

vε → v in L1(E) and

Ga
ε [vε, E] = Ga

1[φT , (E − x0)/Λε] ≤ Ga
1[φT ,R] = κT

s .

By Proposition 11 again, we get

lim
T →+∞ lim sup

ε→0
Ga
ε [vε, E] ≤ κs .

Then, by a diagonalization argument, we can construct a sequence ṽε converging to v in
L1(E), which satisfies,

lim sup
ε→0

Ga
ε [ṽε , E] ≤ κs .

The optimal sequence for an arbitrary v ∈ BV (E, I ′) can be easily obtained gluing the
sequences constructed above for each single jump of v and taking into account that the long
range interactions decay as ε → 0.

5 Some new trace inequalities

It is well known that traces of functions in some Sobolev spaces are represented by functions
in Besov spaces (see the book [1, chapters 4 and 7]). Here we would like to consider extensions
of this result to weighted Sobolev spaces, for the case of domains in R

2. Let −1 < a < 0,
and Ω ⊂ R

2+ a bounded domain with Lipschitz boundary. Theorem 3 gives that the class of
traces on M , a piece of ∂Ω , of the space W 1,2(Ω,wa) is just the space Hs(M). However,
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Nekvinda’s proof does not give an exact value of the constant in the embedding. We seek to
give a precise inequality between functions in W 1,2(Ω,wa) and their traces.

This section is divided into four parts. First we summarize some lemmas that will be needed
in the proof. In the second part, we prove the embedding inequality whenΩ is the half-plane
R

2+ (Lemma 17). Next, we localize the inequality for a domain Ω = (−1, 1) × (0, 1); this
is the main result of the section and it is contained in Theorem 19. Last, we show that the
inequality is optimal in some sense.

5.1 Technical lemmas

In order to understand the energy term related to the fractional Laplacian, first we need to
study Eq. (2.2). We prove a basic auxiliary result:

Lemma 14 Consider the following ODE defined for y ∈ R
+:

−ϕ(y)+ a

y
ϕy(y)+ ϕyy(y) = 0.

It has two linearly independent solutions. In particular,

ϕ(y) = ys [c1 Is(y)+ c2 Ks(y)] (5.1)

for constants c1, c2 ∈ R. Here Is, Ks are the modified Bessel functions; their asymptotic
behavior is given precisely in (5.3) and (5.4).

Proof We actually have explicit formulas for the solution. Indeed, the changeϕ(y) = ysψ(y)
gives that ψ must be a solution of the modified Bessel equation

yψ ′′ + yψ ′ − (y2 + s2)ψ = 0. (5.2)

The books [2,28] are classical references for this equation. There are two independent solu-
tions of (5.2): Is , the modified Bessel function of the first kind, and Ks , the modified Bessel
function of second kind (see 9.6.1. in [2]). In particular, they have the following asymptotic
behavior (cf. 9.6.7 and 9.7.1 in [2]):

Is(y) ∼ 1

Γ (s + 1)

( y

2

)s
, Ks(y) ∼ Γ (s)

2

(
2

y

)s

when y → 0+. (5.3)

And when y → +∞,

Is(y) ∼ 1√
2πy

ey, Ks(y) ∼
√
π

2y
e−y . (5.4)

��
We show now a result from [9] that characterizes the minimizers of the energy in R

2+:

Lemma 15 Given v ∈ Hs(R) for 1/2 < s < 1, there exists a minimizer u0 of the following
variational problem

J (u) =
∫

R
2+

|∇u|2wa (5.5)

in the space Y := {u ∈ L2
loc(R

2+, wa) : ∇u ∈ L2(R2+, wa)}, subject to the constraint
u(x, 0) = v(x) for all x ∈ R, and the weight is taken as wa := ya. Moreover,

u0 = P ∗x v,
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where P is the Poisson kernel defined in (2.3) and∫

R
2+

|∇u0|2wa dxdy = es

∫

R

∣∣v̂(ξ)∣∣2 |ξ |2s dξ

for some positive constant es , depending only on s, whose precise value is given in (5.8).

Proof The Euler–Lagrange equation of J is
{

div(ya∇u) = 0 in R
2+

u = v on R × {0}. (5.6)

The main idea is to reduce (5.6) to an ODE by taking Fourier transform in x . We obtain

− |ξ |2 û(ξ, y)+ a

y
ûy(ξ, y)+ û yy(ξ, y) = 0,

that is ODE for each fixed value of ξ .
On the other hand, consider the one-dimensional functional for each ϕ : [0,+∞) → R

given by

J̄ [ϕ] =
∫

R+

{
(ϕ′)2(t)+ ϕ2(t)

}
ta dt

subject to the conditions ϕ(0) = 1 and limt→+∞ ϕ(t) = 0. Its Euler–Lagrange equation is
given by

−ϕ(y)+ a

y
ϕy(y)+ ϕyy(y) = 0,

that has been well understood in Lemma 14. Indeed, if ϕ0 is the minimizer of J̄ , its precise
formula is given by (5.1) with c1 = 0, c2 = cst (s).

Thus we conclude that the minimizer we seek in the present lemma satisfies û0(ξ, y) =
v̂(ξ)ϕ0(|ξ | y). Next, just compute

∫

R
2+

|∇u0|2 ya =
∫

R

∞∫

0

(
|ξ |2 ∣∣û0

∣∣2 + ∣∣∂y û0
∣∣2) ya dydξ

=
∫

R

∞∫

0

∣∣v̂(ξ)∣∣2 |ξ |2
(
|ϕ0(|ξ | y)|2 + ∣∣ϕ′

0(|ξ | y)
∣∣2) ya dydξ

=
∫

R

∣∣v̂(ξ)∣∣2 |ξ |1−a

∞∫

0

(
|ϕ0(t)|2 + ∣∣ϕ′

0(t)
∣∣2) ta dtdξ

= J̄ [ϕ0]
∫

R

∣∣v̂(ξ)∣∣2 |ξ |1−a dξ. (5.7)

The lemma is proved, for a constant

es := J̄ [ϕ0]. (5.8)

��
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The following result allows to compare the energies in R
2+ and in R × (0,M) for big M .

Lemma 16 Given v ∈ Hs(R), consider the functionals

J [u] =
∫

R
2+

|∇u|2wa dxdy and JM [u] =
∫

R×(0,M)
|∇u|2wa dxdy

subject to the constraint T u = v in R. Let u0 be the minimizer of J and uM be the minimizer
of JM , in their corresponding weighted function spaces. Given ε > 0, there exists M > 0
depending only on ε and not on v such that∫

R×(0,M)
|∇uM |2wa dxdy ≥ (1 − ε)

∫

R
2+

|∇u0|2wa dxdy.

Proof We use the ideas of Lemma 15 in order to reduce the two dimensional problem to an
ordinary differential equation through Fourier transform. The Euler–Lagrange equation of
JM is ⎧⎨

⎩
div(ya∇u) = 0 in R

2+,
∂νu = 0 on R × {M},

u = v on R × {0},
(5.9)

while the one for J is given by (5.6). Taking Fourier transform in x , we immediately realize
that both minimizers u0, uM must satisfy the ODE (for each value of ξ )

− |ξ |2 û(ξ, y)+ a

y
ûy(ξ, y)+ û yy(ξ, y) = 0.

Now consider the two one-dimensional functionals for each ϕ : [0,+∞) → R,

J̄ [ϕ] =
∫

R+

(∣∣ϕ′∣∣2 + ϕ2
)

ya dy and J̄M [ϕ] =
∫

(0,M)

(∣∣ϕ′∣∣2 + ϕ2
)

ya dy

subject to the condition ϕ(0) = 1. Let ϕ0 and ϕM be the minimizers of J̄ and J̄M , respec-
tively. Then û0(ξ, y) = v̂(ξ)ϕ0(|ξ | y) and û0(ξ, y) = v̂(ξ)ϕM (|ξ | y) because both ϕ0 and
ϕM satisfy the Euler equation

− ϕ(y)+ a

y
ϕy(y)+ ϕyy(y) = 0. (5.10)

with boundary conditions

ϕ0(0) = 1, ϕ0(y) → 0 when y → +∞,

ϕM (0) = 1, ϕ′(M) = 0.
(5.11)

Thus Lemma (14) gives that

ϕ0(y) = ys [c1 Is(y)+ c2 Ks(y)] , ϕM (y) = ys
[
cM

1 Is(y)+ cM
2 Ks(y)

]
.

If we impose the boundary conditions (5.11) at y = 0, we obtain the value of c2 = cM
2 =

cst (s). Now, note that ∂yϕM (M) = 0 while ϕ decays at infinity, this fixes c1, cM
1 . In particu-

lar, cM
1 → c1 = 0 exponentially. We have then that ϕM converges to ϕ0 and ϕ′

M to ϕ′
0 when

M → ∞, and thus, also

J̄M [ϕM ] → J̄ [ϕ0]. (5.12)
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Then, the computation in (5.7) gives that∫

R
2+

|∇u0|2wa = J̄ [ϕ0]
∫

R

∣∣v̂(ξ)∣∣2 |ξ |1−a dξ (5.13)

while ∫

R×(0,M)
|∇uM |2wa = J̄M [ϕM ]

∫

R

∣∣v̂(ξ)∣∣2 |ξ |1−a dξ. (5.14)

The lemma is proved by comparing (5.14) and (5.13), because of (5.12). ��
5.2 Inequality for a half-plane

Denote by R
2+ the half-plane R×(0,+∞), and consider the weight in R

2+ given bywa(x, y) :=
ya for x ∈ R, y > 0. When a = 0, Fourier transform methods quickly give that a function u
defined on R

2+ has a well defined trace on R × {0} and moreover (see [6, lemma 6.2])

∫

R2

∣∣∣∣v(x)− v(x ′)
x − x ′

∣∣∣∣
2

dxdx ′ ≤ 2π
∫

R
2+

|∇u|2 dxdy. (5.15)

This constant 2π is sharp.
Trace inequalities for the general case −1 < a < 0 require the characterization of the

fractional Laplacian by Caffarelli and Silvestre [9] as a Dirichlet-to-Neumann operator. The
first result of this subsection deals with the generalization of (5.15).

Lemma 17 Let u be a function in L2
loc(R

2+, wa) with derivative in L2(R2+, wa). Then the
trace of u on R × {0}, call it v, is a well defined function v ∈ L2

loc(R). Moreover,

∫

R2

∣∣v(x)− v(x ′)
∣∣2

|x − x ′|1+2s dxdx ′ ≤ Ds

∫

R
2+

|∇u|2wa dxdy, (5.16)

where Ds is a constant depending only on s but not on u, and it is given precisely in (5.20).

Proof First we assume that u is smooth. The result will then follow by approximation. Next,
if we apply Plancherel theorem for the Fourier transform we obtain

∫

R2

∣∣v(x)− v(x ′)
∣∣2

|x − x ′|1+2s dxdx ′ =
∫

R

⎡
⎣
∫

R

|v(x + h)− v(x)|2 dx

⎤
⎦ 1

h1+2s
dh

=
∫

R

⎡
⎣
∫

R

∣∣∣v̂(ξ)(e2π ihξ − 1)
∣∣∣2 dξ

⎤
⎦ 1

h1+2s
dh

=
∫

R

⎡
⎣
∫

R

2 − 2 cos(2πhξ)

h1+2s
dh

⎤
⎦ ∣∣v̂(ξ)∣∣2 dξ

= ds(2π)
2s
∫

R

∣∣v̂(ξ)∣∣2 |ξ |2s dξ, (5.17)
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for

ds =
∫

R

2 − 2 cos z

z1+2s
dz. (5.18)

On the other hand, let u0 be the minimizer of the functional

J (u) =
∫

R
2+

|∇u|2wa

found in Lemma 15. Then∫

R
2+

|∇u0|2wa dxdy = es

∫

R

∣∣v̂(ξ)∣∣2 |ξ |2s dξ. (5.19)

We set

Ds := ds(2π)
2s/es, (5.20)

where es is given in (5.8) and ds in (5.18).
The proof of (5.16) is completed from (5.17), (5.19), and using the fact that u0 is a

minimizer of J . ��
Corollary 18 Inequality (5.16) is achieved when u = P ∗x v.

Proof Indeed, the minimizer u0 is given precisely by u0 = P ∗x v. ��
5.3 Inequality of a bounded domain

Now we would like to localize inequality (5.16) in a bounded domainΩ ⊂ R
2+ such that part

of its boundary, say M ⊂ ∂Ω lies on R × {0}. Again, we fix the weight wa := ya . Nekv-
inda’s work, summarized in Theorem 3, assures that the trace of a function u ∈ W 1,2(Ω,wa)

belongs to the Besov space Hs(M), but it does not give the explicit value of the constant in
the embedding.

Here we claim that this constant can be taken as the constant in R
2+, the Ds found in the

previous subsection:

Theorem 19 Let Ω := (−1, 1) × (0, 1) ⊂ R
2+ and u ∈ W 1,2(Ω,wa). Then the trace of

u on (−1, 1) × {0}, call it v, is a well defined function v ∈ Hs(−1, 1) and, for the same
constant Ds as in the Lemma 17, we have

∫

(−1,1)2

∣∣v(x)− v(x ′)
∣∣2

|x − x ′|1+2s dxdx ′ ≤ Ds

∫

Ω

|∇u|2wa dxdy. (5.21)

Proof First note that Theorem 3 quickly gives that v ∈ Hs(−1, 1). Moreover, it is enough
to prove inequality (5.21) for u ∈ C∞(Ω̄).

Fixed ε > 0, consider the constant M > 0 given in Lemma 16, that is independent of
u, v. We will show first that

∫

ΩM

|∇u|2wa dxdy ≥ D−1
s (1 − ε)

∫

(−M,M)2

∣∣v(x)− v(x ′)
∣∣2

|x − x ′|1+2s dxdx ′, (5.22)
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i.e., that the inequality holds in a domainΩM := (−M,M)× (0,M) up to epsilon. Because
the inequality (5.22) is invariant under the rescaling (x̃, ỹ) := 1

M (x, y), it also holds for
(−1, 1)× (0, 1), up to ε. This would finish the proof of (5.21).

We compare the energy of u to the energy of u1, the minimizer of the functional

JΩM [u] =
∫

ΩM

|∇u|2wa dxdy,

subject to the restriction T u1 = v. We now try to extend u1 defined onΩM to the whole R
2+,

in order to use Lemma 17. We do it in several steps.
First, because u1 satisfies a zero Neumann condition on the boundary {−M,M}×(0,M),

it is possible to reflect it evenly N times to obtain a solution on ΩN M = AN M × (0,M)
where AN M is an interval of length N M . We still denote that extension by u1. Call v1 to be
the trace of u1 on y = 0. Now we would like to extend u1 to the whole R × (0,M). For this,
first extend v1 continuously to R such that the extension, call it v2, belongs to Hs(R), and
solve the Caffarelli–Silvestre extension problem{

div(ya∇u2) = 0 in R
2+

u2 = v2 on R × {0}.
Let B := [b1 − 1, b1] ∪ [b2, b2 + 1] where b1 = inf(AN M ), b2 = sup(AN M ), and let
η : R → R

+ be a smooth cutoff such that η = 1 in AN M and η = 0 outside AN M ∪ B.
Consider the function obtained by the gluing

u3 := ηu1 + (1 − η)u2,

it is defined on R × (0,M).
Next, let uM : R × (0,M) → R be the minimizer of the functional

JM [u] =
∫

R×(0,M)
|∇u|2wa dxdy

and u0 : R
2+ → R be the minimizer of

J [u] =
∫

R
2+

|∇u|2wa dxdy,

both subject to the condition T u = v2 on y = 0. In particular, we can use the Poisson kernel
(2.3) to write u0 = P ∗x v2. Lemma 16 implies that∫

R×(0,M)
|∇u3|2wa ≥

∫

R×(0,M)
|∇uM |2wa ≥ (1 − ε)

∫

R
2+

|∇u0|2wa . (5.23)

Applying Corollary 18 to u0 = P ∗x v2, we obtain that

∫

R
2+

|∇u0|2wa = D−1
s

∫

R×R

∣∣v2(x)− v2(x ′)
∣∣2

|x − x ′|1+2s dxdx ′

≥ N D−1
s

∫

(−M,M)2

∣∣v(x)− v(x ′)
∣∣2

|x − x ′|1+2s dxdx ′, (5.24)
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where the last inequality holds just by dropping part of the domain of integration. On the
other hand, because of our gluing construction,∫

R×(0,M)
|∇u3|2wa = N

∫

ΩM

|∇u1|2wa +
∫

B×(0,M)
|∇u3|2wa

+
∫

[R\(AN M ∪B)]×(0,M)
|∇u2|2wa

=: N
∫

ΩM

|∇u1|2wa + I3 + I2. (5.25)

We would like to show that the last two terms I2, I3 above are bounded independently of
N . First of all, we can use the Poisson kernel (2.3) to write explicit formulas for u2 = P ∗x v2,
i.e.,

u2(x, y) = c2,s

∫

R

y1−av2(ξ)

(|x − ξ |2 + |y|2) 2−a
2

dξ = c2,s

∫

R

v2(x − zy)(
z2 + 1

) 2−a
2

dz

after the change z = x−ξ
y . Because the original v was differentiable, we have that v2 has

bounded derivative (it is smooth except perhaps at the reflection points). Then

∂x u2(x, y) = C
∫

R

v′
2(x − zy)(

z2 + 1
) 2−a

2

dz

and

∂yu2(x, y) = C
∫

R

(−z)v′
2(x − zy)(

z2 + 1
) 2−a

2

dz.

In the following, C will be a positive constant that may change from line to line. We consider
the following auxiliary term I and can compute, using Hölder, that

I : =
∫

x∈(b2,+∞),y∈(0,M)
|∇u2|2 ya dxdy

≤ C
∫

x∈(b2,+∞),y∈(0,M)

∫

z∈R

ya

[
v′

2(x − zy)
]2 max {1, |z|2}(

z2 + 1
)2−a dzdxdy. (5.26)

We could have extendedv2 to constant (or very decaying to constant) on the interval [b2,+∞).
Thus it is enough to consider the change θ = x − zy − b2 so that

I ≤ C
∫

z∈R

max {1, |z|2}(
z2 + 1

)2−a

∫

y∈(0,M)
ya

∫

θ∈(−zy,0)

v′
2(θ + b2)

2 dθdydz

≤ C
∫

z∈R

|z| max {1, |z|2}(
z2 + 1

)2−a dx
∫

y∈(0,M)
ya+1dy. (5.27)

This last integral is bounded independently of N because −1 < a < 0. Similar arguments
give that the terms I2, I3 from (5.25) are o(N ).

123



Gamma convergence of an energy functional related to the fractional Laplacian 195

Then, combining (5.23), (5.24) and (5.25) we obtain that

N
∫

ΩM

|∇u1|2wa + o(N ) ≥ (1 − ε)D−1
s N

∫

(−M,M)2

∣∣v(x)− v(x ′)
∣∣2

|x − x ′|1+2s dxdx ′.

Divide the previous inequality by N and let N → ∞, so that

∫

ΩM

|∇u1|2wa ≥ (1 − ε)D−1
s

∫

(−M,M)2

∣∣v(x)− v(x ′)
∣∣2

|x − x ′|1+2s dxdx ′. (5.28)

To finish just note that
∫

ΩM

|∇u|2wa dxdy ≥
∫

ΩM

|∇u1|2wa dxdy (5.29)

because u1 was a minimizer of JΩM . The proposition follows from (5.28) and (5.29), after
rescaling back. ��
5.4 Optimality

In the remaining of the section we would like to show that the constant Ds in (5.21) is optimal
in some sense.

Proposition 20 For each ε > 0, there exists a function uε defined on (−1, 1)× (0, 1) such
that

ε1−a
∫

(−1,1)×(0,1)
|∇uε |2wa = D−1

s ε1−a
∫

(−1,1)2

∣∣T uε(x)− T uε(x ′)
∣∣2

|x − x ′|1+2s dxdx ′ + Rε (5.30)

with limε→0 |Rε | = 0, and this term is of lower order when ε → 0.

Proof Fix a domain Ω = (−1, 1)× (0, 1), and for each ε > 0 consider the scaling Λε > 0
given by (1.9). Set vε : (−1, 1) → R to be the function that satisfies vε(x) = 0 if x ∈
(−1,−Λε/2], vε(x) = 1 if x ∈ [Λε/2, 1), and linear in the interval [−Λε/2,Λε/2]. Extend
it to R, by making it constant on (−∞,−1) and (1,+∞), and denote this extension by
ṽ := ṽε . Now construct a function u := uε defined on R

2+ with trace ṽ as u = P ∗x ṽ.
Corollary 18 tells that for u constructed this way,

∫

R
2+

|∇u|2wa dxdy = D−1
s

∫

R×R

∣∣ṽ(x)− ṽ(x ′)
∣∣2

|x − x ′|1+2s dxdx ′. (5.31)

We try now to restrict the domain of integration toΩ by estimating the remaining terms. Let
Ωε := ((−1,−Λε/2] ∪ [Λε/2, 1)) × (Λε/2, 1). A straightforward computation from the
Poisson formula

u(x, y) = C
∫

R

y1−a ṽ(ξ)(|x − ξ |2 + |y|2)(2−a)/2
dξ
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gives that
∫

Ωε

|∇u|2wa dxdy = C

Λ2s−1
ε

+ o

(
1

Λ2s−1
ε

)
,

while ∫

R
2+

|∇u|2wa dxdy −
∫

Ωε

|∇u|2wa dxdy = o

(
1

Λ2s−1
ε

)
.

On the other hand, let Aε = (−1,Λε/2], Bε = [Λε/2, 1). We also have

∫

Aε×Bε

∣∣ṽ(x)− ṽ(x ′)
∣∣2

|x − x ′|1+2s dxdx ′ = C ′

Λ2s−1
ε

+ o

(
1

Λ2s−1
ε

)

while
∫

R2\((Aε×Bε )∪(Bε×Aε ))

∣∣ṽ(x)− ṽ(x ′)
∣∣2

|x − x ′|1+2s dxdx ′ = o

(
1

Λ2s−1
ε

)

Because of equality (5.31), the previous estimates, and the fact that

ε1−a 1

Λ2s−1
ε

= 1

we conclude that the uε , vε we have constructed satisfy (5.30). ��
Remark 1 We have constructed a piecewise linear function. However, the above proposition
is still true as long as the transition occurs on a layer of length Λε .

6 Preliminary results

We are going to prove the main Theorem 1 by localizing the functional into several regions.
Section 3 takes care of the behavior of the functional in the interior of the domain Ω . Thus,
it remains to study the interaction the interaction with the wall of the container ∂Ω . In the
present section we give some preliminary results in that regard.

First, we look at a small neighborhood of x ∈ ∂Ω , and reduce the problem to the study
of a small neighborhood Br × (0, r) ⊂ R

3+. Then we reduce the dimension from three to
two through a slicing argument, so that it is enough to consider a subdomainΩ = (−r, r)×
(0, r) ⊂ R

2+, and thus, the results of Sects. 4 and 5 can be applied.
Let us remind the reader that the Gamma-limit is going to be expressed in terms of the

functional (1.7), whose exact expression is

Φ(u, v) := σH2(Su)+
∫

∂Ω

|W(T u)− W(v)| + κsH1(Sv).

The first term inΦ comes from the behavior in the interior (Sect. 3). In Proposition 26 we will
consider the “wall effect”, that explains the presence of the second term; while the remaining
of the section is devoted to the “boundary effect”, that deals with the third term.
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We define the localization of the functional Fa
ε as follows. For every open set A ⊂ Ω and

any A′ ⊂ ∂A, we set

Fa
ε [u, A, A′] := ε1−a

∫

A

|∇u|2wa + 1

ε1−a

∫

A

W (u)w−1
a + λε

∫

A′
V (T u). (6.1)

Note that we easily recover the original functional as Fa
ε [u] = Fa

ε [u,Ω, ∂Ω].
6.1 Reduction to the flat case

Fixed x ∈ ∂Ω , we will consider small “cubical” neighborhoods Qr (x) near the boundary, of
size r , such that Ω ∩ Qr (x) is equivalent to the cylinder Dr := Br × (0, r). Here Br is the
two-dimensional ball of radius r centered an the origin. Let Er be the boundary part given
by Er := Br × {0}. In order to evaluate the error in the deformation, we need to introduce
the notion of isometry defect.

Given two domains A1, A2 ⊂ R
3 and a bi-Lipschitz homeomorphism Ψ : Ā1 → Ā2, the

isometry defect δ(Ψ ) of Ψ is the smallest constant δ such that

dist(DΨ (x), O(3)) ≤ δ for a.e. x ∈ A1. (6.2)

Here O(3) is the set of linear isometries on R
3, and DΨ (x) is regarded as a linear mapping

of R
3 into R

3. Let I be the identity map on R
3. The distance between linear mappings is

induced by the norm ‖·‖, which for every linear map T is defined as

‖T ‖ = sup
|v|≤1

|T v| .

The following proposition shows that the localized energy Fa
ε [u,Ω∩Qr (x), ∂Ω∩Qr (x)]

can be replaced by the energy Fa
ε [u, Dr , Er ].

Proposition 21 LetΩ be a domain in R
3 with C2 boundary ∂Ω in C2. Then for every x ∈ ∂Ω

and every positive r smaller than a certain critical value rx > 0, there exists a diffeomorphism
Ψr : D̄r → Ω ∩ Qr (x) such that

1. Ψr takes Dr onto Ω ∩ Qr (x) and Er onto ∂Ω ∩ Qr (x).
2. Ψr is of class C1 on Dr and ‖DΦr − I d‖ ≤ δr everywhere on Dr , where δr → 0 as

r → 0.

In particular, the isometry defect of Ψr vanishes as r → 0. Moreover,

Fa
ε [u, Qr (x) ∩Ω, Qr (x) ∩ ∂Ω] ≥ (1 − δ(Ψr ))

5 Fa
ε [u ◦ Ψr , Dr , Er ].

Proof It is essentially contained in propositions 4.9 and 4.10 from [6], although in our case
we need to make some modifications due to the presence of a weight.

Because of the smoothness assumptions on ∂Ω , we can parameterize a small neighborhood
of x ∈ ∂Ω with coordinates (t, ρ), where ρ = dist(·, ∂Ω), t is the coordinate parameterizing
each level set of ρ and such that ρ ∈ (0, r), and t ∈ Br . The change of coordinates map, call
it Ψr is a diffeomorphism with DΨr (x) = I . It is clear than

δ := δ(Ψr ) → 0, when r → 0. (6.3)

Moreover,

|D(u ◦ Ψr )| ≤ (1 + δ) |(Du) ◦ Ψr | . (6.4)
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Let J be the Jacobian determinant of Ψr on Dr and J ′ be the one of Ψr |Er . They satisfy
|J | , ∣∣J ′∣∣ ≤ (1 + δ)3 a.e.. Using the change of variable formula and (6.4) we see that

Fa
ε [u ◦ Ψr , Dr , Er ] = ε1−a

∫

Dr

|∇(u ◦ Ψr )|2ρa Jdρdt

+ 1

ε1−a

∫

Dr

W (u ◦ Ψr )ρ
−a Jdρdt + λε

∫

Er

V (T (u ◦ Ψr ))J
′dt

≤ (1 + δ(Ψr ))
5 Fa

ε [u, Qr (x) ∩Ω, Qr (x) ∩ ∂Ω],
as we wished, because 1

1+δ ≥ 1 − δ. ��

Remark 2 The regularity of ∂Ω could be reduced to C1,α and still have (6.3).

6.2 Dimension reduction

The next step is to reduce the problem from three to two dimensions through slicing. Before
we give the main result, we state some classical slicing results in R

n :
We fix m > 0 and assume that every function in this subsection takes values in [−m,m].

Let A be a bounded open subset of R
n , e is a unit vector in R

n and u a function on A. We
denote by M the orthogonal complement of e, and by Ae the projection of A onto M . For
every z ∈ M , we set Az

e := {t ∈ R : z + te ∈ A}; and uz
e to be the trace of u on Az

e, that is
uz

e := u(z + te).

Proposition 22 (section 5.10, p. 216, in [10]) Let B ⊂ A be a given Borel set. If B has finite
perimeter in A, then Bz

e has finite perimeter in Az
e and ∂(Bz

e ∩ Az
e) = (∂B ∩ A)ze for a.e.

z ∈ Ae, and ∫

Ae

H0(∂Bz
e ∩ Az

e)dz =
∫

∂B∩A

〈vB , e〉. (6.5)

Conversely, B has finite perimeter in A if there exist n linearly independent unit vectors e
such that the integral of H0(∂Bz

e ∩ Az
e) over all z ∈ Ae is finite.

From here we can establish a connection between the compactness of a family of functions
in L1(R3) and the compactness of the traces of these functions. For every family F of func-
tions of A, we set F z

e := {uz
e : u ∈ F}, so that F z

e is a family of functions on Az
e. We say that

a family F ′ is δ-dense in F if F lies in a δ-neighborhood of F ′ with respect to the L1(A)
topology. Then

Theorem 23 (theorem 6.6 in [6]) Let F be a family of functions v : A → [−m,m] and
assume that there exist n linearly independent unit vectors e which satisfy the following
property:

For every δ > 0 there exists a family Fδδ-dense in F such that (Fδ)ze is pre-compact
in L1(Az

e) for Hn−1 a.e. z ∈ Ae.

Then F is precompact in L1(A).

Now we can give the main proposition of the subsection, where we slice a cylinder
Dr = Br × (0, r) ⊂ R

3+. We drop the subindex r in the notation. We set coordinates in D
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as (x1, x2, y) where x1, x2 parameterize Br and y ∈ (0, r). Then E = {y = 0} ∩ D̄. Fix an
arbitrary unit vector e in the plane {y = 0}, and let Ee the projection of the set E . We will
slice D in the direction of y, perpendicularly to e. The slice corresponding for each z ∈ Ee

is denoted by Dz ; let Ez its projection onto the plane {y = 0}. For a nice picture, see figure
4 in [6].

Proposition 24 Let (uε) ⊂ W 1,2(D, wa) be a sequence with uniformly bounded energies
Fa
ε [uε, D, E]. Then the traces of uε are pre-compact in L1(E) and every cluster point belongs

to BV (E, I ′). Moreover, if T uε → v in L1(E), then

lim inf
ε→0

Fa
ε [uε, D, E] ≥ κs

∣∣∣∣∣∣∣
∫

E∩Sv

νv

∣∣∣∣∣∣∣
dH1, (6.6)

where the constant κs is defined in (4.2).

Proof We slice the region D using Fubini’s theorem, so then

Fa
ε [uε, D, E] ≥ ε1−a

∫

D

|∇uε |2wa + λε

∫

E

V (T u)

≥
∫

Ee

⎛
⎝ε1−a

∫

Dz

|∇uz
ε |2 ya + λε

∫

Ez

V (T uz
ε)

⎞
⎠ dz. (6.7)

Next, we use the trace inequalities of Sect. 5 in each domain Dz , Ez (note that the inequalities
are invariant by rescaling). Indeed, because of (5.21), we have the estimate

Fa
ε [uε, D, E] ≥

∫

Ee

⎛
⎝ε1−a D−1

s

∫

Ez×Ez

∣∣T uz(x)− T uz(x ′)
∣∣2

|x − x ′|1+2s + λε

∫

Ez

V (T uz)

⎞
⎠ dz

=
∫

Ee

Ga
ε [T uz, Ez]dz. (6.8)

This last functional Ga
ε has been well studied in Sect. 4 when Ez is an interval in R.

The rest of the proof follows exactly as proposition 4.7 in [6]. For commodity of the
reader, we give the main ideas. We check first that (T uε) is pre-compact in L1(E). Thanks
to Theorem 23, it suffices to show that the family F := (T uε) satisfy the following property:
for every δ > 0, there exists a family Fδδ-dense in F such that (Fδ)ze is pre-compact in
L1(E) for H2-a.e. z ∈ Ee. By assumption Fa

ε [uε, D, E] ≤ C , so that (6.8) implies also that
∫

Ee

Ga
ε [uz

ε, Ez] ≤ C. (6.9)

Fix δ > 0. For every δ > 0, define vε : E → [−m,m] such that

vz
ε :=

{
T uz

ε, if z ∈ Ee and Ga
ε [uz

ε, Ez] ≤ 2mrC/δ
α′, otherwise.

(6.10)

By (6.8), (6.9), (6.10), we have vz
ε = T uz

ε for all z ∈ Ee apart from a subset of measure
smaller than δ/(2mr). Hence vε = T uε in E up to a set of measure smaller than δ/m. So,
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from |T uε | ≤ m, we deduce that ‖vε − T uε‖L1(E) ≤ δ. Therefore, the family Fδ := {vε} is
δ-dense in F .

Next, by (6.10), we have that Ga
ε [vz

ε , Ez] ≤ 2mrC/δ for every z ∈ Ee and every ε. Hence,
Theorem 5 implies that the sequence (vz

ε ) is pre-compact in L1(Ez). Thus F satisfies the
hypothesis of Theorem 23 for every e, and the sequence (T uε) is pre-compact in L1(E).

It remains to prove that if T uε → E in L1(E), then v belongs to BV (E, I ′), and inequal-
ity (6.6) holds. We have (up to a subsequence), that T uz

ε → vz in L1(E) for a.e. z ∈ Ee

(remark 6.7 in [6]). Then, Proposition 5 yields vz ∈ BV (Ez, I ′) and

lim inf
ε→0

Fa
ε [uε, D, E] ≥

∫

Ee

κsH0(Svz)dz. (6.11)

The right-hand side of the formula above is finite, so then Proposition 22 implies that v
belongs to BV (E, I ′), and that Svz agrees with Sv ∩ Ez for a.e. z ∈ Eε . Then, by (6.5) we
may rewrite (6.11) as

lim inf
ε→0

Fa
ε [uε, D, E] ≥ κs

∫

E∩Sv

〈νv, e〉dz.

Finally, (6.6) follows by choosing a suitable unit vector e in the expression above. ��
6.3 The boundary effect

In the previous arguments we have reduced the dimension from three to two, so it is enough
to understand the following functional on R

2+. Set D = (−1, 1) × (0, 1), E = (−1, 1), we
define

Ha
ε [w, D, E] := ε1−a

∫

D

|∇w|2 ya dxdy + λε

∫

E

V (Tw).

Trace inequalities allow to quickly relate this functional to the optimal profile obtained in
Proposition 12. This link is precisely the missing ingredient in [22] for the superquadratic
case.

Let φ : R → [α′, β ′] be such optimal profile. It achieves the infimum of

κs := inf

{
Ga

1[v,R] : v ∈ Hs(R), lim
x→−∞ v(x) = α′, lim

x→+∞ v(x) = β ′
}
.

Now let w1 := P ∗x φ. We rescale

wε(x, y) := w1

(
x

Λε
,

y

Λε

)
, (6.12)

and

φε(x) := φ
( x

Λε

)
.

Note that wε = P ∗x φε .

Lemma 25 In the hypothesis above, we have that

Ha
ε [wε, D, E] = κs + o(1), when ε → 0.
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Proof We note that, because of our rescaling,

Ha
ε [wε, D, E] = Ha

1 [w1, D/Λε, E/Λε].
But we can compute explicitly that

Ha
1 [wε, D/Λε, E/Λε] = Ha

1 [w1,R
2+,R] − o(1).

On the other hand, because of the definition of w1, we have equality in Corollary 18, and
thus

Ha
1 [w1,R

2+,R] = 1

Ds

∫

R2

∣∣φ(x)− φ(x ′)
∣∣2

|x − x ′|1+2s dxdx ′ +
∫

R

V (φ) dx = Ga
1[φ,R] = κs .

The lemma is proved. ��
6.4 The wall effect

Here we deal with the second term in the limit functional (1.7):

Proposition 26 Let A ⊂ Ω ⊂ R
3 be a domain with piecewise C1 boundary, and A′ =

∂A ∩ ∂Ω with Lipschitz boundary. Let u ∈ BV (A, I ), v ∈ BV (A′, I ′) be given. Then

i. For every sequence (uε) ⊂ W 1,2(A, wa) such that uε → u in L1(A) and T uε → v in
L1(A′),

lim inf
ε→0

Ea
ε [uε, A] ≥

∫

A′
|W(T u)− W(v)| .

ii. If v is constant on A′ and u is constant in A with u = α or u = β, there exists a sequence
(uε) such that T uε = v in A′, (uε) converges to u, uniformly on every set with positive
distance from A′ and

lim sup
ε→0

Ea
ε [uε, A] ≤

∫

A′
|W(T u)− W(v)| .

Moreover, the function uε may be required to be C
ε

( r
ε

)−a
-Lipschitz continuous in

Ar := {x ∈ A : dist(x, ∂A) ≤ r} .
Proof The proof is a modification of propositions 1.2 and 1.4 in [18], and it is very well
written for the case p > 2 in Palatucci’s Ph.D. thesis [23, proposition 4.3]. Here we indicate
the steps required, and only give the proof for the ones that require any modification.

We may assume that Ea
ε [uε, A] ≤ C . For every ε > 0, let us denote

wε(x) := (W ◦ uε)(x), for x ∈ A. (6.13)

Step 1: We claim that
∫

A |Dwε | ≤ constant. Indeed, by Young’s inequality we have
∫

A

|Dwε | =
∫

A

∣∣W ′(uε)
∣∣ |Duε | = 2

∫

A

√
W (uε) |Duε | ≤ Ea

ε [uε, A] ≤ C.

Step 2: wε → W ◦ u ∈ BV (A) in L1(A).
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Step 3: The functional

G0(z) :=
∫

A

|Dz(x)| +
∫

∂A

|T z − W(v)| dH2

is l.s.c. on BV (A) with respect to the topology in L1(A).
Step 4: Proof of statement i. Applying lower semi-continuity of the functional G0 to the

sequence wε defined by (6.13) we obtain the following inequality
∫

A

|D(W ◦ u)(x)| +
∫

∂A

|W(T u)− W (v)| dH2

≤ lim inf
ε→0

⎛
⎝
∫

A

|D(W ◦ uε)(x)| +
∫

∂A

|W(T uε)− W (v)| dH2

⎞
⎠

≤ lim inf
ε→0

⎛
⎝Ea

ε [uε, A] +
∫

∂A

|W(T uε)− W (v)| dH2

⎞
⎠ , (6.14)

by Young’s inequality. Next, since T uε → v in L1(A′), we deduce that

lim inf
ε→0

∫

∂A

|W(T uε)− W(v)| dH2 = 0. (6.15)

From (6.14) and (6.15) we obtain the lower bound inequality i.
Step 5: Proof of the upper bound ii. The weightwa needs to be taken into account. Without

loss of generality, consider the case u = β and v = γ with α < γ < β; the other cases are
similar. Let θ : [0,+∞) → [γ, β] be the solution of the ODE written as

{
θ ′ = √

W (θ)

θ(0) = γ.
(6.16)

Let d(x) = dist(x, A′) = dist(x, ∂Ω). We set φ(t) := θ(ω) for ω := t1−a

1−a , and uε(x) :=
φ
(

d(x)
ε

)
. Then

Ea
ε [uε, A] = ε1−a

∫

A

|∇uε |2ha + 1

ε1−a

∫

A

W (uε)h
−a,

that can be written by the coarea formula as

Ea
ε [uε, A] =

∫

R+

∫

Σεt

[
φ′(t)2ta + W (φ(t))t−a] dσdt,

and after the change ω = t1−a

1−a we get

Ea
ε [uε, A] =

∫

R+

∫
Σ
ε((1−a)ω)

1
1−a

[
θ ′(ω)2 + W (θ(ω))

]
dσdω,
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where Σs is the set of points in A at a distance exactly s from A′. When ε → 0, we know
that ΣO(ε) → A′, and thus we have that

Ea
ε [uε, A] →

∫

R+

∫

A′

[
θ ′(ω)2 + W (θ(ω))

]
dσdω.

But because θ satisfies the ODE (6.16), then both terms in the above expression are equal,
so the inequality x2

1 + x2
2 ≥ 2x1x2 becomes an equality and we can conclude that

Ea
ε [uε, A] →

∫

A′

∫

R+
2
√

W (θ)θ ′dωdσ =
∫

A′

[W(β)− W(γ )
]

dσ,

where we take W to be a primitive of 2
√

W . To finish the proof of the proposition, just note
that

sup |∇uε | ≤ Cr−a

ε1−a
.

��
7 Proof of Theorem 1

Once we have the main ingredients from the previous sections, we can give the proof of the
main theorem.

7.1 Compactness

Let (uε) be a sequence in W 1,2(Ω,wa) such that Fa
ε [uε] is bounded. Using the localization

defined (6.1) and the functional Ea
ε from (3.1) we know that

Fa
ε [uε] ≥ Fa

ε [uε,Ω,∅] = Ea
ε [uε,Ω].

By statement iii. of Proposition 4 we conclude that (uε) is precompact in L1(Ω) and there
exists u ∈ BV (Ω, I ) such that uε → u in L1(Ω).

It remains to prove that (T uε) is pre-compact in L1(∂Ω) and every cluster point belongs
to BV (∂Ω, I ′). Thanks to Proposition 21, we can cover ∂Ω with finitely many “cubes”
(Q j ) j∈J , centered on ∂Ω , of radius r j , such that for every j ∈ J , there exists a bi-Lipschitz
map Ψ j with isometry defect δ(Ψi ) < 1, which satisfies Ψ j (Dr j ∩ Q j ) = Ω ∩ Q j and
Ψ j (Er j ∩ Q j ) = ∂Ω ∩ B j .

We show that (T uε) is pre-compact in L1(∂Ω ∩ Q j ) for every j ∈ J . For every fixed j ,

let us set u j
ε := uε ◦ Ψ j . We have that

Fa
ε [uε,Ω ∩ Q j , ∂Ω ∩ Q j ] ≥ (

1 − δ(Ψ j )
)5

Fa
ε [u j

ε , Dr j ∩ B j , Er j ∩ B j ],
so we conclude that Fa

ε [u j
ε , Dr j ∩ B j , Er j ∩ B j ] is uniformly bounded in epsilon. Hence,

the compactness of the traces T ui
ε in L1(Er j ) follows from Proposition 24. Finally, using the

invertibility of Ψ j , we have that (T uε) is pre-compact in L1(∂Ω) and that its cluster points
are in BV (∂Ω, I ′).

7.2 Lower bound inequality

Now we continue with the proof of the theorem. Parts i. and iii. follow by putting together
the results in the interior (Sect. 3) and the boundary (Sects. 4, 6).
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Let (uε) be a sequence in W 1,2(Ω,wa) satisfying u ∈ BV (Ω, I ), v ∈ BV (∂Ω, I ′), and
such that uε → u in L1(Ω), T uε → v in L1(∂Ω). We have to show that

lim inf
ε→0

Fa
ε [uε] ≥ Φ(u, v), (7.1)

whereΦ is given by (1.7). Assume, without loss of generality, that lim infε→0 Fa
ε [uε] < +∞.

For every ε > 0, let µε be the energy distribution associated with Fa
ε with configuration

uε , i.e., µε is the positive measure given by

µε(B) := ε1−a
∫

Ω∩B

|∇u|2ha + 1
ε1−a

∫

Ω∩B

W (u)h−a + λε

∫

∂Ω∩B

V (T u),

for every B ⊂ R
3. Similarly, we define

µ1(B) := σH2(Su ∩ B),

µ2(B) :=
∫

∂Ω∩B

|W(T u)− W(v)| dH2,

µ3(B) := κsH1(Sv ∩ B).

The total variation ‖µε‖ of the measure µε is equal to Fa
ε [uε], and ‖µ1‖ + ‖µ2‖ + ‖µ3‖

is equal to Φ(u, v). Note that ‖µε‖ is bounded, so we can assume that µε converges in the
sense of measure to some finite measure µ. Then, by the lower semicontinuity of the total
variation we have

lim inf
ε→0

Fa
ε [uε] = lim inf

ε→0
‖µε‖ ≥ ‖µ‖ .

Since the measures µi are mutually singular, we obtain the lower bound inequality (7.1) if
we prove that

µ ≥ µi for i = 1, 2, 3.

It is enough to show that µ(B) ≥ µi (B) for all sets B ⊂ R
3 such that B ∩Ω is a Lipschitz

domain and µ(∂B) = 0.
First, because of Proposition 4 we have that

µ(B) = lim
ε→0

µε(B) ≥ lim inf
ε→0

Fa
ε [uε,Ω ∩ B,∅] ≥ σH2(Su ∩ B) = µ1(B).

Similarly, we can prove that µ ≥ µ2. More precisely,

µ(B)= lim
ε→0

µε(B) ≥ lim inf
ε→0

Fa
ε [uε,Ω ∩ B,∅] ≥

∫

∂Ω∩B

|W(T (u))− W(v)| dH2 =µ2(B),

where we have used Proposition 26 with A = B ∩Ω and A′ = B ∩ ∂Ω .
The inequality µ ≥ µ3 requires a different argument. Notice that µ3 is the restriction of

H1 to the set Sv , multiplied by the factor κs . Thus, if we prove that

lim inf
r→0

µ(Qr (x))

2r
≥ κs, H1 a.e. x ∈ Sv, (7.2)

for Qr (x) as in Proposition 21, we obtain the required inequality. Note that, in any case, µ
is supported on Ω̄ .

Let us fix x ∈ Sv such that there exists limr→0
µ(Qr (x))

2r , and Sv has one-dimensional
density equal to 1. We denote by νv the unit normal at x . For r small enough, we choose a
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map Ψr as in Proposition 21. Set ūε := uε ◦Ψr and v̄ := v ◦Ψr . Hence, T ūε → v̄ in L1(Er )

and v̄ ∈ BV (Er , I ′). Moreover,

µ(Qr (x)) = lim
ε→0

µε(Qr (x))

= lim
ε→0

Fa
ε [uε,Ω ∩ Qr (x), ∂Ω ∩ Qr (x)]

≥ lim inf
ε→0

(1 − δ(Ψr ))
5 Fa
ε [ūε, Dr , Er ]. (7.3)

On the other hand, by Proposition 24, we have that

lim inf
ε→0

Fa
ε [ūε, Dr , Er ] ≥ κs

∣∣∣∣∣∣∣
∫

Sv̄∩Er

νvdH1

∣∣∣∣∣∣∣
.

Finally, notice that δ(Ψr ) → 0 as r → 0, and that∣∣∣∣∣∣∣
∫

Sv̄∩Er

νvdH1

∣∣∣∣∣∣∣
= 2r + o(r).

Thus we obtain that

µ(Qr (x))

2r
≥ κs

(
1 + o(r)

2r

)
, as r → 0,

that implies µ ≥ µ3. The proof of the lower bound inequality is completed.

7.3 Upper bound inequality

For the proof of ii., we use a standard construction piece by piece. We will require an extension
lemma

Lemma 27 Let A be a domain in R
3, that is contained in the strip {r < dist(·, ∂Ω) < 2r},

and let A′ ⊂ ∂A, v : A′ → [−m,m] a Lipschitz function. Then, for every ε > 0, there exists
an extension u : Ā → [−m,m] such that

Lip(u) ≤ 1

ε1−ara
+ Lip(v)

and

Ea
ε [u, A] �

[(
ε1−araLip(v)+ 1

)2 + Cm

] (H2(∂A)+ o(1)
)

z, as ε → 0.

where

Cm := max
t∈[−m,m] W (t), z = min{‖v − α‖L∞ , ‖v − β‖L∞}.

Proof It follows the ideas of lemma 4.11 in [6], but we need to take care of the weight h.
First, we assume without loss of generality, that A′ = ∂A. In fact, we can extend v to ∂A
without increasing its Lipschitz constant. We additionally suppose that z = ‖v − α‖∞; the
other case z = ‖v − β‖∞ is similar.

Let δ = ε1−ara , and set

u(x) :=
{
v(x), on ∂A,
α, on A\Azδ,
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where At is the set of all x in A such that 0 < dist(x, ∂A) < t . Then, u is
( 1
δ

+ Lip(v)
)

-Lipschitz continuous on Ā\Azδ . Finally, u can be extended to Ā, without increasing its
Lipschitz constant. We have

Ea
ε [u, A] = ε1−a

∫

Azδ

|∇u|2ha + 1

ε1−a

∫

Azδ

W (u)h−a

� |Azδ|
[
ε1−a

(
1

δ
+ Lip(v)

)2

ra + 1

ε1−a
Cmr−a

]

≤ [(H2(∂A)+ o(1)
)
(δLip(v)+ 1)2 + Cm

]
z, as ε → 0,

where we have used that |At | = t
(H2(∂A)+ o(1)

)
as t → 0. ��

Now we are ready for the proof of the upper bound in Theorem 1. Fix u ∈ BV (Ω, I )
and v ∈ BV (∂Ω, I ′). It is enough to assume that the singular sets of u and v, Su and Sv
respectively, are closed manifolds of class C2 without boundary. This is so because every pair
(u, v) ∈ BV (Ω, I )× BV (∂Ω, I ′) can be approximated in ∈ L1(Ω)× L1(∂Ω) by pairs that
fulfils those regularity assumptions (see theorem 1.24 of [15]). We assume that u and v, up
to modifications on negligible sets, are constant in each connected component of Ω\Su and
∂Ω\Sv respectively.

The idea is to construct a partition of Ω into four subsets, and to use the preliminary
convergence results of the previous sections to obtain the upper bound inequality.

For every x ∈ Ω , set d(x) = dist(x, ∂Ω) and d ′ : ∂Ω → R is the oriented distance from
Sv defined by

d ′(x) =
{

dist(x, Sv) if x ∈ {v = β ′},
−dist(x, Sv) if x ∈ {v = α′}.

For every r > 0, set

Γr := {x ∈ Ω : dist(x, ∂Ω) = r}.
Fix r > 0 such that Γr and Γ2r are Lipschitz surfaces and Su ∩Γr is a Lipschitz curve. With
this is mind, we construct a partition of Ω . Let

B1 := {x ∈ Ω : dist(x, Sv ∪ (Su ∩ Γr )) < 3r},
A1 := {x ∈ Ω\B̄1 : d(x) < r},
B2 := {x ∈ Ω\B̄1 : r < d(x) < 2r},
A2 := {x ∈ Ω\B̄1 : 2r < d(x)}.

We will construct a Lipschitz function uε := ur,ε for every ε < r , piece by piece, with
controlled Lipschitz constant.

Step 1: In the set A2, we take uε as in part ii. of Proposition 4. We extend it to ∂A2 by
continuity. Hence uε is C

ε1−ara -Lipschitz on Ā2, uε converges pointwise to u in A2, uniformly
on ∂A2 ∩ ∂B2, and

Fa
ε [uε, A2,∅] = Ea

ε [uε, A2] ≤ σH2(Su ∩ A2)+ o(1) ≤ σH2(Su)− σH2 (Su\A2)+ o(1)

as ε → 0.
Step 2: Now we consider the set A1. The function u is constant (equal to α or β) in every

connected component A of A1 on ∂A ∩ ∂Ω , and the function v is constant (equal to α′ or
β ′) on ∂A ∩ ∂Ω . Then we can use Proposition 26 to get a function uε such that T uε = v on
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∂A ∩ ∂Ω and uε converges to u pointwise in A1 and uniformly on every subset with positive
distance from ∂A ∩ ∂Ω . By the same proposition, we also have that uε is CW

ε1−ara -Lipschitz

continuous on Ā1, and we can extend it to ∂A1 by continuity. Since the distance of two
connected components of A1 is larger than r and 1

ε1−ara >
1
r , choosing C > max{2m,CW },

it follows that uε is C
ε1−ara -Lipschitz continuous on Ā1 and agrees with v on ∂A1 ∩ ∂Ω .

Moreover, the function uε satisfies

Fa
ε [uε, A1, ∂A1 ∩ ∂Ω] = Ea

ε [uε, A1] ≤
∫

∂A1∩∂Ω
|W(T uε)− W(v)| + o(1), as ε → 0.

Step 3: Note that in the previous steps we have constructed an optimal sequence in
Ā1 ∪ Ā2 that is C

ε1−ara -Lipschitz continuous, in particular, it is defined and Lipschitz on
((∂A1 ∪ ∂A2) ∩ ∂B), for every connected component B of B2.

By virtue of Lemma 27, we can extend uε to every B, obtaining a C+1
ε1−ara -Lipschitz con-

tinuous function that satisfies

Fa
ε [uε, B2,∅] = Ea

ε [uε, B2] ≤ zε
(
(C + 2)2 + Cm

) (H2(∂B2)+ o(1)
) = o(1)

as ε → 0, where we have used that zε := inf(∂A1∪∂A2)∩∂B2 |uε − u| = o(1), since uε is
constant on each connected components of B2.

Step 4: To construct the function in the piece B1 is the most delicate step. First, we need
some preliminaries: construct a function on the whole R

2+ with suitable behavior.
Consider the rescalings

Λε << σε << ρε << ε1−a

for some σε = ε p , ρε = εq . Let w̄1 be the function on R
2+ defined in Proposition 20 and its

rescaling w̄ε(x, y) := w̄1

(
x
Λε
,

y
Λε

)
. We also consider the function w1 from Lemma 25 and

its rescaling wε(x, y) := w1

(
x
Λε
,

y
Λε

)
. We glue them, so that we obtain a function defined

in the whole R
2+, as

w̃1 :=
{
w1, if (x, y) ∈ Dσε
w̄ if (x, y) ∈ R

2+\Dρε

and smooth in between, with its corresponding rescaling

w̃ε(x, y) := w̃1

(
x

Λε
,

y

Λε

)
. (7.4)

Because ρε >> σε >> Λε , we can apply Lemma 25 to obtain

Ha
ε [w̃ε, Dρε , Eρε ] = κs − o(1)

when ε → 0.
Now we pass from two to three dimensions. In particular, we set ũε on Sv × R

2+ to be

ũε(x, y, z) := w̃ε(x, y) for every z ∈ Sv, (x, y) ∈ R
2+. (7.5)
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where w̃ε is defined in (7.4). In addition, for any function ũ defined on Sv × D, we define
the following functional.

F̃a
ε [ũ, Sv × D, Sv × E] := ε1−a

∫

Sv×D

|∇ũ|2 ya dxdydz

+ 1

ε1−a

∫

Sv×D

W (ũ)y−a dxdydz + λε

∫

Sv×E

V (T ũ) dxdz.

For the ũε we have constructed in (7.5), Fubini’s theorem implies that

F̃a
ε [ũε, Sv × Dρε , Sv × Eρε ]

= H1(Sv)

⎛
⎜⎝Ha

ε [w̃ε, Dρε , Eρε ] + 1

ε1−a

∫

Dρε

W (w̃ε)y
−a dxdy

⎞
⎟⎠

≤ H1(Sv)

⎛
⎜⎝Ha

ε [w̃ε, Dρε , Eρε ] + C

ε1−a

∫

x∈(−ρε,ρε),y∈(0,ρε)
y−a dxdy

⎞
⎟⎠

= H1(Sv)

(
Ha
ε [w̃ε, Dρε , Eρε ] + C ′

ε1−a
ρ2−a
ε

)
. (7.6)

We choose 1 − a < p < q < 1−a
−a and q > 1−a

2−a . Then from (7.6) we obtain that

F̃a
ε [ũε, Sv × Dρε , Sv × Eρε ] ≤ H1(Sv) [κs + o(1)] (7.7)

as ε → 0.
Now we transplant the function ũε obtained to our remaining piece B1. Since Sv is a

boundary in ∂Ω , we can construct a diffeomorphism between the intersection of a tubular
neighborhood U of Sv and Ω and the product of Sv with a half-disk. More precisely, for
every r > 0, we set

Sr := {x ∈ Ω : 0 < dist(x, Sv) < r}.
For every x ∈ Ω̄ , define

Ψ (x) := (x ′′, d ′(x ′), dist(x, ∂Ω)),

where x ′ is a projection of x on ∂Ω and x ′′ is a projection of x ′ on Sv . The function Ψ
is well-defined and is a diffeomorphism of class C2 on Ω̄ ∩ U , and satisfies the following
properties:

– Ψ (Ω ∩ U ) ⊂ Sv × R
2+,

– Ψ (∂Ω ∩ U ) ⊂ Sv × R × {0},
– Ψ (x) = x for every x ∈ ∂Ω .
– DΨ (x) is an isometry,
– limr→0 δr = 0, where δr is the isometry defect of the restriction of Ψ to Sr .

We construct uε on S := Sρε/2. With small modifications, we can assume that S is a “cubical”
neighborhood such that for ε small, the function Ψ maps S into Sv × Dρε and ∂S ∩ ∂Ω into
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Sv × Eρε , Then we define uε := ũε ◦ Ψ , where w̃ε is defined in (7.5). Thus Proposition 21
and (7.7) give that

Fa
ε [uε, S, ∂S ∩ ∂Ω] ≤ (1 − δε)

−5 Fa
ε [w̃ε, Sv × Dρε , Sv × Eρε ]

≤ H1(Sv) (κs + o(1))

as ε → 0, because δε := δ(Ψ |Sρε ) tends to zero as ε → 0.
Notice that for ε small enough, Ψ is 2-Lipschitz continuous. Using again Lemma 27, we

can extend uε by setting uε = v on the remaining part of ∂B1 ∩ ∂Ω . We have that uε is equal
to v on ∂Ω\S. Thus, we can extend uε on the whole B1\S to a 2C+1

ε1−ara -Lipschitz continuous
function, which satisfies

Fa
ε [uε, B1\S, ∂(B1\S̄) ∩ ∂Ω] = Ha

ε [uε, B1\S̄]
≤ (

(2C + 2)2 + Cm
) (H2(∂B1)+ o(1)

)
2m

as ε → 0, where we have used ‖uε − α‖∞ ∧ ‖uε − β‖∞ ≤ 2m.
Step 5: We recall that for every r > 0 and every ε < r we have constructed a function uε

defined on the whole Ω such that

lim sup
ε→0

‖uε − u‖L1(Ω) ≤ 2m (|B1| + |B2|)

and

lim sup
ε→0

‖T uε − v‖L1(∂Ω) = 0.

Since |B1| and |B2| have order r2 and r respectively, we get that uε → u in L1(Ω), first
taking ε → 0 and then r → 0.

Combining all the results above, we obtain

lim sup
ε→0

Fa
ε [uε] ≤ σH2(Su)+

∫

∂Ω

|W(T u(x))− W(v(x))| dH2 + κsH1(Sv)

−σH2(Su\A2)+ (
(2C + 2)2 + Cm

) (H2(∂B1)+ o(1)
)

2m.

Since H2(∂B1) has order r , taking r → 0 above we deduce the upper bound inequality.
Finally, applying a suitable diagonalization argument, to the sequence uε := uε,r we obtain
the desired sequence uε . Proof of ii. is completed.
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operators and his support at UT Austin.
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