Calc. Var. (2008) 32:387–405 DOI 10.1007/s00526-007-0149-y

Harmonic maps from manifolds of L^{∞} -Riemannian metrics

W. Ishizuka · C. Y. Wang

Received: 28 July 2006 / Accepted: 22 October 2007 / Published online: 29 January 2008 © Springer-Verlag 2008

Abstract For a bounded domain $\Omega \subset \mathbb{R}^n$ endowed with L^{∞} -metric g, and a C^5 -Riemannian manifold $(N, h) \subset \mathbb{R}^k$ without boundary, let $u \in W^{1,2}(\Omega, N)$ be a weakly harmonic map, we prove that $(1) u \in C^{\alpha}(\Omega, N)$ for n = 2, and (2) for $n \geq 3$, if, in additions, $g \in \text{VMO}(\Omega)$ and u satisfies the quasi-monotonicity inequality (1.5), then there exists a closed set $\Sigma \subset \Omega$, with $H^{n-2}(\Sigma) = 0$, such that $u \in C^{\alpha}(\Omega \setminus \Sigma, N)$ for some $\alpha \in (0, 1)$.

Mathematics Subject Classification (2000) 58J05 · 35J55

1 Introduction

For $n \geq 2$, let Ω be a bounded domain in \mathbf{R}^n . Throughout this paper, let g be a bounded (or L^{∞}), measurable Riemannian metric on \mathbf{R}^n , namely, there exists $\Lambda > 0$ such that $g = \sum_{\alpha,\beta=1}^n g_{\alpha\beta} dx_{\alpha} dx_{\beta}$ satisfies:

$$\Lambda^{-1}I_n \le (g_{\alpha\beta})(x) \le \Lambda I_n, \quad \forall x \in \mathbf{R}^n. \tag{1.1}$$

Let $(N,h) \subset \mathbf{R}^k$ be a compact, at least C^5 -Riemannian manifold without boundary, isometrically embedded into an Euclidean space \mathbf{R}^k . For $1 , define the Sobolev space <math>W^{1,p}(\Omega,N)$ by

$$W^{1,p}(\Omega, N) := \{ u : \Omega \to \mathbf{R}^k \mid E_p(u) < +\infty, \quad u(x) \in N \text{ for a.e. } x \in \Omega \}$$

C. Y. Wang Partially supported by NSF.

W. Ishizuka (⊠)

Providence College, Providence, RI 02918, USA

e-mail: wishizuk@providence.edu

C. Y. Wang

Department of Mathematics, University of Kentucky, Lexington, KY 40506, USA

where

$$E_p(u) = \int_{\Omega} \left(\sum_{i=1}^k |\nabla u^i|_g^2 \right)^{\frac{p}{2}} dv_g$$

is the pth Dirichlet energy of u with respect to g,

$$|\nabla u^i|_g^2 = \sum_{\alpha,\beta=1}^n g^{\alpha\beta} \frac{\partial u^i}{\partial x_\alpha} \frac{\partial u^i}{\partial x_\beta}, \quad 1 \le i \le k,$$

where $(g^{\alpha\beta}) = (g_{\alpha\beta})^{-1}$, and $dv_g = \sqrt{g} dx = \sqrt{\det(g_{\alpha\beta})} dx$ is the volume element of (Ω, g) .

Let $d_g(x, y)$ and $d_0(x, y) \equiv |x - y|$ be the distance functions with respect to g and g_0 (the Euclidean metric), respectively. Since g is L^{∞} -Riemannian metric on \mathbf{R}^n , it is easy to see that there exists $0 < C_{\Lambda} < +\infty$ such that

$$C_{\Lambda}^{-1}d_0(x,y) \le d_g(x,y) \le C_{\Lambda}d_0(x,y), \quad \forall x, y \in \mathbf{R}^n.$$

$$\tag{1.2}$$

In particular, $f \in C^{\alpha}(\Omega, N)$ with respect to g iff $f \in C^{\alpha}(\Omega, N)$ with respect to g_0 , and for any open set $U \subset \mathbf{R}^m$ and $1 \le p < +\infty$,

$$C_{\Lambda}^{-1} \int_{U} |h|_{g}^{p} dv_{g} \le \int_{U} |h|^{p} dx \le C_{\Lambda} \int_{U} |h|_{g}^{p} dv_{g}$$
 (1.3)

holds for any vector field $h \in L^p(U, \mathbf{R}^n)$, here $|h| = (\sum_{i=1}^n h_i^2)^{\frac{1}{2}}$ and dx is the volume element of g_0 .

Definition 1 A map $u \in W^{1,2}(\Omega, N)$ is a weakly harmonic map, if it is a critical point of $E_2(\cdot)$.

It is readily seen that any weakly harmonic map $u \in W^{1,2}(\Omega, N)$ satisfies the harmonic map equation:

$$\Delta_g u + A_g(u)(\nabla u, \nabla u) = 0, \quad \text{in } \mathcal{D}'(\Omega)$$
 (1.4)

where $\Delta_g = \frac{1}{\sqrt{g}} \sum_{\alpha,\beta=1}^n \frac{\partial}{\partial x_\alpha} (\sqrt{g} g^{\alpha\beta} \frac{\partial}{\partial x_\beta})$ is the Laplace-Beltrami operator of (Ω,g) , and $A(y)(\cdot,\cdot): T_yN \times T_yN \to (T_yN)^\perp, \ y \in N$ is the second fundamental form of $N \subset \mathbf{R}^k$, and

$$A_g(u)(\nabla u, \nabla u) = \sum_{\alpha, \beta = 1}^n g^{\alpha\beta} A(u) \left(\frac{\partial u}{\partial x_\alpha}, \frac{\partial u}{\partial x_\beta} \right).$$

Regularity of harmonic maps from manifolds with C^{∞} -Riemannian metrics g has been extensively studied by many people. Schoen-Uhlenbeck [21], Giaquinta-Guisti [9] independently proved that any minimizing harmonic map is smooth off a closed set whose Hausdorff dimension is at most (n-3). Hélein [12,13] proved that any weakly harmonic map from a Riemannian surface is smooth. Evans [6] and Bethuel [1] proved that any stationary harmonic map in dimensions at least three is smooth off a closed set of zero (n-2)-dimensional Hausdorff measure.

In this paper, we are mainly interested in seeking the minimal regularity assumption on Riemannian metrics g such that any weakly harmonic map $u \in W^{1,2}(\Omega, N)$ enjoys (partial) Hölder continuity.

In this context, our first theorem is

Theorem A For n=2 and a L^{∞} -Riemannian metric g on \mathbb{R}^n , let $u\in W^{1,2}(\Omega,N)$ be a weakly harmonic map. Then $u \in C^{\alpha}(\Omega, N)$ for some $\alpha \in (0, 1)$.

Remark 1 For $n \geq 2$, if, in addition, $g \in C^{m,\beta}(\Omega)$ for some $m \geq 0$ and $\beta \in (0,1)$ and $N \in \mathbb{C}^{m+5}$, then theorem A and the theory of higher regularity of harmonic maps (cf. Giaquinta [8]) imply that if $u \in C^{\alpha}(\Omega, N)$, then $u \in C^{m+1,\delta}(\Omega, N)$ for $\delta = \min\{\alpha, \beta\}$.

For $n \ge 3$, Rivière [19] constructed an example of weakly harmonic map from B^3 to S^2 that is singular everywhere. It turns out that the stationarity or suitable energy monotonicity inequality plays a crucial role for the partial regularity of weakly harmonic maps. To this end, we introduce

Definition 2 (quasi-monotonicity inequality) A map $u \in W^{1,2}(\Omega, N)$ enjoys the quasimonotonicity inequality property, if there exist K = K(n, g) > 0 and $r_0 = r_0(n, g) > 0$ such that for any $x \in \Omega$ and $0 < r < R < \min\{r_0, \operatorname{dist}(x, \partial \Omega)\}\$, we have

$$r^{2-n} \int_{B_{R}(x)} |\nabla u|^{2} dx \le K R^{2-n} \int_{B_{R}(x)} |\nabla u|^{2} dx.$$
 (1.5)

Remark 2 (a) For n = 2, (1.5) holds automatically for $u \in W^{1,2}(\Omega, N)$ with K = 1.

- For $n \geq 3$ and $g \in C^2(\Omega)$, it is well-known that both minimizing harmonic maps and stationary (or C^2)-harmonic maps enjoy the quasi-monotonicity inequality property (cf. [21], Preiss [18], and Schoen [20]).
- In proposition 5.1 and 5.2 below, we verify that for n > 3, both minimizing harmonic maps with respect to Dini continuous g and stationary harmonic maps with respect to Lipschitz continuous g enjoy the quasi-monotonicity inequality property.

It is also well-known that certain regularity of the coefficients is necessary for the regularity of second order elliptic systems (cf. [8]). To this end, we recall

Definition 3 (a) For any open set $U \subset \mathbb{R}^n$, a function $f \in BMO(U)$, if $f \in L^1_{loc}(U)$ and

$$[f]_{\text{BMO}(U)} := \sup \left\{ \frac{1}{|B_r(x)|} \int_{B_r(x)} |f - f_{x,r}| |B_r(x) \subset U \right\} < \infty$$

where $f_{x,r} = \frac{1}{|B_r(x)|} \int_{B_r(x)} f$. (b) For any open set $U \subset \mathbf{R}^n$, a function $f \in VMO(U)$, if $f \in BMO(U)$ and

$$\lim_{r \to 0} \sup_{x \in U} [f]_{BMO(U \cap B_r(x))} = 0.$$

Now we are ready to state our second theorem.

Theorem B For $n \geq 3$ and $g \in VMO(\Omega)$, suppose that $u \in W^{1,2}(\Omega, N)$ is a weakly harmonic map satisfying the quasi-monotonicity inequality (1.5). Then there exist a closed set $\Sigma \subset \Omega$, with $H^{n-2}(\Sigma) = 0$, and $\alpha \in (0,1)$ such that $u \in C^{\alpha}(\Omega \setminus \Sigma, N)$. Here H^{n-2} denotes the (n-2)-dimensional Hausdorff measure with respect to g_0 .

We would like to mention that Shi [22] proved the partial regularity theorem, similar to theorem B, for minimizing harmonic maps from manifolds with L^{∞} -Riemannian metrics. However, the argument in [22] relies heavily on the minimality property. Our method is of PDE nature and partly motivated by the techniques developed by [1,6,12,13].

The paper is written as follows. In Sect. 2, for any C^5 -Riemannian manifold N, we outline the Coulomb gauge frame construction by Hélein [12,13] on $u^*TN|_{\Omega}$ with respect to g. In Sect. 3, we utilize the $W_0^{1,p}$ -solvablity theorem on $\nabla \cdot (A\nabla u) = \nabla \cdot F$ by Meyers [17] (n=2) and Di Fazio [5] $(n\geq 3)$ for bounded measurable elliptic matrix A to obtain the Div-Curl decomposition theorem on (Ω,g) . In Sect. 4, we establish the decay Lemma on the $M^{p,n-p}$ norm of u, $\|u\|_{M^{p,n-p}(\cdot)}$, under the smallness condition of $\|\nabla u\|_{M^{2,n-2}(\cdot)}$. In Sect. 5, we provide two examples in which the quasi-monotonicity inequality (1.5) holds. In Sect. 6, we make some final remarks.

2 Construction of Coulomb gauge frame

In this section, we sketch the Coulomb gauge frame construction on u^*TN by Hélein [12,13] to (Ω, g) for any C^5 -Riemannian manifold N and L^{∞} -Riemannian metric g on \mathbb{R}^n .

Let $l = \dim(N)$. For any ball $B \subset \Omega$, $\{e_i\}_{i=1}^l \subset W^{1,2}(B, \mathbf{R}^k)$ is called to be a frame of u^*TN on B, if $\{e_i(x)\}_{i=1}^l$ forms an orthonormal base of $T_{u(x)}N$ for a.e. $x \in B$.

For a vector field $V = (V_1, \dots, V_n) : \Omega \to \mathbf{R}^n$, define the divergence of V with respect to g by

$$\operatorname{div}_{g}(V) = \sum_{\alpha, \beta=1}^{n} \frac{\partial}{\partial x_{\alpha}} (\sqrt{g} g^{\alpha \beta} V_{\beta}).$$

First we have

Lemma 2.1 Assume that there exist a C^5 -Riemannian manifold $\hat{N} \subset \mathbf{R}^k$ and a totally geodesic, isometric embedding $i: N \to \hat{N}$. If $u \in W^{1,2}(\Omega, N)$ solves (1.4), then $\hat{u} = i \circ u \in W^{1,2}(\Omega, \hat{N})$ also solves (1.4).

Proof Straightforward calculations (cf. Jost [14]) imply that

$$\begin{split} \Delta_g \hat{u} &= \nabla i(u)(\Delta_g u) + \sum_{\alpha,\beta=1}^n g^{\alpha\beta}(\nabla^2 i)(u) \left(\frac{\partial u}{\partial x_\alpha}, \frac{\partial u}{\partial x_\beta}\right) \\ &= \nabla i(u)(A_g(u)(\nabla u, \nabla u)) \\ &= \hat{A}_g(\hat{u})(\nabla \hat{u}, \nabla \hat{u}) \end{split}$$

where \hat{A} denotes the second fundamental form of \hat{N} in \mathbf{R}^k .

With help of Lemma 2.1 and the enlargement construction by Hélein [12,13], we may assume that N is parallelizable so that we have

Proposition 2.2 Assume that $N \in C^5$ is parallelizable and g is L^{∞} -Riemannian metric on \mathbf{R}^n . Let $\Omega \subset \mathbf{R}^n$ be a bounded domian and $B \subset \Omega$ be a ball. If $u \in W^{1,2}(B,N)$, then there exists a Coulomb gauge frame $\{e_i\}_{i=1}^l \subset W^{1,2}(B,\mathbf{R}^k)$ of u^*TN on B, i.e.

$$div_g(\langle \nabla e_i, e_j \rangle) = 0 \quad in \ B, \quad 1 \le i, \ j \le l \tag{2.1}$$

$$\sum_{\alpha,\beta=1}^{n} g^{\alpha\beta} \left\langle \frac{\partial e_i}{\partial x_{\beta}}, e_j \right\rangle x_{\beta} = 0 \quad on \ \partial B, \quad 1 \le i, j \le l, \tag{2.2}$$

and

$$\sum_{i=1}^{l} \int_{B} |\nabla e_i|^2 dx \le C \int_{B} |\nabla u|^2 dx. \tag{2.3}$$

Proof As N is parallelizable, there exists a smooth orthonormal frame $\{\hat{e}_i(y)\}_{i=1}^l$ of TN. For $1 \le i \le l$, define $\bar{e}_i(x) = \hat{e}_i(u(x))$ for a.e. $x \in B$. Then $\{\bar{e}_i\}_{i=1}^l$ forms a frame of u^*TN on B. Denote SO(l) as the special orthonormal group of order l, consider the minimization problem:

$$\inf \left\{ \sum_{i,j=1}^{l} \int_{B} |\nabla(R_{ij}\bar{e}_{j})|_{g}^{2} dv_{g} : R = (R_{ij}) \in W^{1,2}(B, SO(l)) \right\}. \tag{2.4}$$

By the direct method, there is $R^0 \in W^{1,2}(B, SO(l))$ such that $e_{\alpha}(x) = \sum_{\beta=1}^{l} R_{\alpha\beta}^0(x) \bar{e}_{\beta}(x)$, $1 \le \alpha \le l$, satisfies

$$\sum_{\alpha=1}^{l} \int\limits_{R} |\nabla e_{\alpha}|_{g}^{2} dv_{g} \leq \sum_{\alpha,\beta=1}^{l} \int\limits_{R} |\nabla (R_{\alpha\beta}\bar{e}_{\beta})|_{g}^{2} dv_{g}, \quad \forall R \in W^{1,2}(B, \text{SO}(l)). \tag{2.5}$$

In particular, we have

$$\sum_{\alpha=1}^{l} \int_{R} |\nabla e_{\alpha}|_{g}^{2} dv_{g} \leq \sum_{\alpha,\beta=1}^{l} \int_{R} |\nabla (\delta_{\alpha\beta} \bar{e}_{\beta})|_{g}^{2} dv_{g} \leq C \int_{R} |\nabla u|_{g}^{2} dv_{g}. \tag{2.6}$$

This, combined with (1.3), implies (2.3). Moreover, the first variation similar to [12,13] implies that $\langle \nabla e_i, e_j \rangle$, $1 \le i, j \le l$, satisfies the Euler–Lagrange equation (2.1) and the Neumann condition (2.2). Hence the proof is complete.

3 Div-curl decomposition

In this section, we prove that if the metric g is either L^{∞} for n=2 or in VMO(Ω) for $n\geq 3$, then the div–curl decomposition holds, namely, any $F\in L^p(\Omega, \mathbf{R}^n)$ can be decomposed into the sum of ∇G , with $G\in W_0^{1,p}(\Omega)$, and a div $_g$ -free $H\in L^p(\Omega, \mathbf{R}^n)$, for p sufficiently close to $\frac{n}{n-1}$. The key ingredients are $W_0^{1,p}$ -solvability results by Meyers [17] for n=2, and Di Fazio [5] for $n\geq 3$.

More precisely, we have

Theorem 3.1 Let g be L^{∞} -Riemannian metric on \mathbb{R}^n and $B \subset \Omega \subset \mathbb{R}^n$ be a ball. If, in addition, $g \in VMO(\Omega)$ for $n \geq 3$, then there exists $\delta_0 = \delta(n,g) > 0$ such that for $p \in (\frac{n}{n-1} - \delta_0, \frac{n}{n-1} + \delta_0)$ and any $F \in L^p(B, \mathbb{R}^n)$ there exist $G \in W_0^{1,p}(B)$ and $H \in L^p(B, \mathbb{R}^n)$, with $div_g(H) = 0$ in Ω , such that

$$F = \nabla G + H \quad in \quad B, \tag{3.1}$$

and

$$\|\nabla G\|_{L^p(B)} + \|H\|_{L^p(B)} \le C(p,g)\|F\|_{L^p(B)} \tag{3.2}$$

where $L^p(B)$ is L^p -space with respect to g_0 .

The proof of Theorem 3.1 relies on the following $W_0^{1,p}$ -solvability result.

Proposition 3.2 [17] For $n \ge 2$ and any ball $B \subset \Omega$, assume that $A = (a_{ij}) \in L^{\infty}(B, \mathbf{R}^{n \times n})$ is symmetric and uniformly elliptic, then there exists $\delta_0 = \delta_0(n) > 0$ such that, for any $p \in (2 - \delta_0, 2 + \delta_0)$ and $F \in L^p(B, \mathbf{R}^n)$, there exists a unique solution $u \in W_0^{1,p}(B)$ to the Dirichlet problem:

$$\sum_{i,j=1}^{n} \frac{\partial}{\partial x_i} \left(a_{ij} \frac{\partial u}{\partial x_j} \right) = \sum_{i=1}^{n} \frac{\partial F_i}{\partial x_i}, \quad \text{in } B,$$

$$u = 0, \quad \text{on } \partial B. \tag{3.3}$$

Moreover,

$$\|\nabla u\|_{L^p(B)} \le C(p, A)\|F\|_{L^p(B)}. (3.4)$$

Proposition 3.3 [5] For $n \geq 3$ and ball $B \subset \Omega$, assume that $A = (a_{ij}) \in L^{\infty} \cap VMO(B, \mathbf{R}^{n \times n})$ is symmetric and uniformly elliptic, then for any $p \in (1, +\infty)$ and $F \in L^p(B, \mathbf{R}^n)$, there exists a unique solution $u \in W_0^{1,p}(B)$ to (3.3) satisfying (3.4).

Proof of Theorem 3.1 Consider the Dirichlet problem:

$$\operatorname{div}_{g}(\nabla G) = \operatorname{div}_{g}(F), \text{ in } B$$

$$G = 0, \text{ on } \partial B.$$
(3.5)

Observe that (3.5) is equivalent to

$$\sum_{i,j=1}^{n} \frac{\partial}{\partial x_i} \left(a_{ij} \frac{\partial G}{\partial x_j} \right) = \sum_{i=1}^{n} \frac{\partial \hat{F}_i}{\partial x_i}, \text{ in } B$$

$$G = 0, \text{ on } \partial B$$
(3.6)

where $a_{ij} = \sqrt{g}g^{ij}$ and $\hat{F}_i = \sum_{j=1}^n \sqrt{g}g^{ij}F_j$. Since g satisfies (1.1), it is easy to see that $(a_{ij}) \in L^{\infty}(B, \mathbf{R}^{n \times n})$ is symmetric and uniformly elliptic. Moreover, we have $\|\hat{F}\|_{L^p(B)} \le \|F\|_{L^p(B)}$. For n=2, Proposition 3.2 implies that there exists $\delta_0 > 0$ such that (3.5) is uniquely solvable in $W_0^{1,p}(B)$ for any $p \in (2-\delta_0, 2+\delta_0)$. For $n \geq 3$, since $g \in VMO(B)$ implies $(a_{ij}) \in VMO(B)$, Proposition 3.3 implies (3.5) is uniquely solvable in $W_0^{1,p}(B)$ for any $1 . Set <math>H = F - \nabla G$, (3.5) implies $\operatorname{div}_g(H) = 0$ in B. Moreover, for any $p \in (\frac{n}{n-1} - \delta_0, \frac{n}{n-1} + \delta_0)$, (3.4) yields

$$||H||_{L^{p}(B)} \le ||F||_{L^{p}(B)} + ||\nabla G||_{L^{p}(B)} \le C||F||_{L^{p}(B)}.$$
(3.7)

The completes the proof of Theorem 3.1.

4 Decay estimate in Morrey spaces

In this section, we prove both Theorems A and B. The crucial step is to establish that under the smallness condition of $\|\nabla u\|_{M^{2,n-2}(B)}$, $\|u\|_{M^{p,n-p}(B_r)}$ decays as r^{α} for some $\alpha \in (0,1)$. The ideas are suitable modifications of techniques developed by Hélein [12,13], Evans [6], and Bethuel [1]. In order to achieve it, we need two new ingredients: (1) the div–curl decomposition Proposition 3.1, and (2) a new approach to estimate the L^p norm of div $_g$ -free vector fields.

First we define Morrey spaces.

Definition 4.1 For $1 \le p \le n$ and any open set $U \subset \mathbb{R}^n$, the Morrey space $M^{p,n-p}(U)$ is defined by

$$M^{p,n-p}(U) = \left\{ f \in L^p(U) \mid \|f\|_{M^{p,n-p}(U)}^p \equiv \sup_{B_r(x) \subset U} \left\{ r^{p-n} \int\limits_{B_r(x)} |f|^p \, dx \right\} < +\infty \right\}.$$

Now we have

Lemma 4.1 (ϵ_0 -decay estimate) For any bounded domain $\Omega \subset \mathbb{R}^n$ and L^{∞} -Riemannian metric g on \mathbb{R}^n . If, in addition, $g \in VMO(\Omega)$ for $n \geq 3$, then there exist $\delta_n > 0$, $\epsilon_0 = \epsilon_0(g, N) > 0$, and $\theta_0 = \theta_0(g, N) \in (0, \frac{1}{2})$ such that if $u \in W^{1,2}(\Omega, N)$ is a weakly harmonic map satisfying the quasi-monotonicity inequality (1.5), and for $B_r(x) \subset \Omega$,

$$r^{2-n} \int_{B_r(x)} |\nabla u|_g^2 \, dv_g \le \epsilon_0^2 \tag{4.1}$$

then, for any $p \in \left(\frac{n}{n-1} - \delta_n, \frac{n}{n-1}\right)$,

$$\|\nabla u\|_{M^{p,n-p}(B_{\theta_0 r}(x))} \le \frac{1}{2} \|\nabla u\|_{M^{p,n-p}(B_r(x))}. \tag{4.2}$$

Proof of Lemma 4.1 By Lemma 2.1, assume that N is parallelizable. For $x \in \Omega$ and r > 0, let $g_{x,r}(y) = g(x + ry)$ and $u_{x,r}(y) = u(x + ry)$ for $y \in B$. Observe that $g_{x,r}$ is L^{∞} -Riemannian metric on B and $u_{x,r} \in W^{1,2}(B, N)$ is a weakly harmonic map with respect to $g_{x,r}$, satisfies the quasi-monotonicity inequality (1.5), and

$$\int_{B} |\nabla u|_{g_{x,r}}^{2} dv_{g_{x,r}} = r^{2-n} \int_{B_{r}(x)} |\nabla u|_{g}^{2} dv_{g} \le \epsilon_{0}^{2}.$$
(4.3)

Hence, without loss of generality, assume x = 0 and r = 1. It follows from (1.5) that there exists K > 0 such that

$$\|\nabla u\|_{M^{2,n-2}(B_{\frac{1}{2}})} \le K \|\nabla u\|_{L^2(B)} \le K\epsilon_0^2. \tag{4.4}$$

For any $\theta \in (0, \frac{1}{2})$, let $B_{2\theta} \subset B_{\frac{1}{2}}$ be an arbitrary ball of radius 2θ and $\eta \in C_0^{\infty}(B)$ be such that $0 \le \eta \le 1$, $\eta \equiv 1$ on B_{θ} , $\eta = 0$ outside $B_{2\theta}$, and $|\nabla \eta| \le 2\theta^{-1}$. Denote the average of u over $B_{2\theta}$ by $u_{2\theta} = \frac{1}{|B_{2\theta}|} \int_{B_{2\theta}} u \, dv_g$, and $|B_{2\theta}|$ is the volume of $B_{2\theta}$ with respect to g.

Let $\{e_{\alpha}\}_{\alpha=1}^{l} \in W^{1,2}(B_{2\theta}, \mathbf{R}^{k})$ be the Coulomb gauge frame of $u^{*}TN$ on $B_{2\theta}$ given by Proposition 2.2.

Let

$$\langle p, q \rangle = \sum_{i=1}^{n} p_i q_i, \ \langle p, g \rangle_g = \sum_{i, i=1}^{n} g^{ij} p_i q_j, \quad p = (p_1, \dots, p_n), \ q = (q_1, \dots, q_n) \in \mathbf{R}^n$$

denote the inner products with respect to g_0 and g on \mathbb{R}^n , respectively.

By Theorem 3.1, there exists $\delta_n > 0$ such that for any $p \in (\frac{n}{n-1} - \delta_n, \frac{n}{n-1})$, there are $\phi_\alpha \in W_0^{1,p}(B_{2\theta})$ and $\psi_\alpha \in L^p(B_{2\theta})$ such that

$$\langle \nabla((u - u_{2\theta})\eta), e_{\alpha} \rangle = \nabla \phi_{\alpha} + \psi_{\alpha}, \quad \text{div}_{\varrho}(\psi_{\alpha}) = 0, \quad \text{in } B_{2\theta},$$
 (4.5)

and

$$\|\nabla \phi_{\alpha}\|_{L^{p}(B_{2\theta})} + \|\psi_{\alpha}\|_{L^{p}(B_{2\theta})} \le C\|\nabla((u - u_{2\theta})\eta)\|_{L^{p}(B_{2\theta})} \le C\|\nabla u\|_{L^{p}(B_{2\theta})}$$
(4.6)

where we have used the Poincaré inequality in the last inequality of (4.6).

Using the Coulomb gauge frame $\{e_{\alpha}\}_{\alpha=1}^{l}$, (1.4) can be written as:

$$\operatorname{div}_{g}(\langle \nabla u, e_{\alpha} \rangle) = \sum_{\beta=1}^{l} \sum_{i,j=1}^{n} g^{ij} \left\langle \frac{\partial u}{\partial x_{i}}, \left\langle \frac{\partial e_{\alpha}}{\partial x_{j}}, e_{\beta} \right\rangle \right\rangle e_{\beta} \quad \text{in } B_{2\theta}. \tag{4.7}$$

We estimate ϕ_{α} , ψ_{α} as follows. Let $\phi_{\alpha}^{(1)} \in W^{1,2}(B_{\theta})$ be the weak solution of

$$\sum_{i,j=1}^{n} \frac{\partial}{\partial x_i} \left(a_{ij} \frac{\partial \phi_{\alpha}^{(1)}}{\partial x_j} \right) = 0, \quad \text{in } B_{\theta}$$
 (4.8)

$$\phi_{\alpha}^{(1)} = \phi_{\alpha}, \quad \text{on } \partial B_{\theta}. \tag{4.9}$$

where $a_{ij} = \sqrt{g}g^{ij}$, $1 \le i, j \le n$. Let $\phi_{\alpha}^{(2)} = \phi_{\alpha} - \phi_{\alpha}^{(1)}$, then $\phi_{\alpha}^{(2)}$ satisfies

$$\sum_{i,j=1}^{n} \frac{\partial}{\partial x_{i}} \left(a_{ij} \frac{\partial \phi_{\alpha}^{(2)}}{\partial x_{j}} \right) = \sum_{\beta=1}^{l} \sum_{i,j=1}^{n} g^{ij} \left\langle \frac{\partial u}{\partial x_{i}}, \left\langle \frac{\partial e_{\alpha}}{\partial x_{j}}, e_{\beta} \right\rangle \right\rangle e_{\beta}, \text{ in } B_{\theta}, \tag{4.10}$$

$$\phi_{\alpha}^{(2)} = 0, \quad \text{on } \partial B_{\theta}. \tag{4.11}$$

Step I(a) Estimation of $\nabla \phi_{\alpha}^{(1)}$.

It is well-known (cf. [11]) that there exists $\delta \in (0, 1)$ such that $\phi_{\alpha}^{(1)} \in C^{\delta}(B_{\theta})$, and for any $0 < r \le \frac{\theta}{2}$ and p > 1,

$$[\phi_{\alpha}^{(1)}]_{C^{\delta}(B_r)}^p \le C\theta^{p-n} \int_{B_{\alpha}} |\nabla \phi_{\alpha}^{(1)}|^p dx, \quad 0 < r \le \frac{\theta}{2}.$$

On the other hand, since $\phi_{\alpha}^{(2)} \in W_0^{1,2}(B_{\theta})$ satisfies

$$\sum_{i,j=1}^{n} \frac{\partial}{\partial x_i} \left(a_{ij} \frac{\partial \phi_{\alpha}^{(2)}}{\partial x_j} \right) = \sum_{i,j=1}^{n} \frac{\partial}{\partial x_i} \left(a_{ij} \frac{\partial \phi_{\alpha}}{\partial x_j} \right), \text{ in } B_{\theta},$$

Theorem 3.1 implies that there exists $\delta_n > 0$ such that, for $p \in (\frac{n}{n-1} - \delta_n, \frac{n}{n-1})$,

$$\|\nabla\phi_{\alpha}^{(2)}\|_{L^{p}(B_{\theta})} \leq C\|\nabla\phi_{\alpha}\|_{L^{p}(B_{\theta})} \leq C\|\nabla u\|_{L^{p}(B_{2\theta})}.$$

In particular, we have

$$\|\nabla \phi_{\alpha}^{(1)}\|_{L^{p}(B_{\theta})} \leq \|\nabla \phi_{\alpha}\|_{L^{p}(B_{\theta})} + \|\nabla \phi_{\alpha}^{(2)}\|_{L^{p}(B_{\theta})} \leq C\|\nabla u\|_{L^{p}(B_{2\theta})},$$

and, for $0 < r \le \frac{\theta}{2}$ and $p \in (\frac{n}{n-1} - \delta_n, \frac{n}{n-1}),$

$$[\phi_{\alpha}^{(1)}]_{C^{\delta}(B_r)}^p \le C\theta^{p-n} \int_{B_{2a}} |\nabla u|^p dx.$$

This, combined with the Cacciopolli inequality, implies that for any $\tau \in (0, \frac{1}{4})$ and $p \in \left(\frac{n}{n-1} - \delta_n, \frac{n}{n-1}\right)$, we have

$$(\tau\theta)^{p-n} \int\limits_{B_{\tau\theta}} |\nabla \phi_{\alpha}^{(1)}|^p dx \le C[\phi_{\alpha}^{(1)}]_{C^{\delta}(B_{2\tau\theta})}^p$$

$$\le C\tau^{p\delta}\theta^{p-n} \int\limits_{B_{2\theta}} |\nabla u|^p dx$$

$$\le C\tau^{p\delta} \|\nabla u\|_{M^{p,n-p}(B_1)}.$$

$$(4.12)$$

Step I(b) Estimation of $\nabla \phi_{\alpha}^{(2)}$.

First, we claim

There exists $\delta_n > 0$ such that for any $p \in (\frac{n}{n-1} - \delta_n, \frac{n}{n-1})$, if $f \in W_0^{1,p}(B_\theta)$ then

$$\|\nabla f\|_{L^{p}(B_{\theta})} \leq C \sup \left\{ \int_{B_{\theta}} \langle \nabla f, \nabla v \rangle_{g} \, dv_{g} : v \in W_{0}^{1,p'}(B_{\theta}), \|\nabla v\|_{L^{p'}(B_{\theta})} = 1 \right\}$$
(4.13)

where $p' = \frac{p}{p-1}$.

To see (4.13), observe that by L^p -duality, there exists $v \in L^{p'}(B_\theta)$, with $||v||_{L^{p'}(B_\theta)} = 1$, such that

$$\|\nabla f\|_{L^p(B_\theta)} \le C \int_{B_\theta} \langle \nabla f, v \rangle_g \, dv_g. \tag{4.14}$$

On the other hand, by Theorem 3.1, there exists $\delta_n > 0$ such that if $p \in (\frac{n}{n-1} - \delta_n, \frac{n}{n-1})$, then there exist $v_1 \in W_0^{1,p'}(B_\theta)$ and $v_2 \in L^{p'}(B_\theta, \mathbf{R}^n)$, with $\operatorname{div}_g(v_2) = 0$ in B_θ , such that

$$v = \nabla v_1 + v_2 \quad \text{in } B_{\theta}, \ \|\nabla v_1\|_{L^{p'}(B_{\theta})} + \|v_2\|_{L^{p'}(B_{\theta})} \le C\|v\|_{L^{p'}(B_{\theta})}. \tag{4.15}$$

This and (4.14) imply

$$\begin{split} \|\nabla f\|_{L^p(B_\theta)} &\leq C \left(\int\limits_{B_\theta} \langle \nabla f, \nabla v_1 \rangle_g \, dv_g + \int\limits_{B_\theta} \langle \nabla f, v_2 \rangle_g \, dv_g \right) \\ &= C \int\limits_{B_\theta} \langle \nabla f, \nabla v_1 \rangle_g \, dv_g, \end{split}$$

where we have used $\operatorname{div}_g(v_2) = 0$ in the last step. Hence (4.13) holds.

Applying (4.13) to eqn. (4.7), we have that for $p \in (\frac{n}{n-1} - \delta_n, \frac{n}{n-1})$, there exists $v \in W_0^{1,p'}(B_\theta)$ such that

$$\|\nabla\phi_{\alpha}^{(2)}\|_{L^{p}(B_{\theta})} \leq C \int_{B_{\theta}} \langle \nabla\phi_{\alpha}^{(2)}, \nabla v \rangle_{g} \, dv_{g}$$

$$= -C \sum_{\beta=1}^{l} \sum_{i,j=1}^{n} \int_{B_{\theta}} \sqrt{g} g^{ij} \left\langle \frac{\partial u}{\partial x_{i}}, \left\langle \frac{\partial e_{\alpha}}{\partial x_{j}}, e_{\beta} \right\rangle \right\rangle (e_{\beta}v) \, dx. \tag{4.16}$$

To estimate the right hand side, we need the Hardy-BMO duality theorem (cf. [7]) and the tri-linear estimate (cf. [3,6]).

Proposition 4.2 ([6]) Suppose that $f \in W^{1,2}(\mathbf{R}^n)$, $h \in L^2(\mathbf{R}^n, \mathbf{R}^n)$ with $div(h) = \sum_{i=1}^n \frac{\partial h_i}{\partial x_i} = 0$, and $v \in BMO(\mathbf{R}^n)$. Then we have

$$\left| \int_{\mathbf{R}^{n}} \langle \nabla f, h \rangle v \, dx \right| \le C \|\nabla f\|_{L^{2}(\mathbf{R}^{n})} \|h\|_{L^{2}(\mathbf{R}^{n})} \|v\|_{BMO(\mathbf{R}^{n})}. \tag{4.17}$$

Let $\hat{u}: \mathbf{R}^n \to \mathbf{R}^k$ be an extension of u such that

$$\|\nabla \hat{u}\|_{L^{2}(\mathbf{R}^{n})} \le C \|\nabla u\|_{L^{2}(B_{2\theta})}, \quad [\hat{u}]_{BMO(\mathbf{R}^{n})} \le C[u]_{BMO(B_{2\theta})}. \tag{4.18}$$

Let $w_{\alpha}^i = \sum_{\beta=1}^l \sum_{j=1}^n \sqrt{g} g^{ij} \langle \frac{\partial e_{\alpha}}{\partial x_j}, e_{\beta} \rangle$, $1 \le i \le n$, and $w_{\alpha} = (w_{\alpha}^1, \dots, w_{\alpha}^n)$. Then, by (2.1), we have

$$\operatorname{div}(w_{\alpha}) = \sum_{i=1}^{n} \frac{\partial w_{\alpha}^{i}}{\partial x_{i}} = \sqrt{g} \sum_{\beta=1}^{l} \operatorname{div}_{g}(\langle \nabla e_{\alpha}, e_{\beta} \rangle) = 0 \quad \text{on } B_{2\theta}.$$

This, combined with (2.2), implies that there exists an extension $\hat{w}_{\alpha} \in L^2(\mathbf{R}^n, \mathbf{R}^n)$ of w_{α} such that

$$\operatorname{div}(\hat{w}_{\alpha}) = 0 \text{ in } \mathbf{R}^{n}, \quad \|\hat{w}_{\alpha}\|_{L^{2}(\mathbf{R}^{n})} \le C \|w_{\alpha}\|_{L^{2}(B_{2\alpha})} \le C \|\nabla u\|_{L^{2}(B_{2\alpha})}. \tag{4.19}$$

Putting (4.17)–(4.19) into (4.16), we have

$$\|\nabla\phi_{\alpha}^{(2)}\|_{L^{p}(B_{\theta})} \leq -C \int_{\mathbf{R}^{n}} \langle \nabla u, \hat{\omega}_{\alpha} \rangle (ve_{\alpha}) dx$$

$$= C \int_{\mathbf{R}^{n}} \langle \hat{u}, \hat{w}_{\alpha} \rangle \nabla (ve_{\alpha}) dx$$

$$\leq C [\hat{u}]_{\mathbf{BMO}(\mathbf{R}^{n})} \|\hat{w}_{\alpha}\|_{L^{2}(\mathbf{R}^{n})} \|\nabla (ve_{\alpha})\|_{L^{2}(\mathbf{R}^{n})}$$

$$\leq C \|\nabla u\|_{L^{2}(B_{2\theta})} [u]_{\mathbf{BMO}(B_{2\theta})} \|\nabla (ve_{\alpha})\|_{L^{2}(B_{\theta})}. \tag{4.20}$$

To estimate $\|\nabla(ve_\alpha)\|_{L^2(B_\theta)}$, note that for $p\in(1,\frac{n}{n-1}),\ p'=\frac{p}{p-1}>n$ and hence the Sobolev embedding theorem implies $v\in W_0^{1,p'}(B_\theta)\subset C_0^{1-\frac{n}{p'}}(B_\theta)$, and

$$\|v\|_{L^{\infty}(B_{\theta})} \le C\theta^{1-\frac{n}{p'}} = C\theta^{1-n+\frac{n}{p}}.$$
 (4.21)

Moreover, by Hölder inequality, we have

$$\|\nabla v\|_{L^{2}(B_{2})} < C\theta^{\frac{n}{2} - \frac{n}{p'}} \|\nabla v\|_{L^{p'}(B_{2})} < C\theta^{\frac{n}{p} - \frac{n}{2}}.$$
 (4.22)

Therefore we have

$$\|\nabla(ve_{\alpha})\|_{L^{2}(B_{\theta})} \leq C(\|\nabla v\|_{L^{2}(B_{\theta})} + \|v\|_{L^{\infty}(B_{\theta})} \|\nabla e_{\alpha}\|_{L^{2}(B_{\theta})})$$

$$\leq C\theta^{\frac{n}{p} - \frac{n}{2}} [1 + \theta^{1 - \frac{n}{2}} \|\nabla u\|_{L^{2}(B_{2\theta})}]$$

$$\leq C\theta^{\frac{n}{p} - \frac{n}{2}} (1 + \|\nabla u\|_{M^{2, n - 2}(B_{1})})$$

$$\leq C\theta^{\frac{n}{p} - \frac{n}{2}} (1 + \epsilon_{0}) \leq C\theta^{\frac{n}{p} - \frac{n}{2}}.$$
(4.23)

Putting (4.23) into (4.20), and combining with (4.12), we have, for any $\tau \in (0, \frac{1}{4})$,

$$\left\{ (\tau \theta)^{p-n} \int_{B_{\tau \theta}} |\nabla \phi_{\alpha}|^{p} dx \right\}^{\frac{1}{p}} \leq C \left[\tau^{\delta} + \tau^{1-\frac{n}{p}} \epsilon_{0} \right] \|\nabla u\|_{M^{p,n-p}(B_{1})}$$
(4.24)

where we have used the Poincaré inequality:

$$[u]_{\text{BMO}(B_{2n})} \le C \|\nabla u\|_{M^{p,n-p}(B_{2n})} \le C \|\nabla u\|_{M^{p,n-p}(B_1)}. \tag{4.25}$$

Step II Estimation of ψ_{α} .

It follows from (4.5) and Proposition 4.2 that we have

$$\int_{B_{\theta}} |\psi_{\alpha}|_{g}^{2} dv_{g} = \sum_{i,j=1}^{n} \int_{B_{\theta}} a_{ij} \psi_{\alpha}^{i} \psi_{\alpha}^{j} dx$$

$$= \sum_{i,j=1}^{n} \int_{B_{\theta}} a_{ij} \psi_{\alpha}^{i} \left\langle \frac{\partial ((u - u_{2\theta})\eta)}{\partial x_{j}}, e_{\alpha} \right\rangle dx$$

$$- \sum_{i,j=1}^{n} \int_{B_{\theta}} a_{ij} \psi_{\alpha}^{i} \frac{\partial \phi_{\alpha}}{\partial x_{j}} dx$$

$$= - \sum_{i,j=1}^{n} \int_{B_{\theta}} a_{ij} \psi_{\alpha}^{i} \left\langle (u - u_{2\theta})\eta, \frac{\partial e_{\alpha}}{\partial x_{j}} \right\rangle dx$$

$$\leq C \|\psi_{\alpha}\|_{L^{2}(B_{\theta})} \|\nabla e_{\alpha}\|_{L^{2}(B_{\theta})} [(u - u_{2\theta})\eta]_{BMO(B_{\theta})}$$

$$\leq C \|\psi_{\alpha}\|_{L^{2}(B_{\theta})} \|\nabla u\|_{L^{2}(B_{\theta})} \|\nabla u\|_{M^{p,n-p}(B_{\theta})}$$

$$(4.26)$$

where we have used the fact $\operatorname{div}_g(\psi_\alpha) = 0$, i.e.

$$\sum_{i,j=1}^{n} \int_{B_{\theta}} a_{ij} \psi_{\alpha}^{i} \frac{\partial \eta}{\partial x_{j}} dx = 0, \quad \forall \eta \in W_{0}^{1,2}(B_{\theta}),$$

and

$$[(u - u_{2\theta})\eta]_{BMO(B_{\theta})} \le C[u]_{BMO(B_{2\theta})} \le C\|\nabla u\|_{M^{p,n-p}(B_1)}. \tag{4.27}$$

By Hölder inequality, (4.26) yields

$$\left\{ \theta^{p-n} \int_{B_{\theta}} |\psi_{\alpha}|^{p} dx \right\}^{\frac{1}{p}} \leq C \epsilon_{0} \|\nabla u\|_{M^{p,n-p}(B_{1})}.$$
(4.28)

It follows from (4.5), (4.24), and (4.28) that for any $\tau \in (0, \frac{1}{4})$, any ball $B_{2\theta} \subset B_{\frac{1}{2}}$,

$$\left\{ (\tau \theta)^{p-n} \int_{B_{\tau \theta}} |\nabla u|^p \, dx \right\}^{\frac{1}{p}} \le C(\tau^{\delta} + \tau^{1-\frac{n}{p}} \epsilon_0) \|\nabla u\|_{M^{p,n-p}(B_1)}. \tag{4.29}$$

Taking superum over all balls $B_{2\theta} \subset B_{\frac{1}{2}}$, we have

$$\|\nabla u\|_{M^{p,n-p}(B_{\frac{\tau}{2}})} \le C(\tau^{\delta} + \tau^{1-\frac{n}{p}}\epsilon_0)\|\nabla u\|_{M^{p,n-p}(B_1)}. \tag{4.30}$$

Therefore, by choosing $\tau=\tau_1=4C^{\frac{-1}{\delta}}$ and $\epsilon_0=\frac{1}{4C}\tau_0^{\frac{n}{p}-1}$ sufficiently small, we have, for $\tau_0=\frac{\tau_1}{2}>0$,

$$\|\nabla u\|_{M^{p,n-p}(B_{\tau_0})} \le \frac{1}{2} \|\nabla u\|_{M^{p,n-p}(B_1)}. \tag{4.31}$$

This completes the proof of Lemma 4.1.

Proof of Theorem A For n = 2, the absolute continuity of $\int |\nabla u|^2$ implies that there exists $r_0 > 0$ such that

$$\int_{B_r(x)} |\nabla u|^2 dx \le \epsilon_0^2, \quad \forall r \le r_0, \ x \in \Omega.$$

$$\tag{4.32}$$

Hence, applying Lemma 4.1 repeatedly, we have that for some $p \in (1, 2)$ and $\tau_0 \in (0, \frac{1}{2})$,

$$(\tau_0^m r_0)^{p-2} \int_{B_{\tau_0^m r_0}(x)} |\nabla u|^p \le 2^{-pm} \epsilon_0^p, \quad \forall m \ge 1, \quad \forall x \in \Omega.$$
 (4.33)

This implies that there exists $\alpha_0 \in (0, 1)$ such that

$$r^{p-2} \int_{B_{\tau}(r)} |\nabla u|^p \le C(\epsilon_0, p) r^{\alpha}, \quad \forall r \in (0, r_0), \ x \in \Omega.$$
 (4.34)

Hence, by Morrey's Lemma (cf. [8]), we conclude $u \in C^{\alpha}(\Omega, N)$. This completes the proof of Theorem A.

Proof of Theorem B Define

$$\Sigma = \left\{ x \in \Omega : \lim_{r \downarrow 0} r^{2-n} \int_{B_r(x)} |\nabla u|^2 \ge \epsilon_0^2 \right\}.$$

It is well-known (cf. [21]) that $H^{n-2}(\Sigma) = 0$. Moreover, by Lemma 4.1, $\Sigma \subset \Omega$ is a closed set. For any $x_0 \in \Omega \setminus \Sigma$, there exists $r_0 > 0$ such that $B_{2r_0}(x_0) \cap \Sigma = \emptyset$, and

$$r^{2-n} \int_{B_{r}(x)} |\nabla u|^2 \le \epsilon_0^2, \quad \forall x \in B_{r_0}(x_0), \ r \le r_0.$$

Therefore, by Lemma 4.1, we have that for some $p \in (1, \frac{n}{n-1})$ and $\tau_0 \in (0, 1)$,

$$(\tau_0^m r_0)^{p-n} \int_{B_{\tau_0^m r_0}(x)} |\nabla u|^p \le 2^{-pm} \epsilon_0^p, \quad \forall m \ge 1, \quad \forall x \in B_{r_0}(x_0).$$
 (4.35)

This implies that there is $\alpha \in (0, 1)$ such that

$$r^{p-n} \int_{B_r(x)} |\nabla u|^p \le C(\epsilon_0, p) r^{p\alpha}, \quad \forall x \in B_{r_0}(x_0), \quad \forall r \in (0, r_0).$$
 (4.36)

Hence, by Morrey's Lemma, we conclude $u \in C^{\alpha}(B_{r_0}(x_0), N)$ and $u \in C^{\alpha}(\Omega \setminus \Sigma, N)$.

5 Quasi-monotonicity inequality

In this section, we derive the quasi-monotonicity inequality (1.5) for two classes of harmonic maps in dimensions $n \ge 3$: (1) minimizing harmonic maps with respect to Dini-continuous metrics g, and (2) stationary harmonic maps with respect to Lipschitz continuous metrics g.

Definition 5.1 A map $u \in W^{1,2}(\Omega, N)$ is a minimizing harmonic map, if

$$\int_{\Omega} |\nabla u|_g^2 \, dv_g \le \int_{\Omega} |\nabla v|_g^2 \, dv_g, \quad \forall v \in W^{1,2}(\Omega, N) \quad \text{with } v|_{\partial\Omega} = u|_{\partial\Omega}. \tag{5.1}$$

Recall that $f: \Omega \to \mathbf{R}^{n \times n}$ is Dini-continuous, if there exist $r_0 > 0$ and a monotonically non-decreasing $\omega: [0, r_0] \to \mathbf{R}_+$, with $\omega(0) = 0$ and $\int_0^{r_0} \frac{\omega(t)}{t} \, dt < \infty$, such that

$$|f(x) - f(y)| \le \omega(|x - y|), \quad \forall x, y \in \Omega, |x - y| \le r_0.$$
 (5.2)

Proposition 5.1 For $n \geq 3$, suppose that g is a Dini-continuous metric on Ω and $u \in W^{1,2}(\Omega, N)$ is a minimizing harmonic map. Then u satisfies the quasi-monotonicity inequality (1.5).

Proof It suffices to prove (1.5) for $x = 0 \in \Omega$. Assume $g_0 = g(0)$ is the Euclidean metric on \mathbb{R}^n . For $0 < r < \min\{r_0, \operatorname{dist}(0, \partial \Omega)\}$, define

$$v(x) = u\left(\frac{rx}{|x|}\right), \quad x \in B_r$$

= $u(x), \quad x \in \Omega \backslash B_r.$

Then the minimality of *u* implies

$$\int_{B_r} |\nabla u|_g^2 \, dv_g \le \int_{B_r} |\nabla v|_g^2 \, dv_g. \tag{5.3}$$

It follows from the Dini-continuity of g that

$$\max_{x \in B_r} |g(x) - g_0| \le \omega(r), \quad \forall 0 < r \le \min\{r_0, \operatorname{dist}(0, \partial \Omega)\},\$$

where ω is the modular of continuity of g. This and (5.3) imply that there exists $C_0 > 0$ such that

$$(1 - C_0 \omega(r)) \int\limits_R |\nabla u|^2 dx \le \int\limits_R |\nabla v|^2 dx, \quad \forall 0 < r \le \min\{r_0, \operatorname{dist}(0, \partial \Omega)\}. \tag{5.4}$$

Direct calculations imply

$$\int_{B_r} |\nabla v|^2 dx = \frac{r}{n-2} \int_{\partial B_r} \left(|\nabla u|^2 - |\frac{\partial u}{\partial r}|^2 \right) dH^{n-1}.$$

Therefore we have, for $0 < r \le \min\{r_0, \operatorname{dist}(0, \partial \Omega)\}\$,

$$(n-2)(1-C_0\omega(r))r^{1-n}\int\limits_{B_r}|\nabla u|^2\,dx \le r^{2-n}\int\limits_{\partial B_r}|\nabla u|^2\,dH^{n-1}$$
$$-r^{2-n}\int\limits_{\partial B_r}|\frac{\partial u}{\partial r}|^2\,dH^{n-1}. \tag{5.5}$$

This yields, for $0 < r \le \min\{r_0, \operatorname{dist}(0, \partial \Omega)\}\$,

$$\frac{d}{dr} \left\{ e^{\{(n-2)C_0 \int_0^r \frac{\omega(t)}{t} dt\}} r^{2-n} \int_{B_r} |\nabla u|^2 dx \right\}$$

$$\geq e^{\{(n-2)C_0 \int_0^r \frac{\omega(t)}{t} dt\}} r^{2-n} \int_{\partial B_r} |\frac{\partial u}{\partial r}|^2 dH^{n-1}$$

$$\geq r^{2-n} \int_{\partial B} |\frac{\partial u}{\partial r}|^2 dH^{n-1}.$$
(5.6)

Integrating (5.6), we have, for $0 < r \le R \le \min\{r_0, \operatorname{dist}(0, \partial \Omega)\}\$,

$$\int_{B_R \setminus B_r} |x|^{2-n} |\frac{\partial u}{\partial r}|^2 dx + r^{2-n} \int_{B_r} |\nabla u|^2 dx$$

$$\leq e^{\{(n-2)C_0 \int_0^R \frac{\omega(t)}{t} dt\}} R^{2-n} \int_{B_R} |\nabla u|^2 dx.$$
(5.7)

This implies (1.5) holds for $K = e^{\left\{(n-2)C_0 \int_0^{r_0} \frac{\omega(t)}{t} dt\right\}}$.

Next we consider stationary harmonic maps.

Definition 5.2 A weakly harmonic map $u \in W^{1,2}(\Omega, N)$ is a stationary harmonic map, if it is a critical point of E_2 with respect to the domain variations:

$$\frac{d}{dt}|_{t=0} \int_{\Omega} |\nabla u(x + tX(x))|_{g}^{2} dv_{g} = 0, \quad \forall X \in C_{0}^{1}(\Omega, \mathbf{R}^{n}).$$
 (5.8)

We have

Proposition 5.2 For $n \ge 3$, let g be a Lipschitz continuous Riemannian metric on Ω . Then any stationary map $u \in W^{1,2}(\Omega, N)$ satisfies (1.5) for some K = K(n, g) > 0.

Proof For simplicity, assume $x = 0 \in \Omega$ and $g(0) = g_0$. Define the energy-stress tensor

$$S_{\alpha\beta} = \frac{1}{2} |\nabla u|_g^2 g_{\alpha\beta} - \left(\frac{\partial u}{\partial x_{\alpha}}, \frac{\partial u}{\partial x_{\beta}}\right), \quad 1 \leq \alpha, \beta \leq n.$$

Then it is well-known (cf. [13]) that the stationarity (5.8) implies

$$\sum_{\alpha,\beta=1}^{n} \int_{\Omega} (L_X g^{\alpha\beta}) S_{\alpha\beta} \, dv_g = 0 \tag{5.9}$$

where

$$L_X g^{\alpha\beta} = \sum_{\gamma=1}^n \left[X_\gamma \frac{\partial g^{\alpha\beta}}{\partial x_\gamma} - \frac{\partial X_\alpha}{\partial x_\gamma} g^{\gamma\beta} - \frac{\partial X_\beta}{\partial x_\gamma} g^{\gamma\alpha} \right]$$

is the Lie derivative of $(g^{\alpha\beta})$ with respect to X.

For $B_r \subset \Omega$, and $\eta(x) = \eta(|x|) \in C_0^1(B_r)$ with $0 \le \eta \le 1$, let $X(x) = x\eta(|x|)$. Then we have

$$\frac{\partial X_{\alpha}}{\partial x_{\gamma}} = \delta_{\alpha\gamma} \eta(|x|) + \eta'(|x|) \frac{x_{\alpha} x_{\gamma}}{|x|}, \quad 1 \le \alpha, \gamma \le n,$$

and

$$L_X g^{\alpha\beta} = \eta(|x|) \sum_{\gamma=1}^n x_\gamma \frac{\partial g^{\alpha\beta}}{\partial x_\gamma} - 2\eta(|x|) g^{\alpha\beta} - 2\eta'(|x|) \sum_{\gamma=1}^n \frac{x_\beta x_\gamma}{|x|} g^{\alpha\gamma}.$$

Since g is Lipschitz continuous, there exist $r_0 > 0$ and $C_0 > 0$ depending on Lip(g) such that

$$\|\nabla g^{\alpha\beta}\|_{L^{\infty}(B_r)} \le C_0 \text{Lip}(g), \quad \forall 0 < r \le r_0.$$

$$(5.10)$$

Let $I \equiv \sum_{\alpha,\beta,\gamma=1}^{n} \int_{B_r} x_{\gamma} \eta(|x|) \frac{\partial g^{\alpha\beta}}{\partial x_{\gamma}} S_{\alpha\beta} dv_g$. Then we have

$$|I| \le \sum_{\alpha,\beta,\gamma=1}^{n} \int_{B_{r}} |x_{\gamma}| |\frac{\partial g^{\alpha\beta}}{\partial x_{\gamma}} ||S_{\alpha\beta}| \, dv_{g}$$

$$< r \|\nabla g^{\alpha\beta}\|_{L^{\infty}(B_{r})} \sum_{\alpha}^{n} \int |S_{\alpha\beta}| \, dv_{\alpha} < C_{R}$$

$$\leq r \|\nabla g^{\alpha\beta}\|_{L^{\infty}(B_r)} \sum_{\alpha,\beta=1}^{n} \int_{B_r} |S_{\alpha\beta}| \, dv_g \leq Cr \int_{B_r} |\nabla u|_g^2 \, dv_g$$

for $C = C_0 \text{Lip}(g)$.

Set II $\equiv -2\sum_{\alpha,\beta=1}^{n} \int_{B_r} \eta(|x|) g^{\alpha\beta} S_{\alpha\beta} dv_g$. Then we have

$$\begin{split} & \text{II} = -2 \sum_{\alpha,\beta=1}^{n} \int\limits_{B_{r}} \eta(|x|) g^{\alpha\beta} \left(\frac{1}{2} |\nabla u|_{g}^{2} g_{\alpha\beta} - \left\langle \frac{\partial u}{\partial x_{\alpha}}, \frac{\partial u}{\partial x_{\beta}} \right\rangle \right) dv_{g} \\ & = (2-n) \int\limits_{B_{r}} \eta(|x|) |\nabla u|_{g}^{2} dv_{g}. \end{split}$$

For III $\equiv -2\sum_{\alpha,\beta,\gamma=1}^{n} \int_{B_r} \eta'(|x|) \frac{x_{\beta}x_{\gamma}}{|x|} g^{\alpha\gamma} S_{\alpha\beta} dv_g$, we have

$$\begin{split} & \text{III} = -2 \sum_{\alpha,\beta,\gamma=1}^{n} \int_{B_{r}} \eta'(|x|) \frac{x_{\beta}x_{\gamma}}{|x|} g^{\alpha\gamma} \left(\frac{1}{2} |\nabla u|_{g}^{2} g_{\alpha\beta} - \left\langle \frac{\partial u}{\partial x_{\alpha}}, \frac{\partial u}{\partial x_{\beta}} \right\rangle \right) dv_{g} \\ & = -\int_{B_{r}} \eta'(|x|) |x| |\nabla u|_{g}^{2} dv_{g} \\ & + 2 \sum_{\alpha,\beta,\gamma=1}^{n} \int_{B_{r}} \eta'(|x|) \frac{x_{\beta}x_{\gamma}}{|x|} g^{\alpha\gamma} \left\langle \frac{\partial u}{\partial x_{\alpha}}, \frac{\partial u}{\partial x_{\beta}} \right\rangle dv_{g} \\ & = \text{IV} + \text{V}. \end{split}$$

Observe that (5.10) implies, for $0 < r \le r_0$,

$$g^{\alpha\gamma}(x) = \delta_{\alpha\gamma} + h_{\alpha\gamma}(x), \ |h_{\alpha\gamma}|(x) \le C_0 \text{Lip}(g)|x|, \ \forall x \in B_r, \ \forall 1 \le \alpha, \gamma \le n.$$

Hence we have

$$V = 2 \int_{B_r} |x| \eta'(|x|) \left| \frac{\partial u}{\partial r} \right|^2 dv_g + 2 \sum_{\alpha, \gamma = 1}^n \int_{B_r} \eta'(|x|) x_{\gamma} h_{\alpha \gamma} \left\langle \frac{\partial u}{\partial x_{\alpha}}, \frac{\partial u}{\partial r} \right\rangle dv_g.$$
 (5.11)

As

$$0 = \sum_{\alpha,\beta=1}^{n} \int_{\Omega} (L_X g^{\alpha\beta}) S_{\alpha\beta} dv_g = I + II + III,$$

we have

$$(2-n)\int_{B_{r}} \eta(|x|)|\nabla u|_{g}^{2} dv_{g} - \int_{B_{r}} |x|\eta'(|x|) \left(|\nabla u|_{g}^{2} - 2|\frac{\partial u}{\partial r}|^{2}\right) dv_{g}$$

$$\geq -Cr\int_{B_{r}} |\nabla u|_{g}^{2} dv_{g} - 2\sum_{\alpha,\gamma=1}^{n} \int_{B_{r}} \eta'(|x|)x_{\gamma}h_{\alpha\gamma} \left(\frac{\partial u}{\partial x_{\alpha}}, \frac{\partial u}{\partial r}\right) dv_{g}. \tag{5.12}$$

For small $\epsilon > 0$, let $\eta = \eta_{\epsilon}(|x|) \in C_0^{0,1}(B_r)$ be such that $\eta_{\epsilon}(t) = 1$ for $0 \le t \le r - \epsilon$, $\eta_{\epsilon}(t) = 0$ for $t \ge r$, and $\eta'_{\epsilon}(t) = -\frac{1}{\epsilon}$ for $r - \epsilon \le t \le r$. Putting η into (5.12) and sending ϵ to zero, we obtain

$$(2-n)\int_{B_{r}} |\nabla u|_{g}^{2} dv_{g} + r \int_{\partial B_{r}} |\nabla u|_{g}^{2} dH_{g}^{n-1}$$

$$\geq 2r \int_{\partial B_{r}} |\frac{\partial u}{\partial r}|^{2} dH_{g}^{n-1} - Cr \int_{B_{r}} |\nabla u|_{g}^{2} dv_{g}$$

$$+2 \sum_{\alpha,\gamma=1}^{n} \int_{\partial B_{r}} x_{\gamma} h_{\alpha\gamma} \langle \frac{\partial u}{\partial x_{\alpha}}, \frac{\partial u}{\partial r} \rangle dH_{g}^{n-1}$$

$$\geq 2r \int_{\partial B_{r}} |\frac{\partial u}{\partial r}|^{2} dH_{g}^{n-1} - Cr \int_{B_{r}} |\nabla u|_{g}^{2} dv_{g}$$

$$-Cr^{3} \int_{\partial B_{r}} |\nabla u|_{g}^{2} dH_{g}^{n-1}$$

$$(5.13)$$

where dH_g^{n-1} is the (n-1)-dimensional Hausdorff measure with respect to g, and we have used the Hölder inequality in the last step:

$$\begin{split} &2\sum_{\alpha,\gamma=1}^{n}|\int\limits_{\partial B_{r}}x_{\gamma}h^{\alpha\gamma}\left\langle \frac{\partial u}{\partial\alpha},\frac{\partial u}{\partial r}\right\rangle dH_{g}^{n-1}|\\ &\leq r\int\limits_{\partial B_{r}}|\frac{\partial u}{\partial r}|^{2}dH_{g}^{n-1}+r\left(\sum_{\alpha,\gamma=1}^{n}\max_{B_{r}}|h^{\alpha\gamma}|^{2}\right)\int\limits_{\partial B_{r}}|\nabla u|_{g}^{2}dH_{g}^{n-1}\\ &\leq r\int\limits_{\partial B_{r}}|\frac{\partial u}{\partial r}|^{2}dH_{g}^{n-1}+Cr^{3}\int\limits_{\partial B_{r}}|\nabla u|_{g}^{2}dH_{g}^{n-1}. \end{split}$$

Let $f(r) = \int_{B_r} |\nabla u|_g^2 dv_g$, we have $f'(r) = \int_{\partial B_r} |\nabla u|_g^2 dH^{n-1}$ for a.e. r > 0. Hence (5.13) yields

$$(2-n+Cr)f(r)+r(1+Cr)f'(r) \ge r\int\limits_{\partial B_n} \left|\frac{\partial u}{\partial r}\right|^2 dH_g^{n-1}.$$

In particular, there exists a small $r_0 > 0$ depending on g such that for $0 < r \le r_0$,

$$(2 - n + O(r))f(r) + rf'(r) \ge \frac{r}{2} \int_{\partial B_r} \left| \frac{\partial u}{\partial r} \right|^2 dH_g^{n-1}$$
 (5.14)

where $C^{-1}r \leq O(r) \leq Cr$. Therefore we have, $0 < r \leq r_0$,

$$\frac{d}{dr}(e^{O(r)}r^{2-n}f(r)) \ge \frac{1}{2}e^{O(r)}r^{2-n} \int_{\partial B_r} \left| \frac{\partial u}{\partial r} \right|^2 dH_g^{n-1}.$$
 (5.15)

Integrating (5.15) over $0 < r \le R \le r_0$, we have

$$e^{O(R)}R^{2-n}f(R) \ge r^{2-n}f(r) + \frac{1}{2} \int_{R_D\setminus R_c} |x|^{2-n} \left|\frac{\partial u}{\partial r}\right|^2 dv_g.$$
 (5.16)

This, combined with (1.3), implies (1.5) with $K = e^{O(r_0)}$.

Remark 5.1 The monotonicity inequality (5.15) has been derived by Garofalo–Lin [10] for second order elliptic equations with divergence structure by a different method.

6 Final remarks

This section is devoted to some further discussions on Theorems A and B. The first remark asserts that for $n \geq 3$, $g \in VMO(\Omega)$ can be weaken. The second remark concerns the optimal Hausdorff dimension estimate on minimizing harmonic map from domains with Dini continuous metrics. The third remark concerns the blow-up analysis of stationary harmonic maps from domains with Lipschitz continuous Riemannian metrics.

Theorem 6.1 For $n \geq 3$, there exists $\delta_0 > 0$ such that if g is a L^{∞} -Riemannian metric on Ω with $[g]_{BMO(\Omega)} \leq \delta_0$ and $u \in W^{1,2}(\Omega, N)$ is a weakly harmonic map satisfying the

quasi-monotonicity inequality (1.5), then there are $\alpha \in (0, 1)$ and closed subset $\Sigma \subset \Omega$, with $H^{n-2}(\Sigma) = 0$, such that $u \in C^{\alpha}(\Omega \setminus \Sigma, N)$.

Proof It follows from the same arguments as in Theorem B, except that we need to replace Proposition 3.3 by the following proposition, due to Byun–Wang [2] (see also Caffarelli–Peral [4]).

Lemma 6.2 For $n \ge 3$ and ball $B \subset \Omega$, assume that $A = (a_{ij}) \in L^{\infty}(B, \mathbf{R}^{n \times n})$ is symmetric, and uniformly elliptic with ellipticity constant $\Lambda > 0$. For any $p \in (1, +\infty)$ and $F \in L^p(B, \mathbf{R}^n)$, there exists $\delta_p > 0$ such that if $[g]_{BMO(B)} \le \delta_p$, then there exists a unique solution $G \in W_0^{1,p}(B)$ to the Dirichlet problem:

$$\sum_{i,j=1}^{n} \frac{\partial}{\partial x_i} \left(a_{ij} \frac{\partial G}{\partial x_j} \right) = \sum_{i=1}^{n} \frac{\partial F_i}{\partial x_i}, \quad in \ B$$
 (6.1)

$$G = 0, \quad on \ \partial B. \tag{6.2}$$

Moreover.

$$\|\nabla G\|_{L^p(B)} \le C([A]_{BMO(B)}, n, \Lambda) \|F\|_{L^p(B)}. \tag{6.3}$$

Theorem 6.2 For $n \geq 3$ and a Dini-continuous Riemannian metric g in $\Omega \subset \mathbf{R}^n$, if $u \in W^{1,2}(\Omega, N)$ is a minimizing harmonic map, then there exist $\alpha \in (0, 1)$ and closed subset $\Omega \subset \Omega$, which is discrete for n = 3 and has Hausdorff dimension at most (n - 3) for $n \geq 4$, such that $u \in C^{\alpha}(\Omega \setminus \Sigma, N)$.

Proof Note that the Dini-continuity of g implies $g \in VMO(\Omega)$. Since u is a minimizing harmonic map, Proposition 5.1 implies that u satisfies the monotonicity inequality (5.7). Define

$$\Sigma = \left\{ x \in \Omega \mid \Theta(u, x) \equiv \lim_{r \downarrow 0} r^{2-n} \int_{B_r(x)} |\nabla u|^2 \ge \epsilon_0^2 \right\}$$
 (6.4)

where ϵ_0 is given by Lemma 4.1. Then, by theorem B, we have that $u \in C^{\alpha}(\Omega \setminus \Sigma, N)$ for some $\alpha \in (0, 1)$.

To prove the Hausdorff dimension estimate of Σ , define the rescalled map $u_{x_0,r_i}(x) = u(x_0 + r_i x) : B_2 \to N$ for any $x_0 \in \Sigma$ and $r_i \downarrow 0$. It is easy to see that u_{x_0,r_i} is minimizing harmonic map with respect to $g_i(x) = g(x_0 + r_i x)$. Since g is Dini-continuous, we know $g_i \to g_0$, the Euclidean metric, uniformly on B_2 .

It follows from Luckhaus' extension Lemma (see [16]) and the minimality of u that there exists a minimizing harmonic map $\phi \in W^{1,2}(B_2, N)$ with respect to g_0 such that after taking possible subsequences, $u_{x_0,r_i}(x) \equiv u(x_0 + r_i x) \rightarrow \phi$ strongly in $W^{1,2}(B_2, N)$. Moreover, the monotonicity inequality (5.7) yields $\frac{\partial \phi}{\partial r} = 0$ a.e. in B_2 and $\phi(x) = \phi(\frac{x}{|x|})$ for a.e. $x \in B_2$. Now we can apply Federer's dimension reduction argument (cf. [21]) to conclude that Σ is discrete for n = 3, and has Hausdorff dimension at most (n - 3) for n > 4.

Theorem 6.3 For $n \geq 3$ and a Lipschitz continuous metric g on $\Omega \subset \mathbb{R}^n$. Assume that N doesn't support nonconstant harmonic maps from S^2 . If $u \in W^{1,2}(\Omega, N)$ is a stationary harmonic map, then there exist $\alpha \in (0, 1)$ and closed subset $\Sigma \subset \Omega$, which is discrete for n = 4, and has Hausdorff dimension at most (n - 4) for $n \geq 5$, such that $u \in C^{\alpha}(\Omega \setminus \Sigma, N)$.

Proof Note that the Lipschitz continuity of g implies $g \in VMO(\Omega)$. It follows from the stationarity and Proposition 5.2 that u satisfies the monotonicity inequality (5.16). Therefore, Theorem B implies $u \in C^{\alpha}(\Omega \setminus \Sigma, N)$ for some $\alpha \in (0, 1)$, with Σ given by (6.4).

For any $x_0 \in \Sigma$ and $r_i \downarrow 0$, $u_{x_0,r_i} \in W^{1,2}(B_2,N)$ are stationary harmonic maps with respect to g_i . It follows from (5.16) that there is a harmonic map $\phi \in W^{1,2}(B_2,N)$ with respect to g_0 , which is homogeneous of degree zero, such that after passing to subsequences, $u_{x_0,r_i}(x) \equiv u(x_0 + r_i x) \to \phi$ weakly in $W^{1,2}(B_2,N)$. One can check the blow-up analysis by Lin [15] applies to stationary harmonic maps with respect to Lipschitz continuous metrics g as long as we have theorem B, (5.16), and N doesn't support harmonic S^2 's. In particular, $u_{x_0,r_i} \to \phi$ strongly in $W^{1,2}(B_2,N)$. With this strong convergence, one can show Σ is discrete for n = 4, and has Hausdorff dimension at most (n - 4) for n > 5.

References

- 1. Bethuel, F.: On the singular set of stationary harmonic maps. Manu. Math. 78(4), 417–443 (1993)
- Byun, S., Wang, L.: Elliptic equations with BMO coefficients in Reifenberg domains. Comm. Pure Appl. Math. 57(10), 1283–1310 (2004)
- Coifman, R., Lions, P., Meyer, Y., Semmes, S.: Compensated compactness and Hardy spaces. J. Math. Pure Appl. (9) 72(3), 247–286 (1993)
- Caffarelli, L., Peral, I.: On W^{1,p} estimates for elliptic equations in divergence form. Comm. Pure Appl. Math. 51(1), 1–21 (1998)
- Di Fazio, G.: L^p estimates for divergence form elliptic equations with discontinuous coefficients. Boll. Un. Mat. Ital. A (7) 10(2), 409–420 (1996)
- Evans, L.C.: Partial regularity for stationary harmonic maps into spheres. Arch. Ration. Mech. Anal. 116(2), 101–113 (1991)
- 7. Fefferman, C., Stein, E.: H^p spaces of several variables. Acta Math. 129(3–4), 137–193 (1972)
- Giaquinta M.: Multiple integrals in the calculus of variations and nonlinear elliptic systems. Ann. Math. Stud., vol. 105. Princeton University Press, Princeton
- Giaquinta M., Giusti, E.: The singular set of the minima of certain quadratic functionals. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 11(1):45–55 (1984)
- Garofalo, N., Lin, F.H.: Monotonicity properties of variational integrals, A_p weights and unique continuation. Indiana Univ. Math. J. 35(2), 245–268 (1986)
- Gilbarg, D., Trudinger, N.: Elliptic Partial Differential Equations of Second Order. Springer, Heidelberg (1984)
- Hélein, F.: Régularité des applications faiblement harmoniques entre une surface et une varit riemannienne. C. R. Acad. Sci. Paris Sr. I Math. 312(8), 591–596 (1991)
- Hélein, F.: Harmonic maps, conservation laws and moving frames. Translated from the 1996 French original. With a foreword by James Eells, 2nd edn. In: Cambridge Tracts in Mathematics, vol. 150. Cambridge University Press, Cambridge (2002)
- Jost, J.: Two-dimensional geometric variational problems. Pure and Applied Mathematics (New York).
 A Wiley-Interscience Publication. Wiley, Chichester (1991)
- Lin, F.H.: Gradient estimates and blow-up analysis for stationary harmonic maps. Ann. Math. (2) 149(3), 785–829 (1999)
- Luckhaus, S.: Partial Hlder continuity for minima of certain energies among maps into a Riemannian manifold. Indiana Univ. Math. J. 37(2), 349–367 (1988)
- Meyers, N.: An L^pe-estimate for the gradient of solutions of second order elliptic divergence equations. Ann. Scuola Norm. Sup. Pisa 17(3), 189–206 (1963)
- 18. Price, P.: A monotonicity formula for Yang-Mills fields. Manu. Math. 43(2-3), 131-166 (1983)
- Riviére, T.: Everywhere discontinuous harmonic maps into spheres. Acta Math. 175(2), 197–226 (1995)
- Schoen, R.: Analytic aspects of the harmonic map problem. Seminar on nonlinear partial differential equations. Berkeley, California, 1983, pp. 321–358. Math. Sci. Res. Inst. Publ., 2, Springer, New York (1984)
- 21. Schoen, R., Uhlenbeck, K.: A regularity theory for harmonic maps. J. Diff. Geom. 17(2), 307–335 (1982)
- Shi, Y.G.: A partial regularity result of harmonic maps from manifolds with bounded measurable Riemannian metrics. Comm. Anal. Geom. 4(1–2), 121–128 (1996)

