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Abstract We show that the limit f of a weakly convergent sequence of W 1,1

homeomorphisms f j with finite distortion has finite distortion as well, provided that it is
a homeomorphism. Moreover, the lower semicontinuity of the distortions is deduced both in
case of outer and inner distortion.
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1 Introduction

In this paper, we study the convergence of a sequence of homeomorphisms f j : � �→ �′ of
Sobolev class W 1,1

loc (�,R
n) with finite distortion, where � and �′ are bounded open sets in

R
n , n ≥ 2.

Recall that a mapping f ∈ W 1,1
loc (�,R

n) is said to be of finite distortion if its Jacobian
J f ∈ L ′

doc(�) and is strictly positive almost everywhere on the set where D f �= 0. For such
a mapping the distortion K f is defined as

K f (x) =
⎧
⎨

⎩

|D f (x)|n
J f (x)

if J f (x) > 0,

1 otherwise.
(1.1)
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378 N. Fusco et al.

Notice that K f (x) is the smallest function greater than or equal to 1 and such that

|D f (x)|n ≤ K f (x)J f (x) for a.e. x ∈ �. (1.2)

Our first result deals with the convergence of the inverse mappings f −1
j of a sequence f j of

homeomorphisms of finite distortion. In fact, a recent result proved in [5] (see also [11,12],
for the case n = 2 and [3,13,14]) states that if f ∈ W 1,n−1(�,�′) is a homeomorphism of
finite distortion, then the inverse map f −1 belongs to W 1,1(�′,�) and has finite distortion
too.

In particular our Theorem 3.2 shows that if f j is a sequence of homeomorphisms of finite
distortion, satisfying reasonable equi-boundedness assumptions, then the inverse mappings
f −1

j converge weakly in W 1,1.
In the literature the study of a sequence of mappings of finite distortion has been also

considered from a different point of view, namely to find under which conditions weak limits
are also maps of finite distortion. To this aim, we recall the following result, proved in [10],
where the maps f j are assumed to converge weakly in W 1,n to f and the corresponding
distortions K f j converge in the biting sense to some function K .

Theorem 1.1 Suppose that f j : � �→ R
n is a sequence of mappings of finite distortion

which converge weakly in W 1,n(�,Rn) to f and suppose that the functions K f j
converge

in the biting sense to K . Then f has finite distortion and

K f (x) ≤ K (x) < ∞ for a.e. x ∈ �.
A more general version of this result has been proved in [15] in the context of Orlicz–Sobolev
spaces.

An important tool in the proof of Theorem 1.1 is the continuity of the Jacobian operator

f ∈ W 1,n(�,Rn) �→ J f ∈ L1(�)

with respect to weak convergence in W 1,n of mappings of finite distortion and weak conver-
gence in L1 of Jacobians. Notice that such a continuity is not guaranteed, even in dimension
n = 2, when we assume that mappings f j belong only to W 1,1 and converge weakly in W 1,1.
On the other hand this result pertains to mappings of finite distortion which are not necessa-
rily one-to-one, though they are continuous, as a consequence of the required summability
of their gradients.

In this paper, we present a different kind of result. On one side, we assume more on
the maps f j and f by requiring that they are both homeomorphisms, on the other side, we
weaken significantly the integrability assumptions on the gradients by requiring only that
D f j , D f ∈ L1. Denoting by Hom(�,�′) the set of all homeomorphisms between � and
�′, our main result reads as follows.

Theorem 1.2 Let f j , f ∈ W 1,1(�,Rn) ∩ Hom(�,�′), with f j ⇀ f weakly in
W 1,1(�,Rn) . Assume that

|D f j (x)|n � K j (x)J f j (x) for a.e. x ∈ �, (1.3)

where K j : � → [1,∞) is a Borel function for all j and K j converges in the biting sense
to K . Then f is a map of finite distortion and K f (x) ≤ K (x) for a.e. x ∈ �.

Finally, we observe that in Theorem 1.2 the finite distortion assumption (1.3) can be
replaced by a similar one involving inner distortion (see Theorem 4.1).
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The limit of W 1,1 homeomorphisms with finite distortion 379

2 Preliminary results

In the sequel it will be convenient to work with a pointwise definition of a gradient of a
Sobolev map. To this aim let us consider a function f ∈ L1

loc(�,R
N ). We say that a point x

is a point of approximate continuity if there exists z ∈ R
N such that

lim
r→0

∫

Br (x)

− | f (y)− z| dy = 0.

The vector z for which the equality above holds is called the approximate limit of f at x and
is denoted by f ∗(x).

Let x be a point of approximate continuity for f . We say that f is approximately diffe-
rentiable at x if there exists a N × n matrix, denoted by D f (x), such that

lim
r→0

∫

Br (x)

− | f (y)− f ∗(x)− D f (x)(y − x)|
r

dy = 0. (2.1)

The approximate gradient D f (x) is uniquely determined by equality (2.1) and it can be
easily checked that the set

D f = {x ∈ � : f is approximately differentiable at x}
is a Borel set and the map D f : D f �→ R

nN is a Borel map ([2, Proposition 3.71]).
In the sequel by D f we shall always denote the approximate gradient defined above.

Note that if f is differentiable in the classical sense at x the approximate gradient D f (x)
coincides with the usual gradient. Moreover, if f ∈ W 1,1

loc (�,R
N ), then f is approximately

differentiable almost everywhere in � and its approximate differential gradient coincides
almost everywhere with the distributional gradient ([2, Proposition 3.83]).

Another feature of the definition (2.1) is its local nature. In fact, if f, g ∈ L1
loc(�,R

N ),
then ([2, Proposition 3.73])

D f (x) = Dg(x) for a.e. x ∈ D f ∩ Dg ∩ { f = g}. (2.2)

Finally, we remark that definition (2.1) of approximate gradient is slightly stronger than the
one introduced in [9]. However, for a Sobolev map the two definitions agree, up to a set of
measure zero.

Next lemma is a technical result that will be useful in the sequel.

Lemma 2.1 Let f : � �→ �′ be a one-to-one map such that f ∈ W 1,1(�,�′) and f −1 ∈
W 1,1(�′,�). Set E = {

y ∈ D f −1 : |J f −1(y)| > 0
}
. Then, there exists a Borel set A ⊂ E,

with |E \ A| = 0 such that f −1(A) ⊂ {x ∈ D f : |J f (x)| > 0}, with the property that

D f −1(y) = [
D f

(
f −1(y)

)]−1
for all y ∈ A.

Proof Fix ε > 0. By a well known approximation result there exist a Lipschitz map h :
R

n �→ R
n and a measurable set Fε ⊂ E , with |E \ Fε| < ε, such that f −1(y) = h(y) for all

y ∈ Fε. As a consequence, recalling (2.2), we have that D f −1(y) = Dh(y) for a.e. y ∈ Fε,
hence |Jh(y)| > 0 for a.e. y ∈ Fε.

Thus, by the Lipschitz linearization lemma of Federer ([2, Lemma 2.74] or [9, Lemma
3.2.2]), Fε can be decomposed, up to a set of zero measure, into the union of countably many,
pairwise disjoint, compact sets Hi such that for all i , the map h|Hi is invertible,

(
h|Hi

)−1 is
Lipschitz, h is differentiable, |Jh(y)| > 0 and D f −1(y) = Dh(y) for all y ∈ Hi . Finally,
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380 N. Fusco et al.

let us denote by gi : R
n �→ R

n a Lipschitz function such gi (x) = (
h|Hi

)−1
(x) for all

x ∈ h(Hi ). Since h(gi (x)) = x for all x ∈ h(Hi ) and gi (h(y)) = y for all y ∈ Hi , using the
a.e. differentiability of Lipschitz functions and (2.2) again we easily get that for all i

Dh(gi (x)) = [Dgi (x)]
−1 for a.e. x ∈ h(Hi ).

Since gi (x) = f (x) for every x ∈ h(Hi ), from the equality above we deduce that for all i there
exists a null Borel set Mi ⊂ h(Hi ) = f −1(Hi ) such that f is approximately differentiable
at every point x ∈ f −1(Hi ) \ Mi , and

Dh( f (x)) = [D f (x)]−1 for any x ∈ f −1(Hi )\Mi ,

i.e., Dh(y) = [
D f

(
f −1(y)

)]−1
for all y ∈ Hi\ f (Mi ). Notice that f (Mi ) = gi (Mi ) and

thus, since gi is a Lipschitz map, we may deduce that f (Mi ) is a Borel set of zero Lebesgue
measure. In conclusion, recalling that D f −1(y) = Dh(y) for all y ∈ ∪i Hi , we have proved
that the approximate gradient D f (x) exists for all x ∈ ∪i ( f −1(Hi )\Mi ) and

D f −1(y) = [
D f

(
f −1(y)

)]−1
for all y ∈ ∪i (Hi\ f (Mi )),

where ∪i (Hi\ f (Mi )) is a Borel subset of Fε of full measure. From this equality, the assertion
easily follows. 
�
Remark 2.2 [Validity of the Area formula] In the sequel we are going to use the area
formula for maps in W 1,1

loc (�,R
n) ∩ Hom(�,�′). To this aim, we recall that if f is such a

map, and D f is the set of points in � where f is approximately differentiable, then the area
formula holds in D f , i.e.,

∫

D f

ϕ( f (x))|J f (x)| dx =
∫

f (D f )

ϕ(y) dy (2.3)

for every nonnegative Borel function ϕ in R
n . Equality (2.3) is proved by covering D f with

a countable family of measurable sets such that the restriction of f to each member of the
family is a Lipschitz map ([9, Theorem 3.1.8]) and by applying the usual area formula for
Lipschitz maps. In particular, denoting by J 0

f ⊂ D f , the set of points where J f is zero, we

have that | f (J 0
f )| = 0. This result can be viewed as a weak version of the classical Sard

theorem.
Notice that, as a consequence of (2.3), we have that for any Borel set E ⊂ � and any

nonnegative Borel function ϕ in R
n the following inequality holds

∫

E

ϕ( f (x))|J f (x)| dx ≤
∫

f (E)

ϕ(y) dy. (2.4)

However, if f satisfies the (N ) Lusin condition, inequality (2.4) clearly holds as an equality.

Next theorem is a slight variant of the result proved in [5], with the only difference that
the (outer) distortion K f defined in (1.1) is replaced by the inner distortion. To this aim, let
us recall that a mapping f ∈W 1,1(�,Rn) is said to be of finite inner distortion if its Jacobian
J f ∈ L ′

loc(�) and is strictly positive almost everywhere on the set where Adj D f �= 0. Here,
if A is a n × n matrix, Adj A denotes the transpose of the cofactor matrix of A. If f is a map
of finite inner distortion, similarly to (1.2), we call inner distortion of f the smallest function
K I

f ≥ 1 such that

|Adj D f (x)|n ≤ K I
f (x)J f (x)

n−1 for a.e. x ∈ �. (2.5)
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The limit of W 1,1 homeomorphisms with finite distortion 381

Notice that in (2.5) and in the rest of the paper, by |A| we denote the operator norm of the
n × n matrix A, i.e., |A| = sup{|Aξ | : ξ ∈ R

n, |ξ | = 1}.
Clearly, a map of finite (outer) distortion is also of finite inner distortion and in

dimension n = 2 the two notions coincide. In general, as a consequence of the Hada-
mard inequality |Adj A| ≤ |A|n−1, we have immediately that if f has finite distortion, then
K I

f (x) ≤ (K f (x))n−1 for all x and the inequality can be strict if n ≥ 3.

Theorem 2.3 Let f ∈ W 1,n−1(�,Rn) ∩ Hom(�,�′) be a map such that

|Adj D f (x)|n ≤ K (x)J f (x)
n−1 a.e. in �, (2.6)

for some Borel function K :� → [1,∞). Then, f −1 is a W 1,1(�′; R
n)map of finite distortion.

Moreover,
|D f −1(y)|n ≤ K ( f −1(y))J f −1(y) a.e. in �′ (2.7)

and ∫

�′
|D f −1(y)| dy =

∫

�

|Adj D f (x)| dx . (2.8)

Proof The proof that f −1 is a W 1,1(�′; R
n)map goes exactly as the proof of Theorem 1.2 in

[5], where the finite distortion assumption on f was used only to derive Eq. (4.6). However,
one can easily check that in the proof only the weaker assumption (2.6) is actually needed.
Then, the fact that f −1 has finite distortion follows directly from Theorem 4.5 in [5]. Thus,
we are reduced to show only (2.7) and (2.8).

Notice that, since f −1 is a map of finite distortion, in order to prove (2.7) it is enough
to restrict ourselves to the points y ∈ A, where A is the Borel set provided by Lemma 2.1.
To this aim, let us denote by F ⊂ � a Borel set, with |F | = 0 such that (2.6) holds for all
x ∈ �\F . Then, for any y ∈ A\ f (F), from Lemma 2.1 and from (2.6) we have

|D f −1(y)|n =
∣
∣Adj D f

(
f −1(y)

)∣
∣n

J f ( f −1(y))n
≤ K ( f −1(y))

J f ( f −1(y))
= K ( f −1(y))J f −1(y). (2.9)

Then, (2.7) follows, since from area formula (2.3) we get
∫

A∩ f (F)

J f −1(y) dy = | f −1(A) ∩ F | = 0,

hence |A ∩ f (F)| = 0. Using Lemma 2.1 and recalling that f −1 is a map of finite distortion,
from (2.9) and the area formula we have

∫

�′
|D f −1(y)| dy =

∫

A

|D f −1(y)| dy =
∫

A

∣
∣Adj D f

(
f −1(y)

)∣
∣

J f ( f −1(y))
dy

=
∫

A

∣
∣Adj D f

(
f −1(y)

)∣
∣J f −1(y) dy ≤

∫

�

∣
∣Adj D f (x)

∣
∣ dx .

To show the opposite inequality, let us apply Lemma 2.1 again, thus getting a Borel set

Ã ⊂ Ẽ = {x ∈ D f : J f (x) > 0}, such that |Ẽ\ Ã| = 0 and D f (x) = [
D f −1( f (x))

]−1
for

all x ∈ Ã. Then, from the assumption (2.6) and the area formula we obtain
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382 N. Fusco et al.

∫

�

∣
∣Adj D f (x)

∣
∣ dx =

∫

Ã

∣
∣Adj D f (x)

∣
∣ dx =

∫

Ã

∣
∣D f −1( f (x))

∣
∣J f (x) dx ≤

∫

�′
|D f −1(y)| dy,

thus proving (2.8). 
�

3 Weak convergence of the inverse mappings

Let us start with the following

Lemma 3.1 Let f j , f ∈ Hom(�,�′) be such that f j → f uniformly in �. Then,
f −1

j → f −1 locally uniformly in �′.

Proof Fix a compact subset H of �′. We argue by contradiction. If f −1
j does not converge

uniformly to f −1 in H , we can find an increasing sequence { jr } and a corresponding sequence
of points y jr ∈ H such that y jr → y ∈ H and

lim inf
r→∞ | f −1

jr
(y jr )− f −1(y jr )| > 0. (3.1)

On the other hand, by the uniform convergence of f j to f we have that f ( f −1
jr
(y jr ))− y jr =

f ( f −1
jr
(y jr ))− f jr ( f −1

jr
(y jr )) → 0 as r → ∞. From this, recalling that y jr → y, we deduce

that f ( f −1
jr
(y jr )) → y, and in turn, by the continuity of f −1, that

lim
r→∞

(
f −1

jr
(y jr )− f −1(y jr )

)
= 0

which contradicts (3.1). Hence, the result follows. 
�

We recall that if K : R
n → [0,∞) is a measurable function with compact support, the

spherically decreasing rearrangement K ∗ of K is defined by setting, for every x ∈ R
n ,

K ∗(x) = sup
{
t ≥ 0 : ∣

∣{K > t}∣∣ > ωn |x |n}
,

where ωn denotes the measure of the unit ball. Notice that from this definition one easily gets
that for all t > 0 ∣

∣{K ∗ > t}∣∣ = ∣
∣{K > t}∣∣. (3.2)

Theorem 3.2 Let f j ∈ W 1,n−1(�,Rn)∩Hom(�,�′) be a sequence of maps of finite inner
distortions K j . Assume that K ∗

j ≤ K for all j , for some Borel function K : R
n → [0,∞),

and that the sequence Adj D f j is equi-integrable in �. Then f −1
j is locally weakly compact

in W 1,1(�′; R
n).

Moreover, if f j → f ∈ Hom(�,�′) uniformly in �, the maps f −1
j converge weakly in

W 1,1(�′; R
n) and locally uniformly in �′ to f −1.

Proof From Theorem 2.3, the maps f −1
j belong to W 1,1(�′; R

n) and have finite distortion.

Moreover, (2.8) implies that the sequence f −1
j is bounded in W 1,1(�′,Rn), hence is locally

compact in L1(�′,Rn).
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The limit of W 1,1 homeomorphisms with finite distortion 383

Therefore, we need only to show that the sequence D f −1
j is equi-integrable. To this aim,

let us set, for j, h ∈ N, Fjh = {x ∈ � : K j (x) > h}. For any Borel set E ⊂ �′, we have
∫

E

|D f −1
j (y)| dy =

∫

E\ f j (Fjh )

|D f −1
j (y)| dy +

∫

E∩ f j (Fjh )

|D f −1
j (y)| dy = I1 + I2. (3.3)

If y ∈ E\ f j (Fjh), then K j

(
f −1

j (y)
)

≤ h, hence, by applying (2.7) to each f j and using

Hölder inequality and inequality (2.4),

I1 ≤ h1/n
∫

E

J f −1
j
(y)1/n dy ≤ (h|�|)1/n |E |(n−1)/n . (3.4)

To estimate I2, define for j, h ∈ N

E jh = E ∩ f j (Fjh) ∩ A j

where, for all j , A j is the set relative to f −1
j provided by Lemma 2.1. Recalling that each

f −1
j is a map of finite distortion, from area formula (2.3) and Lemma 2.1, we get

I2 =
∫

E jh

|D f −1
j (y)|

J f −1
j
(y)

J f −1
j
(y) dy =

∫

f −1
j (E jh )

|D f −1
j ( f j (x))|

J f −1
j
( f j (x))

dx

=
∫

f −1
j (E jh )

∣
∣Adj D f j (x)

∣
∣ dx ≤

∫

Fjh

∣
∣Adj D f j (x)

∣
∣ dx .

From this inequality, (3.3) and (3.4), we conclude that for any measurable set E ⊂ �′ and
for any j, h ∈ N

∫

E

|D f −1
j (y)| dy ≤

∫

Fjh

∣
∣Adj D f j (x)

∣
∣ dx + (h|�|)1/n |E |(n−1)/n .

Notice that |Fjh | → 0 as h → ∞, uniformly with respect to j , since from (3.2) we have
|Fjh | = ∣

∣{K ∗
j > h}∣∣ ≤ ∣

∣{K > h}∣∣ and K (x) < ∞ a.e. in �. Therefore, from the equi-
integrability of the sequence Adj D f j we deduce that, given any ε > 0, there exists hε such
that

sup
j∈N

∫

Fjhε

∣
∣Adj D f j (x)

∣
∣ dx < ε.

Therefore, if |E | < εn/(n−1)

(hε|�|)1/(n−1)
, we get that for all j

∫

E

|D f −1
j (y)| dy < 2ε,

thus proving the equi-integrability of the sequence D f −1
j .

If we assume in addition that f j → f ∈ Hom(�,�′) uniformly in � the local uniform
convergence of f −1

j to f −1 follows from Lemma 3.1. Moreover, since � and �′ are both
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384 N. Fusco et al.

bounded, we have also that f −1
j to f −1 in L1(�′,Rn). Hence, the weak convergence in

W 1,1(�′,Rn) easily follows from the equi-integrability of the sequence D f −1
j . 
�

4 Lower semicontinuity of the distortion

In this section, we establish the lower semicontinuity of the distortions of a sequence of
homeomorphisms converging weakly in W 1,1 (see Corollary 4.2 below). This property is an
immediate consequence of Theorem 1.2 whose proof is also given here.

To this aim, let us recall that a sequence of measurable functions h j : � → R is said
to converge in the biting sense in � to a measurable function h : � → R if there exists an
increasing sequence of measurable sets Ek ⊂ �, with ∪k Ek = �, such that h j , h ∈ L1(Ek)

for all j, k and h j ⇀ h weakly in L1(Ek) for all k.
An important feature of this convergence is the property that if h j is a sequence bounded

in L1(�), then there exists a subsequence h jr converging in the biting sense in � (see [4] or
[1, Lemma 1.6]).

Proof of Theorem 1.2 Since f j converges to f weakly in W 1,1(�,Rn), passing possibly to
a subsequence, we may assume without loss of generality that f j (x) → f (x) a.e. in �.

For any σ > 0 denote by �σ ⊂ � a measurable set such that f j → f uniformly in �σ ,
K j ⇀ K weakly in L1(�σ ) and |�\�σ | < σ . For all M > 1 we set

L M = {
x ∈ D f : K (x)+ |D f (x)| ≤ M

} \ f −1
(
J 0

f −1

)
,

where D f is the set of points where f is approximately differentiable and J 0
f −1 is the set of

points in D f −1 , where J f −1 = 0. We are going to show that

∫

H

|D f (x)|n dx ≤
∫

H

K (x)J f (x) dx for all compact sets H ⊂ L M ∩�σ . (4.1)

In fact, once this inequality is proved, since D f has full measure in � and by the weak Sard

theorem | f −1
(
J 0

f −1

)
| = 0, from the arbitrariety of H , M and σ we easily conclude that

|D f (x)|n ≤ K (x)J f (x) for a.e. x ∈ �.
So, let us fix a compact subset H of L M ∩�σ . Given a nonnegative function ϕ ∈ C0(�),

from the assumption (1.3) and the weak convergence of f j to f in W 1,1(�,Rn), we imme-
diately get

∫

H

|D f (x)|ϕ(x) dx ≤ lim inf
j→∞

∫

H

|D f j (x)|ϕ(x) dx ≤ lim inf
j→∞

∫

H

(
K f j (x)J f j (x)

)1/n
ϕ(x) dx .

(4.2)
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The limit of W 1,1 homeomorphisms with finite distortion 385

Let us now denote by ψ a bounded, strictly positive, continuous function in �. By applying
Hölder inequality (once if n = 2 and twice if n ≥ 3) and inequality (2.4) for f j , we get

∫

H

(
K j J f j

)1/n
ϕ dx ≤

⎛

⎝

∫

H

(
K jψ

) 1
n−1 ϕ

n(n−2)
(n−1)2 dx

⎞

⎠

n−1
n

⎛

⎝

∫

H

ϕ
n

n−1 (x)J f j (x)

ψ(x)
dx

⎞

⎠

1
n

≤
⎛

⎝

∫

H

K j (x)ψ(x) dx

⎞

⎠

1
n

⎛

⎝

∫

H

ϕ
n

n−1 (x) dx

⎞

⎠

n−2
n

⎛

⎝

∫

H

ϕ
n

n−1 (x)J f j (x)

ψ(x)
dx

⎞

⎠

1
n

(4.3)

≤
⎛

⎝

∫

H

K j (x)ψ(x) dx

⎞

⎠

1
n

⎛

⎝

∫

H

ϕ
n

n−1 (x) dx

⎞

⎠

n−2
n

⎛

⎜
⎝

∫

�′

ϕ
n

n−1 ( f −1
j (y))

ψ( f −1
j (y))

χ H ( f −1
j (y)) dy

⎞

⎟
⎠

1
n

.

Fix y ∈ �′. Notice that if there exists a subsequence f jr of f j such that f −1
jr
(y) ∈ H , the

same argument used in the proof of Lemma 3.1 gives immediately that f −1
jr
(y) → f −1(y).

As a consequence, we get that

lim sup
j→∞

ϕ
n

n−1 ( f −1
j (y))

ψ( f −1
j (y))

χ H ( f −1
j (y)) ≤ ϕ

n
n−1 ( f −1(y))

ψ( f −1(y))
χ H ( f −1(y)) for all y ∈ �′.

Thus, combining (4.2) and (4.3), and passing to the limit as j → ∞, by Fatou Lemma and
the weak convergence of K j in H , we get

∫

H

|D f (x)|ϕ(x) dx

≤ lim sup
j→∞

⎛

⎝

∫

H

K jψ dx

⎞

⎠

1
n

⎛

⎝

∫

H

ϕ
n

n−1 (x) dx

⎞

⎠

n−2
n

⎛

⎜
⎝

∫

�′

ϕ
n

n−1 ( f −1
j (y))

ψ( f −1
j (y))

χ H ( f −1
j (y)) dy

⎞

⎟
⎠

1
n

≤
⎛

⎝

∫

H

Kψ dx

⎞

⎠

1
n

⎛

⎝

∫

H

ϕ
n

n−1 (x) dx

⎞

⎠

n−2
n

⎛

⎜
⎝

∫

f (H)

ϕ
n

n−1 ( f −1(y))

ψ( f −1(y))
dy

⎞

⎟
⎠

1
n

. (4.4)

Now, let us fix m ∈ N and set Em = {
x ∈ D f : 1/m ≤ J f (x) ≤ m

}
. Given ε > 0, we

denote by ψh a sequence of continuous, equibounded functions such that ψh(x) ≥ ε for all
x ∈ � such that

ψh(x) → J f (x)χ Em
(x)+ ε for a.e. x ∈ �.

Recall that H ⊂ D f and that , by (2.3), f|D f satisfies the Lusin (N) property. Thus,

ψh( f −1(y)) → J f ( f −1(y))χ Em
( f −1(y))+ ε for a.e. y ∈ f (H).
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Thus, inserting ψh in place of ψ in (4.4) and passing to the limit, first as h → ∞ and then
as m → ∞, we get

∫

H

|D f |ϕdx ≤
⎛

⎝

∫

H

K (J f (x)+ε)dx

⎞

⎠

1
n (∫

H
ϕ

n
n−1 dx

) n−2
n

×
⎛

⎜
⎝

∫

f (H)

ϕ
n

n−1 ( f −1(y))

J f ( f −1(y))χ E ( f −1(y))+ε dy

⎞

⎟
⎠

1
n

,

where E = {x ∈ D f : J f (x) > 0}.
Recalling that | f (J 0

f )| = 0, we have that | f (H\E)| = 0, hence χ E ( f −1(y)) = 1 for
a.e. y ∈ f (H). Thus, letting ε → 0 in the inequality above, we get

∫

H

|D f (x)|ϕ(x)dx ≤
⎛

⎝

∫

H

K (x)J f (x)dx

⎞

⎠

1
n

×
⎛

⎝

∫

H

ϕ
n

n−1 (x)dx

⎞

⎠

n−2
n

⎛

⎜
⎝

∫

f (H∩E)

ϕ
n

n−1 ( f −1(y))

J f ( f −1(y))
dy

⎞

⎟
⎠

1
n

.

By the definition of L M , it follows that f (H ∩ E)∩ J 0
f −1 = ∅. Therefore, since�′\D f −1 is

a null set, from Lemma 2.1 we have that J f −1(y) = 1/J f ( f −1(y)) for a.e. y ∈ f (H ∩ E)
and thus, using (2.4), we get

∫

H

|D f |ϕ dx ≤
⎛

⎝

∫

H

K (x)J f (x) dx

⎞

⎠

1
n

×
⎛

⎝

∫

H

ϕ
n

n−1 (x) dx

⎞

⎠

n−2
n

⎛

⎜
⎝

∫

f (H∩E)

ϕ
n

n−1 ( f −1(y))J f −1(y) dy

⎞

⎟
⎠

1
n

≤
⎛

⎝

∫

H

K (x)J f (x) dx

⎞

⎠

1
n
⎛

⎝

∫

H

ϕ
n

n−1 (x) dx

⎞

⎠

n−2
n

⎛

⎝

∫

H∩E

ϕ
n

n−1 (x) dx

⎞

⎠

1
n

≤
⎛

⎝

∫

H

K (x)J f (x) dx

⎞

⎠

1
n
⎛

⎝

∫

H

ϕ
n

n−1 (x) dx

⎞

⎠

n−1
n

.

Finally, let us replace ϕ in this inequality by ϕh , where ϕh ∈ C0(�), 0 ≤ ϕh(x) ≤ Mn−1 for
all h ∈ N and any x ∈ � and

ϕh(x) → |D f (x)|n−1 for a.e. x ∈ L M .
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Then, letting h → ∞, we get

∫

H

|D f (x)|n dx ≤
⎛

⎝

∫

H

K (x)J f (x) dx

⎞

⎠

1
n

⎛

⎝

∫

H

|D f (x)|n dx

⎞

⎠

n−1
n

, (4.5)

hence (4.1) follows. This concludes the proof. 
�

A slightly different result is obtained with a simple variant of the argument used in the
proof of Theorem 1.2.

Theorem 4.1 Let f j , f ∈ W 1,n−1(�,Rn) ∩ Hom(�,�′) with f j ⇀ f weakly in
W 1,n−1(�,Rn). Assume that

∣
∣Adj D f j (x)

∣
∣n ≤ K j (x)J

n−1
f j

for a.e. x ∈ �, (4.6)

where K j : � → [1,∞) is a Borel function and K j converges to K in the biting sense. Then
f has finite inner distortion K I

f ≤ K (x) for a.e. x ∈ �.

Proof Assume n ≥ 3, since for n = 2 the assertion reduces to Theorem 1.2.
As in the proof of Theorem 1.2, we start by observing that f j (x) → f (x) a.e. in � and

that for any σ > 0 there exists a measurable set �σ ⊂ � such that f j → f uniformly in
�σ , K j ⇀ K in L1(�σ ), with |�\�σ | < σ .

For M > 1 we set

L M = {x ∈ D f : K (x)+ ∣
∣Adj D f j (x)

∣
∣ ≤ M}\ f −1

(
J 0

f −1

)
.

Our aim is to show that for every compact set H ⊂ L M ∩�σ we have

∫

H

∣
∣Adj D f j (x)

∣
∣n

dx ≤
∫

H

K (x)J f (x)
n−1 dx . (4.7)

Indeed, as before, establishing this inequality will conclude the proof.
Thus, let us fix a compact set H and a nonnegative function ϕ ∈ C0(�). Setting for all

(x, A) ∈ �× R
n2

F(x, A) = χ H (x)ϕ(x)
∣
∣Adj A

∣
∣,

F turns out to be a polyconvex integrand with growth (n − 1). Therefore, using the lower
semicontinuity theorem by Acerbi–Fusco ([1]), from (4.6) we have

∫

H

∣
∣Adj D f (x)

∣
∣ϕ(x)dx ≤ lim inf

j→∞

∫

H

∣
∣Adj D f j (x)

∣
∣ϕ(x)dx

≤ lim inf
j→∞

∫

H

(
K j (x)J f j (x)

n−1)
1
n ϕ(x)dx .
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Let us denote by ψ a strictly positive and bounded continuous function in �. By Hölder’s
inequality and (2.4) we get

∫

H

(
K j (x)J f j (x)

n−1)
1
n ϕ(x) dx ≤

⎛

⎝

∫

H

K j (x)ψ
n−1(x) dx

⎞

⎠

1
n

⎛

⎝

∫

H

J f j (x)ϕ
n

n−1 (x)

ψ(x)
dx

⎞

⎠

n−1
n

≤
⎛

⎝

∫

H

K j (x)ψ
n−1(x) dx

⎞

⎠

1
n

⎛

⎝

∫

�′

ϕ
n

n−1 ( f −1
j (y))

ψ( f −1
j (y))

χ H ( f −1
j (y)) dy

⎞

⎠

n−1
n

and then, arguing exactly as in the proof of Theorem 1.2, we deduce first the inequality

∫

H

∣
∣Adj D f (x)

∣
∣ϕ(x) dx ≤

⎛

⎝

∫

H

K (x)ψn−1(x) dx

⎞

⎠

1
n

⎛

⎜
⎝

∫

f (H)

ϕ
n

n−1 ( f −1(y))

ψ( f −1(y))
dy

⎞

⎟
⎠

n−1
n

and then

∫

H

∣
∣Adj D f (x)

∣
∣ϕ(x) dx ≤

⎛

⎝

∫

H

K (x)J f (x)
n−1 dx

⎞

⎠

1
n

⎛

⎝

∫

H

ϕ
n

n−1 (x) dx

⎞

⎠

n−1
n

.

Finally, replace in this inequality ϕ by ϕh ∈ C0(�), 0 ≤ ϕh ≤ Mn−1, such that

ϕh(x) → ∣
∣Adj D f (x)

∣
∣n−1 for a.e. x ∈ L M

and let h → ∞ to obtain

∫

H

∣
∣Adj D f (x)

∣
∣n

dx ≤
⎛

⎝

∫

H

K (x)J n−1
f dx

⎞

⎠

1
n

⎛

⎝

∫

H

∣
∣Adj D f (x)

∣
∣n

dx

⎞

⎠

n−1
n

.

From this inequality (4.7) follows, thus concluding the proof. 
�
Corollary 4.2 Let f j , f ∈ W 1,1(�,Rn) ∩ Hom(�,�′), with f j ⇀ f weakly in
W 1,1(�,Rn) . Assume that the maps f j have all finite distortions K f j and that the sequence
K f j is bounded in L1(�). Then f is a map with finite distortion and

∫

�

K f (x) dx ≤ lim inf
j→∞

∫

�

K f j (x) dx . (4.8)

Proof In order to prove (4.8) we may assume without loss of generality that the lim inf on
the right hand side is a limit. If this is the case, there exists a subsequence K f jr

converging
in the biting sense to a measurable function K̃ . Thus, from Theorem 1.2, we have

∫

�

K f (x) dx ≤
∫

�

K̃ (x) dx ≤ lim
r→∞

∫

�

K f jr
(x) dx

and the assertion follows.

A similar result clearly holds for the inner distortions if in Corollary 4.2 we assume that the
maps f j , f satisfy the asssumptions of Theorem 4.1.
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Example 4.3 Let ϕ : R → [c,+∞), c > 0, be a 1-periodic function, strictly increasing

in (0, 1) and such that

1∫

0

ϕdt = 1, but ϕ �∈ L p((0, 1)) for all p > 1. Set, for all j ∈ N,

(x, y) ∈ � = (0, 1)×(0, 1),

f j (x, y) =
⎛

⎝

x∫

0

ϕ( j t)dt,

y∫

0

ϕ( j t)dt

⎞

⎠ .

Then, f j is a sequence of homeomorphisms from� onto�weakly converging to the identity
map f in W 1,1(�,�). All maps f j are of finite distortion and for a.e. (x, y) ∈ �

K f j (x, y) = max{ϕ2( j x), ϕ2( j y)}
ϕ( j x)ϕ( j y)

.

Thus, the functions K f j converge weakly in L1(�) to the constant function

K ≡
1∫

0

1∫

0

max{ϕ2(s), ϕ2(t)}
ϕ(s)ϕ(t)

dsdt.

Recalling that ϕ is strictly increasing in (0, 1), we easily get that

K ≡ 2

1∫

0

ϕ(s) ds

s∫

0

1

ϕ(t)
dt > 2

1∫

0

ϕ(s)
s

ϕ(s)
ds = 1 ≡ K f ,

thus showing that the inequality K f ≤ K provided by Theorem 1.2 can be everywhere strict
even in very simple situations. Notice also that since f j �∈ W 1,2 for all j , Theorem 1.1 does
not apply to this example.
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