The limit of $W^{1,1}$ homeomorphisms with finite distortion

N. Fusco · G. Moscariello · C. Sbordone

Received: 26 September 2007 / Accepted: 26 February 2008 / Published online: 8 July 2008 © Springer-Verlag 2008

Abstract We show that the limit f of a weakly convergent sequence of $W^{1,1}$ homeomorphisms f_i with finite distortion has finite distortion as well, provided that it is a homeomorphism. Moreover, the lower semicontinuity of the distortions is deduced both in case of outer and inner distortion.

Mathematics Subject Classification (2000) 30C65 · 26B10 · 46E35

1 Introduction

In this paper, we study the convergence of a sequence of homeomorphisms $f_j : \Omega \mapsto \Omega'$ of Sobolev class $W_{\text{loc}}^{1,1}(\Omega, \mathbb{R}^n)$ with finite distortion, where Ω and Ω' are bounded open sets in \mathbb{R}^n , $n > 2$.

Recall that a mapping $f \in W^{1,1}_{loc}(\Omega, \mathbb{R}^n)$ is said to be of *finite distortion* if its Jacobian $J_f \in L'_{\text{doc}}(\Omega)$ and is strictly positive almost everywhere on the set where $Df \neq 0$. For such a mapping the *distortion* K_f is defined as

$$
K_f(x) = \begin{cases} \frac{|Df(x)|^n}{J_f(x)} & \text{if } J_f(x) > 0, \\ 1 & \text{otherwise.} \end{cases}
$$
(1.1)

N. Fusco (B) · G. Moscariello · C. Sbordone Dipartimento di Matematica ed Applicazioni, via Cintia, 80126 Naples, Italy e-mail: nicola.fusco@unina.it

G. Moscariello e-mail: gmoscari@unina.it

C. Sbordone e-mail: sbordone@unina.it

Notice that $K_f(x)$ is the smallest function greater than or equal to 1 and such that

$$
|Df(x)|^n \le K_f(x)J_f(x) \quad \text{for a.e. } x \in \Omega.
$$
 (1.2)

Our first result deals with the convergence of the inverse mappings f_j^{-1} of a sequence f_j of homeomorphisms of finite distortion. In fact, a recent result proved in [\[5](#page-12-0)] (see also [\[11](#page-13-0)[,12\]](#page-13-1), for the case *n* = 2 and [\[3](#page-12-1)[,13](#page-13-2)[,14\]](#page-13-3)) states that if $f \in W^{1,n-1}(\Omega, \Omega')$ is a homeomorphism of finite distortion, then the inverse map f^{-1} belongs to $W^{1,1}(\Omega', \Omega)$ and has finite distortion too.

In particular our Theorem [3.2](#page-5-0) shows that if f_i is a sequence of homeomorphisms of finite distortion, satisfying reasonable equi-boundedness assumptions, then the inverse mappings f_j^{-1} converge weakly in $W^{1,1}$.

In the literature the study of a sequence of mappings of finite distortion has been also considered from a different point of view, namely to find under which conditions weak limits are also maps of finite distortion. To this aim, we recall the following result, proved in [\[10\]](#page-12-2), where the maps f_i are assumed to converge weakly in $W^{1,n}$ to f and the corresponding distortions K_{f_i} converge in the biting sense to some function K .

Theorem 1.1 *Suppose that* $f_j : \Omega \mapsto \mathbb{R}^n$ *is a sequence of mappings of finite distortion which converge weakly in* $W^{1,n}(\Omega, \mathbb{R}^n)$ *to f and suppose that the functions* K_f *converge in the biting sense to K . Then f has finite distortion and*

$$
K_f(x) \le K(x) < \infty \quad \text{for a.e. } x \in \Omega.
$$

A more general version of this result has been proved in [\[15](#page-13-4)] in the context of Orlicz–Sobolev spaces.

An important tool in the proof of Theorem [1.1](#page-1-0) is the continuity of the Jacobian operator

$$
f \in W^{1,n}(\Omega, \mathbb{R}^n) \mapsto J_f \in L^1(\Omega)
$$

with respect to weak convergence in $W^{1,n}$ of mappings of finite distortion and weak convergence in $L¹$ of Jacobians. Notice that such a continuity is not guaranteed, even in dimension $n = 2$, when we assume that mappings f_i belong only to $W^{1,1}$ and converge weakly in $W^{1,1}$. On the other hand this result pertains to mappings of finite distortion which are not necessarily one-to-one, though they are continuous, as a consequence of the required summability of their gradients.

In this paper, we present a different kind of result. On one side, we assume more on the maps f_i and f by requiring that they are both homeomorphisms, on the other side, we weaken significantly the integrability assumptions on the gradients by requiring only that Df_j , $Df \in L^1$. Denoting by Hom(Ω , Ω') the set of all homeomorphisms between Ω and Ω' , our main result reads as follows.

Theorem 1.2 *Let* f_j , f ∈ $W^{1,1}(\Omega, \mathbb{R}^n)$ ∩ $Hom(\Omega, \Omega')$, with f_j → f weakly in $W^{1,1}(\Omega, \mathbb{R}^n)$. Assume that

$$
|Df_j(x)|^n \le K_j(x) J_{f_j}(x) \quad \text{for a.e. } x \in \Omega,
$$
\n(1.3)

where K_i : $\Omega \to [1, \infty)$ *is a Borel function for all j and* K_i *converges in the biting sense to K*. Then *f* is a map of finite distortion and $K_f(x) \leq K(x)$ for a.e. $x \in \Omega$.

Finally, we observe that in Theorem [1.2](#page-1-1) the finite distortion assumption [\(1.3\)](#page-1-2) can be replaced by a similar one involving inner distortion (see Theorem [4.1\)](#page-10-0).

2 Preliminary results

In the sequel it will be convenient to work with a pointwise definition of a gradient of a Sobolev map. To this aim let us consider a function $f \in L^1_{N}(\Omega, \mathbb{R}^N)$. We say that a point *x* is a point of *approximate continuity* if there exists $z \in \mathbb{R}^N$ such that

$$
\lim_{r \to 0} \int\limits_{B_r(x)} |f(y) - z| \, dy = 0.
$$

The vector *z* for which the equality above holds is called the *approximate limit* of *f* at *x* and is denoted by $f^*(x)$.

Let x be a point of approximate continuity for f . We say that f is *approximately differentiable* at *x* if there exists a $N \times n$ matrix, denoted by $Df(x)$, such that

$$
\lim_{r \to 0} \int\limits_{B_r(x)} \frac{|f(y) - f^*(x) - Df(x)(y - x)|}{r} dy = 0.
$$
\n(2.1)

The *approximate gradient* $Df(x)$ is uniquely determined by equality [\(2.1\)](#page-2-0) and it can be easily checked that the set

 $D_f = \{x \in \Omega : f \text{ is approximately differentiable at } x\}$

is a Borel set and the map $Df : \mathcal{D}_f \mapsto \mathbb{R}^{nN}$ is a Borel map ([\[2](#page-12-3), Proposition 3.71]).

In the sequel by Df we shall always denote the approximate gradient defined above. Note that if *f* is differentiable in the classical sense at *x* the approximate gradient $Df(x)$ coincides with the usual gradient. Moreover, if $f \in W^{1,1}_{loc}(\Omega, \mathbb{R}^N)$, then *f* is approximately differentiable almost everywhere in Ω and its approximate differential gradient coincides almost everywhere with the distributional gradient ([\[2](#page-12-3), Proposition 3.83]).

Another feature of the definition [\(2.1\)](#page-2-0) is its local nature. In fact, if $f, g \in L^1_{loc}(\Omega, \mathbb{R}^N)$, then $([2, Proposition 3.73])$ $([2, Proposition 3.73])$ $([2, Proposition 3.73])$

$$
Df(x) = Dg(x) \text{ for a.e. } x \in \mathcal{D}_f \cap \mathcal{D}_g \cap \{f = g\}. \tag{2.2}
$$

Finally, we remark that definition [\(2.1\)](#page-2-0) of approximate gradient is slightly stronger than the one introduced in [\[9](#page-12-4)]. However, for a Sobolev map the two definitions agree, up to a set of measure zero.

Next lemma is a technical result that will be useful in the sequel.

Lemma 2.1 *Let* $f : \Omega \mapsto \Omega'$ *be a one-to-one map such that* $f \in W^{1,1}(\Omega, \Omega')$ *and* $f^{-1} \in$ $W^{1,1}(\Omega', \Omega)$. Set $E = \{y \in \mathcal{D}_{f^{-1}} : |J_{f^{-1}}(y)| > 0\}$. Then, there exists a Borel set $A \subset E$, *with* $|E \setminus A| = 0$ *such that* $f^{-1}(A) \subset \{x \in \mathcal{D}_f : |J_f(x)| > 0\}$ *, with the property that*

$$
Df^{-1}(y) = [Df(f^{-1}(y))]^{-1}
$$
 for all $y \in A$.

Proof Fix $\varepsilon > 0$. By a well known approximation result there exist a Lipschitz map h: $\mathbb{R}^n \mapsto \mathbb{R}^n$ and a measurable set $F_{\varepsilon} \subset E$, with $|E \setminus F_{\varepsilon}| < \varepsilon$, such that $f^{-1}(y) = h(y)$ for all *y* ∈ *F*_ε. As a consequence, recalling [\(2.2\)](#page-2-1), we have that $Df^{-1}(y) = Dh(y)$ for a.e. *y* ∈ *F*_ε, hence $|J_h(y)| > 0$ for a.e. $y \in F_{\varepsilon}$.

Thus, by the Lipschitz linearization lemma of Federer ([\[2](#page-12-3), Lemma 2.74] or [\[9,](#page-12-4) Lemma 3.2.2]), F_{ε} can be decomposed, up to a set of zero measure, into the union of countably many, pairwise disjoint, compact sets H_i such that for all *i*, the map $h_{|H_i}$ is invertible, $(h_{|H_i})^{-1}$ is Lipschitz, *h* is differentiable, $|J_h(y)| > 0$ and $Df^{-1}(y) = Dh(y)$ for all $y \in H_i$. Finally,

let us denote by $g_i : \mathbb{R}^n \mapsto \mathbb{R}^n$ a Lipschitz function such $g_i(x) = (h_{|H_i})^{-1}(x)$ for all *x* ∈ *h*(*H_i*). Since *h*(*g_i*(*x*)) = *x* for all *x* ∈ *h*(*H_i*) and *g_i*(*h*(*y*)) = *y* for all *y* ∈ *H_i*, using the a.e. differentiability of Lipschitz functions and [\(2.2\)](#page-2-1) again we easily get that for all *i*

$$
Dh(g_i(x)) = [Dg_i(x)]^{-1} \text{ for a.e. } x \in h(H_i).
$$

Since $g_i(x) = f(x)$ for every $x \in h(H_i)$, from the equality above we deduce that for all *i* there exists a null Borel set $M_i \subset h(H_i) = f^{-1}(H_i)$ such that *f* is approximately differentiable at every point $x \in f^{-1}(H_i) \setminus M_i$, and

$$
Dh(f(x)) = [Df(x)]^{-1} \quad \text{for any } x \in f^{-1}(H_i) \backslash M_i,
$$

i.e., $Dh(y) = [Df(f^{-1}(y))]^{-1}$ for all $y \in H_i \setminus f(M_i)$. Notice that $f(M_i) = g_i(M_i)$ and thus, since g_i is a Lipschitz map, we may deduce that $f(M_i)$ is a Borel set of zero Lebesgue measure. In conclusion, recalling that $Df^{-1}(y) = Dh(y)$ for all $y \in \bigcup_i H_i$, we have proved that the approximate gradient $Df(x)$ exists for all $x \in \bigcup_i (f^{-1}(H_i)\setminus M_i)$ and

$$
Df^{-1}(y) = \left[Df\left(f^{-1}(y)\right) \right]^{-1} \quad \text{for all } y \in \bigcup_i (H_i \setminus f(M_i)),
$$

where $\cup_i (H_i \backslash f(M_i))$ is a Borel subset of F_{ε} of full measure. From this equality, the assertion easily follows.

Remark 2.2 **[Validity of the Area formula]** In the sequel we are going to use the *area formula* for maps in $W^{1,1}_{loc}(\Omega, \mathbb{R}^n) \cap \text{Hom}(\Omega, \Omega')$. To this aim, we recall that if *f* is such a map, and \mathcal{D}_f is the set of points in Ω where f is approximately differentiable, then the area formula holds in \mathcal{D}_f , i.e.,

$$
\int_{\mathcal{D}_f} \varphi(f(x)) |J_f(x)| dx = \int_{f(\mathcal{D}_f)} \varphi(y) dy \tag{2.3}
$$

for every nonnegative Borel function φ in \mathbb{R}^n . Equality [\(2.3\)](#page-3-0) is proved by covering \mathcal{D}_f with a countable family of measurable sets such that the restriction of *f* to each member of the family is a Lipschitz map ([\[9,](#page-12-4) Theorem 3.1.8]) and by applying the usual area formula for Lipschitz maps. In particular, denoting by $\mathcal{J}_f^0 \subset \mathcal{D}_f$, the set of points where J_f is zero, we have that $|f(\mathcal{J}_{f}^{0})| = 0$. This result can be viewed as a *weak version of the classical Sard theorem*.

Notice that, as a consequence of [\(2.3\)](#page-3-0), we have that for any Borel set $E \subset \Omega$ and any nonnegative Borel function φ in \mathbb{R}^n the following inequality holds

$$
\int\limits_E \varphi(f(x))|J_f(x)|\,dx \le \int\limits_{f(E)} \varphi(y)\,dy. \tag{2.4}
$$

However, if *f* satisfies the (*N*) Lusin condition, inequality [\(2.4\)](#page-3-1) clearly holds as an equality.

Next theorem is a slight variant of the result proved in [\[5\]](#page-12-0), with the only difference that the (outer) distortion K_f defined in [\(1.1\)](#page-0-0) is replaced by the inner distortion. To this aim, let us recall that a mapping $f \in W^{1,1}(\Omega, \mathbb{R}^n)$ is said to be of *finite inner distortion* if its Jacobian $J_f \in L'_{loc}(\Omega)$ and is strictly positive almost everywhere on the set where Adj $Df \neq 0$. Here, if *A* is a $n \times n$ matrix, Adj *A* denotes the transpose of the cofactor matrix of *A*. If *f* is a map of finite inner distortion, similarly to [\(1.2\)](#page-1-3), we call *inner distortion* of *f* the smallest function $K_f^I \geq 1$ such that

$$
|\text{Adj }Df(x)|^n \le K_f^I(x)J_f(x)^{n-1} \quad \text{for a.e. } x \in \Omega. \tag{2.5}
$$

Notice that in [\(2.5\)](#page-3-2) and in the rest of the paper, by |*A*| we denote the operator norm of the $n \times n$ matrix *A*, i.e., $|A| = \sup\{|A\xi| : \xi \in \mathbb{R}^n, |\xi| = 1\}.$

Clearly, a map of finite (outer) distortion is also of finite inner distortion and in dimension $n = 2$ the two notions coincide. In general, as a consequence of the Hadamard inequality $|Adj A| \leq |A|^{n-1}$, we have immediately that if *f* has finite distortion, then $K_f^I(x) \le (K_f(x))^{n-1}$ for all *x* and the inequality can be strict if $n \ge 3$.

Theorem 2.3 *Let* $f \in W^{1,n-1}(\Omega, \mathbb{R}^n) \cap \text{Hom}(\Omega, \Omega')$ *be a map such that*

$$
|\text{Adj }Df(x)|^n \le K(x)J_f(x)^{n-1} \quad a.e. \text{ in } \Omega,\tag{2.6}
$$

for some Borel function $K\!:\!\Omega\to[1,\infty)$. Then, f^{-1} is a $W^{1,1}(\Omega';\mathbb{R}^n)$ map of finite distortion. *Moreover,*

$$
|Df^{-1}(y)|^{n} \le K(f^{-1}(y))J_{f^{-1}}(y) \quad a.e. \text{ in } \Omega'
$$
 (2.7)

and

$$
\int_{\Omega'} |Df^{-1}(y)| dy = \int_{\Omega} |Adj Df(x)| dx.
$$
\n(2.8)

Proof The proof that f^{-1} is a $W^{1,1}(\Omega'; \mathbb{R}^n)$ map goes exactly as the proof of Theorem 1.2 in [\[5](#page-12-0)], where the finite distortion assumption on *f* was used only to derive Eq. (4.6). However, one can easily check that in the proof only the weaker assumption [\(2.6\)](#page-4-0) is actually needed. Then, the fact that f^{-1} has finite distortion follows directly from Theorem 4.5 in [\[5\]](#page-12-0). Thus, we are reduced to show only (2.7) and (2.8) .

Notice that, since f^{-1} is a map of finite distortion, in order to prove [\(2.7\)](#page-4-1) it is enough to restrict ourselves to the points $y \in A$, where *A* is the Borel set provided by Lemma [2.1.](#page-2-2) To this aim, let us denote by $F \subset \Omega$ a Borel set, with $|F| = 0$ such that [\(2.6\)](#page-4-0) holds for all $x \in \Omega \backslash F$. Then, for any *y* ∈ *A**f* (*F*), from Lemma [2.1](#page-2-2) and from [\(2.6\)](#page-4-0) we have

$$
|Df^{-1}(y)|^n = \frac{|\text{Adj}\,Df\left(f^{-1}(y)\right)|^n}{J_f(f^{-1}(y))^n} \le \frac{K(f^{-1}(y))}{J_f(f^{-1}(y))} = K(f^{-1}(y))J_{f^{-1}}(y). \tag{2.9}
$$

Then, (2.7) follows, since from area formula (2.3) we get

$$
\int_{A \cap f(F)} J_{f^{-1}}(y) dy = |f^{-1}(A) \cap F| = 0,
$$

hence $|A \cap f(F)| = 0$. Using Lemma [2.1](#page-2-2) and recalling that f^{-1} is a map of finite distortion, from [\(2.9\)](#page-4-3) and the area formula we have

$$
\int_{\Omega'} |Df^{-1}(y)| dy = \int_{A} |Df^{-1}(y)| dy = \int_{A} \frac{|\text{Adj } Df (f^{-1}(y))|}{J_f(f^{-1}(y))} dy
$$

=
$$
\int_{A} |\text{Adj } Df (f^{-1}(y))| J_{f^{-1}}(y) dy \le \int_{\Omega} |\text{Adj } Df(x)| dx.
$$

To show the opposite inequality, let us apply Lemma [2.1](#page-2-2) again, thus getting a Borel set $\widetilde{A} \subset \widetilde{E} = \{x \in \mathcal{D}_f : J_f(x) > 0\}$, such that $|\widetilde{E} \setminus \widetilde{A}| = 0$ and $Df(x) = [Df^{-1}(f(x))]^{-1}$ for all $x \in A$. Then, from the assumption [\(2.6\)](#page-4-0) and the area formula we obtain

 $\hat{\mathfrak{D}}$ Springer

$$
\int_{\Omega} \left| \mathrm{Adj}\,Df(x) \right| dx = \int_{\widetilde{A}} \left| \mathrm{Adj}\,Df(x) \right| dx = \int_{\widetilde{A}} \left| Df^{-1}(f(x)) \right| J_f(x) dx \le \int_{\Omega'} |Df^{-1}(y)| dy,
$$

thus proving (2.8) .

3 Weak convergence of the inverse mappings

Let us start with the following

Lemma 3.1 *Let* f_j , $f \in \text{Hom}(\Omega, \Omega')$ *be such that* $f_j \rightarrow f$ *uniformly in* Ω *. Then,* $f_j^{-1} \to f^{-1}$ *locally uniformly in* Ω' *.*

Proof Fix a compact subset *H* of Ω' . We argue by contradiction. If f_j^{-1} does not converge uniformly to f^{-1} in *H*, we can find an increasing sequence { j_r } and a corresponding sequence of points $y_{i_r} \in H$ such that $y_{i_r} \to y \in H$ and

$$
\liminf_{r \to \infty} |f_{j_r}^{-1}(y_{j_r}) - f^{-1}(y_{j_r})| > 0.
$$
\n(3.1)

On the other hand, by the uniform convergence of f_j to f we have that $f(f_{j_r}^{-1}(y_{j_r})) - y_{j_r} =$ $f(f_{j_r}^{-1}(y_{j_r})) - f_{j_r}(f_{j_r}^{-1}(y_{j_r})) \to 0$ as $r \to \infty$. From this, recalling that $y_{j_r} \to y$, we deduce that *f* ($f_{j_r}^{-1}(y_{j_r})$) → *y*, and in turn, by the continuity of f^{-1} , that

$$
\lim_{r \to \infty} \left(f_{j_r}^{-1}(y_{j_r}) - f^{-1}(y_{j_r}) \right) = 0
$$

which contradicts (3.1) . Hence, the result follows.

We recall that if $K : \mathbb{R}^n \to [0, \infty)$ is a measurable function with compact support, the *spherically decreasing rearrangement* K^* of K is defined by setting, for every $x \in \mathbb{R}^n$,

$$
K^*(x) = \sup \{ t \ge 0 : | \{ K > t \} | > \omega_n |x|^n \},
$$

where ω_n denotes the measure of the unit ball. Notice that from this definition one easily gets that for all $t > 0$

$$
|\{K^* > t\}| = |\{K > t\}|. \tag{3.2}
$$

Theorem 3.2 *Let* $f_j \in W^{1,n-1}(\Omega, \mathbb{R}^n) \cap \text{Hom}(\Omega, \Omega')$ *be a sequence of maps of finite inner distortions* K_j *. Assume that* $K_j^* \leq K$ *for all j, for some Borel function* $K : \mathbb{R}^n \to [0, \infty)$ *,* and that the sequence Adj Df_j is equi-integrable in Ω . Then f_j^{-1} is locally weakly compact $in W^{1,1}(\Omega'; \mathbb{R}^n)$.

Moreover, if $f_j \to f \in \text{Hom}(\Omega, \Omega')$ *uniformly in* Ω *, the maps* f_j^{-1} *converge weakly in* $W^{1,1}(\Omega';\mathbb{R}^n)$ *and locally uniformly in* Ω' *to* f^{-1} *.*

Proof From Theorem [2.3,](#page-4-4) the maps f_j^{-1} belong to $W^{1,1}(\Omega'; \mathbb{R}^n)$ and have finite distortion. Moreover, [\(2.8\)](#page-4-2) implies that the sequence f_j^{-1} is bounded in $W^{1,1}(\Omega', \mathbb{R}^n)$, hence is locally compact in $L^1(\Omega', \mathbb{R}^n)$.

Therefore, we need only to show that the sequence Df_j^{-1} is equi-integrable. To this aim, let us set, for $j, h \in \mathbb{N}$, $F_{jh} = \{x \in \Omega : K_j(x) > h\}$. For any Borel set $E \subset \Omega'$, we have

$$
\int_{E} |Df_j^{-1}(y)| dy = \int_{E \setminus f_j(F_{jh})} |Df_j^{-1}(y)| dy + \int_{E \cap f_j(F_{jh})} |Df_j^{-1}(y)| dy = I_1 + I_2. \quad (3.3)
$$

If $y \in E \setminus f_j(F_{jh})$, then $K_j\left(f_j^{-1}(y)\right) \leq h$, hence, by applying [\(2.7\)](#page-4-1) to each f_j and using Hölder inequality and inequality [\(2.4\)](#page-3-1),

$$
I_1 \le h^{1/n} \int\limits_E J_{f_j^{-1}}(y)^{1/n} dy \le (h|\Omega|)^{1/n} |E|^{(n-1)/n}.
$$
 (3.4)

To estimate I_2 , define for $j, h \in \mathbb{N}$

$$
E_{jh} = E \cap f_j(F_{jh}) \cap A_j
$$

where, for all *j*, A_j is the set relative to f_j^{-1} provided by Lemma [2.1.](#page-2-2) Recalling that each f_j^{-1} is a map of finite distortion, from area formula [\(2.3\)](#page-3-0) and Lemma [2.1,](#page-2-2) we get

$$
I_2 = \int_{E_{jh}} \frac{|Df_j^{-1}(y)|}{J_{f_j^{-1}}(y)} J_{f_j^{-1}}(y) dy = \int_{f_j^{-1}(E_{jh})} \frac{|Df_j^{-1}(f_j(x))|}{J_{f_j^{-1}}(f_j(x))} dx
$$

=
$$
\int_{f_j^{-1}(E_{jh})} |\text{Adj } Df_j(x)| dx \le \int_{F_{jh}} |\text{Adj } Df_j(x)| dx.
$$

From this inequality, [\(3.3\)](#page-6-0) and [\(3.4\)](#page-6-1), we conclude that for any measurable set $E \subset \Omega'$ and for any $j, h \in \mathbb{N}$

$$
\int_{E} |Df_j^{-1}(y)| dy \leq \int_{F_{jh}} |Adj Df_j(x)| dx + (h|\Omega|)^{1/n} |E|^{(n-1)/n}.
$$

Notice that $|F_{jh}| \to 0$ as $h \to \infty$, uniformly with respect to *j*, since from [\(3.2\)](#page-5-2) we have $|F_{jh}| = |{K^*_{j} > h}| \le |{K > h}|$ and $K(x) < \infty$ a.e. in Ω . Therefore, from the equiintegrability of the sequence Adj Df_i we deduce that, given any $\varepsilon > 0$, there exists h_{ε} such that

$$
\sup_{j\in\mathbb{N}}\int\limits_{F_{jh_{\varepsilon}}}\left|\mathrm{Adj}\,Df_{j}(x)\right|dx<\varepsilon.
$$

Therefore, if $|E| < \frac{\varepsilon^{n/(n-1)}}{(h_{\varepsilon}|\Omega|)^{1/(n-1)}},$ we get that for all *j* $\overline{}$ *E* $|Df_j^{-1}(y)| dy < 2\varepsilon$,

thus proving the equi-integrability of the sequence Df_j^{-1} .

If we assume in addition that $f_j \to f \in \text{Hom}(\Omega, \Omega')$ uniformly in Ω the local uniform convergence of f_j^{-1} to f^{-1} follows from Lemma [3.1.](#page-5-3) Moreover, since Ω and Ω' are both bounded, we have also that f_j^{-1} to f^{-1} in $L^1(\Omega', \mathbb{R}^n)$. Hence, the weak convergence in $W^{1,1}(\Omega', \mathbb{R}^n)$ easily follows from the equi-integrability of the sequence Df_j^{-1} .

4 Lower semicontinuity of the distortion

In this section, we establish the lower semicontinuity of the distortions of a sequence of homeomorphisms converging weakly in $W^{1,1}$ (see Corollary [4.2](#page-11-0) below). This property is an immediate consequence of Theorem [1.2](#page-1-1) whose proof is also given here.

To this aim, let us recall that a sequence of measurable functions $h_j : \Omega \to \mathbb{R}$ is said to converge in the *biting sense* in Ω to a measurable function $h : \Omega \to \mathbb{R}$ if there exists an increasing sequence of measurable sets *E_k* ⊂ Ω, with ∪*k E_k* = Ω, such that *h*_{*j*}, *h* ∈ *L*¹(*E_k*) for all *j*, *k* and $h_j \rightharpoonup h$ weakly in $L^1(E_k)$ for all *k*.

An important feature of this convergence is the property that if h_j is a sequence bounded in $L^1(\Omega)$, then there exists a subsequence h_{j_r} converging in the biting sense in Ω (see [\[4\]](#page-12-5) or [\[1](#page-12-6), Lemma 1.6]).

Proof of Theorem [1.2](#page-1-1) Since f_i converges to f weakly in $W^{1,1}(\Omega, \mathbb{R}^n)$, passing possibly to a subsequence, we may assume without loss of generality that $f_i(x) \to f(x)$ a.e. in Ω .

For any $\sigma > 0$ denote by $\Omega_{\sigma} \subset \Omega$ a measurable set such that $f_j \to f$ uniformly in Ω_{σ} , $K_j \rightharpoonup K$ weakly in $L^1(\Omega_\sigma)$ and $|\Omega \setminus \Omega_\sigma| < \sigma$. For all $M > 1$ we set

$$
L_M = \left\{ x \in \mathcal{D}_f : \, K(x) + |Df(x)| \le M \right\} \backslash f^{-1}\left(\mathcal{J}_{f^{-1}}^0\right),
$$

where \mathcal{D}_f is the set of points where *f* is approximately differentiable and $\mathcal{J}_{f^{-1}}^0$ is the set of points in $\mathcal{D}_{f^{-1}}$, where $J_{f^{-1}} = 0$. We are going to show that

$$
\int\limits_H |Df(x)|^n dx \le \int\limits_H K(x)J_f(x) dx \quad \text{for all compact sets } H \subset L_M \cap \Omega_\sigma. \tag{4.1}
$$

In fact, once this inequality is proved, since D_f has full measure in Ω and by the weak Sard theorem $|f^{-1}(\mathcal{J}_{f^{-1}}^0)| = 0$, from the arbitrariety of *H*, *M* and σ we easily conclude that $|Df(x)|^n \le K(x)J_f(x)$ for a.e. $x \in \Omega$.

So, let us fix a compact subset *H* of $L_M \cap \Omega_\sigma$. Given a nonnegative function $\varphi \in C_0(\Omega)$, from the assumption [\(1.3\)](#page-1-2) and the weak convergence of f_j to f in $W^{1,1}(\Omega, \mathbb{R}^n)$, we immediately get

$$
\int\limits_H |Df(x)|\varphi(x) dx \le \liminf\limits_{j \to \infty} \int\limits_H |Df_j(x)|\varphi(x) dx \le \liminf\limits_{j \to \infty} \int\limits_H (K_{f_j}(x)J_{f_j}(x))^{1/n} \varphi(x) dx.
$$
\n(4.2)

 \mathcal{L} Springer

Let us now denote by ψ a bounded, strictly positive, continuous function in Ω . By applying Hölder inequality (once if $n = 2$ and twice if $n \ge 3$) and inequality [\(2.4\)](#page-3-1) for f_j , we get

$$
\int_{H} \left(K_{j}J_{f_{j}}\right)^{1/n} \varphi \,dx \leq \left(\int_{H} \left(K_{j}\psi\right)^{\frac{1}{n-1}} \varphi^{\frac{n(n-2)}{(n-1)^{2}}} dx\right)^{\frac{n-1}{n}} \left(\int_{H} \frac{\varphi^{\frac{n}{n-1}}(x)J_{f_{j}}(x)}{\psi(x)} dx\right)^{\frac{1}{n}} \n\leq \left(\int_{H} K_{j}(x)\psi(x) dx\right)^{\frac{1}{n}} \left(\int_{H} \varphi^{\frac{n}{n-1}}(x) dx\right)^{\frac{n-2}{n}} \left(\int_{H} \frac{\varphi^{\frac{n}{n-1}}(x)J_{f_{j}}(x)}{\psi(x)} dx\right)^{\frac{1}{n}} \n\leq \left(\int_{H} K_{j}(x)\psi(x) dx\right)^{\frac{1}{n}} \left(\int_{H} \varphi^{\frac{n}{n-1}}(x) dx\right)^{\frac{n-2}{n}} \left(\int_{\Omega'} \frac{\varphi^{\frac{n}{n-1}}(x)J_{f_{j}}(x)}{\psi(f_{j}^{-1}(y))} \chi_{H}(f_{j}^{-1}(y)) dy\right)^{\frac{1}{n}}.
$$
\n(4.3)

Fix $y \in \Omega'$. Notice that if there exists a subsequence f_{j_r} of f_j such that $f_{j_r}^{-1}(y) \in H$, the same argument used in the proof of Lemma [3.1](#page-5-3) gives immediately that $f_{j_r}^{-1}(y) \to f^{-1}(y)$. As a consequence, we get that

$$
\limsup_{j \to \infty} \frac{\varphi^{\frac{n}{n-1}}(f_j^{-1}(y))}{\psi(f_j^{-1}(y))} \chi_H(f_j^{-1}(y)) \le \frac{\varphi^{\frac{n}{n-1}}(f^{-1}(y))}{\psi(f^{-1}(y))} \chi_H(f^{-1}(y)) \text{ for all } y \in \Omega'.
$$

Thus, combining [\(4.2\)](#page-7-0) and [\(4.3\)](#page-8-0), and passing to the limit as $j \to \infty$, by Fatou Lemma and the weak convergence of K_i in H , we get

$$
\int_{H} |Df(x)|\varphi(x) dx
$$
\n
$$
\leq \limsup_{j \to \infty} \left(\int_{H} K_{j} \psi dx \right)^{\frac{1}{n}} \left(\int_{H} \varphi^{\frac{n}{n-1}}(x) dx \right)^{\frac{n-2}{n}} \left(\int_{\Omega'} \frac{\varphi^{\frac{n}{n-1}}(f_{j}^{-1}(y))}{\psi(f_{j}^{-1}(y))} \chi_{H}(f_{j}^{-1}(y)) dy \right)^{\frac{1}{n}}
$$
\n
$$
\leq \left(\int_{H} K \psi dx \right)^{\frac{1}{n}} \left(\int_{H} \varphi^{\frac{n}{n-1}}(x) dx \right)^{\frac{n-2}{n}} \left(\int_{f(H)} \frac{\varphi^{\frac{n}{n-1}}(f^{-1}(y))}{\psi(f^{-1}(y))} dy \right)^{\frac{1}{n}}.
$$
\n(4.4)

Now, let us fix $m \in \mathbb{N}$ and set $E_m = \{x \in \mathcal{D}_f : 1/m \leq J_f(x) \leq m\}$. Given $\varepsilon > 0$, we denote by ψ_h a sequence of continuous, equibounded functions such that $\psi_h(x) \geq \varepsilon$ for all $x \in \Omega$ such that

$$
\psi_h(x) \to J_f(x) \chi_{E_m}(x) + \varepsilon
$$
 for a.e. $x \in \Omega$.

Recall that $H \subset \mathcal{D}_f$ and that , by [\(2.3\)](#page-3-0), $f_{|\mathcal{D}_f}$ satisfies the Lusin (N) property. Thus,

$$
\psi_h(f^{-1}(y)) \to J_f(f^{-1}(y)) \chi_{E_m}(f^{-1}(y)) + \varepsilon
$$
 for a.e. $y \in f(H)$.

² Springer

Thus, inserting ψ_h in place of ψ in [\(4.4\)](#page-8-1) and passing to the limit, first as $h \to \infty$ and then as $m \to \infty$, we get

$$
\int\limits_H|Df|\varphi dx \leq \left(\int\limits_H K(J_f(x)+\varepsilon)dx\right)^{\frac{1}{n}} \left(\int\limits_H \varphi^{\frac{n}{n-1}}dx\right)^{\frac{n-2}{n}} \times \left(\int\limits_{f(H)} \frac{\varphi^{\frac{n}{n-1}}(f^{-1}(y))}{J_f(f^{-1}(y))\chi_E(f^{-1}(y))+\varepsilon}dy\right)^{\frac{1}{n}},
$$

where $E = \{x \in \mathcal{D}_f : J_f(x) > 0\}.$

Recalling that $|f(\mathcal{J}_{f}^{0})| = 0$, we have that $|f(H \backslash E)| = 0$, hence $\chi_{E}(f^{-1}(y)) = 1$ for a.e. $y \in f(H)$. Thus, letting $\varepsilon \to 0$ in the inequality above, we get

$$
\int\limits_H |Df(x)|\varphi(x)dx \le \left(\int\limits_H K(x)J_f(x)dx\right)^{\frac{1}{n}}\times \left(\int\limits_H \varphi^{\frac{n}{n-1}}(x)dx\right)^{\frac{n-2}{n}}\left(\int\limits_{\gamma(H\cap E)} \frac{\varphi^{\frac{n}{n-1}}(f^{-1}(y))}{J_f(f^{-1}(y))}dy\right)^{\frac{1}{n}}.
$$

By the definition of L_M , it follows that $f(H \cap E) \cap \mathcal{J}_{f^{-1}}^0 = \emptyset$. Therefore, since $\Omega' \backslash \mathcal{D}_{f^{-1}}$ is a null set, from Lemma [2.1](#page-2-2) we have that $J_{f^{-1}}(y) = 1/J_f(f^{-1}(y))$ for a.e. $y \in f(H \cap E)$ and thus, using [\(2.4\)](#page-3-1), we get

$$
\int_{H} |Df| \varphi \, dx \le \left(\int_{H} K(x) J_{f}(x) \, dx \right)^{\frac{1}{n}} \times \left(\int_{H} \varphi^{\frac{n}{n-1}}(x) \, dx \right)^{\frac{n-2}{n}} \left(\int_{f(H \cap E)} \varphi^{\frac{n}{n-1}}(f^{-1}(y)) J_{f^{-1}}(y) \, dy \right)^{\frac{1}{n}} \le \left(\int_{H} K(x) J_{f}(x) \, dx \right)^{\frac{1}{n}} \left(\int_{H} \varphi^{\frac{n}{n-1}}(x) \, dx \right)^{\frac{n-2}{n}} \left(\int_{H \cap E} \varphi^{\frac{n}{n-1}}(x) \, dx \right)^{\frac{1}{n}} \le \left(\int_{H} K(x) J_{f}(x) \, dx \right)^{\frac{1}{n}} \left(\int_{H} \varphi^{\frac{n}{n-1}}(x) \, dx \right)^{\frac{n-1}{n}}.
$$

Finally, let us replace φ in this inequality by φ_h , where $\varphi_h \in C_0(\Omega)$, $0 \leq \varphi_h(x) \leq M^{n-1}$ for all $h \in \mathbb{N}$ and any $x \in \Omega$ and

$$
\varphi_h(x) \to |Df(x)|^{n-1}
$$
 for a.e. $x \in L_M$.

 $\circled{2}$ Springer

Then, letting $h \to \infty$, we get

$$
\int\limits_H |Df(x)|^n \, dx \le \left(\int\limits_H K(x) J_f(x) \, dx\right)^{\frac{1}{n}} \left(\int\limits_H |Df(x)|^n \, dx\right)^{\frac{n-1}{n}},\tag{4.5}
$$

hence (4.1) follows. This concludes the proof.

A slightly different result is obtained with a simple variant of the argument used in the proof of Theorem [1.2.](#page-1-1)

Theorem 4.1 *Let* f_j , $f \in W^{1,n-1}(\Omega, \mathbb{R}^n) \cap \text{Hom}(\Omega, \Omega')$ *with* $f_j \rightarrow f$ *weakly in* $W^{1,n-1}(\Omega, \mathbb{R}^n)$. Assume that

$$
\left|\text{Adj}\,Df_j(x)\right|^n \le K_j(x)J_{f_j}^{n-1} \quad \text{for a.e. } x \in \Omega,\tag{4.6}
$$

where K_j : $\Omega \to [1,\infty)$ *is a Borel function and* K_j *converges to* K *in the biting sense. Then f* has finite inner distortion $K_f^I \leq K(x)$ for a.e. $x \in \Omega$.

Proof Assume $n \geq 3$, since for $n = 2$ the assertion reduces to Theorem [1.2.](#page-1-1)

As in the proof of Theorem [1.2,](#page-1-1) we start by observing that $f_i(x) \to f(x)$ a.e. in Ω and that for any $\sigma > 0$ there exists a measurable set $\Omega_{\sigma} \subset \Omega$ such that $f_i \to f$ uniformly in Ω_{σ} , $K_j \rightharpoonup K$ in $L^1(\Omega_{\sigma})$, with $|\Omega \backslash \Omega_{\sigma}| < \sigma$.

For $M > 1$ we set

$$
L_M = \{x \in \mathcal{D}_f : K(x) + |\text{Adj } Df_j(x)| \leq M\} \backslash f^{-1}\left(\mathcal{J}_{f^{-1}}^0\right).
$$

Our aim is to show that for every compact set $H \subset L_M \cap \Omega_\sigma$ we have

$$
\int_{H} \left| \text{Adj } Df_j(x) \right|^n dx \le \int_{H} K(x) J_f(x)^{n-1} dx. \tag{4.7}
$$

Indeed, as before, establishing this inequality will conclude the proof.

Thus, let us fix a compact set *H* and a nonnegative function $\varphi \in C_0(\Omega)$. Setting for all $(x, A) \in \Omega \times \mathbb{R}^{n^2}$

$$
F(x, A) = \chi_H(x)\varphi(x)\big|\text{Adj}\,A\big|,
$$

F turns out to be a polyconvex integrand with growth (*n* − 1). Therefore, using the lower semicontinuity theorem by Acerbi–Fusco $([1])$ $([1])$ $([1])$, from (4.6) we have

$$
\int\limits_H \left| \text{Adj } Df(x) \right| \varphi(x) dx \le \liminf\limits_{j \to \infty} \int\limits_H \left| \text{Adj } Df_j(x) \right| \varphi(x) dx
$$
\n
$$
\le \liminf\limits_{j \to \infty} \int\limits_H \left(K_j(x) J_{f_j}(x)^{n-1} \right)^{\frac{1}{n}} \varphi(x) dx.
$$

 $\circled{2}$ Springer

Let us denote by ψ a strictly positive and bounded continuous function in Ω . By Hölder's inequality and [\(2.4\)](#page-3-1) we get

$$
\int_{H} \left(K_{j}(x)J_{f_{j}}(x)^{n-1}\right)^{\frac{1}{n}} \varphi(x) dx \leq \left(\int_{H} K_{j}(x)\psi^{n-1}(x) dx\right)^{\frac{1}{n}} \left(\int_{H} \frac{J_{f_{j}}(x)\varphi^{\frac{n}{n-1}}(x)}{\psi(x)} dx\right)^{\frac{n-1}{n}}
$$
\n
$$
\leq \left(\int_{H} K_{j}(x)\psi^{n-1}(x) dx\right)^{\frac{1}{n}} \left(\int_{\Omega'} \frac{\varphi^{\frac{n}{n-1}}(f_{j}^{-1}(y))}{\psi(f_{j}^{-1}(y))} \chi_{H}(f_{j}^{-1}(y)) dy\right)^{\frac{n-1}{n}}
$$

and then, arguing exactly as in the proof of Theorem [1.2,](#page-1-1) we deduce first the inequality

$$
\int\limits_H |\text{Adj}\,Df(x)|\varphi(x)\,dx \le \left(\int\limits_H K(x)\psi^{n-1}(x)\,dx\right)^{\frac{1}{n}} \left(\int\limits_{f(H)} \frac{\varphi^{\frac{n}{n-1}}(f^{-1}(y))}{\psi(f^{-1}(y))}\,dy\right)^{\frac{n-1}{n}}
$$

and then

$$
\int\limits_H \left| \mathrm{Adj}\,Df(x)\right|\varphi(x)\,dx \le \left(\int\limits_H K(x)J_f(x)^{n-1}\,dx\right)^{\frac{1}{n}}\left(\int\limits_H \varphi^{\frac{n}{n-1}}(x)\,dx\right)^{\frac{n-1}{n}}
$$

Finally, replace in this inequality φ by $\varphi_h \in C_0(\Omega)$, $0 \leq \varphi_h \leq M^{n-1}$, such that

$$
\varphi_h(x) \to \left| \text{Adj } Df(x) \right|^{n-1} \quad \text{for a.e. } x \in L_M
$$

and let $h \to \infty$ to obtain

$$
\int\limits_H \left|\text{Adj}\,Df(x)\right|^n dx \leq \left(\int\limits_H K(x)J_f^{n-1} dx\right)^{\frac{1}{n}} \left(\int\limits_H \left|\text{Adj}\,Df(x)\right|^n dx\right)^{\frac{n-1}{n}}.
$$

From this inequality (4.7) follows, thus concluding the proof.

Corollary 4.2 *Let* f_j , f ∈ $W^{1,1}(\Omega, \mathbb{R}^n)$ ∩ $Hom(\Omega, \Omega')$, with f_j → f weakly in $W^{1,1}(\Omega, \mathbb{R}^n)$ *. Assume that the maps* f_j *have all finite distortions* K_{f_j} *and that the sequence* K_{f_i} *is bounded in* $L^1(\Omega)$ *. Then f is a map with finite distortion and*

$$
\int_{\Omega} K_f(x) dx \le \liminf_{j \to \infty} \int_{\Omega} K_{f_j}(x) dx.
$$
\n(4.8)

Proof In order to prove [\(4.8\)](#page-11-1) we may assume without loss of generality that the lim inf on the right hand side is a limit. If this is the case, there exists a subsequence $K_{f_{ir}}$ converging in the biting sense to a measurable function K . Thus, from Theorem [1.2,](#page-1-1) we have

$$
\int_{\Omega} K_f(x) dx \leq \int_{\Omega} \widetilde{K}(x) dx \leq \lim_{r \to \infty} \int_{\Omega} K_{f_{j_r}}(x) dx
$$

and the assertion follows.

A similar result clearly holds for the inner distortions if in Corollary [4.2](#page-11-0) we assume that the maps f_j , f satisfy the asssumptions of Theorem [4.1.](#page-10-0)

 \circledcirc Springer

$$
\sqcup
$$

.

Example 4.3 Let $\varphi : \mathbb{R} \to [c, +\infty), c > 0$, be a 1-periodic function, strictly increasing in (0, 1) and such that \int_0^1 $(x, y) \in \Omega = (0, 1) \times (0, 1),$ $\varphi dt = 1$, but $\varphi \notin L^p((0, 1))$ for all $p > 1$. Set, for all $j \in \mathbb{N}$,

$$
f_j(x, y) = \left(\int_0^x \varphi(jt)dt, \int_0^y \varphi(jt)dt\right).
$$

Then, f_j is a sequence of homeomorphisms from Ω onto Ω weakly converging to the identity map *f* in $W^{1,1}(\Omega, \Omega)$. All maps *f_j* are of finite distortion and for a.e. $(x, y) \in \Omega$

$$
K_{f_j}(x, y) = \frac{\max\{\varphi^2(jx), \varphi^2(jy)\}}{\varphi(jx)\varphi(jy)}.
$$

Thus, the functions K_{f_i} converge weakly in $L^1(\Omega)$ to the constant function

$$
K \equiv \int\limits_0^1 \int\limits_0^1 \frac{\max\{\varphi^2(s), \varphi^2(t)\}}{\varphi(s)\varphi(t)} ds dt.
$$

Recalling that φ is strictly increasing in (0, 1), we easily get that

$$
K \equiv 2 \int_{0}^{1} \varphi(s) \, ds \int_{0}^{s} \frac{1}{\varphi(t)} \, dt > 2 \int_{0}^{1} \varphi(s) \frac{s}{\varphi(s)} \, ds = 1 \equiv K_f,
$$

thus showing that the inequality $K_f \leq K$ provided by Theorem [1.2](#page-1-1) can be everywhere strict even in very simple situations. Notice also that since $f_i \notin W^{1,2}$ for all *j*, Theorem [1.1](#page-1-0) does not apply to this example.

Acknowledgments The authors wish to thank the refere for carefully reading the manuscript and for the useful comments.

References

- 1. Acerbi, E., Fusco, N.: Semicontinuity problems in the calculus of variations. Arch. Ration. Mech. Anal. **86**, 125–145 (1984)
- 2. Ambrosio, L., Fusco, N., Pallara, D.: Functions of bounded variation and free discontinuity problems. Oxford University Press, Oxford (2000)
- 3. Astala, K., Iwaniec, T., Martin, G., Onninen, J.: Extremal mappings of finite distortion. Proc. Lond. Math. Soc. **91**(3), 655–702 (2005)
- 4. Brooks, J.K., Chacon, R.V.: Continuity and compactness of measures. Adv. Math. **37**, 16–26 (1980)
- 5. Csörnyei, M., Hencl, S., Malý, J.: Homeomorphisms in the Sobolev space *W*1,*n*−¹ (2007) (preprint)
- 6. Dacorogna, B., Marcellini, P.: Semicontinuité pour des integrands polyconvexes sans continuité des determinants. C .R. Acad. Sci. Paris Sér. I Math., **311**, 393–395 (1990)
- 7. Dal Maso, G., Sbordone, C.: Weak lower semicontinuity of polyconvex integrals: a borderline case. Math. Z., **218**, 603–609 (1995)
- 8. Fusco, N., Hutchinson, J.: A direct proof for lower semicontinuity of polyconvex functionals. Manusc. Math. **87**, 35–50 (1995)
- 9. Federer, H.: Geometric measure theory. Springer, Heidelberg (1969)
- 10. Gehring, F., Iwaniec, T.: The limit of mappings with finite distortion. Ann. Acad. Sci. Fenn. A I, **24**, 253– 264 (1999)
- 11. Greco, L., Sbordone, C., Trombetti, C.: A note on planar homeomorphisms (2007) (preprint)
- 12. Hencl, S., Koskela, P.: Regularity of the inverse of a planar Sobolev homeomorphism. Arch. Ration. Mech. Anal., **180**, 75–95 (2006)
- 13. Hencl, S., Koskela, P., Malý, J.: Regularity of the inverse of a Sobolev homeomorphism in space. Proc. R. Soc. Edinb. A **36**, 1267–1285 (2006)
- 14. Hencl, S., Koskela, P., Onninen, J.: A note on extremal mappings of finite distortion. Math. Res. Lett. **12**, 231–238 (2005)
- 15. Iwaniec, T., Martin, G.: Geometric function theory and nonlinear analysis, Oxford Mathematical Monographs. Clarendon Press, Oxford (2001)
- 16. Malý, J.: Lectures on change of variables in integrals, preprint 305, Department of Mathematics University of Helsinki