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Abstract In this paper, we study the nonlocal ∞-Laplacian type diffusion equation
obtained as the limit as p → ∞ to the nonlocal analogous to the p-Laplacian evolution,

ut (t, x) =
∫

RN

J (x − y)|u(t, y) − u(t, x)|p−2(u(t, y) − u(t, x)) dy.

We prove exist ence and uniqueness of a limit solution that verifies an equation governed
by the subdifferential of a convex energy functional associated to the indicator function of
the set K = {u ∈ L2(RN ) : |u(x) − u(y)| ≤ 1, when x − y ∈ supp(J )}. We also find
some explicit examples of solutions to the limit equation. If the kernel J is rescaled in an
appropriate way, we show that the solutions to the corresponding nonlocal problems converge
strongly in L∞(0, T ; L2(Ω)) to the limit solution of the local evolutions of the p-Laplacian,
vt = ∆pv. This last limit problem has been proposed as a model to describe the formation
of a sandpile. Moreover, we also analyze the collapse of the initial condition when it does
not belong to K by means of a suitable rescale of the solution that describes the initial layer
that appears for p large. Finally, we give an interpretation of the limit problem in terms of
Monge–Kantorovich mass transport theory.
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1 Introduction

Our main purpose in this paper is to study a nonlocal ∞-Laplacian type diffusion equation
obtained as the limit as p → ∞ to the nonlocal analogous to the p-Laplacian evolution.

First, let us recall some known results on local evolution problems. In [25] (see also [3]
and [24]) it was investigated the limiting behavior as p → ∞ of solutions to the quasilinear
parabolic problem

Pp(u0)

{
vp,t − ∆pvp = f, in ]0, T [×R

N ,

vp(0, x) = u0(x), in R
N ,

where ∆pu = div (|∇u|p−2∇u) and f is nonnegative and represents a given source term,
which is interpreted physically as adding material to an evolving system, within which mass
particles are continually rearranged by diffusion.

We hereafter take the space H = L2(RN ) and define for 1 < p < ∞ the functional

Fp(v) =

⎧⎪⎪⎨
⎪⎪⎩

1

p

∫

RN

|∇v(y)|pdy, if u ∈ L2(RN ) ∩ W 1,p(RN ),

+∞ if u ∈ L2(RN )\W 1,p(RN ).

Therefore, the PDE problem Pp(u0) has the standard reinterpretation
{

f (t) − vp,t = ∂ Fp(vp(t)), a.e. t ∈]0, T [,
vp(0, x) = u0(x), in R

N .

In [3], assuming that u0 is a Lipschitz function with compact support, satisfying

‖∇u0‖∞ ≤ 1,

and for f a smooth nonnegative function with compact support in [0, T ] × R
N , it is proved

that we can extract a sequence pi → +∞ and obtain a limit function v∞, such that for each
T > 0, {

vpi → v∞, a.e. and in L2(RN × (0, T )),

∇vpi ⇀ ∇v∞, vpi ,t ⇀ v∞,t weakly in L2(RN × (0, T )).

Moreover, the limit function v∞ satisfies

P∞(u0)

{
f (t) − v∞,t ∈ ∂ F∞(v∞(t)), a.e. t ∈]0, T [,
v∞(0, x) = u0(x), in R

N ,

where

F∞(v) =
{

0, if v ∈ L2(RN ), |∇v| ≤ 1,

+∞, in other case.

This limit problem P∞(u0) explains the movement of a sandpile (v∞(t, x) describes the
amount of the sand at the point x at time t), the main assumption being that the sandpile is
stable when the slope is less or equal than one and unstable if not.
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The limit as p → ∞ in a nonlocal p-Laplacian evolution equation 281

On the other hand, we have the following nonlocal nonlinear diffusion problem, which
we call the nonlocal p-Laplacian problem,

P J
p (u0)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

u p,t (t, x) =
∫

RN

J (x − y)|u p(t, y) − u p(t, x)|p−2

×(u p(t, y) − u p(t, x))dy + f (t, x),

u p(0, x) = u0(x).

Here J : R
N → R is a nonnegative continuous radial function with compact support,

J (0) > 0 and
∫

RN J (x) dx = 1 (this last condition is not necessary to prove our results, it is
imposed to simplify the exposition).

In [2] we have studied this problem when the integral is taken in a bounded domain Ω

(hence dealing with homogeneous Neumann boundary conditions). We have obtained exis-
tence and uniqueness of solutions and, if the kernel J is rescaled in an appropriate way,
that the solutions to the corresponding nonlocal problems converge to the solution of the
p-Laplacian with homogeneous Neumann boundary conditions. We have also studied the
asymptotic behaviour of the solutions as t goes to infinity, showing the convergence to
the mean value of the initial condition.

Let us note that the evolution problem P J
p (u0) is the gradient flow associated to the

functional

G J
p(u) = 1

2p

∫

RN

∫

RN

J (x − y)|u(y) − u(x)|p dy dx,

which is the nonlocal analogous to the functional Fp associated to the p-Laplacian.
Following [2], we obtain existence and uniqueness of a global solution for this nonlocal

problem, see Sect. 2 for the precise statements and their proofs.
Our next result in this article concerns the limit as p → ∞ in P J

p (u0). We obtain that the
limit functional is given by

G J∞(u) =
{

0 if u ∈ L2(RN ), |u(x) − u(y)| ≤ 1, for x − y ∈ supp(J ),

+∞ in other case.

Then, the nonlocal limit problem can be written as

P J∞(u0)

{
f (t, ·) − ut (t, ·) ∈ ∂G J∞(u(t)), a.e. t ∈]0, T [,
u(0, x) = u0(x).

With these notations, we obtain the following result.

Theorem 1 Let T > 0, f ∈ L2(0, T ; L2(RN ) ∩ L∞(RN )), u0 ∈ L2(RN ) ∩ L∞(RN ) such
that |u0(x)− u0(y)| ≤ 1, for x − y ∈ supp(J ), and u p the unique solution of P J

p (u0). Then,

if u∞ is the unique solution to P J∞(u0),

lim
p→∞ sup

t∈[0,T ]
‖u p(t, ·) − u∞(t, ·)‖L2(RN ) = 0.

Our next step is to rescale the kernel J appropriately and take the limit as the scaling
parameter goes to zero.
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In the sequel we assume that supp(J ) = B1(0). For given p > 1 and J we consider the
rescaled kernels

Jp,ε(x) := CJ,p

ε p+N
J

( x

ε

)
, where C−1

J,p := 1

2

∫

RN

J (z)|zN |p dz

is a normalizing constant in order to obtain the p-Laplacian in the limit instead a multiple

of it. Associated to these kernels we have solutions u p,ε to the nonlocal problems P
Jp,ε
p (u0).

Let us also consider the solution to the local problem Pp(u0). Working as in [2] again, we
can prove the following result.

Theorem 2 Let p > N and assume J (x) ≥ J (y) if |x | ≤ |y|. Let T > 0, f ∈ L1(0, T ;
L p(RN )) and u0 ∈ L p(RN ). If u p,ε is the unique solution of P

Jp,ε
p (u0) and vp is the unique

solution of Pp(u0), then

lim
ε→0

sup
t∈[0,T ]

‖u p,ε(t, ·) − vp(t, ·)‖L p(RN ) = 0.

Finally, let us rescale the limit problem P J∞(u0) considering the functionals

Gε∞(u) =
{

0 if u ∈ L2(RN ), |u(x) − u(y)| ≤ ε, for |x − y| ≤ ε,

+∞ in other case,

and the gradient flow associated to this functional,

Pε∞(u0)

{
f (t, ·) − ut (t, ·) ∈ ∂Gε∞(u(t)), a.e. t ∈]0, T [,
u(0, x) = u0(x).

We have the following theorem.

Theorem 3 Let T > 0, f ∈ L2(0, T ; L2(RN )), u0 ∈ L2(RN ) ∩ W 1,∞(RN ) such that
‖∇u0‖∞ ≤ 1 and consider u∞,ε the unique solution of Pε∞(u0). Then, if v∞ is the unique
solution of P∞(u0), we have

lim
ε→0

sup
t∈[0,T ]

‖u∞,ε(t, ·) − v∞(t, ·)‖L2(RN ) = 0.

Hence, we have approximated the sandpile model described in [3] and [25, see also 27]
by a nonlocal equation. In this nonlocal approximation a configuration of sand is stable when
its height u verifies |u(x) − u(y)| ≤ ε when |x − y| ≤ ε. This is a sort of measure of how
large is the size of irregularities of the sand; the sand can be completely irregular for sizes
smaller than ε but it has to be arranged for sizes greater than ε.

In [25] the authors studied the collapsing of the initial condition phenomena for the local
problem Pp(u0) when the initial condition u0 satisfies ‖∇u0‖∞ > 1. They find that the limit
of the solutions vp(t, x) to Pp(u0) is independent of time but does not coincide with u0.
They also describe the small layer in which the solution rapidly changes from being u0 at
t = 0 to something close to the final stationary limit for t > 0.

Now, our task is to perform a similar analysis for the nonlocal problem. To this end let
us take ε = 1 and f = 0 and look for the limit as p → ∞ of the solutions to the nonlocal
problem u p when the initial condition u0 does not verify that |u0(x) − u0(y)| ≤ 1 for
x − y ∈ supp(J ). We get that the nonlinear nature of the problem creates an initial short-time
layer in which the solution changes very rapidly. We describe this layer by means of a limit
evolution problem. We have the following result.
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Theorem 4 Let u p be the solution to P J
p (u0) with initial condition u0 ∈ L2(RN )∩ L∞(RN )

such that

1 < L = sup
|x−y|∈supp(J )

|u0(x) − u0(y)|

and f = 0. Then there exists the limit

lim
p→∞ u p(t, x) = u∞(x) in L2(RN ),

which is a function independent of t such that |u∞(x) − u∞(y)| ≤ 1 for x − y ∈ supp(J ).
Moreover, u∞(x) = v(1, x), where v is the unique strong solution of the evolution equation⎧⎨

⎩
v

t
− vt ∈ ∂G J∞(v), t ∈]τ,∞[,

v(τ, x) = τu0(x),

with τ = L−1.

Remark that when u0 verifies |u0(x) − u0(y)| ≤ 1 for x − y ∈ supp(J ) then it is an
immediate consequence of Theorem 1 that the limit exists and is given by

lim
p→∞ u p(t, x) = u0(x).

We can also give an interpretation of the limit problem P∞(u0) in terms of
Monge–Kantorovich mass transport theory as in [25,28] (see [33] for a general introduc-
tion to mass transportation problems). To this end, let us consider the distance

d(x, y) =
⎧⎨
⎩

0 if x = y,

[|x − y|] + 1 if x 	= y.

Here [·] means the entire part of the number. Note that this function d measures distances with
jumps of length one. Then, given two measures (that for simplicity we will take absolutely
continuous with respect to the Lebesgue measure in R

N ) f+, f− in R
N , and supposing the

overall condition of mass balance∫

RN

f + dx =
∫

RN

f − dy,

the Monge’s problem associated to the distance d is given by: minimize∫
d(x, s(x)) f+(x)dx

among the set of maps s that transport f+ into f−, which means∫

RN

h(s(x)) f +(x) dx =
∫

RN

h(y) f −(y) dy

for each continuous function h : R
N → R. The dual formulation of this minimization

problem, introduced by Kantorovich (see [24]), is given by

max
u∈K∞

∫

RN

u(x)( f+(x) − f−(x))dx

where the set K∞ is given by
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K∞ := {u ∈ L2(RN ) : |u(x) − u(y)| ≤ 1, for |x − y| ≤ 1}.

We are assuming that supp(J ) = B1(0) (in other case we have to redefine the distance d
accordingly).

With these definitions and notations we have the following result.

Theorem 5 The solution u∞(t, ·) of the limit problem P J∞(u0) is a solution to the dual
problem

max
u∈K∞

∫

RN

u(x)( f+(x) − f−(x))dx

when the involved measures are the source term f+ = f (t, x) and the time derivative of the
solution f− = ut (t, x).

Finally, let us observe that analogous results are also valid when we consider the Neumann
problem in a bounded convex domain Ω , that is, when all the involved integrals are taken in
Ω . See Sect. 8 for precise statements.

Let us end the introduction with some bibliographical discussion on nonlocal evolution
problems. Nonlocal evolution equations of the form ut (t, x) = J ∗u −u(t, x), and variations
of it, have been recently widely used to model diffusion processes, see [1,2,5,7,16–18,20,29]
and [30].

As stated in [29], if u(t, x) is thought of as the density of a single population at the
point x at time t , and J (x − y) is thought of as the probability distribution of jumping from
location y to location x , then the convolution (J ∗ u)(t, x) = ∫

RN J (y − x)u(t, y) dy is
the rate at which individuals are arriving to position x from all other places and −u(t, x) =
− ∫

RN J (y − x)u(t, x) dy is the rate at which they are leaving location x to travel to all other
sites. This consideration, in the absence of external or internal sources, leads immediately to
the fact that the density u satisfies the nonlocal equation. This equation is called a nonlocal
diffusion equation since the diffusion of the density u at a point x and time t does not only
depend on u(t, x), but on all the values of u in a neighborhood of x through the convolution
term J ∗ u. This equation shares many properties with the classical heat equation, ut = ∆u,
such as bounded stationary solutions are constant, a maximum principle holds for both of
them and perturbations propagate with infinite speed, [29]. However, there is no regularizing
effect in general (see [17]).

Concerning scalings of the kernel that approximate different problems we refer to [2,21]
and [31], where usual diffusion equations where obtained taking limits similar to the ones
considered here.

The rest of the paper is organized as follows: in Sect. 2 we collect some useful results that
will be used in the proofs of the theorems, among them some technical tools from convex
analysis; in Sect. 3 we consider the limit as p → ∞ and prove Theorem 1; in Sect. 4 we deal
with the limit as ε → 0 and prove Theorem 3; in Sect. 5 we give a model for the collapse of
a sandpile from an initially unstable configuration; in Sect. 6 we provide some examples of
explicit solutions to Pε∞(u0) and then take the limit as ε → 0 recovering explicit solutions to
the sandpile model; in Sect. 7 we deal with the interpretation of the limit equation in terms
of a transport problem. Finally, in Sect. 8 we briefly explain what are the main results for the
Neumann problem.
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The limit as p → ∞ in a nonlocal p-Laplacian evolution equation 285

2 Preliminaries

To identify the limit of the solutions u p of problem P J
p (u0) we will use the methods of convex

analysis, and so we first recall some terminology (see [13,15] and [4]).
If H is a real Hilbert space with inner product ( , ) and Ψ : H → (−∞,+∞] is convex,

then the subdifferential of Ψ is defined as the multivalued operator ∂Ψ given by

v ∈ ∂Ψ (u) ⇐⇒ Ψ (w) − Ψ (u) ≥ (v,w − u) ∀ w ∈ H.

The epigraph of Ψ is defined by

Epi(Ψ ) = {(u, λ) ∈ H × R : λ ≥ Ψ (u)}.
Given K a closed convex subset of H , the indicator function of K is defined by

IK (u) =
{

0 if u ∈ K ,

+∞ if u 	∈ K .

Then it is easy to see that the subdifferential is characterized as follows:

v ∈ ∂ IK (u) ⇐⇒ u ∈ K and (v,w − u) ≤ 0 ∀ w ∈ K .

In case the convex functional Ψ : H → (−∞,+∞] is proper, lower-semicontinuous and
min Ψ = 0 , it is well known (see [13]) that the abstract Cauchy problem

{
u′(t) + ∂Ψ (u(t)) � f (t), a.e. t ∈]0, T [,
u(0) = u0,

has a unique strong solution for any f ∈ L2(0, T ; H) and u0 ∈ D(∂Ψ ).
The following convergence was studied by Mosco in [32] (see [4]). Suppose X is a metric

space and An ⊂ X . We define

lim inf
n→∞ An = {x ∈ X : ∃xn ∈ An, xn → x}

and

lim sup
n→∞

An = {x ∈ X : ∃xnk ∈ Ank , xnk → x}.

In the case X is a normed space, we note by s − lim and w − lim the above limits associated
respectively to the strong and to the weak topology of X .

Given a sequence Ψn, Ψ : H → (−∞,+∞] of convex lower-semicontinuous functio-
nals, we say that Ψn converges to Ψ in the sense of Mosco if

w − lim sup
n→∞

Epi(Ψn) ⊂ Epi(Ψ ) ⊂ s − lim inf
n→∞ Epi(Ψn). (1)

It is easy to see that (1) is equivalent to the two following conditions:

∀ u ∈ D(Ψ ) ∃un ∈ D(Ψn) : un → u and Ψ (u) ≥ lim sup
n→∞

Ψn(un); (2)

for every subsequence nk, when uk ⇀ u, it holds Ψ (u) ≤ lim inf
k

Ψnk (uk). (3)

As consequence of results in [14] and [4] we can write the following result.

Theorem 6 Let Ψn, Ψ : H → (−∞,+∞] convex lower-semicontinuous functionals. Then
the following statements are equivalent:
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(i) Ψn converges to Ψ in the sense of Mosco.
(ii) (I + λ∂Ψn)−1u → (I + λ∂Ψ )−1u, ∀ λ > 0, u ∈ H.

Moreover, any of these two conditions (i) or (ii) imply that

(iii) for every u0 ∈ D(∂Ψ ) and u0,n ∈ D(∂Ψn) such that u0,n → u0, and every
fn, f ∈ L2(0, T ; H) with fn → f , if un(t), u(t) are the strong solutions of the
abstract Cauchy problems

{
u′

n(t) + ∂Ψn(un(t)) � fn, a.e. t ∈]0, T [,
un(0) = u0,n,

and {
u′(t) + ∂Ψ (u(t)) � f, a.e. t ∈]0, T [,
u(0) = u0,

respectively, then

un → u in C([0, T ] : H).

Let us also collect some preliminaries and notations concerning completely accretive
operators that will be used afterwards (see [8]).

We denote by J0 and P0 the following sets of functions,

J0 = { j : R → [0,+∞], such that j is convex, l.s.c. and j (0) = 0},
P0 = {

q ∈ C∞(R) : 0 ≤ q ′ ≤ 1, supp(q ′) is compact, and 0 /∈ supp(q)
}
.

Let M(RN ) denote the space of measurable functions from R
N into R. We set L(RN ) :=

L1(RN ) + L∞(RN ). Note that L(RN ) is a Banach space with the norm

‖u‖1+∞ := inf{‖ f ‖1 + ‖g‖∞ : f ∈ L1(RN ), g ∈ L∞(RN ), f + g = u}.
The closure of L1(RN ) ∩ L∞(RN ) in L(RN ) is denoted by L0(R

N ).
Given u, v ∈ M(RN ) we say

u � v if and only if
∫

RN

j (u) dx ≤
∫

RN

j (v) dx ∀ j ∈ J0.

An operator A ⊂ M(RN ) × M(RN ) is said to be completely accretive if

u − û � u − û + λ(v − v̂) ∀λ > 0 and ∀(u, v), (û, v̂) ∈ A.

The following facts are proved in [8].

Proposition 1
(i) Let u ∈ L0(R

N ), v ∈ L(RN ), then

u � u + λv ∀λ > 0 if and only if
∫

RN

q(u)v ≥ 0, ∀q ∈ P0.

(ii) If v ∈ L0(R
N ), then {u ∈ M(RN ) : u � v} is a weak sequentially compact subset

of L0(R
N ).

123



The limit as p → ∞ in a nonlocal p-Laplacian evolution equation 287

Concerning nonlocal models, in [2] we have studied the following nonlocal nonlinear
diffusion problem, which we call the nonlocal p-Laplacian problem with homogeneous
Neumann boundary conditions,⎧⎪⎨

⎪⎩
ut (t, x) =

∫

Ω

J (x − y)|u(t, y) − u(t, x)|p−2(u(t, y) − u(t, x)) dy,

u(0, x) = u0(x).

Using similar ideas and techniques we can deal with the nonlocal problem in R
N .

Solutions to P J
p (u0) are to be understood in the following sense.

Definition 1 Let 1 < p < +∞. Let f ∈ L1(0, T ; L p(RN )) and u0 ∈ L p(RN ). A solution
of P J

p (u0) in [0, T ] is a function u ∈ W 1,1(]0, T [; L p(RN )) which satisfies u(0, x) = u0(x)

a.e. x ∈ R
N and

ut (t, x) =
∫

RN

J (x − y)|u(y, t) − u(x, t)|p−2(u(y, t) − u(x, t)) dy + f (t, x)

a.e. in ]0, T [×R
N .

Working as in [2], we can obtain the following result about existence and uniqueness of
a global solution for this problem. Let us first define B J

p : L p(RN ) → L p′
(RN ) by

B J
p u(x) = −

∫

RN

J (x − y)|u(y) − u(x)|p−2(u(y) − u(x)) dy, x ∈ R
N .

Observe that, for every u, v ∈ L p(RN ) and T : R → R such that T (u − v) ∈ L p(RN ), it
holds ∫

RN

(B J
p u(x) − B J

p v(x))T (u(x) − v(x))dx

= 1

2

∫

RN

∫

RN

J (x − y)(T (u(y) − v(y)) − T (u(x) − v(x)))
(|u(y) − u(x)|p−2

×(u(y) − u(x)) − |v(y) − v(x)|p−2(v(y) − v(x))
)

dy dx . (4)

Let us also define the operator

BJ
p =

{
(u, v) ∈ L p(RN ) × L p(RN ) : v = B J

p (u)
}

.

It is easy to see that Dom(BJ
p ) = L p(RN ) and BJ

p is positively homogeneous of degree p−1.

Theorem 7 Let 1 < p < +∞. If f ∈ BV (0, T ; L p(RN )) and u0 ∈ D(BJ
p ) then there

exists a unique solution to P J
p (u0). If f = 0 then there exists a unique solution to P J

p (u0)

for all u0 ∈ L p(RN ).
Moreover, if ui (t) is a solution of P J

p (ui 0) with f = fi ∈ L1(0, T ; L p(RN )) and

ui 0 ∈ L p(RN ), i = 1, 2, then, for every t ∈ [0, T ],

‖(u1(t) − u2(t))
+‖L p(RN ) ≤ ‖(u10 − u20)

+‖L p(RN ) +
t∫

0

‖ f1(s) − f2(s)‖L p(RN )ds.
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Proof Let us first show that BJ
p is completely accretive and verifies the following range

condition

L p(RN ) = Ran(I + BJ
p ). (5)

Indeed, given ui ∈ Dom(BJ
p ), i = 1, 2 and q ∈ P0, by (4) we have

∫

RN

(B J
p u1(x) − B J

p u2(x)) q(u1(x) − u2(x)) dx ≥ 0,

from where it follows that BJ
p is a completely accretive operator. To show that BJ

p satisfies

the range condition we have to prove that for any φ ∈ L p(RN ) there exists u ∈ Dom(BJ
p )

such that u = (I + BJ
p )−1φ. Let us first take φ ∈ L1(RN ) ∩ L∞(RN ). For every n ∈ N, let

φn := φχ Bn(0). By the results in [2], the operator B J
p,n defined by

B J
p,nu(x) = −

∫

Bn(0)

J (x − y)|u(y) − u(x)|p−2(u(y) − u(x)) dy, x ∈ Bn(0),

is m-completely accretive in L p(Bn(0)). Then, there exists un ∈ L p(Bn(0)), such that

un(x) + B J
p,nun(x) = φn(x), a.e. in Bn(0). (6)

Moreover, un � φn .
We denote by ũn and Hn the extensions

ũn(x) =
{

un(x) if x ∈ Bn(0),

0 if x ∈ R
N \Bn(0),

and

Hn(x) =
{

B J
p,nun(x), if x ∈ Bn(0),

0 if x ∈ R
N \Bn(0).

Since, un � φn , we have

‖ũn‖q ≤ ‖φ‖q for all 1 ≤ q ≤ ∞,∀ n ∈ N. (7)

Hence, we can suppose

ũn ⇀ u in L p′
(RN ). (8)

On the other hand, multiplying (6) by un and integrating, we get∫

Bn(0)

∫

Bn(0)

J (x − y)|un(y) − un(x)|p dydx ≤ ‖φ‖2 ∀ n ∈ N, (9)

which implies, by Hölder’s inequality, that {Hn : n ∈ N} is bounded in L p′
(RN ). Therefore,

we can assume that

Hn ⇀ H in L p′
(RN ). (10)

By (8) and (10), taking limit in (6), we get

u + H = φ a.e. in R
N . (11)
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Let us see that

H(x) = −
∫

RN

J (x − y)|u(y) − u(x)|p−2(u(y) − u(x)) dy a.e. in x ∈ R
N . (12)

In fact, multiplying (6) by un and integrating, we get∫

B(0,n)

B J
p,nun un =

∫

B(0,n)

(φ − un)un

=
∫

B(0,n)

(φ − u)u −
∫

B(0,n)

φ(u − un)

+
∫

B(0,n)

2u(u − un) −
∫

B(0,n)

(u − un)(u − un).

Therefore, by (11),

lim sup
∫

Bn(0)

B J
p,nun un ≤

∫

RN

(φ − u)u =
∫

RN

H u. (13)

On the other hand, for any v ∈ L1(RN ) ∩ L∞(RN ), since

0 ≤
∫

Bn(0)

(B J
p,nun − B J

p,nv)(un − v),

we have that,∫

Bn(0)

B J
p,nun un +

∫

Bn(0)

B J
p,nv v ≥

∫

Bn(0)

B J
p,nun v +

∫

Bn(0)

B J
p,nv un .

Therefore, by (13), ∫

RN

H u +
∫

RN

B J
p v v ≥

∫

RN

H v +
∫

RN

B J
p v u. (14)

Taking now v = u ± λw, λ > 0 and w ∈ L1(RN ) ∩ L∞(RN ), and letting λ → 0, we get∫

RN

H w =
∫

RN

B J
p u w,

and consequently (12) is proved. Therefore, by (11), the range condition is satisfied for
φ ∈ L1(RN ) ∩ L∞(RN ).

Let now φ ∈ L p(RN ). Take φn ∈ L1(RN ) ∩ L∞(RN ), φn → φ in L p(RN ). Then, by our
previous step, there exists un = (I + BJ

p )−1φn . Since BJ
p is completely accretive, un → u

in L p(RN ), also B J
p un → B J

p u in L p′
(RN ) and we conclude that u + BJ

p u = φ.

Consequently (see [8] and [9]) we have that BJ
p is an m-accretive operator in L p(RN ) and

we get the existence of mild solution u(t) of the abstract Cauchy problem
{

u′(t) + BJ
p u(t) = f (t), t ∈]0, T [,

u(0) = u0,
(15)
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for any u0 ∈ L p(RN ) and f ∈ L1(0, T ; L p(RN )). Now, by the nonlinear semigroup theory
(see [9,22] or [23]), if f ∈ BV (0, T ; L p(RN )) and u0 ∈ D(BJ

p ), u(t) is a strong solution

of (15), that is, a solution of P J
p (u0) in the sense of Definition 1. The same is true for all

u0 ∈ L p(RN ) in the case f = 0 by the complete accretivity of BJ
p , since Dom(BJ

2 ) = L2(RN )

and for p 	= 2 the operator BJ
p is homogeneous of degree p − 1 (see [8]). Finally, the

contraction principle follows from the general nonlinear semigroup theory since the solutions
ui , i = 1, 2, are mild-solutions of (15). ��

3 Limit as p → ∞

Recall from the Introduction that the nonlocal p-Laplacian evolution problem

P J
p (u0)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ut (t, x) =
∫

RN
J (x − y)|u(t, y) − u(t, x)|p−2(u(t, y) − u(t, x)) dy

+ f (t, x),

u(0, x) = u0(x).

is the gradient flow associated to the functional

G J
p(u) = 1

2p

∫

RN

∫

RN

J (x − y)|u(y) − u(x)|p dy dx .

With a formal calculation, taking limit as p → ∞, we arrive to the functional

G J∞(u) =
{

0 if |u(x) − u(y)| ≤ 1, for x − y ∈ supp(J ),

+∞ in other case.

Hence, if we define

K J∞ := {u ∈ L2(RN ) : |u(x) − u(y)| ≤ 1, for x − y ∈ supp(J )},
we have that the functional G J∞ is given by the indicator function of K J∞, that is, G J∞ = IK J∞ .
Then, the nonlocal limit problem can be written as

P J∞(u0)

{
f (t, ·) − ut (t) ∈ ∂ IK J∞(u(t)), a.e. t ∈]0, T [,
u(0, x) = u0(x).

Proof of Theorem 1 Let T > 0. Recall that we want to prove that, given f ∈ L2(0, T ;
L2(RN ) ∩ L∞(RN )), u0 ∈ K J∞ ∩ L∞(RN ) and u p the unique solution of P J

p (u0), if u∞ is

the unique solution of P J∞(u0), then

lim
p→∞ sup

t∈[0,T ]
‖u p(t, ·) − u∞(t, ·)‖L2(RN ) = 0.

By Theorem 6, to prove the result it is enough to show that the functionals

G J
p(u) = 1

2p

∫

RN

∫

RN

J (x − y)|u(y) − u(x)|p dy dx

converge to
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G J∞(u) =
{

0 if |u(x) − u(y)| ≤ 1, for x − y ∈ supp(J ),

+∞ in other case,

as p → ∞, in the sense of Mosco.
First, let us check that

Epi(G J∞) ⊂ s − lim inf
p→∞ Epi(G J

p). (16)

To this end let (u, λ) ∈ Epi(G J∞). We can assume that u ∈ K J∞ and λ ≥ 0 (as G J∞(u) = 0).
Now take

vp = uχ BR(p)(0) and λp = G J
p(u p) + λ. (17)

Then, as λ ≥ 0 we have (vp, λp) ∈ Epi(G J
p). It is obvious that if R(p) → ∞ as p → ∞

we have

vp → u in L2(RN ),

and, if we choose R(p) = p
1

4N we get

G J
p(vp) = 1

2p

∫

RN

∫

RN

J (x − y)|vp(y) − vp(x)|p dy dx ≤ C
R(p)2N

p
→ 0,

as p → ∞, we get (16).
Finally, let us prove that

w − lim sup
p→∞

Epi(G J
p) ⊂ Epi(G J∞). (18)

To this end, let us consider a sequence (u p j , λp j ) ∈ Epi(G J
p j

) (p j → ∞), that is,

G J
p j

(u p j ) ≤ λp j ,

with

u p j ⇀ u, and λp j → λ.

Therefore, we obtain that 0 ≤ λ, since

0 ≤ G J
p j

(u p j ) ≤ λp j → λ.

On the other hand, we have that

⎛
⎜⎝

∫

RN

∫

RN

J (x − y)
∣∣u p j (y) − u p j (x)

∣∣p j dy dx

⎞
⎟⎠

1/p j

≤ (Cp j )
1/p j .
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Now, fix a bounded domain Ω ⊂ R
N and q < p j . Then, by the above inequality,

⎛
⎝

∫

Ω

∫

Ω

J (x − y)|u p j (y) − u p j (x)|q dy dx

⎞
⎠

1/q

≤
⎛
⎝

∫

Ω

∫

Ω

J (x − y) dy dx

⎞
⎠

(p j −q)/p j q

×
⎛
⎜⎝

∫

RN

∫

RN

J (x − y)
∣∣u p j (y) − u p j (x)

∣∣p j dy dx

⎞
⎟⎠

1/p j

≤
⎛
⎝

∫

Ω

∫

Ω

J (x − y) dy dx

⎞
⎠

(p j −q)/p j q

(Cp j )
1/p j .

Hence, we can extract a subsequence (if necessary) and let p j → ∞ to obtain

⎛
⎝

∫

Ω

∫

Ω

J (x − y)|u(y) − u(x)|q dy dx

⎞
⎠

1/q

≤
⎛
⎝

∫

Ω

∫

Ω

J (x − y) dy dx

⎞
⎠

1/q

.

Now, just taking q → ∞, we get

|u(x) − u(y)| ≤ 1 a.e. (x, y) ∈ Ω × Ω, x − y ∈ supp(J ).

As Ω is arbitrary we conclude that

u ∈ K J∞.

This ends the proof. ��

4 Limit as ε → 0

In this section, to simplify, we assume that supp(J ) = B1(0). For given p > 1 and J , we
consider the rescaled kernels

Jp,ε(x) := CJ,p

ε p+N
J

( x

ε

)
, where C−1

J,p := 1

2

∫

RN

J (z)|zN |p dz

is a normalizing constant in order to obtain the p-Laplacian in the limit instead a multiple of
it, that is, we want the limit problem to be

Np(u0)

{
ut = ∆pu + f, in ]0, T [×R

N ,

u(0, x) = u0(x), in R
N .

Associated with −∆p it is defined the operator Bp in L p(RN ) × L p(RN ) by v ∈ Bp(u)

if u ∈ W 1,p(RN ), v ∈ L p(RN ) and
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∫

RN

|∇u|p−2∇u · ∇w =
∫

RN

vw for every w ∈ W 1,p(RN ) ∩ L∞(RN ).

It is well known that Bp is m-completely accretive in L p(Ω) and its domain is dense.
We will use the following result from [2] which is a variant of [11, Theorem 4] (the first

statement is given in [2] for bounded domains Ω but it also holds for general open sets).

Proposition 2 Let Ω an open subset of R
N . Let 1 ≤ p < +∞. Let ρ : R

N → R be a
nonnegative continuous radial function with compact support, non-identically zero, and
ρn(x) := nN ρ(nx). Let { fn} be a sequence of functions in L p(Ω) such that

∫

Ω

∫

Ω

| fn(y) − fn(x)|pρn(y − x) dx dy ≤ M
1

n p
.

1. If { fn} is weakly convergent in L p(Ω) to f , then f ∈ W 1,p(Ω) and moreover

(ρ(z))1/pχ
Ω

(
x + 1

n
z

)
fn

(
x + 1

n z
) − fn (x)

1/n
⇀ (ρ(z))1/pz · ∇ f

weakly in L p(Ω) × L p(Ω).
2. If we further assume Ω is a smooth bounded domain in R

N and ρ(x) ≥ ρ(y) if |x | ≤ |y|
then { fn} is relatively compact in L p(Ω), and consequently, there exists a subsequence { fnk }
such that fnk → f in L p(Ω) with f ∈ W 1,p(Ω).

Using the above proposition we can take the limit as ε → 0 for a fixed p > N .

Proof of Theorem 2 Recall that we have p > N and J (x) ≥ J (y) if |x | ≤ |y|, T > 0,
f ∈ L1(0, T ; L p(RN )) and u0 ∈ L p(RN ). We want to show that if u p,ε is the unique

solution of P
Jp,ε
p (u0) and vp is the unique solution of Np(u0), then

lim
ε→0

sup
t∈[0,T ]

‖u p,ε(t, ·) − vp(t, ·)‖L p(RN ) = 0. (19)

Since BJ
p is m-accretive, to get (19) it is enough to see (see [9] or [22])

(
I + BJp,ε

p

)−1
φ → (

I + Bp
)−1

φ in L p(RN ) as ε → 0

for any φ ∈ Cc(R
N ).

Let φ ∈ Cc(R
N ) and uε :=

(
I + BJp,ε

p

)−1
φ. Then,

∫

RN

uεv − CJ,p

ε p+N

∫

RN

∫

RN

J

(
x − y

ε

)
|uε(y) − uε(x)|p−2

×(uε(y) − uε(x)) dy v(x) dx =
∫

RN

φv (20)

for every v ∈ L1(RN ) ∩ L∞(RN ).
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Changing variables, we get

− CJ,p

ε p+N

∫

RN

∫

RN

J

(
x − y

ε

)
|uε(y) − uε(x)|p−2(uε(y) − uε(x)) dy v(x) dx

=
∫

RN

∫

RN

CJ,p

2
J (z)

∣∣∣∣uε(x + εz) − uε(x)

ε

∣∣∣∣
p−2 uε(x + εz) − uε(x)

ε

×v(x + εz) − v(x)

ε
dx dz. (21)

So we can rewrite (20) as∫

RN

φ(x)v(x) dx −
∫

RN

uε(x)v(x) dx

=
∫

RN

∫

RN

CJ,p

2
J (z)

∣∣∣∣uε(x + εz) − uε(x)

ε

∣∣∣∣
p−2 uε(x + εz) − uε(x)

ε

×v(x + εz) − v(x)

ε
dx dz. (22)

We shall see that there exists a sequence εn → 0 such that uεn → u in L p(RN ),
u ∈ W 1,p(RN ) and u = (I + Bp)

−1φ, that is,
∫

RN

uv +
∫

RN

|∇u|p−2∇u · ∇v =
∫

RN

φv for every v ∈ W 1,p(RN ) ∩ L∞(RN ).

Since uε � φ, there exists a sequence εn → 0 such that

uεn ⇀ u, weakly in L p(RN ), u � φ.

Observe that ‖uεn ‖L∞(RN ), ‖u‖L∞(RN ) ≤ ‖φ‖L∞(RN ). Taking ε = εn and v = uεn in (22)
and applying Young’s inequality, we get

∫

RN

∫

RN

1

2

CJ,p

εn
N

J

(
x − y

εn

) ∣∣∣∣uεn (y) − uεn (x)

εn

∣∣∣∣
p

dx dy

=
∫

RN

∫

RN

CJ,p

2
J (z)

∣∣∣∣uεn (x + εnz) − uεn (x)

εn

∣∣∣∣
p

dx dz

≤ 1

2

∫

RN

|φ(x)|2 dx =: M. (23)

Therefore, by Proposition 2,

u ∈ W 1,p(RN ),

uεn → u in L p
loc(R

N )

and (
CJ,p

2
J (z)

)1/p uεn (x + εnz) − uεn (x)

εn
⇀

(
CJ,p

2
J (z)

)1/p

z · ∇u(x) (24)
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weakly in L p(RN ) × L p(RN ). Let us prove now the tightness of {uεn }, which is to say, that
no mass moves to infinity as n → +∞. For this, assume supp(φ) ⊂ BR(0) and fix S > 2R.
Select a smooth function ϕ ∈ C∞(RN ) such that 0 ≤ ϕ ≤ 1, ϕ ≡ 0 on BR(0), ϕ ≡ 1 on
R

N \BS(0) and |∇ϕ| ≤ 2
S . Taking in (22) ε = εn and v = ϕ|uεn |p−2uεn , we have

−
∫

RN

uεn |uεn |p−2uεn =
∫

RN

φϕ|uεn |p−2uεn −
∫

RN

uεn |uεn |p−2uεn

=
∫

RN

∫

RN

CJ,p

2
J (z)

∣∣∣∣uεn (x + εnz) − uεn (x)

εn

∣∣∣∣
p−2 uεn (x + εnz) − uεn (x)

εn

×|uεn (x + εnz)|p−2uεn (x + εnz)ϕ(x + εnz) − |uεn (x)|p−2uεn (x)ϕ(x)

εn
dx dz

=
∫

RN

∫

RN

CJ,p

2
J (z)

∣∣∣∣uεn (x + εnz) − uεn (x)

εn

∣∣∣∣
p−2 uεn (x + εnz) − uεn (x)

εn

×|uεn (x + εnz)|p−2uεn (x + εnz) (ϕ(x + εnz) − ϕ(x))

εn
dx dz

+
∫

RN

∫

RN

CJ,p

2
J (z)

∣∣∣∣uεn (x + εnz) − uεn (x)

εn

∣∣∣∣
p−2 uεn (x + εnz) − uεn (x)

εn

×
(|uεn (x + εnz)|p−2uεn (x + εnz) − |uεn (x)|p−2uεn (x)

)
ϕ(x)

εn
dx dz.

Then, since the last integral is nonnegative and having in mind that

‖uεn ‖L∞(RN ) ≤ ‖φ‖L∞(RN ),

we get ∫

RN

|uεn |p(x)ϕ(x) dx

≤ CJ,p

2εn
p

∫

RN

∫

B1(0)

J (z)|uεn (x + εnz) − uεn (x)|p−1|uεn (x + εnz)|p−1

×|ϕ(x + εnz) − ϕ(x)| dzdx

≤ CJ,p‖φ‖p−1
L∞

S

∫

{|x |≤S+1}

∫

B1(0)

J (z)

∣∣∣∣uεn (x + εnz) − uεn (x)

εn

∣∣∣∣
p−1

dy dx

≤ CJ,p‖φ‖p−1
L∞

S

⎛
⎜⎝

∫

{|x |≤S+1}

∫

B1(0)

J (z)

∣∣∣∣uεn (x + εnz) − uεn (x)

εn

∣∣∣∣
p

dy

⎞
⎟⎠

1
p′

×
⎛
⎜⎝

∫

{|x |≤S+1}

∫

B1(0)

J (z)dz

⎞
⎟⎠

1
p

dx

= O(S−1+ N
p ),
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the last equality being true by (23) and since

⎛
⎜⎝

∫

{|x |≤S+1}

∫

B1(0)

J (z)dz

⎞
⎟⎠

1
p

dx ≤ C(S + 1)
N
p .

Consequently,
∫

{|x |≥S}
|uεn |p(x) dx = O(S−1+ N

p )

uniformly in εn . Therefore,

uεn → u in L p(RN ).

Moreover, from (23), we can also assume that

∣∣∣∣uεn (x + εnz) − uεn (x)

εn

∣∣∣∣
p−2 uεn (x + εnz) − uεn (x)

εn
⇀ χ(x, z)

weakly in L p′
(RN ) × L p′

(RN ). Therefore, passing to the limit in (22) for ε = εn , we get
∫

RN

uv +
∫

RN

∫

RN

CJ,p

2
J (z)χ(x, z) z · ∇v(x) dx dz =

∫

RN

φv (25)

for every v smooth and by approximation for every v ∈ W 1,p(RN ) ∩ L∞(RN ).
From now on we follow closely the arguments in [2], but we include some details here

for the sake of completeness.
Let us see now that∫

RN

∫

RN

CJ,p

2
J (z)χ(x, z)z · ∇v(x) dx dz =

∫

RN

|∇u|p−2 ∇u · ∇v. (26)

In fact, taking v = uεn in (22), by (25) we have

∫

RN

∫

Rn

CJ,p

2
J (z)

∣∣∣∣uεn (x + εnz) − uεn (x)

εn

∣∣∣∣
p

dx dz

=
∫

RN

φuεn −
∫

RN

uεn uεn =
∫

RN

φu −
∫

Rn

uu

−
∫

RN

φ(u − uεn ) +
∫

RN

2u(u − uεn ) −
∫

RN

(u − uεn )(u − uεn )

≤
∫

RN

∫

RN

CJ,p

2
J (z)χ(x, z) z · ∇u(x) dx dz

−
∫

RN

φ(u − uεn ) +
∫

Rn N

2u(u − uεn ).
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Consequently,

lim sup
n

∫

RN

∫

RN

CJ,p

2
J (z)

∣∣∣∣uεn (x + εnz) − uεn (x)

εn

∣∣∣∣
p

dx dz

≤
∫

RN

∫

RN

CJ,p

2
J (z)χ(x, z) z · ∇u(x) dx dz. (27)

Now, by the monotonicity property (4), for every ρ smooth,

− CJ,p

εn
p+N

∫

RN

∫

RN

J

(
x − y

εn

)
|ρ(y) − ρ(x)|p−2(ρ(y) − ρ(x)) dy

×(uεn (x) − ρ(x)) dx

≤ − CJ,p

εn
p+N

∫

RN

∫

RN

J

(
x − y

εn

)
|uεn (y) − uεn (x)|p−2(uεn (y) − uεn (x)) dy

×(uεn (x) − ρ(x)) dx .

Using the change of variable (21) and taking limits, on account of (24) and (27), we obtain
for every ρ smooth,

∫

RN

∫

RN

CJ,p

2
J (z)|z · ∇ρ|p−2z · ∇ρ z · (∇u − ∇ρ)

≤
∫

RN

∫

RN

CJ,p

2
J (z)χ(x, z) z · (∇u(x) − ∇ρ(x)) dx dz,

and then, by approximation, for every ρ ∈ W 1,p(RN ). Taking now, ρ = u ± λv, λ > 0 and
v ∈ W 1,p(RN ), and letting λ → 0, we get

∫

RN

∫

RN

CJ,p

2
J (z)χ(x, z)z · ∇v(x) dx dz

=
∫

RN

CJ,p

2
J (z)

∫

Ω

|z · ∇u(x)|p−2 (z · ∇u(x)) (z · ∇v(x)) dx dz.

Consequently,
∫

RN

∫

RN

CJ,p

2
J (z)χ(x, z)z · ∇v(x) dx dz = CJ,p

∫

RN

a(∇u) · ∇v

for every v ∈ W 1,p(RN ), where

a j (ξ) = CJ,p

∫

RN

1

2
J (z) |z · ξ |p−2 z · ξ z j dz.

Hence, if we prove that

a(ξ) = |ξ |p−2ξ, (28)
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then (26) is true and u = (
I + Bp

)−1
φ. So, to finish the proof we only need to show that

(28) holds. Obviously, a is positively homogeneous of degree p − 1, that is,

a(tξ) = t p−1a(ξ) for all ξ ∈ R
N and all t > 0.

Therefore, in order to prove (28) it is enough to see that

ai (ξ) = ξi for all ξ ∈ R
N , |ξ | = 1, i = 1, . . . , N .

Now, let Rξ,i be the rotation such that Rt
ξ,i (ξ) = ei , where ei is the vector with components

(ei )i = 1, (ei ) j = 0 for j 	= i , being Rt
ξ,i the transpose of Rξ,i . Observe that

ξi = ξ · ei = Rt
ξ,i (ξ) · Rt

ξ,i (ei ) = ei · Rt
ξ,i (ei ).

On the other hand, since J is radial, C−1
J,p = 1

2

∫
RN J (z)|zi |p dz and

a(ei ) = ei for every i .

Making the change of variables z = Rξ,i (y), since J is a radial function, we obtain

ai (ξ) = CJ,p

∫

RN

1

2
J (z)|z · ξ |p−2z · ξ z · ei dz

= CJ,p

∫

RN

1

2
J (y)|y · ei |p−2 y · ei y · Rt

ξ,i (ei ) dy

= a(ei ) · Rt
ξ,i (ei ) = ei · Rt

ξ,i (ei ) = ξi ,

and the proof finishes. ��
For ε > 0, we rescale the functional G J∞ as follows

Gε∞(u) =
{

0 if |u(x) − u(y)| ≤ ε, for |x − y| ≤ ε,

+∞ in other case.

In other words, Gε∞ = IKε , where

Kε := {u ∈ L2(RN ) : |u(x) − u(y)| ≤ ε, for |x − y| ≤ ε}.
Consider the gradient flow associated to the functional Gε∞

Pε∞(u0)

{
f (t, ·) − ut (t, ·) ∈ ∂ IKε (u(t)), a.e. t ∈]0, T [,
u(0, x) = u0(x), in R

N ,

and the problem

P∞(u0)

{
f (t, ·) − u∞,t ∈ ∂ IK0(u∞), a.e. t ∈]0, T [,
u∞(0, x) = u0(x), in R

N ,

where

K0 :=
{

u ∈ L2(RN ) ∩ W 1,∞(RN ) : |∇u| ≤ 1
}

.

Observe that if u ∈ K0, |∇u| ≤ 1. Hence, |u(x) − u(y)| ≤ |x − y|, from where it follows
that u ∈ Kε, that is, K0 ⊂ Kε.

With all these definitions and notations, we can proceed with the limit as ε → 0 for the
sandpile model (p = ∞).
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Proof of Theorem 3 We have T > 0, f ∈ L2(0, T ; L2(RN )), u0 ∈ K0 and u∞,ε the unique
solution of Pε∞(u0). We have to show that if v∞ is the unique solution of P∞(u0), then

lim
ε→0

sup
t∈[0,T ]

‖u∞,ε(t, ·) − v∞(t, ·)‖L2(RN ) = 0.

Since u0 ∈ K0, u0 ∈ Kε for all ε > 0, and consequently there exists u∞,ε the unique
solution of Pε∞(u0).

By Theorem 6 to prove the result it is enough to show that IKε converges to IK0 in the
sense of Mosco. It is easy to see that

Kε1 ⊂ Kε2 , if ε1 ≤ ε2. (29)

Since K0 ⊂ Kε for all ε > 0, we have

K0 ⊂
⋂
ε>0

Kε.

On the other hand, if

u ∈
⋂
ε>0

Kε,

we have

|u(y) − u(x)|
|y − x | ≤ 1, a.e. x, y ∈ R

N ,

from where it follows that u ∈ K0. Therefore, we have

K0 =
⋂
ε>0

Kε. (30)

Note that

Epi(IK0) = K0 × [0,∞[, Epi(IKε ) = Kε × [0,∞[ ∀ ε > 0. (31)

By (30) and (31), we have

Epi(IK0) ⊂ s − lim inf
ε→0

Epi(IKε ). (32)

On the other hand, given (u, λ) ∈ w − lim supε→0 Epi(IKε ) there exists (uεk , λk) ∈ Kεk ×
[0,∞[, such that εk → 0 and

uεk ⇀ u in L2(RN ), λk → λ in R.

By (29), given ε > 0, there exists k0, such that uεk ∈ Kε for all k ≥ k0. Then, since Kε is a
closed convex set, we get u ∈ Kε, and, by (30), we obtain that u ∈ K0. Consequently,

w − lim sup
n→∞

Epi(IKε ) ⊂ Epi(IK0). (33)

Finally, by (32) and (33), and having in mind (1), we obtain that IKε converges to IK0 in the
sense of Mosco. ��
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5 Collapse of the initial condition

Recall that we have mentioned in the Introduction that Evans, Feldman and Gariepy in [25]
study the behavior of the solution vp of the initial value problem

{
vp,t − ∆pvp = 0, t ∈]0, T [,
vp(0, x) = u0(x), x ∈ R

N ,

in the “infinitely fast diffusion" limit p → ∞, that is, when the initial condition u0 is a
Lipschitz function with compact support, satisfying

ess sup
RN |∇u0| = L > 1.

They prove that for each time t > 0

vp(t, ·) → v∞(·), uniformly as p → +∞,

where v∞ is independent of time and satisfies

ess sup
RN |∇v∞| ≤ 1.

Moreover, v∞(x) = v(1, x), v solving the nonautonomous evolution equation
{ v

t
− vt ∈ ∂ IK0(v), t ∈]τ,∞[

v(τ, x) = τu0(x),

where τ = L−1. They interpreted this as a crude model for the collapse of a sandpile from an
initially unstable configuration. The proof of this result is based in a scaling argument, which
was extended by Bénilan, Evans and Gariepy in [10], to cover general nonlinear evolution
equations governed by homogeneous accretive operators. Here, using this general result, we
prove similar results for our nonlocal model.

We look for the limit as p → ∞ of the solutions to the nonlocal problem P J
p (u0) when

the initial datum u0 satisfies

1 < L = sup
x−y∈supp(J )

|u0(x) − u0(y)|.

For p > 2, we consider in the Banach space X = L2(RN ) the operators ∂G J
p . Then,

∂G J
p are m-accretive operators in L2(Rn) and also positively homogeneous of degree p − 1.

Moreover, the solution u p to the nonlocal problem P J
p (u0) coincides with the strong solution

of the abstract Cauchy problem
{

−ut (t, x) ∈ ∂G J
p(u(t)), a.e. t ∈]0, T [,

u(0, x) = u0(x), x ∈ R
N .

Let

C := {u ∈ L2(RN ) : ∃(u p, vp) ∈ ∂G J
p with u p → u, vp → 0 as p → ∞}.

It is easy to see that

C = K J∞ = {u ∈ L2(RN ) : |u(x) − u(y)| ≤ 1, for x − y ∈ supp(J )}.
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Then,

X0 :=
⋃
λ>0

λC
L2(RN )

= L2(RN ).

Lemma 1 For f ∈ L2(RN ) and p > N, let u p := (I +∂G J
p)−1 f . Then, the set of functions

{u p : p > N } is precompact in L2(RN ).

Proof First assume that f is bounded and the support of f lies in the ball BR(0). Since the ope-

rator ∂G J
p is completely accretive (observe that ∂G J

p = BJ
p ∩ (L2(RN ) × L2(RN ))

L2(RN )
),

we have the estimates

‖u p‖L∞ ≤ ‖ f ‖L∞ , ‖u p‖L2 ≤ ‖ f ‖L2

and

‖u p(·) − u p(· + h)‖L2 ≤ ‖ f (·) − f (· + h)‖L2

for each h ∈ R
N . Consequently, {u p : p > N } is precompact in L2(K ) for each compact

set K ⊂ R
N . We must show that {u p : p > N } is tight. For this, fix S > 2R and select a

smooth function ϕ ∈ C∞(RN ) such that 0 ≤ ϕ ≤ 1, ϕ ≡ 0 on BR(0), ϕ ≡ 1 on R
N \BS(0)

and |∇ϕ| ≤ 2
S .

We have

u p(x) =
∫

RN

J (x − y)|u p(y) − u p(x)|p−2(u p(y) − u p(x)) dy + f (x).

Then, multiplying by ϕu p and integrating, we get

∫

RN

u2
p(x)ϕ(x) dx

=
∫

RN

∫

RN

J (x − y)|u p(y) − u p(x)|p−2(u p(y) − u p(x))u p(x)ϕ(x) dydx

= −1

2

∫

RN

∫

RN

J (x − y)|u p(y) − u p(x)|p−2(u p(y) − u p(x))

×(u p(y)ϕ(y) − u p(x)ϕ(x)) dydx

≤ −1

2

∫

RN

∫

RN

J (x − y)|u p(y) − u p(x)|p−2(u p(y) − u p(x))

×u p(y)(ϕ(y) − ϕ(x)) dydx .
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Now, since |∇ϕ| ≤ 2
S , by Hölder’s inequality we obtain

∣∣∣∣∣∣∣
1

2

∫

RN

∫

RN

J (x − y)|u p(y) − u p(x)|p−2(u p(y) − u p(x))

×u p(y)(ϕ(y) − ϕ(x)) dydx

∣∣∣∣∣∣∣

≤ ‖ f ‖L∞

S

∫

{|x |≤S+1}

⎛
⎜⎝

∫

B1(x)

J (x − y)|u p(y) − u p(x)|p−1 dy

⎞
⎟⎠ dx

≤ ‖ f ‖L∞

S

⎛
⎜⎝

∫

{|x |≤S+1}

∫

B1(x)

J (x − y)|u p(y) − u p(x)|pdy

⎞
⎟⎠

1
p′

×
⎛
⎜⎝

∫

{|x |≤S+1}

∫

B1(x)

J (x − y)dy

⎞
⎟⎠

1
p

dx

≤ M(S + 1)
N
p −1 = O(S−1+ N

p ),

the last inequality being true since
∫ ∫

J (x − y)|u p(y) − u p(x)|p is bounded uniformly in
p. Hence,

∫

{|x |≥S}
u2

p(x) dx = O(S−1+ N
p )

uniformly in p > N . This proves tightness and we have established compactness in L2(RN )

provided f is bounded and has compact support. The general case follows, since such func-
tions are dense in L2(RN ). ��
Proof of Theorem 4 By the above Lemma, given f ∈ L2(RN ) if u p := (I + ∂G J

p)−1 f ,

there exists a sequence p j → +∞, such that u p j → v in L2(RN ) as j → ∞. In the proof
of Theorem 1 we have established that the functionals G J

p converge to IK J∞ , as p → ∞, in

the sense of Mosco. Then, by Theorem 6, we have v = (I + IK J∞)−1 f . Therefore, the limit

P f := lim
p→∞(I + ∂G J

p)−1 f

exists in L2(RN ), for all f ∈ X0 = L2(RN ), and P f = f if f ∈ C = K J∞. Moreover,

P−1 − I = ∂ IK J∞

and u = P f is the unique solution of

u + ∂ IK J∞u � f.

Therefore, as consequence of the main result of [10], we have obtained Theorem 4. ��
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6 Explicit solutions

In this section, we show some explicit examples of solutions to

Pε∞(u0)

{
f (t, x) − ut (t, x) ∈ ∂Gε∞(u(t)), a.e. t ∈]0, T [,
u(0, x) = u0(x), in R

N ,

where

Gε∞(u) =
{

0 if u ∈ L2(RN ), |u(x) − u(y)| ≤ ε, for |x − y| ≤ ε,

+∞ in other case.

In order to verify that a function u(t, x) is a solution to Pε∞(u0) we need to check that

Gε∞(v) ≥ Gε∞(u) + 〈 f − ut , v − u〉, for all v ∈ L2(RN ). (34)

To this end we can assume that v ∈ Kε (otherwise Gε∞(v) = +∞ and then (34) becomes
trivial). Therefore, we need to show

u(t, ·) ∈ Kε (35)

and

0 ≥
∫

RN

( f (t, x) − ut (t, x))(v(x) − u(t, x)) dx for every v ∈ Kε . (36)

Example 1 Let us consider, in one space dimension, as source an approximation of a delta
function

f (t, x) = fη(t, x) = 1

η
χ [− η

2 ,
η
2 ](x), 0 < η ≤ 2ε,

and as initial datum

u0(x) = 0.

Now, let us find the solution by looking at its evolution between some critical times.
First, for small times, the solution to Pε∞(u0) is given by

u(t, x) = t

η
χ [− η

2 ,
η
2 ](x), (37)

for

t ∈ [0, ηε).

Remark that t1 = ηε is the first time when u(t, x) = ε and hence it is immediate that
u(t, ·) ∈ Kε. Moreover, as ut (t, x) = f (t, x) then (36) holds.

For times greater than t1 the support of the solution is greater than the support of f . Indeed
the solution can not be larger than ε in [− η

2 ,
η
2 ] without being larger than zero in the adjacent

intervals of size ε, [ η
2 ,

η
2 + ε] and [− η

2 − ε,− η
2 ].

We have

u(t, x) =

⎧⎪⎪⎨
⎪⎪⎩

ε + k1(t − t1) for x ∈ [− η
2 ,

η
2 ],

k1(t − t1) for x ∈ [− η
2 − ε,

η
2 + ε]\[− η

2 ,
η
2 ],

0 for x /∈ [− η
2 − ε,

η
2 + ε],

(38)
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for times t such that

t ∈ [t1, t2)

where

k1 = 1

2ε + η
and t2 = t1 + ε

k1
= 2ε2 + 2εη.

Note that t2 is the first time when u(t, x) = 2ε for x ∈ [− η
2 ,

η
2 ]. Again it is immediate to

see that u(t, ·) ∈ Kε, since for |x − y| < ε the maximum of the difference u(t, x) − u(t, y)

is exactly ε. Now let us check (36).
Using the explicit formula for u(t, x) given in (38), we obtain∫

R

( f (t, x) − ut (t, x))(v(x) − u(t, x)) dx

=
η
2∫

− η
2

(
1

η
− ut (t, x)

)
(v(x) − u(t, x)) dx

+
η
2 +ε∫
η
2

(−ut (t, x))(v(x) − u(t, x)) dx

+
− η

2∫

− η
2 −ε

(−ut (t, x))(v(x) − u(t, x)) dx

=
η
2∫

− η
2

(
1

η
− k1

)
(v(x) − (ε + k1(t − t1))) dx

+
η
2 +ε∫
η
2

(−k1)(v(x) − (k1(t − t1))) dx

+
− η

2∫

− η
2 −ε

(−k1)(v(x) − (k1(t − t1))) dx

=
(

−η

(
1

η
− k1

)
+ 2εk1

)
k1(t − t1) − εη

(
1

η
− k1

)

+
η
2∫

− η
2

(
1

η
− k1

)
v(x) dx −

η
2 +ε∫
η
2

k1v(x) dx −
− η

2∫

− η
2 −ε

k1v(x) dx . (39)

From our choice of k1 we get

−η

(
1

η
− k1

)
+ 2εk1 = 0
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and, since v ∈ Kε, we have∫

R

( f (t, x) − ut (t, x))(v(x) − u(t, x)) dx

= −2ε2k1 + 2εk1

η

η
2∫

− η
2

v(x) dx − k1

η
2 +ε∫
η
2

v(x) dx − k1

− η
2∫

− η
2 −ε

v(x) dx ≤ 0. (40)

In fact, without loss of generality we can suppose that

η
2∫

− η
2

v(x) dx = 0.

Then

η/2∫

0

(−v) = a,

0∫

−η/2

(−v) = −a. (41)

Consequently,

− v ≤ 2

η
a + ε in [0, ε]. (42)

Indeed, if (42) does not hold, then −v > 2
η

a in [0, ε] which contradicts (41).
Now, by (41), since v ∈ Kε ,

ε+η/2∫

ε

(−v(x))dx =
η/2∫

0

(−v(y + ε))dy

=
η/2∫

0

(−v(y + ε) + v(y))dy +
η/2∫

0

(−v(y))dy

≤ ε
η

2
+ a. (43)

Therefore, by (42) and (43),

ε+η/2∫

η/2

(−v) =
ε∫

η/2

(−v) +
ε+η/2∫

ε

(−v)

≤
(

2

η
a + ε

) (
ε − η

2

)
+ ε

η

2
+ a = 2

η
aε + ε2. (44)

Similarly,

−η/2∫

−ε−η/2

(−v) ≤ −2

η
aε + ε2. (45)
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Consequently, by (44) and (45),

η
2 +ε∫
η
2

(−v) +
− η

2∫

− η
2 −ε

(−v) ≤ 2ε2.

Now, it is easy to generalize and verify the following general formula that describes the
solution for every t ≥ 0. For any given integer l ≥ 0 we have

u(t, x) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

lε + kl (t − tl ), x ∈ [− η
2 ,

η
2 ],

(l − 1)ε + kl (t − tl ), x ∈ [− η
2 − ε,

η
2 + ε]\[− η

2 ,
η
2 ],

. . .

kl (t − tl ), x ∈ [− η
2 − lε, η

2 + lε]\[− η
2 − (l − 1)ε,

η
2 + (l − 1)ε],

0, x /∈ [− η
2 − lε, η

2 + lε],
(46)

for

t ∈ [tl , tl+1),

where

kl = 1

2lε + η
and tl+1 = tl + ε

kl
, t0 = 0.

From formula (46) we get, taking the limit as η → 0, that the expected solution to (34)
with f = δ0 is given by, for any given integer l ≥ 1,

u(t, x) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(l − 1)ε + kl(t − tl), x ∈ [−ε, ε],
(l − 2)ε + kl(t − tl), x ∈ [−2ε, 2ε]\[−ε, ε],

. . .

kl(t − tl), x ∈ [−lε, lε]\[−(l − 1)ε, (l − 1)ε],
0, x /∈ [−lε, lε],

(47)

for

t ∈ [tl , tl+1)

where

kl = 1

2lε
, tl+1 = tl + ε

kl
, t1 = 0.

Remark that, since the space of functions Kε is not contained into C(R), the formulation
(36) with f = δ0 does not make sense. Hence the function u(t, x) described by (47) is
to be understood as a generalized solution to (34) (it is obtained as a limit of solutions to
approximating problems).

Note that the function u(tl , x) is a “regular and symmetric pyramid” composed by squares
of side ε.

Recovering the sandpile model as ε → 0. Now, to recover the sandpile model, let us fix

lε = L ,
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and take the limit as ε → 0 in the previous example. We get that u(t, x) → v(t, x), where

v(t, x) = (L − |x |)+, for t = L2,

that is exactly the evolution given by the sandpile model with initial datum u0 = 0 and a
point source δ0, see [3].

Therefore, this concrete example illustrates the general convergence result Theorem 3.

Example 2 The explicit formula (46) can be easily generalized to the case in where the source
depends on t in the form

f (t, x) = ϕ(t)χ [− η
2 ,

η
2 ](x),

with ϕ a nonnegative integrable function and 0 < η ≤ ε. We arrive to the following formulas,
setting

g(t) =
t∫

0

ϕ(s)ds,

for any given integer l ≥ 0,

u(t, x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

lε + k̂l (g(t) − g(tl)) , x ∈ [− η
2 ,

η
2 ],

(l − 1)ε + k̂l (g(t) − g(tl)) , x ∈ [− η
2 − ε,

η
2 + ε]\[− η

2 ,
η
2 ],

. . .

k̂l (g(t) − g(tl)) , x ∈ [− η
2 − lε, η

2 + lε]\
[− η

2 − (l − 1)ε,
η
2 + (l − 1)ε]

0, x /∈ [− η
2 − lε, η

2 + lε],
for

t ∈ [tl , tl+1),

where

k̂l = η

η + 2lε
and g(tl+1) − g(tl) = ε

k̂l
, t0 = 0.

Observe that tl is the first time at which the solution reaches level lε.
We can also considerϕ changing sign. In this case the solution increases ifϕ(t) is positive in

every interval of size ε (around the support of the source [− η
2 ,

η
2 ]) for which u(x)−u(y) = iε

with |x − y| = iε for some x ∈ [− η
2 ,

η
2 ] (here i is any integer). While if ϕ(t) is negative the

solution decreases in every interval of size ε for which u(x)−u(y) = −iε with |x − y| = iε
for some x ∈ [− η

2 ,
η
2 ].

Example 3 Observe that if η > 2ε, then u(t, x) given in (38) does not satisfy (36) for any
test function v ∈ Kε whose values in [− η

2 − ε,
η
2 + ε] are

v(x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−β
ε

2
+ 2ε for x ∈ [− η

2 + ε,
η
2 − ε],

−β
ε

2
+ ε for x ∈ [− η

2 ,
η
2 ]\[− η

2 + ε,
η
2 − ε],

−β
ε

2
for x ∈ [− η

2 − ε,
η
2 + ε]\[− η

2 ,
η
2 ],

for β = 4(1 − ε/η) which is greater than 2.
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At this point one can ask what happens in the previous situation when η > 2ε. In this
case the solution begins to grow as before with constant speed in the support of f but after
the first time when it reaches level ε the situation changes. Consider, for example, that the
source is given by

f (t, x) = 1

ε
χ[−2ε,2ε](x).

In this case the solution to our nonlocal problem with u0(x) = 0, u(t, x), can be described
as follows. Firstly we have

u(t, x) = t

ε
χ [−2ε,2ε](x),

for

t ∈ [0, ε2).

Remark that t1 = ε2 is the first time when u(t, x) = ε and hence it is immediate that
u(t, ·) ∈ Kε. Moreover, as ut (t, x) = f (t, x) then (36) holds.

For times greater that t1 we have

u(t, x) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ε + 1

ε
(t − t1) for x ∈ [−ε, ε],

ε + k1(t − t1) for x ∈ [−2ε,−ε] ∪ [ε, 2ε],
k1(t − t1) for x ∈ [−3ε,−2ε] ∪ [2ε, 3ε],
0 for x /∈ [−3ε, 3ε],

for

t ∈ [t1, t2),

where

k1 = 1

2ε
and t2 = ε2 + 2ε2 = 3ε2.

With this expression of u(t, x) it is easy to see that it verifies (36).
For times greater than t2 an expression similar to (46) holds. We leave the details to the

reader.

Example 4 For two or more dimensions we can get similar formulas. Given a bounded
domain Ω0 ⊂ R

N let us define inductively

Ω1 =
{

x ∈ R
N : ∃y ∈ Ω0, with |x − y| < ε

}

and

Ω j =
{

x ∈ R
N : ∃y ∈ Ω j−1, with |x − y| < ε

}
.

In the sequel, for simplicity, we consider the two dimensional case N = 2. Let us take as
source

f (t, x) = χ
Ω0(x), Ω0 = B(0, ε/2),

and, as initial datum,

u0(x) = 0.
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In this case, for any integer l ≥ 0, the solution to (34) is given by

u(t, x) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

lε + k̂l(t − tl), x ∈ Ω0,

(l − 1)ε + k̂l(t − tl), x ∈ Ω1\Ω0,

. . .

k̂l(t − tl), x ∈ Ωl\⋃l−1
j=1 Ω j ,

0, x /∈ Ωl ,

(48)

for

t ∈ [tl , tl+1),

where

k̂l = |Ω0|
|Ωl | , tl+1 = tl + ε

k̂l
, t0 = 0.

Note that the solution grows in strips of width ε around the set Ω0 where the source is
localized.

As in the previous examples, the result is evident for t ∈ [0, t1). Let us see it for t ∈ [t1, t2),
a similar argument works for later times. It is clear that u(t, ·) ∈ Kε, let us check (36). Working
as in Example 1, we must show that

(1 − k̂1)

∫

Ω0

v − k̂1

∫

Ω1\Ω0

v ≤ (1 − k̂1)ε|Ω0| ∀v ∈ Kε,

where Ω1 = B(0, 3ε/2). Since k̂1 = |Ω0|/|Ω1|, the last inequality is equivalent to
∣∣∣∣∣∣∣

1

|Ω0|
∫

Ω0

v − 1

|Ω1\Ω0|
∫

Ω1\Ω0

v

∣∣∣∣∣∣∣
≤ ε ∀v ∈ Kε. (49)

By density, it is enough to prove (49) for any v ∈ Kε continuous.
Let us now divide Ω0 = {r(cos θ, sin θ) : 0 ≤ θ ≤ 2π, 0 ≤ r < ε

2 } and Ω1\Ω0 =
{r(cos θ, sin θ) : 0 ≤ θ ≤ 2π, ε ≤ r < 3

2ε} as follows. Consider the partitions

0 = θ0 < θ1 < · · · < θN = 2π,

with θi − θi−1 = 2π/N , N ∈ N,

0 = r0 < r1 < · · · < rN = ε/2

and

ε/2 = r̃0 < r̃1 < · · · < r̃N = 3ε/2,

such that the measure of

Bi j = {
r(cos θ, sin θ) : θi−1 < θ < θi r j−1 < r < r j

}

is constant, that is, |Bi j | = |Ω0|/N 2, and the measure of

Ai j = {
r(cos θ, sin θ) : θi−1 < θ < θi r̃ j−1 < r < r̃ j

}
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is also constant, that is, |Ai j | = |Ω1\Ω0|/N 2. In this way we have partitioned Ω0 and Ω1\Ω0

as a disjoint family of N 2 sets such that∣∣∣∣∣∣Ω0\
N⋃

i, j=1

Bi j

∣∣∣∣∣∣ = 0,

∣∣∣∣∣∣(Ω1\Ω0)\
N⋃

i, j=1

Ai j

∣∣∣∣∣∣ = 0.

By construction, if we take

xi j = r j (cos θi−1, sin θi−1) ∈ Bi j , x̃i j = r̃ j−1(cos θi−1, sin θi−1) ∈ Ai j ,

then |xi j − x̃i j | ≤ ε for all i, j = 1, . . . N .
Given a continuous function v ∈ Kε, by uniform continuity of v, for δ > 0, there exists

ρ > 0 such that

|v(x) − v(y)| ≤ δ

2
if |x − y| ≤ ρ.

Hence, if we take N big enough such that diam(Bi j ) ≤ ρ and diam(Ai j ) ≤ ρ, we have
∣∣∣∣∣∣∣
∫

Ω0

v(x) −
N∑

i, j=1

v(xi j )|Bi j |

∣∣∣∣∣∣∣
≤ δ|Ω0|

2

and ∣∣∣∣∣∣∣
∫

Ω1\Ω0

v(x) −
N∑

i, j=1

v(x̃i j )|Ai j |

∣∣∣∣∣∣∣
≤ δ|Ω1\Ω0|

2
.

Since v ∈ Kε and |xi j − x̃i j | ≤ ε, |v(xi j ) − v(x̃i j )| ≤ ε. Consequently,

∣∣∣∣∣∣∣
1

|Ω0|
∫

Ω0

v − 1

|Ω1\Ω0|
∫

Ω1\Ω0

v

∣∣∣∣∣∣∣

≤
∣∣∣∣∣∣

1

|Ω0|
N∑

i, j=1

v(xi j )|Bi j | − 1

|Ω1\Ω0|
N∑

i, j=1

v(x̃i j )|Ai j |
∣∣∣∣∣∣ + δ

=
∣∣∣∣∣∣

1

N 2

N∑
i, j=1

v(xi j ) − 1

N 2

N∑
i, j=1

v(x̃i j )

∣∣∣∣∣∣ + δ

≤ ε + δ.

Therefore, since δ > 0 is arbitrary, (49) is obtained.
Again the explicit formula (48) can be easily generalized to the case where the source

depends on t in the form

f (t, x) = ϕ(t)χΩ0(x).

An estimate of the support of ut . Taking a source f ≥ 0 supported in a set A, let us see
where the material is added (places where ut is positive). Let us compute a set that we will
call Ω∗(t) as follows. Let
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Ω0(t) = A,

and define inductively

Ω1(t) = {x ∈ R
N \Ω0(t) : ∃y ∈ Ω0(t), |x − y| < ε, u(t, y) − u(t, x) = ε}

and

Ω j (t) = {x ∈ R
N \Ω j−1(t) : ∃y ∈ Ω j−1(t), |x − y| < ε, u(t, y) − u(t, x) = ε}.

With these sets Ωi (t) (observe that there exists a finite number of such sets, since u(t, x) is
bounded) let

Ω∗(t) =
⋃

i

Ωi (t).

We have that

ut (t, x) = 0, for x /∈ Ω∗(t).

Indeed, this can be easily deduced using an appropriate test function v in (36). Just take
v(x) = u(x, t) but for a small neighborhood near x /∈ Ω∗(t).

Example 5 Finally, note that an analogous description like in the above examples can be
made for an initial condition that is of the form

u0(x) =
K∑

i=−K

aiχ [iε,(i+1)ε](x),

with

|ai − ai±1| ≤ ε, a−K = aK = 0,

(this last condition is needed just to imply that u0 ∈ Kε) together with the sum of a
finite number of delta functions placed at points xl = lε (or a finite sum of functions of
time times the characteristic functions of some intervals of the form [lε, (l + 1)ε]) as the
source term.

For example, let us consider a source placed in just one interval, f (t, x) = χ [0,ε](x).
Initially, u(0, x) = lε for x ∈ [0, ε]. Let us take w1(x) the regular and symmetric pyramid
centered at [0, ε] of height (l + 1)ε (and base of length (2l − 1)ε). With this pyramid and the
initial condition let us consider the set

Λ1 = { j : w1(x) > u(0, x) for x ∈ ( jε, ( j + 1)ε)} .

This set contains the indexes of the intervals in which the sand is being added in the first
stage. During this first stage, u(t, x) is given by

u(t, x) = u(0, x) + t

Card(Λ1)

∑
j∈Λ1

χ [ jε,( j+1)ε](x),

for t ∈ [0, t1], where t1 = Card(Λ1)ε is the first time at which u is of size (l + 1)ε in the
interval [0, ε].

From now on the evolution follows the same scheme. In fact,
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u(t, x) = u(ti , x) + t − ti
Card(Λi )

∑
j∈Λi

χ [ jε,( j+1)ε](x),

for

t ∈ [ti , ti+1], ti+1 − ti = Card(Λi )ε.

where, from the pyramid wi of height (l + i)ε, we obtain

Λi = { j : wi (x) > u(ti , x) for x ∈ ( jε, ( j + 1)ε)} .

Remark that eventually the pyramid wk is bigger than the initial condition, from this time on
the evolution is the same as described for u0 = 0 in the first example.

In case we have two sources, the pyramids wi , w̃i corresponding to the two sources
eventually intersect. In the interval where the intersection takes place, ut is given by the greater
of the two possible speeds (that correspond to the different sources). If both possible speeds
are the same this interval has to be computed as corresponding to both sources simultaneously.

Recovering the sandpile model. Note that any initial condition w0 with |∇w0| ≤ 1 can be
approximated by an u0 like the one described above. Hence we can obtain an explicit solution
of the nonlocal model that approximates the solutions constructed in [3].
Compact support of the solutions. Note also that when the source f and the initial condition
u0 are compactly supported and bounded then also the solution is compactly supported and
bounded for all positive times. This property has to be contrasted with the fact that solutions
to the nonlocal p-Laplacian P J

p (u0) are not compactly supported even if u0 is.

7 A mass transport interpretation

In [25,28] or [24, see also 26], a mass transfer interpretation of the limit problem P∞(u0) is
described. Our aim in this section is to give an alternative explanation of our limit problem
G J∞(u0) in a transport setting, as we mentioned in the Introduction.

Proof of Theorem 5 Let

d(x, y) =
{

0 if x = y,

[|x − y|] + 1 if x 	= y.

Here [·] means the entire part of the number. Note that this function d measures distances
with jumps of length one.

Then, given two measures (that for simplicity we will take absolutely continuous with
respect to the Lebesgue measure in R

N ) f+, f− in R
N , and supposing the overall condition

of mass balance ∫

RN

f + dx =
∫

RN

f − dy,

the Monge’s problem associated to the distance d is given by: minimize∫
d(x, s(x)) f+(x)dx (50)

among maps s that transport f+ into f−.
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The dual formulation of this problem is given by

max
u∈K∞

∫

RN

u(x)( f+(x) − f−(x))dx (51)

where, as before, K∞ is given by

K∞ := {u ∈ L2(RN ) : |u(x) − u(y)| ≤ 1, for |x − y| ≤ 1}.
We are assuming that supp(J ) = B1(0) (in other case we may redefine the distance d
accordingly).

Then it is easy to obtain that the solution u∞(t, ·) of the limit problem P J∞(u0) is a solution
to the dual problem (51) when the involved measures are the source f (t, x) and the time
derivative of the solution u∞,t (t, x). In fact, we have

G J∞(v) ≥ G J∞(u∞) + 〈 f − u∞,t , v − u∞〉, for all v ∈ L2(RN ).

That is equivalent to

u∞(t, ·) ∈ K∞
and

0 ≥
∫

RN

( f (t, x) − u∞,t (t, x))(v(x) − u∞(t, x)) dx (52)

for every v ∈ K∞. Now, we just observe that (52) is∫

RN

( f (t, x) − u∞,t (t, x))u∞(t, x) dx ≥
∫

RN

( f (t, x) − u∞,t (t, x))v(x) dx .

Therefore, we have that u∞(t, ·) is a solution to the dual mass transport problem.
Consequently, we conclude that the mass of sand added by the source f (t, ·) is transported

(via u(t, ·) as the transport potential) to u∞,t (t, ·) at each time t . ��
This mass transport interpretation of the problem can be clearly observed looking at the

concrete examples in Sect. 6.

8 Neumann boundary conditions

Analogous calculations can be done with solutions to the Neumann boundary value problem
for the nonlocal p-Laplacian.

Let Ω be a convex domain in R
N . As we have mentioned, in [2] we have studied the

evolution problem

P J,Ω
p (u0)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

u p,t (t, x) =
∫

Ω

J (x − y)|u p(t, y) − u p(t, x)|p−2

×(u p(t, y) − u p(t, x))dy + f (t, x),

u p(0, x) = u0(x) in Ω.

The associated functional being

G J,Ω
p (u) = 1

2p

∫

Ω

∫

Ω

J (x − y)|u(y) − u(x)|p dy dx .
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This is the nonlocal analogous to the Neumann problem for the p-Laplacian since in this
evolution problem, we have imposed a zero flux condition across the boundary of Ω , see [2].

Also, let us consider the rescaled problems with Jε, that we call P Jε,Ω
p (u0), and the

corresponding limit problems

Pε,Ω∞ (u0)

{
f (t, ·) − ut (t, ·) ∈ ∂G J,Ω∞ (u(t)), a.e. t ∈]0, T [,
u(0, x) = u0(x), in Ω.

With associated functionals

Gε,Ω∞ (u) =
{

0 if |u(x) − u(y)| ≤ ε, for |x − y| ≤ ε; x, y ∈ Ω,

+∞ in other case.

The limit problem of the local p-Laplacians being

PΩ∞ (u0)

{
f (t) − v∞,t ∈ ∂ FΩ∞(v∞(t)), a.e. t ∈]0, T [,
v∞(0, x) = g(x), in Ω,

where the functional FΩ∞ is defined in L2(Ω) by

FΩ∞(v) =
{

0 if |∇v| ≤ 1,

+∞ in other case.

In these limit problems we assume that the material is confined in a domain Ω , thus we
are looking at models for sandpiles inside a container, see also [28].

Working as in the previous sections we can prove that

Theorem 8 Let Ω be a convex domain in R
N .

1. Let T > 0, u0 ∈ L∞(Ω) such that |u0(x) − u0(y)| ≤ 1, for x − y ∈ Ω ∩ supp (J ) and

u p the unique solution of P J,Ω
p (u0). Then, if u∞ is the unique solution to P J,Ω∞ (u0),

lim
p→∞ sup

t∈[0,T ]
‖u p(t, ·) − u∞(t, ·)‖L2(Ω) = 0.

2. Let p > 1 be and assume J (x) ≥ J (y) if |x | ≤ |y|. Let T > 0, u0 ∈ L p(Ω) and u p,ε

the unique solution of P Jε,Ω
p (u0). Then, if vp is the unique solution of Pp(u0),

lim
ε→0

sup
t∈[0,T ]

‖u p,ε(t, ·) − vp(t, ·)‖L p(Ω) = 0.

3. Let T > 0, u0 ∈ W 1,∞(Ω) such that |∇u0| ≤ 1 and consider u∞,ε the unique solution
of Pε,Ω∞ (u0). Then, if v∞ is the unique solution of PΩ∞ (u0), we have

lim
ε→0

sup
t∈[0,T ]

‖u∞,ε(t, ·) − v∞(t, ·)‖L2(Ω) = 0.

Part (2) was proved in [2], the other statements follows just by considering, as we did
before, the Mosco convergence of the associated functionals. We leave the details to the
reader.

Example 6 In this case, let us also compute an explicit solution to the limit problem P1,Ω∞ (u0)

(to simplify we have considered ε = 1 in this example). Let us consider a recipient Ω = (0, l)
with l an integer greater than 1, u0 = 0 and a source given by f (t, x) = χ [0,1](x). Then the
solution is given by

u(t, x) = tχ [0,1](x),
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for times t ∈ [0, 1]. For t ∈ [1, 3] we get

u(t, x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 + t − 1

2
x ∈ [0, 1),

t − 1

2
x ∈ [1, 2),

0 x /∈ [0, 2).

In general, we have, until the recipient is full, for any k = 1, . . . , l and for t ∈ [tk−1, tk)

u(t, x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

k − 1 + t − tk−1

k
x ∈ [0, 1),

k − 2 + t − tk−1

k
x ∈ [1, 2)

· · ·
t − tk−1

k
x ∈ [k − 1, k),

0 x /∈ [0, k)

Here tk = tk−1 + k is the first time when the solution reaches level k, that is u(tk, 0) = k.
For times even greater, t ≥ tl , the solution turns out to be

u(t, x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

l + t − tl
l

x ∈ [0, 1),

l − 1 + t − tl
l

x ∈ [1, 2),

· · ·
1 + t − tl

l
x ∈ [l − 1, l).

Hence, when the recipient is full the solution grows with speed 1/ l uniformly in (0, l).
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