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1 Introduction

The notion of rectifiable set is a central one in calculus of variations and in geometric measure
theory. To develop a theory of rectifiable sets inside Carnot groups has been the object of
much research in the last 10 years (see e.g. [2,3,6,7,10,12,13,19–21,24]).

G. Arena is supported by MIUR (Italy), by INDAM and by University of Trento.
R. Serapioni is supported by MIUR (Italy), by GALA project of the Sixth Framework Programme of
European Community and by University of Trento.

G. Arena (B) · R. Serapioni
Dipartimento di Matematica, Università di Trento, Via Sommarive 14, 38050 Povo (Trento), Italy
e-mail: garena@science.unitn.it

R. Serapioni
e-mail: serapion@science.unitn.it

123



518 G. Arena, R. Serapioni

Rectifiable sets, in Euclidean spaces, are generalizations of C1 or of Lipschitz
submanifolds, hence, understanding the objects that, inside Carnot groups, naturally take
the role of C1 or of Lipschitz submanifolds is a preliminary task in developing a satisfactory
theory of rectifiable sets inside Carnot groups.

In this paper we address this problem considering functions acting between complemen-
tary subgroups of a (Carnot) group G (Definition 3.1) and introducing, for these functions,
the notions of intrinsic Lipschitz continuity or of intrinsic differentiability. Then, Lipschitz
or C1 submanifolds will be objects that, locally, are intrinsic graphs of these functions (Def-
inition 3.3).

Intrinsic graphs came out naturally while studying non critical level sets of differentiable
functions from H

n to R (see [10] and also [6]); indeed these level sets can always be locally
described as intrinsic graphs, (see Proposition 3.12 of [13]). The simple idea of intrinsic
graph is the following one: let G1, G2 be complementary subgroups of a group G, then the
intrinsic (left) graph of f : G1 → G2 is the set

graph ( f ) = {g · f (g) : g ∈ G1}.
More generally, we say that a subset S of a Carnot group G, is a (left) intrinsic graph, in
direction of a homogeneous subgroup H, if S intersects each left coset of H in at most a single
point.

Intrinsic Lipschitz continuity and intrinsic differentiability are defined respecting the
geometry of the ambient space G.
f : G1 → G2 is intrinsic Lipschitz (Definition 3.8) if, at each point p ∈ graph ( f ), there
is an intrinsic cone (Definition 3.7), with vertex p, axis G2 and fixed opening, intersecting
graph ( f ) only at p.
f : G1 → G2 is intrinsic differentiable at g ∈ G1 if there is a homogeneous subgroup H of
G such that, in p = g · f (g) ∈ graph ( f ), the left coset p ·H is the tangent plane to graph ( f )
in p, that is if p ·H is the limit of group dilations of graph ( f ) centered in p (Definition 3.13).

In this paper we focus our attention on intrinsic differentiable functions and on their rela-
tion with C1 submanifolds. On the contrary, intrinsic Lipschitz functions are studied here
only as far as they are useful for this topic. A more advanced analysis of intrinsic Lipschitz
functions can be found in [14].

Let us come now to C1 surfaces in groups. A class of surfaces that, in H
n and, some-

times, in more general Carnot groups, are a good generalization, to the group setting, of
C1 submanifolds are the so called H -regular submanifolds (see Definition 4.1 and the Ref.
[2,6,13,20,24,26]).

Since the theory of H -regular surfaces seems, up to now, approximately complete only on
H

n , we will limit ourselves to describe this case. In H
n , H -regular submanifolds are differ-

ently defined according to their topological dimension k. Precisely, if k ≤ n, a k-dimensional
or low dimensional H -regular submanifold is, locally, the image in H

n of an open set of R
k ,

through an injective, Pansu differentiable function; while a k-codimensional, or low codimen-
sional, H -regular submanifold is, locally, the non critical level set of a Pansu differentiable
function H

n → R
k .

These surfaces are different from Euclidean C1 surfaces and are very different from each
other. Indeed k-dimensional H -regular submanifolds are a subclass of k-dimensional Euclid-
ean C1 submanifolds of R

2n+1 (see [13], Theorem 3.5). On the contrary, k-codimensional
H -regular submanifolds can be very irregular, even fractals, from an Euclidean point of view
(see [13,18]). Nevertheless H -regular submanifolds can, very reasonably, be considered as
C1 submanifolds because (i) they have a tangent plane at each point and the tangent planes are
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Intrinsic regular submanifolds in Heisenberg groups are differentiable graphs 519

cosets of subgroups of H
n that are also blow-up limits of the surface, (ii) the tangent planes

depend continuously on the point, (iii) H -regular submanifolds have integer (Heisenberg)
dimension, locally finite (Heisenberg) Hausdorff measure and this measure can be obtained,
by integration, through an area type formula (see [13]).

Our main result here (Theorem 4.2), is a characterization of H -regular surfaces in H
n ,

both low dimensional and low codimensional, as uniformly intrinsic differentiable graphs of
functions between complementary subgroups of H

n .
Describing H -regular submanifolds as (intrinsic differentiable) graphs is more general

and flexible than using parametrizations or level sets. Indeed, differently from R
n—where

d-dimensional C1 embedded submanifolds are equivalently defined as non-critical level
sets of differentiable functions R

n → R
n−d or as images of injective differentiable maps

R
d → R

n (or as graphs of C1 functions R
d → R

n−d )—in H
n , low dimensional H -regular

surfaces cannot be seen as non critical level sets and low codimensional ones cannot be seen
as (bilipschitz) images of open sets. The reasons for this are rooted in the algebraic structure
of H

n . From one side, low dimensional horizontal subgroups of H
n are not normal subgroups,

hence they are not kernels of homogeneous homomorphisms, while they are tangent spaces
to low dimensional submanifolds; on the other side, injective homogeneous homomorphisms
R

d → H
n do not exist, if d ≥ n + 1 (see [2,19]).

We hope that our approach, here limited to H
n , might prove itself useful to define intrinsic

C1 and Lipschitz submanifolds in more general Carnot groups. With this aim, we made the
effort of writing many statements and proofs in a coordinate free fashion. We hope this will
show how many concepts, here discussed, find their natural setting in more general Carnot
groups than the Heisenberg groups.

Finally, we recall that the class of functions, called here uniformly intrinsic differentiable,
is not a new one. It was already introduced and studied, with different names and approaches,
by many authors, at least in relation with 1-codimensional graphs (see [1,6,26]).

Finally we would like to thank Francesco Serra Cassano and Davide Vittone for their
interest and many useful talks.

2 Notations and preliminaries

For a general review on Carnot and Heisenberg groups see [8,9,16,17,25] and the recent
ones [4,5]. Here we limit ourselves to fix some notations.

2.1 Carnot groups

A graded group of step k is a connected, simply connected Lie group G whose Lie algebra
g, of dimension n, is the direct sum of k subspaces gi , g = g1 ⊕ · · · ⊕ gk , such that

[
gi , g j

] ⊂ gi+ j ,

for 1 ≤ i, j ≤ k and gi = 0 for i > k.
A Carnot group G of step k is a graded group of step k, where g1 generates all g. That is

[g1, gi ] = gi+1, for i = 1, . . . , k.
The exponential map is a one to one diffeomorphism from g to G. Let X1, . . . , Xn be a

base for g such that X1, . . . , Xm1 is a base for g1 and, for 1 < j ≤ k, Xm j−1+1, . . . , Xm j is a
base for g j . Then any p ∈ G can be written, in a unique way, as p = exp(p1 X1 +· · ·+ pn Xn)

and we can identify p with the n-tuple (p1, . . . , pn) ∈ R
n and G with (Rn, ·). The explicit

expression of the group operation ·, determined by the Campbell-Hausdorff formula (see [4]
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or [8]), has the form

x · y = x + y + Q(x, y), ∀x, y ∈ R
n (1)

where Q(x, y) = (Q1(x, y), . . . ,Qn(x, y)) : R
n × R

n → R
n . Here, Qi (x, y) = 0, for

i = 1, . . . ,m1 and, for 1 < j ≤ k and m j−1 + 1 ≤ i ≤ m j , we have, Qi (x, y) =
Qi (x1, . . . , xm j−1 , y1, . . . , ym j−1

)
.

If p ∈ G, p−1 = (−p1, . . . ,−pn) is the inverse of p and e = (0, . . . , 0) is the identity
of G.

If G is a graded group, for all λ > 0, the (non isotropic) dilations δλ : G → G are
automorphisms of G defined as δλ(x1, . . . , xn) = (λα1 x1, λ

α2 x2, . . . , λ
αn xn),where αi = j ,

if m j−1 < i ≤ m j .
Given any homogeneous norm ‖·‖, the distance in G is defined as

d(x, y) = d(y−1 · x, 0) = ∥
∥y−1 · x

∥
∥ , for all x, y ∈ G. (2)

A possible homogeneous norm is the following one, if p = (p1, . . . , pk) ∈ R
n = G, with

p j ∈ R
m j −m j−1 , for j = 1, . . . , k, then

‖p‖ = max
j=1,...,k

{
ε j

∥
∥∥p j

∥
∥∥

1/α j

R
m j −m j−1

}
, (3)

where ε1 = 1, and ε2, . . . εk ∈ (0, 1] are suitable positive constants depending on G (see
Theorem 5.1 of [12]).

The distance d is comparable with the Carnot Carathèodory distance of G and is well
behaved with respect to left translations and dilations, that is

d(z · x, z · y) = d(x, y) , d(δλ(x), δλ(y)) = λd(x, y)

for x, y, z ∈ G and λ > 0. For r > 0 and p ∈ G, we denote by B(p, r) the open ball
associated with d .

A homogeneous subgroup of a Carnot group G (see [25] 5.2.4) is a subgroup H such that
δλg ∈ H, for all g ∈ H and for all λ > 0.

The (linear) dimension of a (sub)group is the dimension of its Lie algebra. The met-
ric dimension of a subgroup, or of a subset, is its Hausdorff dimension, where Hausdorff
measures are constructed from the distance in (2).

2.2 Heisenberg groups

The n-dimensional Heisenberg group H
n is identified with R

2n+1 through exponential coor-
dinates. A point p ∈ H

n is denoted as p = (p1, . . . , p2n, p2n+1) ∈ R
2n+1.

For p, q ∈ H
n , the group operation is

p · q =
(

p1 + q1, . . . , p2n + q2n, p2n+1 + q2n+1 +
n∑

i=1

(pi qi+n − pi+nqi ) /2

)

.

For λ > 0, dilations δλ : H
n → H

n are defined as

δλ p := (λp1, . . . , λp2n, λ
2 p2n+1), for all p ∈ H

n .

The standard base of the Lie algebra h of H
n is given by the left invariant vector fields

X1, . . . , Xn , Y1, . . . , Yn , T , where, for i = 1, . . . , n,

Xi (p) := ∂i − 1

2
pi+n∂2n+1, Yi (p) := ∂i+n + 1

2
pi∂2n+1, T (p) := ∂2n+1.

123



Intrinsic regular submanifolds in Heisenberg groups are differentiable graphs 521

The horizontal subspace h1 is the subspace of h spanned by X1, . . . , Xn , Y1, . . . , Yn . Denot-
ing by h2 the linear span of T , then h = h1 ⊕ h2 and [h1, h1] = h2.

The Lie algebra h is also endowed with a scalar product 〈·, ·〉 making the vector fields
X1, . . . , Xn ,Y1, . . . , Yn , T orthonormal.

The centre of H
n is the subgroup T := exp(h2) = {(0, . . . , 0, p2n+1)}.

The horizontal bundle HH
n is the subbundle of the tangent bundle T H

n whose fibers
HH

n
p are spanned by the horizontal vectors X1(p), · · · , Yn(p).

If p ∈ H
n , the homogeneous norm in (3) becomes

‖p‖ := max{‖(p1, . . . , p2n)‖R2n , |p2n+1|1/2}

while the distance d is defined as in (2).
Let π : H

n → R
2n be π(p) = π(p1, . . . , p2n, p2n+1) := (p1, . . . , p2n). Notice that

any p ∈ H
n can be uniquely written as p = (π(p), p2n+1) = (π(p), 0) · pT, where

pT = (0, · · ·, 0, p2n+1) ∈ T and (π(p), 0) ∈ HH
n
e .

2.3 Calculus

The notion of P-differentiability for functions acting between graded groups, was introduced
by Pansu in [23].

Definition 2.1 Let G1 and G2 be graded groups, with homogeneous norms ‖·‖1, ‖·‖2 and
dilations δ1

λ, δ2
λ, then L : G1 → G2 is said to be H-linear (see [19]), if L is a homogeneous

homomorphism, that is if L is a group homomorphism from G1 to G2 and if,

L(δ1
λg) = δ2

λL(g), for all g ∈ G1 and λ > 0.

The norm of L is ‖L‖ = sup{‖L(g)‖2 : ‖g‖1 ≤ 1}.

Definition 2.2 Let G1 and G2 be graded groups with homogeneous norms ‖·‖1 and ‖·‖2.
Then f : A ⊂ G1 → G2 is P-differentiable in g0 ∈ A if there is a H -linear function
d fg0 : G1 → G2 such that

∥∥∥∥
(

d fg0(g
−1
0 · g)

)−1 · f (g0)
−1 · f (g)

∥∥∥∥
2

= o
(
‖g−1

0 · g‖1

)
, as ‖g−1

0 · g‖1 → 0.

The H -linear function d fg0 is the P-differential of f in g0. We say that f is continuously
P-differentiable in A, f ∈ C1

H (A,G2), if f is P-differentiable in every g ∈ A and if d fg

depends continuously on g.

We recall the following inequality proved in [9].

Theorem 2.3 Let U be open in H
n and f ∈ C1

H (U,Rk). Then there are c > 1, C > 0 such
that, if B(p0, cr) ⊂ U and p, q ∈ B(p0, r), then

∥∥ f (q)− f (p)− d f p(p
−1 · q)

∥∥
Rk ≤ C sup

x∈B(p0,cr)
‖d fx − d f p‖ · d(p, q).
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522 G. Arena, R. Serapioni

3 Intrinsic graphs

3.1 Complementary subgroups and graphs

Definition 3.1 Two homogeneous subgroups G1 and G2 of a Carnot group G are comple-
mentary subgroups in G, and we write

G = G1 · G2,

if G1 ∩G2 = {e} and, for each g∈ G, there are gG1 ∈ G1 and gG2 ∈ G2 such that g = gG1 ·gG2 .

If G1, G2 are complementary subgroups in G and one of them is a normal subgroup then G

is said to be a semidirect product of G1 and G2.

Proposition 3.2 If G = G1 · G2 as in Definition 3.1, each g ∈ G has unique components
gG1 ∈ G1, gG2 ∈ G2, such that g = gG1 · gG2 . The maps

g → gG1 and g → gG2

are continuous and there is a constant c = c(G1,G2) > 0 such that

c
(∥∥gG1

∥∥ + ∥∥gG2

∥∥) ≤ ‖g‖ ≤ ∥∥gG1

∥∥ + ∥∥gG2

∥∥ . (4)

Proof Uniqueness is trivial. The continuity of the maps g → gG1 and g → gG2 follows, e.g.,
by direct considerations on the form of the product in G (see (1)). Indeed, the m1 components
in the first layer of gG1 and gG2 are the components of the euclidean projections of the first
m1 components of g, hence they depend continuously on g. Now, the values of the polyno-
mials from Qm1+1(gG1 , gG2) to Qm2(gG1 , gG2) are determined and depend continuously on
g. In turn, the components of the second layer of gG1 and gG2 are given by the projections
of the components from (gm1+1 − Qm1+1(gG1 , gG2)) to (gm2 − Qm2(gG1 , gG2)). Then the
procedure repeats.
By homogeneity, it is enough to prove the left hand side of (4) when ‖g‖ = 1, and in this
case (4) follows by a compactness argument. The right hand side of (4) is just triangular
inequality. �


Definition 3.3 If G1, G2 are complementary subgroups of G we say that S ⊂ G is a (left)
graph from G1 to G2 (or over G1 along G2) if

S ∩ (ξ · G2) contains at most one point,

for all ξ ∈ G1. Equivalently, if there is ϕ : E ⊂ G1 → G2 such that

S = {ξ · ϕ(ξ) : ξ ∈ E}
and we say that S is the graph of ϕ, S = graph(ϕ).

Remark 3.4 A more general definition of graph inside G can be considered. Assume that H

is a homogeneous subgroup of G. Even if no complementary subgroup of H exists in G, we
can say that a set S ⊂ G is a H-graph (or a graph along H) if S intersect each coset of H in
at most one point. Such a notion has been used many times in the literature, mainly inside
H

n . Many authors e.g. considered sets as S = {(x1, . . . , yn, ϕ(x1, . . . , yn))} ⊂ H
n , were ϕ

is a real valued function. These sets are T-graphs. We recall that T has no complementary
subgroup in H

n (see Proposition 3.18).
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Intrinsic regular submanifolds in Heisenberg groups are differentiable graphs 523

If S = graph (ϕ) with ϕ : G1 → G2 then both δλS and q · S are graphs from G1 to G2; if
G is also the semidirect product of G1 and G2 then the algebraic form of the translated graph
can be explicitly given (see also [20]).

Proposition 3.5 Let G1, G2 be complementary subgroups in G, ϕ : E ⊂ G1 → G2 and
S = {ξ · ϕ(ξ) : ξ ∈ E} = graph (ϕ). Then, for all λ > 0, the dilated set δλS is a graph,
precisely

δλS = graph(ϕλ),

with ϕλ := δλ ◦ ϕ ◦ δ1/λ : δλE ⊂ G1 → G2.

Proof Just observe that δλS = δλ(ξ · ϕ(ξ)) = δλξ · δλ(ϕ(ξ)). �

Proposition 3.6 Let G1 and G2 be complementary subgroups in G, ϕ : E ⊂ G1 → G2 and
S = graph (ϕ). Then, for any q ∈ G, there are Eq ⊂ G1 and ϕq : Eq ⊂ G1 → G2, such that

graph (ϕq) := q · S = {η · ϕq(η) : η ∈ Eq}.
where ϕq is as in (5). The statement can be made more explicit if we assume that G is the
semidirect product of G1 and G2. In this case we have,

(i) If G1 is normal in G then Eq := q · E · (qG2)
−1 ⊂ G1, and, for y ∈ Eq ,

ϕq(y) = qG2 · ϕ(q−1
G2

· q−1
G1

· y · qG2).

(ii) If G2 is normal in G then Eq := qG1 · E ⊂ G1 and, for y ∈ Eq ,

ϕq(y) = y−1 · qG1 · qG2 · q−1
G1

· y · ϕ(q−1
G1

· y).

Proof Observe that the map τq : G1 → G1 defined as τq(x) := (q · x)G1 is injective. Indeed,
from

q · x = (q · x)G1 · (q · x)G2 , q · x ′ = (q · x ′)G1 · (q · x ′)G2 , (q · x)G1 = (q · x ′)G1

we get q · x · (q · x)−1
G2

= q · x ′ · (q · x ′)−1
G2

. Hence x · (q · x)−1
G2

= x ′ · (q · x ′)−1
G2

and finally
x = x ′, because of the uniqueness of the components (see Proposition 3.2). Hence,

q · S = {(q · x)G1 · (q · x)G2 · ϕ(x) : x ∈ E} = {y · ϕq(y) : y ∈ Eq},
where, Eq = {(q · x)G1 : x ∈ E} and

ϕq(y) = (q · τq(y)
−1)G2 · ϕ(τq(y)

−1) (5)

for y = (q · x)G1 ∈ Eq . This concludes the proof of the first part.
Case (i): Assume G1 is a normal subgroup. Because q ·x = qG1 ·qG2 ·x = qG1 ·qG2 ·x ·q−1

G2
·qG2

then (q · x)G1 = q · x · q−1
G2

. It follows that

Eq = {q · x · q−1
G2

: x ∈ E},
and that τq(y)−1 = q−1 · y · qG2 for y ∈ Eq . Hence, for y ∈ Eq , we have ϕq(y)= (qG2 · q−1 ·
y · qG2)G2 · ϕ(q−1 · y · qG2) = (q−1

G1
· y · qG2)G2 · ϕ(q−1 · y · qG2) = qG2 · ϕ(q−1 · y · qG2).

Case (ii): Assume G2 is a normal subgroup. Then (q ·x)G1 = (qG1 ·x ·x−1 ·qG2 ·x)G1 = qG1 ·x .
It follows that

Eq = {qG1 · x : x ∈ E} = qG1 · E
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524 G. Arena, R. Serapioni

and that τq(y)−1 = q−1
G1

· y for y ∈ Eq . Hence, for y ∈ Eq , we have ϕq(y) = (q · q−1
G1

· y)G2 ·
ϕ(q−1

G1
· y) = (y · y−1 ·qG1 ·qG2 ·q−1

G1
· y)G2 ·ϕ(q−1

G1
· y) = y−1 ·qG1 ·qG2 ·q−1

G1
· y ·ϕ(q−1

G1
· y).

�

3.2 Intrinsic Lipschitz graphs

The notion of intrinsic Lipschitz continuity, for functions acting between complementary
subgroups G1 and G2 of G, was originally suggested by Corollary 3.17 of [13] together with
the fact that a H -regular surface keeps being H -regular after a (left) translation, (see the
Definition given in [15]).

We propose here a geometric definition. We say that f : G1 → G2, is intrinsic Lipschitz
continuous if, at each p ∈ graph ( f ), there is an (intrinsic) closed cone with vertex p, axis
G2 and fixed opening, intersecting graph ( f ) only in p. The equivalence of this definition
and other ones, more algebraic, is the content of Propositions 3.10 and 3.20.

Notice also that G1 and G2 are metric spaces, being subsets of G, hence it makes sense to
speak also of metric Lipschitz continuous functions from G1 to G2. As usual, f : G1 → G2

is said (metric) Lipschitz if there is L > 0 such that, for all g, g′ ∈ G1,
∥∥ f (g)−1 · f (g′)

∥∥ = d
(

f (g), f (g′)
) ≤ Ld(g, g′) = L

∥∥g−1 · g′∥∥. (6)

The notions of intrinsic Lipschitz continuity and of Lipschitz continuity are different ones
(see Example 3.21) and we will try to convince the reader, that intrinsic Lipschitz continuity
seems more useful in the context of functions acting between subgroups of a Carnot group.

Let us come to the basic definitions. By intrinsic (closed) cone we mean

Definition 3.7 Let G1, G2 be complementary subgroups in G, q ∈ G and α > 0. The closed
cone CG1,G2(q, α) with base G1, axis G2, vertex q, opening α is

CG1,G2(q, α) := q · CG1,G2(e, α)

where

CG1,G2(e, α) := {
p ∈ G : ∥∥pG1

∥∥ ≤ α
∥∥pG2

∥∥}
.

If 0 < α < β, CG1,G2(q, α) ⊂ CG1,G2(q, β) and CG1,G2(e, 0) = G2, moreover, for all
t > 0,

δt
(
CG1,G2(e, α)

) = CG1,G2(e, α).

Definition 3.8 Let G1 and G2 be complementary subgroups in G. We say that f : A ⊂ G1 →
G2 is intrinsic Lipschitz (continuous) in A, if there is M > 0 such that, for all q ∈ graph ( f ),

CG1,G2(q, 1/M) ∩ graph ( f ) = {q}. (7)

The Lipschitz constant of f in A is the infimum of the numbers M such that (7) holds.
An intrinsic Lipschitz function, with Lipschitz constant not exceeding L > 0, is called a L
Lipschitz function.

Remark 3.9 Intrinsic Lipschitz continuity is invariant under left translations of the graph.
That is, for all q ∈ G,

f : G1 → G2 is L Lipschitz, if and only if fq : G1 → G2 is L Lipschitz.

We give now algebraic characterizations of intrinsic Lipschitz functions.
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Proposition 3.10 Let G1, G2 be complementary subgroups in G. Then f : E ⊂ G1 → G2

is intrinsic Lipschitz in E , if and only if there is L > 0 such that, for all q ∈ graph ( f ) and
for all x ∈ Aq−1 ,

∥
∥ fq−1(x)

∥
∥ ≤ L ‖x‖ . (8)

Proof The equivalence of (8) and (7) follows from Definition 3.7 and from (ii) of Proposi-
tion 3.6 observing that, if q ∈ graph ( f ), then CG1,G2(q, 1/L)∩graph ( f ) = {q} is equivalent
with CG1,G2(e, 1/L) ∩ graph ( fq−1) = {e}. �

Remark 3.11 If f : E : G1 → G2 is intrinsic Lipschitz, then it is continuous. Indeed, if
f (e) = e then, by (8), f is continuous in e. To prove the continuity in x ∈ E , observe that
fq−1 is continuous in e, where q = x · f (x).

3.3 Intrinsic differentiable graphs

We come now to the definition of intrinsic differentiability for functions acting between com-
plementary subgroups of G. As usual differentiability amounts to the existence of approxi-
mating linear functions. Intrinsic linear functions, acting between complementary subgroups,
are functions whose graphs are homogeneous subgroups.

Definition 3.12 Let G1, G2 be complementary subgroups in G. We say that L : G1 → G2 is
an intrinsic linear function if graph (L) = {g · L(g) : g ∈ G1} is an homogeneous subgroup
of G.

If f (e) = e we say that f : G1 → G2, is intrinsic differentiable in e if there is an intrinsic
linear map L : G1 → G2 such that, for all g ∈ G1,

∥∥L(g)−1 · f (g)
∥∥ = o(‖g‖), as ‖g‖ → 0, (9)

where o(t)/t → 0 as t → 0+.
Up to this point the definition of intrinsic differentiability is the same as the definition

of P-differentiability. The differences appear (see Definition 3.14), when we extend the pre-
vious notion to any point ḡ of G1 using (9) in a translation invariant way. That is, given
ḡ ∈ G1 we consider p̄ = ḡ · f (ḡ) and the translated function f p̄−1 that, by definition, satisfies
f p̄−1(e) = e. Now we say that f is intrinsic differentiable in ḡ if and only if f p̄−1 satisfies (9)
(see Definition 3.13). We give also a uniform version of Definition 3.13 in Definition 3.16
and algebraic characterizations of both, when G = H

n , in Propositions 3.25 and 3.26.

Definition 3.13 Let G1, G2 be complementary subgroups in G and f : A ⊂ G1 → G2 with
A relatively open in G1. For p̄ := ḡ · f (ḡ) ∈ graph ( f ) we consider the translated function
f p̄−1 defined in the neighborhood A p̄−1 of e in G1, (see Proposition 3.5). We say that f is
intrinsic differentiable in ḡ ∈ A if there is an intrinsic linear map d fḡ : G1 → G2 such that,
for all g ∈ A p̄−1 ,

∥∥d fḡ(g)
−1 · f p̄−1(g)

∥∥ = o(‖g‖), as ‖g‖ → 0. (10)

The map d fḡ is called the intrinsic differential of f .

Remark 3.14 P-differentiability and intrinsic differentiability are different.
Indeed, assume G = H

n , G1 = W = {w = (0, p2, . . . , p2n+1)} and G2 = V = {v =
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(p1, 0, . . . , 0))}. Then, by (ii) of Proposition 3.25, we know that f : W → V is intrinsic
differentiable in w ∈ W if, for all w′ ∈ W,

∥
∥d fw(w

−1 · w′)−1 · f (w)−1 · f (w′)
∥
∥ = o

(∥∥ f (w)−1 · w−1 · w′ · f (w)
∥
∥) ;

while f is P-differentiable in w ∈ W if, for all w′ ∈ W,
∥
∥d fw(w

−1 · w′)−1 · f (w)−1 · f (w′)
∥
∥ = o

(∥∥w−1 · w′∥∥)
.

On the contrary, if G := G1 × G2, it is easy to convince oneself that

f : G1 → G2 is P-differentiable

if and only if

f : G1 → G2 is intrinsic differentiable.

Hence, intrinsic differentiability is a generalization of P-differentiability.

Remark 3.15 Intrinsic differentiability is invariant by left translations of the graph. Indeed,
let q1 = g1 · f (g1) and q2 = g2 · f (g2) ∈ graph ( f ); then f is intrinsic differentiable
in g1 ∈ G1 if and only if fq−1

1
is intrinsic differentiable in e. Consequently, f is intrinsic

differentiable in g1 if and only if fq2·q−1
1

≡ ( fq−1
1
)q2 is intrinsic differentiable in g2.

Definition 3.16 Let G1, G2 be complementary subgroups in G. We say that f : A ⊂ G1 →
G2 is uniformly intrinsic differentiable in A if

(i) f is intrinsic differentiable at each ḡ ∈ A;
(ii) d fḡ : G1 → G2 depends continuously on ḡ, that is, for each compact K ⊂ A, there is

η = ηK : R
+ → R

+, with η(t) → 0 as t ↓ 0 such that

sup
g∈K

∥∥d fḡ1(g)
−1 · d fḡ2(g)

∥∥ ≤ η
(∥∥∥g−1

1 · g2

∥∥∥
)

; (11)

(iii) for each compact K ⊂ A, there is ε = εA,K : R
+ → R

+, with ε(t) → 0 as t ↓ 0, and
such that, for all g ∈ K p̄−1 and for all ḡ ∈ K,

∥∥d fḡ(g)
−1 · f p̄−1(g)

∥∥ ≤ ε(‖g‖) ‖g‖ . (12)

Intrinsic differentiability implies local intrinsic Lipschitz continuity.

Proposition 3.17 Let G1, G2 be complementary subgroups in G and f : A ⊂ G1 → G2

be uniformly intrinsic differentiable in A. Then, for all p ∈ A there is r > 0 such that f is
intrinsic Lipschitz in A ∩ B(p, r).

The proof is elementary.

3.4 Graphs in Heisenberg groups

In Heisenberg groups H
n , all the notions, described in the preceding sections for general

Carnot groups, can be made more explicit; the key point is the structure of complementary
subgroups of H

n , (see also [20]).
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Proposition 3.18 All homogeneous subgroups of H
n are either horizontal, that is contained

in the horizontal fiber HH
n
e , or vertical, that is containing the subgroup T. A horizontal

subgroup has linear dimension and metric dimension k, with 1 ≤ k ≤ n and it is algebrai-
cally isomorphic and isometric to R

k . A vertical subgroup can have any dimension d, with
1 ≤ d ≤ 2n + 1, its metric dimension is d + 1 and it is a normal subgroup.
All couples V, W, of complementary subgroups of H

n are of the type

(i) V horizontal of dimension k, 1 ≤ k ≤ n,
(ii) W vertical and normal of dimension 2n + 1 − k.

Proof Observe that, V ⊂ H
n is a homogeneous subgroup of H

n , if and only if, V = exp v,
wherev is a homogeneous subalgebra ofh. Then, there exist linearly independentv1, . . . , vk ∈
h, with 1 ≤ k ≤ 2n +1, such that v := span (v1, . . . , vk) and it must be [vi , v j ] ∈ v, for each
i, j = 1, . . . , k. It follows that, if V is horizontal, that is, if vi ∈ h1, for each i = 1, . . . , k,
then necessarily we have [vi , v j ] = 0 for each i, j = 1, . . . , k and it must be k ≤ n.
Otherwise, suppose there exists v ∈ h1, such that v + T ∈ v. Then both λv + λT ∈ v and
λv + λ2T ∈ v, yielding that T ∈ v. Finally, observe that, if V is a horizontal subgroup with
dim v = k, then it is isomorphic and also isometric to R

k , for, in this case, if x, y ∈ V, the
points x · δλ(x−1 · y) ∈ V for each 0 ≤ λ ≤ 1, form an horizontal segment connecting
them. On the contrary, if W is a vertical subgroup with dim w = k, then, in general, W is
not isomorphic to R

k and it is never isometric to R
k , having metric dimension equal to k + 1

(see [22], Theorem 2).
The second part follows readily because, if H

n = G1 ·G2, then G1, G2 cannot be both vertical
subgroups or horizontal subgroups. �


The following characterizations of H -linear functions follows from Theorem 3.1.12 in
[19] (see also [10,13]).

Proposition 3.19 Let 1 ≤ k ≤ n, and let J =
[

0 I
−I 0

]
be the 2n × 2n symplectic matrix.

Then

(i) L : R
k → H

n is H-linear if and only if there is a 2n × k matrix A with AT J A = 0
such that, for all x ∈ R

k , L(x) = (Ax, 0).
(ii) L : H

n → R
k is H-linear, if and only if there is a k × 2n matrix A, such that for all

p ∈ H
n L(p) = A π(p)t .

Proposition 3.20 Assume H
n = W · V as in Proposition 3.18. Then

(i) f : A ⊂ V → W is intrinsic Lipschitz continuous, if and only if the map� f : A → H
n,

defined as � f (v) := v · f (v), is metric Lipschitz in A, that is if and only if there is
L̃ > 0 such that, for all v, v̄ ∈ A,

∥∥� f (v̄)
−1 ·� f (v)

∥∥ ≤ L̃
∥∥v̄−1 · v∥∥ , (13)

(ii) f : A ⊂ W → V is intrinsic Lipschitz continuous in A, if and only if there is L > 0
such that, for all w,w′ ∈ A,

∥∥ f (w)−1 · f (w′)
∥∥ ≤ L

∥∥ f (w)−1 · w−1 · w′ · f (w)
∥∥ . (14)

Proof To prove (i) recall (ii) of Proposition 3.6. If q = x · f (x) ∈ graph ( f ) then, for all
η ∈ Aq−1 , fq−1(η) = η−1 · f (x)−1 · η · f (x · η). Hence, from (13), setting η = x−1 · v, we
have
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∥
∥ fq−1(η)

∥
∥ = ∥

∥v−1 · x · f (x)−1 · x−1 · v · f (v)
∥
∥

≤ ∥
∥v−1 · x

∥
∥ + ∥

∥ f (x)−1 · x−1 · v · f (v)
∥
∥

= ∥
∥v−1 · x

∥
∥ + ∥

∥� f (x)
−1 ·� f (v)

∥
∥ ≤ (1 + L̃) ‖η‖ .

On the other side,

� f (v)
−1 ·� f (v̄) = f (v)−1 · v−1 · v̄ · f (v̄) = f (v)−1 · v−1 · x · v · f (x · v)

= x · x−1 · f (v)−1 · x · f (x · v),
where x = v−1 · v̄. Now from (8) we get (13).

To prove (ii) observe that, from (8) and (i) of Proposition 3.6, for any x̄ ∈ A, and for any
y in the domain of fq−1 ,

∥
∥ fq−1(y)

∥
∥ = ∥

∥ f (x̄)−1 · f
(
x̄ · f (x̄) · y · f (x̄)−1)∥∥ ≤ L ‖y‖ .

Setting x = x̄ · f (x̄) · y · f (x̄)−1, that is y = f (x̄)−1 · x̄−1 · x · f (x̄), then, for all x, x̄ ∈ A,∥
∥ f (x̄)−1 · f (x)

∥
∥ ≤ L

∥
∥ f (x̄)−1 · (x̄−1 · x) · f (x̄)

∥
∥ .

This completes the proof of (ii). �

Example 3.21 Here we show that condition (6) is not invariant under left translations of the
graph. It follows that neither intrinsic Lipschitz continuity implies (metric) Lipschitz conti-
nuity nor the opposite.
Let H

1 = W · V where V = {v = (v1, 0, 0)} and W = {w = (0, w2, w3)}; ‖w‖ =
max{|w2|, |w3|1/2} and ‖v‖ = |v1|.
(1) ϕ : W → V, defined as ϕ(w) := (

1 + |w3|1/2, 0, 0
)
, satisfies (6) with L = 1, hence

ϕ is Lipschitz. On the contrary ϕ is not intrinsic Lipschitz. Indeed, let p := (1, 0, 0) ∈
graph(ϕ), from Proposition 3.6 we have ϕp−1(w) = (|w2 + w3|1/2, 0, 0

)
. For ϕp−1 , (8)

does not hold. This shows also that condition (6) is not invariant under graph translations.
(2) ψ : W → V, defined as ψ(w) := (

1 + |w3 − w2|1/2, 0, 0
)
, is intrinsic Lipschitz;

indeed, with p = (1, 0, 0) and ϕ(w) := (|w3|1/2, 0, 0
)

we have ψ(w) = ϕp(w), so
that ψ is intrinsic Lipschitz because ϕ is intrinsic Lipschitz. On the contrary ψ is not
Lipschitz, in the sense of (6), as can be easily observed.

Analogously,

(1) the constant function ϕ : V → W defined as ϕ(v) := (0, 1, 0), for all v ∈ V, is Lipschitz
but it is not intrinsic Lipschitz;

(2) ψ : V → W defined as ψ(v) := (0, 1,−v1) for all v ∈ V, is intrinsic Lipschitz contin-
uous but it is not Lipschitz.

The following result is related with Proposition 3.1 of [1]. It states that, for each intrinsic
Lipschitz f : W → V, there is a distance d f on the domain W—the d f distance of two
points of W being the distance in H

n of the corresponding points on graph ( f )—such that
f : (W, d f ) → V is Lipschitz.

Proposition 3.22 Let H
n = W · V, as in Proposition 3.18, f : W → V and � f : W → H

n

defined as � f (w) := w · f (w). Define, for all w,w′ ∈ W,

τ f (w,w
′) := ‖ f (w)−1 · w−1 · w′ · f (w)‖.

If f is intrinsic L Lipschitz, then

c τ f (w,w
′) ≤ ‖� f (w)

−1 ·� f (w
′)‖ ≤ (1 + L)τ f (w,w

′), (15)

where c = c(W,V) ∈ (0, 1) is the constant in (4).
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Proof From (ii) of Proposition 3.20, it follows
∥
∥� f (w)

−1 ·� f (w
′)
∥
∥ = ∥

∥ f (w)−1 · w−1 · w′ · f (w) · f (w)−1 · f (w′)
∥
∥

≤ τ f (w,w
′)+ ∥

∥ f (w)−1 · f (w′)
∥
∥ ≤ (1 + L)τ f (w,w

′).

Moreover, f (w)−1 · w−1 · w′ · f (w) = (
� f (w)

−1 ·� f (w
′)
)
W
. Hence, by (4),

c τ f (w,w
′) = c

∥
∥(
� f (w)

−1 ·� f (w
′)
)
W

∥
∥ ≤ ∥

∥� f (w)
−1 ·� f (w

′)
∥
∥ .

�

Intrinsic linear functions in H

n can be characterized in terms of H -linear functions.

Proposition 3.23 Let H
n = W · V as in Proposition 3.18. Then

(i) L : V → W is intrinsic linear if and only if�L : V → H
n, defined as�L(v) := v·L(v),

is H-linear.
(ii) L : W → V is intrinsic linear if and only if L is H-linear.

Proof Part (i): If �L is H -linear then it is elementary to check that graph (L) is a homoge-
neous subgroup.
Conversely, if graph (L) is a homogeneous subgroup, then for each v ∈ V and λ > 0 there is
v̄ ∈ V such that δλ(v · L(v)) = v̄ · L(v̄). Hence δλv ·δλ(L(v)) = v̄ · L(v̄). By Proposition 3.2,
it follows δλv = v̄ so that L(δλv) = L(v̄) = δλ(L(v)). Hence L is homogeneous and �L is
homogeneous too.
For all v, v′ ∈ V there is v̄ ∈ V such that v · L(v) · v′ · L(v′) = v̄ · L(v̄) hence v · v′ · v′−1 ·
L(v) · v′ · L(v′) = v̄ · L(v̄). Because W is normal in H

n , then v · v′ = v̄ and, consequently,
v′−1 · L(v) · v′ · L(v′) = v̄ · L(v̄). Hence �L is additive, indeed, for all v, v′ ∈ V,

�L(v · v′) = v · v′ · v′−1 · L(v) · v′ · L(v′) = �L(v) ·�L(v
′),

Part (ii): Assume that L : W → V is H -linear. Then, as before, graph (L) is homogeneous.
Because W is normal and V is commutative, then, for all g ∈ H

n and w ∈ W,

L(g−1 · w · g) = L(w). (16)

Indeed, (see Theorem 3.1.12 of [19]) L(w) does not depend on the (2n + 1)th component of
w, while the first 2n components of g−1 · w · g and of w coincide.
From (16), for all w,w′ ∈ W we have

w · L(w) · w′ · L(w′) = w · L(w) · w′ · (L(w))−1
︸ ︷︷ ︸

=w̄∈W

· L(w) · L(w′)︸ ︷︷ ︸
∈V

= w̄ · L(w) · L
(
L(w) · w′ · L(w)−1) = w̄ · L(w̄).

This proves that graph (L) is a homogeneous group.
Conversely, assume that graph (L) is a homogeneous group. Arguing as in Part (i), we show
that L is homogeneous.
Then, for all w,w′ ∈ W, there is w̄ ∈ W such that w · L(w) ·w′ · L(w′) = w̄ · L(w̄). Hence,
w̄ = w · L(w) ·w′ · L(w)−1 and L(w̄) = L(w) · L(w′). Let w̃ := L(w) ·w′ · L(w)−1, then,
for all w, w̃ ∈ W,

L(w · w̃) = L(w) · L
(
L(w)−1 · w̃ · L(w)

)
. (17)

Now observe that for all wT ∈ W ∩ T we have wT · wT = δ√2(wT). Moreover, because
wT is in the centre of H

n , (17) gives that L(wT · wT) = L(wT) · L(wT) and, in turn
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L(wT) · L(wT) = δ2(L(wT)) because L(wT) belongs to the horizontal subgroup V. Hence,
by the homogeneity of L we get that

δ√2(L(wT)) = L(wT · wT) = L(wT) · L(wT) = δ2(L(wT))

that eventually gives

L(wT) = e. (18)

Recall that any w ∈ W can be written in a unique way as w = π(g) · wT, with wT ∈ T and
π(w) ∈ W ∩ HH

n
e . Hence, from (17) and (18),

L(w) = L(π(w) · wT) = L(π(w)) · L(wT) = L(π(w)) (19)

for allw ∈ W. So that, because π(g−1 ·w · g) = π(w), for allw ∈ W and g ∈ H
n , from (17)

and (19) and for all w, w̃ ∈ W, we get L(w · w̃) = L(w) · L
(
π((L(w)−1 · w̃ · L(w))

) =
L(w)·L(π(w̃)) = L(w)·L(w̃).This proves the additivity of L and concludes the Proposition.
�

Example 3.24 Each condition in Proposition 3.23, cannot characterize all intrinsic linear
functions. Let H

1 = W · V, with V = {v = (v1, 0, 0)} and W = {w = (0, w2, w3)}.
(1) For any fixed a ∈ R, the function L : V → W defined as L(v) = (0, av1,−av2

1/2) is
intrinsic linear because graph (L) = {(t, at, 0) : t ∈ R} is a horizontal 1-dimensional
subgroup of H

1. But L is not a group homomorphism from V to W.
(2) For any fixed a ∈ R, the function L : W → V defined as L(w) = (aw2, 0, 0) is intrinsic

linear because graph (L) = {(at, t, s) : t, s ∈ R} is a vertical 2-dimensional subgroup of
H

1. The parametric function�L : W → H
1 acts as�L(w) = (aw2, w2, w3 − aw2

2/2)
and, consequently, �L is not a group homomorphism from V to H

n .

Proposition 3.25 Let H
n = W · V as in Proposition 3.18. Then,

(i) f : A ⊂ V → W is intrinsic differentiable in ḡ ∈ A if and only if the parameterization
map � f : A → H

n, � f (g) := g · f (g), is P-differentiable in ḡ and, for all g ∈ V,

(d� f )ḡ(g) = g · d fḡ(g). (20)

(ii) f : A ⊂ W → V is intrinsic differentiable in ḡ ∈ A if and only if there is an intrinsic
linear map d fḡ : W → V, such that

∥∥d fḡ(ḡ
−1 · g)−1 · f (ḡ)−1 · f (g)

∥∥ = o
(∥∥ f (ḡ)−1 · ḡ−1 · g · f (ḡ)

∥∥)

for g ∈ A and
∥∥ f (ḡ)−1 · ḡ−1 · g · f (ḡ)

∥∥ → 0.

Proof Case (i): If f is intrinsic differentiable in ḡ with intrinsic differential d fḡ , by Propo-
sition 3.23, the map g �→ g · d fḡ(g) is H -linear from V to H

n . We define

(d� f )ḡ : V → H
n as (d� f )ḡ(g) := g · d fḡ(g).

Observe that, from Proposition 3.6, if p̄ = ḡ · f (ḡ) then

d fḡ(η)
−1 · f p̄−1(η) = d fḡ(η)

−1 · η−1 · f (ḡ)−1 · η · f (ḡ · η)
and, defining g := ḡ · η,

d fḡ(ḡ
−1 · g)−1 · f p̄−1(ḡ−1 · g)

= d fḡ(ḡ
−1 · g)−1 · (ḡ−1 · g)−1 · f (ḡ)−1 · ḡ−1 · g · f (g)

= (d� f )ḡ(ḡ
−1 · g)−1 ·� f (ḡ)

−1 ·� f (g). (21)
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Hence (10) yields
∥
∥
∥(d� f )ḡ(ḡ

−1 · g)−1 ·� f (ḡ)
−1 ·� f (g)

∥
∥
∥ = o

(∥∥ḡ−1 · g
∥
∥)
, (22)

as
∥
∥ḡ−1 · g

∥
∥ → 0, that is � f is P-differentiable in ḡ.

Conversely, if � f is P-differentiable in ḡ then its P-differential (d� f )ḡ : V → H
n is

H -linear and (22) holds. From (4), both the W component and the V component of the left
hand side of (22) have to be o

(∥∥ḡ−1 · g
∥
∥)

. Looking at the V component we get
∥
∥
∥((d� f )ḡ(ḡ

−1 · g))−1
V

· ḡ−1 · g
∥
∥
∥ = o

(∥∥ḡ−1 · g
∥
∥)
. (23)

Notice that, by (i) of Proposition 3.19, we get that the restriction ((d� f )ḡ)|V of (d� f )ḡ to

V is a linear map from V ≡ R
k to itself. Hence from (23) ((d� f )ḡ)|V is the identity in V,

and, in turn,

(d� f )ḡ(g) = g · L f,ḡ(g), (24)

with L f,ḡ = ((d� f )ḡ)|W : V → W.
From (24) and Proposition 3.23 we have that L f,ḡ is an intrinsic linear map from V to W.
We define the P-differential of f at ḡ as

d fḡ := L f,ḡ.

Now, (22) and (21) yield the intrinsic differentiability of f in ḡ.
Case (ii): given (i) of Proposition 3.6, for all η ∈ W,

d fḡ(η)
−1 · f p̄−1(η) = d fḡ(η)

−1 · f (ḡ)−1 · f
(
ḡ · f (ḡ) · η · f (ḡ)−1)

and defining g such that η = f (ḡ)−1 · ḡ−1 · g · f (ḡ)

= d fḡ
(

f (ḡ)−1 · ḡ−1 · g · f (ḡ)
)−1 · f (ḡ)−1 · f (g)

= d fḡ
(
ḡ−1 · g

)−1 · f (ḡ)−1 · f (g).

Now the equivalence between Definition 3.13 and (ii) is clear. �

Proposition 3.26 Let H

n = W · V, as in Proposition 3.18. Then

(i) f : A ⊂ V → W is uniformly intrinsic differentiable in A if and only if the parame-
terization map � f : A → H

n, is continuously P-differentiable in A.
(ii) f : A ⊂ W → V is uniformly intrinsic differentiable in A if and only if it is intrinsic

differentiable at each g ∈ A with differential d fg continuously dependent on g and if,
for each compact K ⊂ A,

sup
ḡ,g∈K

0<
∥
∥ḡ−1·g∥

∥<δ

∥∥d fḡ(ḡ−1 · g)−1 · f (ḡ)−1 · f (g)
∥∥

∥∥ f (ḡ)−1 · ḡ−1 · g · f (ḡ)
∥∥ → 0 as δ → 0. (25)

Proof Case (i): the equivalence between uniformly intrinsic differentiability of f and con-
tinuous P-differentiability of � f follows immediately from (20) and applying Theorem 4.6
in [20].
Case (ii): because f is continuous in A, then f is bounded in each compact K ⊂ A; hence,∥∥ f (ḡ)−1 · ḡ−1 · g · f (ḡ)

∥∥ is comparable with
∥∥ḡ−1 · g

∥∥ in K. Now the equivalence between
(25) and the two conditions (ii) and (iii) of Definition 3.16, follows from the same steps used
in the proof of Case (ii) of Proposition 3.25. �
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4 H-regular submanifolds are intrinsic differentiable graphs

This section contains our main theorem. We prove that S ⊂ H
n is a H -regular submanifold

if and only if S is, locally, a uniformly intrinsic differentiable graph.
We recall the definitions of H -regular submanifolds, of dimension k or of codimension k

(see [13] and also [10] or [26]).

Definition 4.1 Let k be an integer, 1 ≤ k ≤ n.

(i) A subset S ⊂ H
n is a k-dimensional H -regular submanifold if for each p ∈ S there are

an open U ⊂ H
n with p ∈ U , an open A ⊂ R

k and an injective, continuously Pansu
differentiable f : A → U , with injective Pansu differential, such that

S ∩ U = f (A).

(ii) A subset S ⊂ H
n is a k-codimensional H -regular submanifold if for each p ∈ S there

are an open U ⊂ H
n , with p ∈ U, and f : U → R

k, f ∈ C1
H (U; R

k) with surjective
Pansu differential, such that

S ∩ U = {x ∈ U : f (x) = 0}.

Theorem 4.2 The following statements are equivalent

(1) S ⊂ H
n is a H-regular submanifold.

(2) For all p ∈ S there is an open U ⊂ H
n such that p ∈ U and S ∩ U is the graph of a

uniformly intrinsic differentiable function ϕ acting between complementary subgroups
of H

n.

More precisely, with 1 ≤ k ≤ n, if S is k-dimensional H-regular then ϕ is defined on a
k-dimensional horizontal subgroup and if S is k-codimensional H-regular then ϕ is defined
on a (2n + 1 − k)-dimensional normal subgroup.

Proof We divide the proof in two parts: first we deal with a k-dimensional S, then with a
k-codimensional S.

First part:

(1) �⇒ (2). In Theorem 3.5 of [13] it is proved that any k-dimensional H -regular surface
S is an Euclidean C1, k-dimensional, submanifold of H

n ≡ R
2n+1 and that, at each p ∈ S,

there is a k-dimensional horizontal subgroup V such that its coset p · V is the Euclidean
tangent k-plane Tp S.
Fix p ∈ S and let V := p−1 ·Tp S, W := V

⊥. If V is a small open neighborhood of the origin,
then (p−1 · S)∩ V is an Euclidean C1 graph from V to W, and there are an open O ⊂ V and
a function ϕ : O → W, continuously differentiable in O, such that

(p−1 · S) ∩ V = {v + ϕ(v) : v ∈ O}
The map � : O → H

n defined as �(v) := v + ϕ(v) is Euclidean C1; once more by Theo-
rem 3.5 of [13], the image of the Euclidean differential deuc�v is an horizontal k-dimensional
subgroup of H

n , for all v ∈ O, hence, by Theorem 1.1 of [20],� is continuously P-differen-
tiable in O.
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Finally, (p−1 · S) ∩ V = {v + ϕ(v) : v ∈ O} = {v · ψ(v) : v ∈ O}, where ψ : O → W is
given by

ψ(v) =
(

ϕ1(v), · · ·, ϕ2n(v), ϕ2n+1(v)− 1

2

n∑

i=1

(viϕn+i (v)− vn+iϕi (v))

)

.

By Proposition 3.26, the function ψ is uniformly intrinsic differentiable in O because the
associated parametric map �ψ is continuously P-differentiable, being �ψ ≡ �.
Hence (p−1 · S) ∩ V = graph (ψ) and S ∩ (p · V) = graph (ψp).
(2) �⇒ (1). Let H

n = W · V, as in Proposition 3.18, and f : A ⊂ V → W be uniformly
intrinsic differentiable in A. Then� f : A → H

n is uniformly P-differentiable in A. Hence,
graph ( f ) = � f (A) is a k-dimensional H -regular submanifold.

Second part:

(1) �⇒ (2). Let S ⊂ H
n be a H -regular surface of codimension k. By Proposition 3.12

of [13], for each p ∈ S there are U , open in H
n , and f ∈ C1

H (U,Rk) such that p ∈ U ,
S ∩ U = {x ∈ U : f (x) = 0}, and there are complementary subgroups V and W, such that
d fx |V : V → R

k is one to one, for all x ∈ U .
Finally, there are a relatively open A ⊂ W and a continuous ϕ : A → V such that pW ∈ A
and S ∩ U = graph (ϕ) = {w · ϕ(w) : w ∈ A}. We will prove that ϕ is uniformly intrinsic
differentiable in A.

Let w ∈ A, x = w · ϕ(w) and define dϕw := − (
d fx |V

)−1 ◦ d fx |W.
Notice that dϕw : W → V is H -linear, hence, by (ii) of Proposition 3.23, it is intrinsic linear.
Moreover, dϕw depends continuously on w, because f ∈ C1

H (U,Rk).
We prove that, for any sufficiently small compact K ⊂ A,

sup
w,η∈K

0<
∥
∥w−1·η∥∥<δ

‖(dϕw(w−1 · η))−1 · ϕ(w)−1 · ϕ(η)‖
‖ϕ(w)−1 · w−1 · η · ϕ(w)‖ → 0, as δ → 0. (26)

By (ii) of Proposition 3.26, (26) completes the proof.
Notice that, for all η ∈ W and v ∈ V,

(
(d fx |V)−1 ◦ d fx

)
(η · v) = (

d fx |V
)−1 (

d fx |W(η) · d fx |V(v)
)

= (
(d fx |V)−1 ◦ d fx |W

)
(η) · v

(27)

By (27) we have
∥∥(dϕw(w−1 · η))−1 · ϕ(w)−1 · ϕ(η)∥∥

= ∥∥(
(d fx |V)−1 ◦ d fx |W

)
(w−1 · η) · ϕ(w)−1 · ϕ(η)∥∥

= ∥∥(d fx |V)−1 (
d fx (�ϕ(w)

−1 ·�ϕ(η))
)∥∥

where �ϕ(w) := w · ϕ(w); by Theorem 2.3, there is δ > 0 such that

≤ ∥∥(d fx |V)−1
∥∥ ∥∥ f (�ϕ(η))− f (�ϕ(w))− d fx (�ϕ(w)

−1 ·�ϕ(η))
∥∥

Rk

≤ C sup
w∈K

∥∥(d fx |V)−1
∥∥ sup

w,η∈K∥∥w−1·η∥∥<δ

∥∥d f�ϕ(w) − d f�ϕ(η)
∥∥ ‖�ϕ(w)−1 ·�ϕ(η)‖.
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From Proposition 3.17, ϕ is intrinsic Lipschitz in K, hence (15) gives

‖�ϕ(w)−1 ·�ϕ(η)‖ ≤ (1 + L)τϕ(w, η) = (1 + L)‖ϕ(w)−1 · w−1 · η · ϕ(w)‖
where L = L(K) is the Lipschitz constant of ϕ.
Finally, use that d f is uniformly continuous in K̃ := {w ·ϕ(w) : w ∈ K} and that ‖w−1 ·η‖ <
δ implies ‖�ϕ(w)−1 ·�ϕ(η)‖ < c(K, δ), with c(K, δ) → 0+ as δ → 0, to obtain (26).

(2) �⇒ (1). Let H
n = W·V as in Proposition 3.18 and A be open in W. We have to prove that

ifϕ : A → V is uniformly intrinsic differentiable in A, then S = {w·ϕ(w), w ∈ A} is a k-co-
dimensional H -regular submanifold. That is, we have to prove that, given p̄ = w̄ ·ϕ(w̄) ∈ S,
there are an open neighborhood U of p̄ and a function f ∈ C1

H (U,Rk), such that,

S ∩ U = {x ∈ U : f (x) = 0} (28)

and, for all x ∈ U ,

d fx : H
n → R

k is surjective. (29)

Without loss of generality, we can assume that A is relatively compact and we define

F := {w · ϕ(w) : w ∈ Ā}.
For x = w · ϕ(w) ∈ F and for all p ∈ H

n let

hx (p) := (dϕw(pW))
−1 · pV, (30)

Notice that, for x ∈ F , hx is a H -linear function from W to V.
Indeed, hx is homogenous and, for all p, q ∈ H

n , we have hx (p · q) = (dϕw[(p · q)W])−1 ·
(p·q)V =

(
dϕw(pW · pV · qW · p−1

V
)
)−1 · pV ·qV = (dϕw(pW))

−1 ·(dϕw(qW))
−1 · pV ·qV =

hx (p) · hx (q).
The map x �→ hx , from F to the set of H -linear functions from H

n to R
k , is continuous.

Indeed, because of intrinsic uniform differentiability of ϕ in A, dϕw is continuous from A
to the set of H -linear functions from W to V.
Hence, if we associate, as in Proposition 3.19, to each hx a matrix Qx ∈ R

k,2n , then the map
Q : F → R

k,2n , sending x ∈ F to Qx , is continuous.
Now define, for x, y ∈ F , x �= y,

R(x, y) := −hx (x−1 · y)

d(x, y)
.

If K is a compact subset of F , then

sup {‖R(x, y)‖ : x, y ∈ K, 0 < d(x, y) < δ} → 0 as δ → 0. (31)

Indeed, from (15), there exists c = c(W,V) > 0 such that, for all x = w · ϕ(w) and
y = η · ϕ(η) in K, we have: c

∥∥ϕ(w)−1 · w−1 · η · ϕ(w)∥∥ ≡ cτϕ(w, η) ≤ d(x, y). Hence,

‖R(x, y)‖ ≤ 1

c

‖(dϕw(w−1 · η))−1 · ϕ(w)−1 · ϕ(η)‖
∥∥ϕ(w)−1 · w−1 · η · ϕ(w)∥∥ → 0.

Now, because ϕ is uniform intrinsic differentiable, (31) follows from (25).
We can now apply Whitney’s theorem (see Theorem 2.10 of [11]) to the functions

g : F → R, Q : F → R
k,2n,
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where g(x) = 0 for all x ∈ F . We get a function f ∈ C1
H (H

n,Rk), vanishing on F and with
a surjective differential at all points of F .

Indeed, from (30) and for all x ∈ F , hx |V : V → R
k is one to one.

To conclude our proof we have to provide an open neighborhood U of p̄ satisfying (28)
and (29). Then, fix r > 0 and define U as

U = {w · v ∈ H
n : w ∈ Ir ⊂ W, v ∈ V ∩ B(ϕ(w̄), r)} (32)

where Ir ⊂ A is a neighborhood of w̄, Ir is open in W and such that,ϕ(Ir ) ⊂ V∩B(ϕ(w̄), r).
By definition p̄ ∈ U and, if we choose r small enough, by continuity of d f on H

n , d fx is
surjective for all x ∈ U , hence (29) holds.
Moreover, by continuity, for r small, d fx : V → R

k is one to one, for all x ∈ U . Hence, for
each w̃ ∈ Ir , the map v �→ f (w̃ ·v) is one to one in V∩ B(ϕ(w̄), r). Hence, if x = w ·v ∈ U
and if f (x) = 0, then x = w · ϕ(w) ∈ F .

So also (28) holds and the proof is completed. �
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