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Abstract For a bounded domain @ C R" endowed with L°°-metric g, and a
C’-Riemannian manifold (N, ) C R¥ without boundary, let u € W12(Q, N) be a weakly
harmonic map, we prove that (1) u € C*(2, N) forn = 2, and (2) for n > 3, if, in additions,
g € VMO(R) and u satisfies the quasi-monotonicity inequality (1.5), then there exists a
closed set & C Q, with H"~2(X) = 0, such that u € C*(Q\X, N) for some o € (0, 1).

Mathematics Subject Classification (2000) 58J05 - 35J55

1 Introduction
For n > 2, let Q be a bounded domain in R”. Throughout this paper, let g be a bounded

(or L®°), measurable Riemannian metric on R”, namely, there exists A > 0 such that g =
D p=1 8ap dxo dxp satisfies:

AL < (gup)(x) < AL, Vx eR™ (1.1)

Let (N, h) C RF be a compact, at least C 5_Riemannian manifold without boundary, isomet-
rically embedded into an Euclidean space R¥. For 1 < p < oo, define the Sobolev space
Wlr(Q, N) by

WEP(Q,N) = {u:Q — R¥| E,(u) < +o0, u(x)eN forae x € Q)
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where

P
k 2
Ep(u):/(Z|Vui|§) dvg
o \i=l

is the pth Dirichlet energy of u with respect to g,

n

‘ u' du'
Vul2= > gt T 1 <i <k,
o pol 0xy 0xp

where (g%#) = (gap)~!, and dv, = J/gdx = ,/det(gqp) dx is the volume element of
(€2,8).

Let dg(x, y) and dp(x, y) = |x — y| be the distance functions with respect to g and go
(the Euclidean metric), respectively. Since g is L°°-Riemannian metric on R”, it is easy to
see that there exists 0 < Cp < +00 such that

Cildo(x,y) < dg(x,y) < Cado(x,y), Vx, yeR" (1.2)

In particular, f € C¥(2, N) with respect to g iff f € C¥(2, N) with respect to gg, and for
any openset U C R" and 1 < p < 400,

c;‘/|h|§dug §/|h|pdx §CA/|h|§dvg (1.3)
U U U

holds for any vector field & € LP(U, R"), here || = (37}, hlz)% and dx is the volume
element of gg.

Definition 1 A map u € WH2(Q2, N) is a weakly harmonic map, if it is a critical point of
Es ().

It is readily seen that any weakly harmonic map u € W!2(2, N) satisfies the harmonic
map equation:

Agu+ Ag(u)(Vu, Vu) =0, inD'(RQ) (1.4)

where A, = ﬁ ZZ p=I %(\/ggaf‘ Biﬁ) is the Laplace-Beltrami operator of (€2, g), and

AY)(,) : TyN x TyN — (TyN)J-, y € N is the second fundamental form of N C RF,
and

Ag)(Vu, Vuy = > g A(u) (aal ‘L”) ,

Pyt Xy 0xp

Regularity of harmonic maps from manifolds with C°°-Riemannian metrics g has been
extensively studied by many people. Schoen-Uhlenbeck [21], Giaquinta-Guisti [9] indepen-
dently proved that any minimizing harmonic map is smooth off a closed set whose Hausdorff
dimension is at most (n — 3). Hélein [12,13] proved that any weakly harmonic map from
a Riemannian surface is smooth. Evans [6] and Bethuel [1] proved that any stationary har-
monic map in dimensions at least three is smooth off a closed set of zero (n —2)-dimensional
Hausdorff measure.

In this paper, we are mainly interested in seeking the minimal regularity assumption on
Riemannian metrics g such that any weakly harmonic map u € W'2($2, N) enjoys (partial)
Holder continuity.
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Harmonic maps from manifolds of L°°-Riemannian metrics 389

In this context, our first theorem is

Theorem A For n = 2 and a L°°-Riemannian metric g on R", let u € W1'2(§2, N) be a
weakly harmonic map. Then u € C*(S2, N) for some a € (0, 1).

Remark 1 For n > 2, if, in addition, g € C’"*ﬁ(Q) for some m > 0 and g € (0, 1) and
N € C™*5 | then theorem A and the theory of higher regularity of harmonic maps (cf.
Giaquinta [8]) imply thatif u € C*(2, N), thenu € cmH(Q N for 8 = min{c, B}.

For n > 3, Riviére [19] constructed an example of weakly harmonic map from B to §2
that is singular everywhere. It turns out that the stationarity or suitable energy monotonicity
inequality plays a crucial role for the partial regularity of weakly harmonic maps. To this
end, we introduce

Definition 2 (quasi-monotonicity inequality) A map u € W!2(Q, N) enjoys the quasi-
monotonicity inequality property, if there exist K = K(n, g) > 0 and ro = ro(n, g) > 0
such that for any x € Q and 0 < r < R < min{rg, dist(x, 92)}, we have

P / |Vul>dx < KR*™" / Vul® dx. (15)

By (x) Bgr(x)

Remark 2 (a) Forn =2, (1.5) holds automatically for u € WL2(Q, N) with K = 1.

(b) Forn>3andg € C Z(Q), it is well-known that both minimizing harmonic maps and
stationary (or C2)-harmonic maps enjoy the quasi-monotonicity inequality property (cf.
[21], Preiss [18], and Schoen [20]).

(c) In proposition 5.1 and 5.2 below, we verify that for n > 3, both minimizing harmonic
maps with respect to Dini continuous g and stationary harmonic maps with respect to
Lipschitz continuous g enjoy the quasi-monotonicity inequality property.

Itis also well-known that certain regularity of the coefficients is necessary for the regularity
of second order elliptic systems (cf. [8]). To this end, we recall

Definition 3 (a) For any openset U C R”, a function f € BMO(U), if f € L (U ) and

[FIBMOw) = s | 77 (x)'3</) = ferl 1B CUT <00

where for = 5057 fp, 00 -
(b) For any open set U C R", a function f € VMO(U), if f € BMO(U) and

lim sup[f]BMO(UmBr(x)) =0.

r—>0
Now we are ready to state our second theorem.

Theorem B Forn > 3 and g € VMO(R), suppose that u € W'2(Q2, N) is a weakly har-
monic map satisfying the quasi-monotonicity inequality (1.5). Then there exist a closed set
Y C Q with H*2(X) =0, and o € (0, 1) such thatu € C*(Q\E, N). Here H""2 denotes
the (n — 2)-dimensional Hausdorff measure with respect to go.
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We would like to mention that Shi [22] proved the partial regularity theorem, similar to
theorem B, for minimizing harmonic maps from manifolds with L°°-Riemannian metrics.
However, the argument in [22] relies heavily on the minimality property. Our method is of
PDE nature and partly motivated by the techniques developed by [1,6,12,13].

The paper is written as follows. In Sect. 2, for any C3-Riemannian manifold N, we outline
the Coulomb gauge frame construction by Hélein [12,13] on u*T N | with respect to g. In
Sect. 3, we utilize the WO1 "P_solvablity theorem on V - (AVu) = V - F by Meyers [17]
(n = 2) and Di Fazio [5] (n > 3) for bounded measurable elliptic matrix A to obtain the
Div-Curl decomposition theorem on (€2, g). In Sect. 4, we establish the decay Lemma on the
MP-"=P norm of u, ||u||prp.n-p(.y, under the smallness condition of || Vu| yy2..-2,). In Sect. 5,
we provide two examples in which the quasi-monotonicity inequality (1.5) holds. In Sect. 6,
we make some final remarks.

2 Construction of Coulomb gauge frame

In this section, we sketch the Coulomb gauge frame construction on u*T N by Hélein [12,13]
to (2, g) for any C7-Riemannian manifold N and L°-Riemannian metric g on R”.
Let [ = dim(N). For any ball B C €, {ei}f=1 c WL2(B, R¥) is called to be a frame of
u*T N on B, if {e; (x)}ﬁzl forms an orthonormal base of 7, ()N for a.e. x € B.
For a vector field V = (Vy, ..., V,) : Q@ — R”, define the divergence of V with respect
to g by
n

. 9 .
divg(V) = > —— (&g Vp).
ap=1 "¢

First we have

Lemma 2.1 Assume that there exist a C S_Riemannian manifold N cRanda totally geo-
desic, isometric embeddingi : N — N. Ifu € Wl'Z(Q, N) solves (1.4),thenii =iou €
W2(Q, N) also solves (1.4).

Proof Straightforward calculations (cf. Jost [14]) imply that
“ ou Jdu
Agit = Vi) (Agu) + D gP (Vi) (5, ——
0xy O0xg
o,B=1
= Vi(u)(Ag(u)(Vu, Vu))
= Ay (4)(Vi, Vi)
where A denotes the second fundamental form of N in R. m}

With help of Lemma 2.1 and the enlargement construction by Hélein [12,13], we may
assume that N is parallelizable so that we have

Proposition 2.2 Assume that N € C° is parallelizable and g is L>-Riemannian metric on
R". Let Q C R" be a bounded domian and B C Q2 be a ball. Ifu € WY2(B, N), then there
exists a Coulomb gauge frame {ei}§=1 c W2(B, RN of u*TN on B, i.e.

divg({(Vej,e;)) =0 inB, 1=<i, j<I 2.1
- de;
> g”’8<—l,ej>x/5 =0 ondB, 1<i,j<lI, 2.2)
ax/3

a,B=1

@ Springer



Harmonic maps from manifolds of L°°-Riemannian metrics 391

and
l
Z/|Ve,| dx <C/|Vu| dx. (2.3)
i=lp

Proof As N is parallelizable, there exists a smooth orthonormal frame {¢; ( y)}ﬁ= of TN.
For 1 <i <1, define ¢; (x) = ¢;(u(x)) for a.e. x € B. Then {Ei}f:1 forms a frame of u*T N
on B. Denote SO(/) as the special orthonormal group of order /, consider the minimization
problem:

Z/IV(R,]eJ)I dvg : R = (R;;) € W'(B,SO()) ¢ . 2.4)

i,j=17p

By the direct method, there is R® € W2(B, SO(1)) such that e, (x) = Zfszl Rg,3 (x)eg(x),
1 < a <, satisfies

/IVeal dv, < /lV(Ra,ge,g)l dvg, VR e W'2(B,SO()). (2.5
a=1"p aﬁ I'p

In particular, we have

l
Z/IVealgdvg > / V(Sapp)l; dvg < C/|W|§,dug. (2.6)
a.p=lp

ctlB B

This, combined with (1.3), implies (2.3). Moreover, the first variation similar to [12,13]
implies that (Ve;, e;), 1 < i, j < [, satisfies the Euler-Lagrange equation (2.1) and the
Neumann condition (2.2). Hence the proof is complete. O

3 Div—curl decomposition

In this section, we prove that if the metric g is either L for n = 2 or in VMO(2) forn > 3,
then the div—curl decomposition holds, namely, any F € LP (2, R") can be decomposed

into the sum of VG, with G € Wol’p(Q), and a divg-free H € LP (2, R"), for p sufficiently

close to ﬁ The key ingredients are WO1 "P_solvability results by Meyers [17] forn = 2, and
Di Fazio [5] forn > 3.
More precisely, we have

Theorem 3.1 Letr g be L°°-Riemannian metric on R" and B C Q2 C R" be a ball. If, in
addition, g € VMO() for n > 3, then there exists §y = S(n g) > 0 such that for p €
(%7 =80, ;727 +680) andany F € L? (B, R") there exist G € W0 P(B)and H € LP(B,R"),
wzth divg(H) = 0in Q, such that

F=VG+H in B, 3.1
and

IVGliegy + 1 HllLr gy < C(p, IF LrB) (3.2)

where LP(B) is LP-space with respect to go.
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The proof of Theorem 3.1 relies on the following Wol’p -solvability result.

Proposition 3.2 [17] Forn > 2andanyball B C Q, assume that A = (a;;) € L*(B, R"")
is symmetric and uniformly elliptic, then there exists §g = 8o(n) > O such that, for any
p € 2—380,2480) and F € LP(B, R"), there exists a unique solution u € Wol’p(B) to the
Dirichlet problem:

n n
d ou JoF;
> —aj—)=> 7+ B,
— 0x; (a,] 8xj) “— 0x; "
i,j=1 i=1
u=0, onodB. 3.3)
Moreover,

IVullLrgy < C(p, AIIFllLrs)- 3.4

Proposition 3.3 [5] For n > 3 and ball B C 2, assume that A = (a;;) € L N
VMO(B, R"*™) is symmetric and uniformly elliptic, then for any p € (1,4+00) and F €
LP? (B, R"), there exists a unique solution u € Wol’p(B) to (3.3) satisfying (3.4).

Proof of Theorem 3.1 Consider the Dirichlet problem:

divg(VG) = divg(F), in B
G =0, ondB. (3.5)

Observe that (3.5) is equivalent to
n n al
0 0G JoF;
E —\\aj— ZZZE: L, inB
= 8xi ’ 3XJ ‘ 8xi
i,j=1 i=1
G=0, ondB (3.6)

where a;; = \/ggij and F; = 27:] \/ggij F;. Since g satisfies (1.1), it is easy to see that
(a;j) € L*°(B,R™") is symmetric and uniformly elliptic. Moreover, we have || F lLrB) <
| FllLrs). For n = 2, Proposition 3.2 implies that there exists §p > 0 such that (3.5) is
uniquely solvable in Wol‘p(B) forany p € (2 — 80,2 + 80). For n > 3, since g € VMO(B)
implies (a;;) € VMO(B), Proposition 3.3 implies (3.5) is uniquely solvable in WO1 P (B) for
any 1 < p < 00.Set H = F — VG, (3.5) implies divy(H) = 0 in B. Moreover, for any
P € (G — b0, ;25 + 80), (3.4) yields

n—1
IHllLry < IFlles) +IIVGllLrsy < CIFllLres)- (3.7

The completes the proof of Theorem 3.1. O

4 Decay estimate in Morrey spaces

In this section, we prove both Theorems A and B. The crucial step is to establish that under
the smallness condition of || Vul| p2.n-2(g), ullprrn—r(p,) decays as r® for some o € (0, 1).
The ideas are suitable modifications of techniques developed by Hélein [12,13], Evans [6],
and Bethuel [1]. In order to achieve it, we need two new ingredients: (1) the div—curl decom-
position Proposition 3.1, and (2) a new approach to estimate the L” norm of div,-free vector
fields.

First we define Morrey spaces.
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Definition 4.1 For 1 < p < n and any open set U C R”, the Morrey space M?"~P(U) is
defined by

MY W) = 3 F € L) I Wy gy = sup 177" / [f17dx | < +oo
B, (x)cU B0

Now we have

Lemma 4.1 (¢p-decay estimate) For any bounded domain Q@ C R" and L°°-Riemannian
metric g on R". If, in addition, g € VMO(R2) for n > 3, then there exist §, > 0, ¢y =
€0(g. N) > 0, and 6y = 69(g. N) € (0, %) such that if u € W'2(Q, N) is a weakly
harmonic map satisfying the quasi-monotonicity inequality (1.5), and for B,(x) C 2,

P / |Vul} dv, < € 4.1)
B, (x)

then, for any p € (n”j — 8, n"j) ,

1
IVUllprrn=r By, (1) < Env””Ml’v"‘l’(B,(x))- “4.2)

Proof of Lemma 4.1 By Lemma 2.1, assume that N is parallelizable. For x € Q2 and r > 0,
let g« (y) = g(x +ry) and uy,(y) = u(x + ry) for y € B. Observe that g, , is
L>°-Riemannian metric on B and u, , € W'2(B, N) is a weakly harmonic map with respect
to gx,r, satisfies the quasi-monotonicity inequality (1.5), and

/|Vu|§” dvg,, =r*™" / [Vuls dvg < 5. (4.3)
B By (x)
Hence, without loss of generality, assume x = 0 and » = 1. It follows from (1.5) that

there exists K > 0 such that

Vil 22, < KIIVullp2p) < Kég. (4.4)
2

For any 0 € (0, %), let Byy C B ! be an arbitrary ball of radius 26 and n € C;°(B) be

suchthat0 <n < 1,n = 1o0n By, n = O outside Byy, and |Vn| < 26~!. Denote the average
of u over Byy by uzp = @ f By U dvg, and | Byg| is the volume of By with respect to g.

Let {em}fx= | € W12(Byg, R¥) be the Coulomb gauge frame of u*T N on By given by
Proposition 2.2.
Let

n n
(p.a) =D pigi. (p.8)g= > 8" pigj. P=(p1.....pw). 4=(q1.....qx) €R"
i—1 ij=1

denote the inner products with respect to go and g on R”, respectively.
By Theorem 3.1, there exists §, > 0 such that for any p € (-2

T
¢o € Wy'¥ (Bag) and i € LP (Bag) such that

(V((u —u20)m), €a) = Vo + Vo, divg(Ye) =0, in Bag, (4.5)

— 8, ””T]), there are
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and

IVéallLr(Br) + 1WallLr(By) < CIV (U — u20)0)lILr(Brg) < CIVUllLP(Byy)  (4.6)

where we have used the Poincaré inequality in the last inequality of (4.6).

Using the Coulomb gauge frame {ea}a 1» (1.4) can be written as:

dive((Vit, eq)) = Z Z f<§;’ <a€“ ,3>>e,3 in Bag. 4.7

p=1i,j=1

We estimate ¢y, ¥, as follows. Let ¢(1) WL2(By) be the weak solution of

n M
Bl g .
]Z ax[ (a,j a) = O mn BQ (4.8)
o = ¢y, on 3By (4.9)
where a;; = fg” 1 <i,j<n.Let ¢(2) bo — ¢(1) then ¢(2) satisfies
n (2) i
ad du [de .
2 ax-( W, ) > 3 (5l ma o
ij=1 """ p=li,j=1 K
¢? =0, ondBy. 4.11)
Step I(a) Estimation of V¢(l).

It is well-known (cf. [11]) that there exists 8 € (0, 1) such that ¢$ € C®(By), and for
any0<r§%andp> 1,

SIS

165185, < C@P—"/ IVeDIPdx, 0<r<
By

On the other hand, since ¢§,2) € WOl ’Z(Bg) satisfies

n 2) n
d 0Py d 0Py .
— = —ANaii— |, By,
Z 0x; ( aij 0x; ) i,z=:1 0x; (a,] ij) s

i,j=1

Theorem 3.1 implies that there exists 8, > 0 such that, for p € (;%5 — &, ;%7),

2
IVGP 10 By) < ClIVallLrsy < ClIVUllLr(By)-
In particular, we have

IVOP L By) < IVGallLr By + IV Lr sy < ClIVUll L (Brg)s

and,for0<r§%andpe(n”j—én,n”j),

(88”105, < COP~ ”/|vu|1’dx.
Bag
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This, combined with the Cacciopolli inequality, implies that for any ¢ € (0, }T) and p €
(ﬁ — &, n”j), we have
@) [ 1991 dx < oWy,
Bz
< CrPigrn / |VulP dx (4.12)
Bag

< CtP | Vull ypn-p(py)-

Step I(b) Estimation of quéz) .
First, we claim
There exists 8, > 0 such that for any p € (%7 — 8n, 729), if f € W&’p(Bg) then

IV fllLesy) < Csup /(Vf, Vv)edug 1 v € Wol’p (Bo), IVl 5,y = 1] (4.13)
By

_p_

p=

To see (4.13), observe that by LP-duality, there exists v € L? (By), with ol Ly gy =1

such that

where p' =

IV fllLrsy < C/(Vf, V)¢ dvg. (4.14)
By

On the other hand, by Theorem 3.1, there exists 8, > 0 such that if p € (25 — 84, -757),

n—1

then there exist v| € Wol’p/(Bg) and vy € Lp/(Bg, R"), with div, (v2) = 0in By, such that
v=Vv +v2 in By, ||Vvl||Lp’(36) + ||UZ||L1:’(36) = C”U”Lp’(gg)- (4.15)
This and (4.14) imply

IV FllLrn < C / (Vf, Vor)e dvg + / (V £, v2)g dvg

By By
= C/(Vf,Vm)g dvg,
By

where we have used div, (v2) = 0 in the last step. Hence (4.13) holds.
Applying (4.13) to eqn. (4.7), we have that for p € (%7 — 8,, ;77). there exists v €

n—1
W(;’p (By) such that

IV raay = € (902, V), v,
By
L [ ou [de
:—czZ/«/ggu<y,<7‘f,eﬁ>>(eﬂu)dx. (4.16)
xi \0x;

B=1 i’jlee
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To estimate the right hand side, we need the Hardy-BMO duality theorem (cf. [7]) and
the tri-linear estimate (cf. [3,6]).

Proposition 4.2 ([6]) Suppose that f € W2(R"), h € L*(R", R") with div(h) = s
% =0, and v € BMO(R"). Then we have

/ (V £, v dx| < CIV £l 2 Il 2@ 10 BAO®Re- “.17)

Let i : R” — R* be an extension of u such that
”VM“LZ(Rn) C”VMHLZ(BQH)’ [ﬁ]BMO(R”) < C[M]BMO(BZQ) (418)

Letwl, = Y5 >"_, /g8 W,eﬂ ),1 <i <n,and wy = (w), ..., w"). Then, by
(2.1), we have

n

, Jw},
div(wg) = Z ax = delvg( Ve, eg)) =0 on Bag.
i=1 p=1

This, combined with (2.2), implies that there exists an extension W, € L2(R", R") of wy
such that

div(de) = 0in R", [l 2wy = Cllwallz2(y) = ClIVUllL2(8yy)- (4.19)
Putting (4.17)—(4.19) into (4.16), we have

IV PllLrsy < —C / (Vut, Gu)(vey) dx
i
= C/(ﬁ, Wy )V (vey) dx
ke
= C[ﬁ]BMO(R") ||1ba||L2(Rn) ||V(U€a)||L2(R")
= ClIVull L2y [UIBMO8,) IV (Ve | 128, - (4.20)

To estimate ||V (vey) | 12(p,), note that for p € (1, ;24), p’ = % > n and hence the
, -z
Sobolev embedding theorem implies v € Wé’p (Bg) C Cy " (Bp),and
lvllLee(By) < co'V =o', 4.21)

Moreover, by Holder inequality, we have

IVl 25, < COT 7 IVl 5,y < COP 2. (4.22)
Therefore we have
IV el z2sy) < CUVVILas,) + 1080 | Veall2(5,)
< COPT 146" 5| Vull25y)]
< CQ%_%U + IVullp2n-2p,))
<COV i1+ e) <COTE. (4.23)
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Putting (4.23) into (4.20), and combining with (4.12), we have, for any 7 € (0, %),

(zo)P~" / IVoul?dx § < Clt® + 1" 7€l Vit ygrnnesy) (4.24)
BIG

where we have used the Poincaré inequality:

[WIBMO(B,y) = CIIVUllppn—p(Byg) < CIIVuUllppn—p(py).- (4.25)

Step II Estimation of v,.
It follows from (4.5) and Proposition 4.2 that we have

/ [Wl2 dvg
By

n

z /aiﬂﬁé‘ﬁbf dx

ij=1p,
n
[ 9C(u — u29)m)
= Z /al'j'(/fé(<T,ea dx
i.j=1p, /
n
¢
— Z /aijlp&ﬁ dx
ij=1p, J
n
i de
== > [ ai ¥l —up)n, =) dx
ox;
i.j=1p, /

A

< ClYq ||L2(39)||V€a ||L2(39)[(M - M20)77]BM0(39)
< Cl|Yw ||L2(BH)||V”||L2(39)||V”||Mﬁv"*ﬂ(B.) (4.26)

where we have used the fact divg (V) = 0, i.e.

n

, Brl
Z /al'jd/(;g dx =0, Vne Wol’z(Bg),
ij=1p, J

and

[(u — u20)n1BMO(8,) < ClUlBMOB,y) = ClIVutllprrn-r(p,)- (4.27)
By Holder inequality, (4.26) yields

1

Op_"/llﬁaV’dx < CG()”VM”Mp,n—p(Bl). (428)
By

It follows from (4.5), (4.24), and (4.28) that for any t € (0, %), any ball Byy C B% s

P
(6)P " / VulPdx } < @+t~ P e)| Vullypan(s,)- (4.29)

Brg
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Taking superum over all balls Byg C B 1 we have

1—n
||VM||Mp.n—p(B%) < C('CS +7 1’6())||VM||Mp,n—p(Bl). (430)

_ n_y
Therefore, by choosing T = 71 = 4C 5 and €y = %ro” sufficiently small, we have, for

0=7%5 >0,

1
|| Vu ”MI”"P(BTO) < 5 || Vu ”M]Ml*p(B”. (43 1)
This completes the proof of Lemma 4.1. O

Proof of Theorem A For n = 2, the absolute continuity of [ |Vu|? implies that there exists
ro > 0 such that
/ |Vul>dx < €}, ¥r <rp, x € Q. (4.32)
By (x)

Hence, applying Lemma 4.1 repeatedly, we have that for some p € (1,2) and 79 € (0, %),

(' ro)P 2 / IVul? <2777l Vm =1, VxeQ. (4.33)
B.m. (x)
75 10

This implies that there exists og € (0, 1) such that
rP2 / [Vul? < C(eg, p)r*, Vr €(0,rg), x € Q. (4.34)

By (x)

Hence, by Morrey’s Lemma (cf. [8]), we conclude u € C%(2, N). This completes the proof
of Theorem A. O

Proof of Theorem B Define

Y =1xeQ:limr>™" / |Vul> > €
rl0
By (x)
It is well-known (cf. [21]) that H"~2(Z) = 0. Moreover, by Lemma 4.1, ¥ C Qis aclosed
set. For any xo € Q\X, there exists 7y > 0 such that By, (x0) N X = ¥, and

p2n / |Vul?> < €}, Vx € Byy(x0), r < ro.

By (x)
Therefore, by Lemma 4.1, we have that for some p € (1, n”j) and 79 € (0, 1),
(t'ro)? ™" [Vu|? <27P"el, Vm > 1, Vx € By (xo). (4.35)
By (x)

This implies that there is & € (0, 1) such that

rP=" / [Vul? < C(eo, p)rP*, Vx € By (x0), Yr € (0, rp). (4.36)
By (x)
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Hence, by Morrey’s Lemma, we conclude u € C*(B,,(x9), N) andu € C*(Q\X,N). 0O

5 Quasi-monotonicity inequality
In this section, we derive the quasi-monotonicity inequality (1.5) for two classes of harmonic
maps in dimensions n > 3: (1) minimizing harmonic maps with respect to Dini-continuous

metrics g, and (2) stationary harmonic maps with respect to Lipschitz continuous metrics g.

Definition 5.1 A map u € W!2(Q, N) is a minimizing harmonic map, if

/|Vu|§,dug §/|Vu|§,dug, Yo e WhAH(Q, N) withvlsgg = ulse.  (5.1)
Q Q

Recall that f : @ — R™ " is Dini-continuous, if there exist ro > 0 and a monotonically

non-decreasing w : [0, ro] = Ry, with w(0) = 0 and foro @ dt < oo, such that

[f ) = fI =w(x =y, Yx,yeQ, [x—y| <ro. (52

Proposition 5.1 For n > 3, suppose that g is a Dini-continuous metric on Q and u €
WL2(Q, N) is a minimizing harmonic map. Then u satisfies the quasi-monotonicity inequal-

ity (1.5).

Proof Tt suffices to prove (1.5) for x = 0 € Q. Assume gg = g(0) is the Euclidean metric
on R". For 0 < r < min{rg, dist(0, 92)}, define

rx
v(x):u(—), X € B,
|x]
=u(x), x e Q\B,.

Then the minimality of u implies
/|W|§dvg §/|W|§,dvg. (5.3)
By B,

It follows from the Dini-continuity of g that

mi}gx lg(x) — gol < w(r), YO0 <r < min{rg, dist(0, 92)},
xeB,

where w is the modular of continuity of g. This and (5.3) imply that there exists Co > 0 such
that

(1 - Coa)(r))/ \Vuldx < / |Vo2dx, VYO0 <r < min{ro, dist(0, 32)}.  (5.4)

B, B,

Direct calculations imply

3
/|W|2dx=L/ Vul? — 1222} amnt,
n—2 or

B, 3B,
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Therefore we have, for 0 < r < min{rg, dist(0, 92)},

(n—2)(1-— Coa)(r))rl_”/Wulzdx < / [Vul> dH""!
B, 9B,

/ |—|2dH""". (5.5)
JB,

This yields, for 0 < r < min{rg, dist(0, 92)},

da A=2)Co fy 2D dry, /|Vu| dx
dr

oln=2Co 5 & 210] diy,. /|3“| dH"!
)
—n ou 2 n—1
[ —1"dH""". (5.6)
or
9B,

Integrating (5.6), we have, for 0 < r < R < min{rg, dist(0, 92)},

3
/ |x|2_"|—au|2dx+r2_"/|Vu|2dx
r

BR\B, By
< ol=Co [ 20 ary g2 / \Vul? dx. (5.7)
Br
This implies (1.5) holds for K = ¢{("=2Co o “# a1} =

Next we consider stationary harmonic maps.

Definition 5.2 A weakly harmonic map u € W12(Q2, N) is a stationary harmonic map, if it
is a critical point of E, with respect to the domain variations:

—|t 0/|Vu(x+tX(x))| dvg =0, VX ECO(Q R"). (5.8)

‘We have

Proposition 5.2 Forn > 3, let g be a Lipschitz continuous Riemannian metric on Q2. Then
any stationary map u € WH2(Q2, N) satisfies (1.5) for some K = K (n, g) > 0.
Proof For simplicity, assume x = 0 € € and g(0) = go. Define the energy-stress tensor

ou ou

) e B=<n
0xy BXﬁ> sap=n

1 2
Soz,B = §|vu|ggaﬂ -

Then it is well-known (cf. [13]) that the stationarity (5.8) implies

Z /(Lxg B)Sup dvg =0 (5.9)

a.p=lg
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where

n
g 98X, Xp
Lyo%f — X _ e v 2P ya
X8 Z |: v 0x, 0x, § 0x, §
y=I1

is the Lie derivative of (g*#) with respect to X.
For B, C ©,and n(x) = n(|x|) € Cé (By)ywith0 <n < 1,let X(x) = xn(]x|). Then we
have

0Xy _s
0x,

I<a,y=<n

and

—25(|x g — 21y (|x|)Z fly g
y=1

n
ag*P
Lxg* =n(xh D x, o)
y=1

Since g is Lipschitz continuous, there exist 7o > 0 and Co > 0 depending on Lip(g) such
that

IVg® || oo,y < CoLip(g), YO <r < ry. (5.10)

o ap
LetI=30 5. fBr x,/n(|x|)anySalg dvg. Then we have

ne > /|xy|| S dvg

a,By= ]B

< A sy S [ 1saav, < cr [1vuav,

o, = ]B B,

for C = CoLip(g).
Setll=—-230 s [z 1(1x1)g*" Sup dvg. Then we have

ou
I=-2 z ap (v d
P l/n(IXI)g ( IVulgup — <8xa axﬂ>) Vg

- (2—n>/n(|x|)|W|§dvg.

B,

Forlll= 23705 fBr n’(|x|)xfxxly 87 Sup dvg, we have

1 u ou
-2 Z /77(|X|) By g (2|V“|§>gaﬁ_<axaym>) dvg

a,By=lp

I

—/n’(|x|)|x||w|§,dvg

B,
Xy 4 du du
2 4 d
2y /n(lxl) <8xd axﬂ> g
o, By= IB,
=IV+V.

@ Springer



402 W. Ishizuka, C. Y. Wang

Observe that (5.10) implies, for 0 < r < ry,

8V (x) = 8ay + hay (x), |hayl(x) < CoLip(g)|x|, Vx € B,, V1 <a,y <n.

Hence we have

u
V=2 d . G
vg+2Z/n(|x|)xy w< , r>dvg (5.11)
ay=lp
As
0= /(Lxg P)Sap dvg = 1+ 11+ 111,
ap=1g

we have

d
(2—n>/n<|x|>|w| dvg — /|x|n’(|x|) (|Vu|§—2|—”|2) dvg
B,

/|W| dvg —2 Z /n (|x])xy W< ou_ au>dvg (5.12)

o, y= lB

For small € > 0, let n = n(|x]) € Cg’l(B,) be such that ne(r) = 1 for0 <t <r — ¢,
ne(t) =0fors > r,and n.(t) = —é for r —e <t < r.Putting 7 into (5.12) and sending €
to zero, we obtain

(2—n)/|Vu|2dvg+r/ \Vul; dH}™!

3B,
>2r/ |—| dH]™! Cr/qu| dvg
JdB,
3
2 X, hy “, My qmn!
14 V or 8
o, y= 163 Yo
3
22r/ |£|2dH;_l —Cr/|Vu|§dvg
3B, B,
—Cr3/ \Vul; dH} ™! (5.13)
JB,
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where d H g’l is the (n — 1)-dimensional Hausdorff measure with respect to g, and we have
used the Holder inequality in the last step:

Ju ou
2 her (=, — ) dH""!
S e (3 2 g

a,y=1 9B,
> n—t o 2 gpn—1
sr [ g PdH 4 Z max |h "I*) | IVul;dH]
3B, : ay=l 3B,
<r [122amr 1o [ (Va2 amn
- or 8 8 8
3B, 3B,

Let f(r) = [ |Vulzdvg, we have f'(r) = [, |Vul; dH""! for ae. r > 0. Hence
(5.13) yields

2
e-n+ensorratensozr [ |3 amg

B,

In particular, there exists a small ro > 0 depending on g such that for 0 < r < ry,

du|?

| g (5.14)

C=n+0Nf)+rf'(r) =3 /

B,

where C~1r < O(r) < Cr. Therefore we have, 0 < r < ro,

2
i(eo(r)rz_nf(r)) = 160(;‘)r2—n / al
dr -2

o dH} . (5.15)
9B,

Integrating (5.15) over 0 < r < R < rp, we have

1 du|?
OBRTT L (RY = P27 f(r) + 3 / x| 2" a—”‘ dvg. (5.16)
r
Br\B:
This, combined with (1.3), implies (1.5) with K = ¢900), O

Remark 5.1 The monotonicity inequality (5.15) has been derived by Garofalo—Lin [10] for
second order elliptic equations with divergence structure by a different method.

6 Final remarks

This section is devoted to some further discussions on Theorems A and B. The first remark
asserts that for n > 3, g € VMO(2) can be weaken. The second remark concerns the opti-
mal Hausdorff dimension estimate on minimizing harmonic map from domains with Dini
continuous metrics. The third remark concerns the blow-up analysis of stationary harmonic
maps from domians with Lipschitz continuous Riemannian metrics.

Theorem 6.1 For n > 3, there exists 8o > 0 such that if g is a L°°-Riemannian metric
on Q with [glgpMO ) < o and u € W2(Q, N) is a weakly harmonic map satisfying the
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quasi-monotonicity inequality (1.5), then there are o € (0, 1) and closed subset & C <,
with H"=2(Z) = 0, such that u € C*(Q\X, N).

Proof 1t follows from the same arguments as in Theorem B, except that we need to replace
Proposition 3.3 by the following proposition, due to Byun—Wang [2] (see also Caffarelli—
Peral [4]).

Lemma 6.2 Forn > 3 and ball B C Q, assume that A = (a;;) € L°(B,R"™") is sym-
metric, and uniformly elliptic with ellipticity constant A > 0. For any p € (1, +00) and
F e LP(B,R"), there exists §, > 0 such that if[g]BMO(B) < 8p, then there exists a unique

solution G € Wol’p(B) to the Dirichlet problem:

n

9 G " OF;
—a;—) = , inB 6.1
> (i) =25 w )

i,j=1 i=1
G =0, ondB. (6.2)
Moreover,
IVGliLr)y = CAAIBMOG)- s M FllLr(B)- (6.3)
m}

Theorem 6.2 For n > 3 and a Dini-continuous Riemannian metric g in @ C R", ifu €
WL2(Q2, N) is a minimizing harmonic map, then there exist « € (0, 1) and closed subset
Q C Q, which is discrete for n = 3 and has Hausdorff dimension at most (n — 3) forn > 4,
such that u € C*(Q\X, N).

Proof Note that the Dini-continuity of g implies g € VMO(£2). Since # is a minimizing
harmonic map, Proposition 5.1 implies that u satisfies the monotonicity inequality (5.7).
Define

T =1xeQ|Ou,x) = 1%#—” / |Vul> > € (6.4)
r
By (x)

where ¢ is given by Lemma 4.1. Then, by theorem B, we have that u € C*(Q\ X, N) for
some o € (0, 1).

To prove the Hausdorff dimension estimate of X, define the rescalled map u,, ., (x) =
u(xo+rix) : By — N forany xo € X and r; | 0. It is easy to see that u, ,, iS minimizing
harmonic map with respect to g;(x) = g(xp + r;x). Since g is Dini-continuous, we know
8i — 8o, the Euclidean metric, uniformly on B>.

It follows from Luckhaus’ extension Lemma (see [16]) and the minimality of u that there
exists a minimizing harmonic map ¢ € W'2(B,, N) with respect to go such that after taking
possible subsequences, Uy, (x) = u(xg + r;x) — ¢ strongly in WL2(B,, N). Moreover,
the monotonicity inequality (5.7) yields %—r =0ae.inBrand¢(x) = ¢ (‘j—l) fora.e.x € Bs.
Now we can apply Federer’s dimension reduction argument (cf. [21]) to conclude that X is
discrete for n = 3, and has Hausdorff dimension at most (n — 3) for n > 4. O

Theorem 6.3 For n > 3 and a Lipschitz continuous metric g on 2 C R". Assume that N
doesn’t support nonconstant harmonic maps from S*. If u € W“2(Q, N) is a stationary
harmonic map, then there exist o € (0, 1) and closed subset ¥ C 2, which is discrete for
n = 4, and has Hausdorff dimension at most (n — 4) forn > 5, such thatu € C*(Q\XZ, N).
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Proof Note that the Lipschitz continuity of g implies g € VMO(L). It follows from the sta-
tionarity and Proposition 5.2 that u satisfies the monotonicity inequality (5.16). Therefore,
Theorem B implies u € C*(Q2\ X, N) for some « € (0, 1), with 3 given by (6.4).

Forany xo € X and r; | 0, uyy,; € WL2(B,, N) are stationary harmonic maps with
respect to g;. It follows from (5.16) that there is a harmonic map ¢ € WL2(B,, N) with
respect to g, which is homogeneous of degree zero, such that after passing to subsequences,
Uxg.r; (X) = u(xo +r;x) — ¢ weakly in wh2(B,, N). One can check the blow-up analysis
by Lin [15] applies to stationary harmonic maps with respect to Lipschitz continuous metrics
g as long as we have theorem B, (5.16), and N doesn’t support harmonic $2’s. In particu-
lar, uy, ,, — ¢ strongly in W12(B,, N). With this strong convergence, one can show X is
discrete for n = 4, and has Hausdorff dimension at most (n — 4) forn > 5. O
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