Harmonic maps from manifolds of *L***∞-Riemannian metrics**

W. Ishizuka · C. Y. Wang

Received: 28 July 2006 / Accepted: 22 October 2007 / Published online: 29 January 2008 © Springer-Verlag 2008

Abstract For a bounded domain $\Omega \subset \mathbb{R}^n$ endowed with L^∞ -metric *g*, and a *C*⁵-Riemannian manifold (*N*, *h*) ⊂ **R**^{*k*} without boundary, let *u* ∈ *W*^{1,2}(Ω, *N*) be a weakly harmonic map, we prove that (1) $u \in C^{\alpha}(\Omega, N)$ for $n = 2$, and (2) for $n > 3$, if, in additions, $g \in VMO(\Omega)$ and *u* satisfies the quasi-monotonicity inequality [\(1.5\)](#page-2-0), then there exists a closed set $\Sigma \subset \Omega$, with $H^{n-2}(\Sigma) = 0$, such that $u \in C^{\alpha}(\Omega \setminus \Sigma, N)$ for some $\alpha \in (0, 1)$.

Mathematics Subject Classification (2000) 58J05 · 35J55

1 Introduction

For $n \ge 2$, let Ω be a bounded domain in \mathbb{R}^n . Throughout this paper, let *g* be a bounded (or *L*[∞]), measurable Riemannian metric on **R**^{*n*}, namely, there exists $\Lambda > 0$ such that $g = \sum_{n=0}^{n} a_n dx$ at a setisfies: $\sum_{\alpha,\beta=1}^{n} g_{\alpha\beta} dx_{\alpha} dx_{\beta}$ satisfies:

$$
\Lambda^{-1}I_n \le (g_{\alpha\beta})(x) \le \Lambda I_n, \quad \forall x \in \mathbf{R}^n. \tag{1.1}
$$

Let (N, h) ⊂ **R**^{*k*} be a compact, at least C^5 -Riemannian manifold without boundary, isometrically embedded into an Euclidean space \mathbb{R}^k . For $1 < p < \infty$, define the Sobolev space $W^{1,p}(\Omega, N)$ by

$$
W^{1,p}(\Omega, N) := \{ u : \Omega \to \mathbf{R}^k \mid E_p(u) < +\infty, \quad u(x) \in N \quad \text{for a.e. } x \in \Omega \}
$$

W. Ishizuka (\boxtimes) Providence College, Providence, RI 02918, USA e-mail: wishizuk@providence.edu

C. Y. Wang Department of Mathematics, University of Kentucky, Lexington, KY 40506, USA

C. Y. Wang Partially supported by NSF.

where

$$
E_p(u) = \int_{\Omega} \left(\sum_{i=1}^k |\nabla u^i|_g^2 \right)^{\frac{p}{2}} dv_g
$$

is the *p*th Dirichlet energy of *u* with respect to *g*,

$$
|\nabla u^i|_g^2 = \sum_{\alpha,\beta=1}^n g^{\alpha\beta} \frac{\partial u^i}{\partial x_\alpha} \frac{\partial u^i}{\partial x_\beta}, \quad 1 \le i \le k,
$$

where $(g^{\alpha\beta}) = (g_{\alpha\beta})^{-1}$, and $dv_g = \sqrt{g} dx = \sqrt{\det(g_{\alpha\beta})} dx$ is the volume element of (Ω, ϱ) .

Let $d_g(x, y)$ and $d_0(x, y) \equiv |x - y|$ be the distance functions with respect to *g* and *g*₀ (the Euclidean metric), respectively. Since *g* is L^∞ -Riemannian metric on \mathbb{R}^n , it is easy to see that there exists $0 < C_A < +\infty$ such that

$$
C_{\Lambda}^{-1}d_0(x, y) \le d_g(x, y) \le C_{\Lambda}d_0(x, y), \quad \forall x, y \in \mathbf{R}^n. \tag{1.2}
$$

In particular, $f \in C^{\alpha}(\Omega, N)$ with respect to *g* iff $f \in C^{\alpha}(\Omega, N)$ with respect to *g*₀, and for any open set $U \subset \mathbf{R}^m$ and $1 \leq p < +\infty$,

$$
C_{\Lambda}^{-1} \int\limits_{U} |h|_{g}^{p} dv_{g} \leq \int\limits_{U} |h|^{p} dx \leq C_{\Lambda} \int\limits_{U} |h|_{g}^{p} dv_{g} \tag{1.3}
$$

holds for any vector field $h \in L^p(U, \mathbf{R}^n)$, here $|h| = (\sum_{i=1}^n h_i^2)^{\frac{1}{2}}$ and dx is the volume element of *g*0.

Definition 1 A map $u \in W^{1,2}(\Omega, N)$ is a weakly harmonic map, if it is a critical point of $E_2(\cdot)$.

It is readily seen that any weakly harmonic map $u \in W^{1,2}(\Omega, N)$ satisfies the harmonic map equation:

$$
\Delta_g u + A_g(u)(\nabla u, \nabla u) = 0, \quad \text{in } \mathcal{D}'(\Omega) \tag{1.4}
$$

where $\Delta_g = \frac{1}{\sqrt{g}} \sum_{\alpha,\beta=1}^n \frac{\partial}{\partial x_\alpha} (\sqrt{g} g^{\alpha\beta} \frac{\partial}{\partial x_\beta})$ is the Laplace-Beltrami operator of (Ω, g) , and $A(y)(\cdot, \cdot): T_yN \times T_yN \to (T_yN)^{\perp}, y \in N$ is the second fundamental form of $N \subset \mathbb{R}^k$, and

$$
A_g(u)(\nabla u, \nabla u) = \sum_{\alpha,\beta=1}^n g^{\alpha\beta} A(u) \left(\frac{\partial u}{\partial x_\alpha}, \frac{\partial u}{\partial x_\beta} \right).
$$

Regularity of harmonic maps from manifolds with C^{∞} -Riemannian metrics *g* has been extensively studied by many people. Schoen-Uhlenbeck [\[21](#page-18-0)], Giaquinta-Guisti [\[9\]](#page-18-1) independently proved that any minimizing harmonic map is smooth off a closed set whose Hausdorff dimension is at most $(n - 3)$. Hélein [\[12](#page-18-2)[,13\]](#page-18-3) proved that any weakly harmonic map from a Riemannian surface is smooth. Evans [\[6\]](#page-18-4) and Bethuel [\[1](#page-18-5)] proved that any stationary harmonic map in dimensions at least three is smooth off a closed set of zero (*n* −2)-dimensional Hausdorff measure.

In this paper, we are mainly interested in seeking the minimal regularity assumption on Riemannian metrics *g* such that any weakly harmonic map $u \in W^{1,2}(\Omega, N)$ enjoys (partial) Hölder continuity.

In this context, our first theorem is

Theorem A *For n* = 2 *and a* L^{∞} *-Riemannian metric g on* \mathbb{R}^{n} *, let u* $\in W^{1,2}(\Omega, N)$ *be a weakly harmonic map. Then* $u \in C^{\alpha}(\Omega, N)$ *for some* $\alpha \in (0, 1)$ *.*

Remark 1 For $n > 2$, if, in addition, $g \in C^{m,\beta}(\Omega)$ for some $m > 0$ and $\beta \in (0,1)$ and $N \in C^{m+5}$, then theorem [A](#page-2-1) and the theory of higher regularity of harmonic maps (cf. Giaquinta [\[8\]](#page-18-6)) imply that if $u \in C^{\alpha}(\Omega, N)$, then $u \in C^{m+1,\delta}(\Omega, N)$ for $\delta = \min\{\alpha, \beta\}$.

For $n \geq 3$, Riviére [\[19](#page-18-7)] constructed an example of weakly harmonic map from B^3 to S^2 that is singular everywhere. It turns out that the stationarity or suitable energy monotonicity inequality plays a crucial role for the partial regularity of weakly harmonic maps. To this end, we introduce

Definition 2 (quasi-monotonicity inequality) A map $u \in W^{1,2}(\Omega, N)$ enjoys the quasimonotonicity inequality property, if there exist $K = K(n, g) > 0$ and $r_0 = r_0(n, g) > 0$ such that for any $x \in \Omega$ and $0 < r \le R < \min\{r_0, \text{dist}(x, \partial \Omega)\}\)$, we have

$$
r^{2-n} \int\limits_{B_r(x)} |\nabla u|^2 \, dx \le K R^{2-n} \int\limits_{B_R(x)} |\nabla u|^2 \, dx. \tag{1.5}
$$

Remark 2 (a) For $n = 2$, [\(1.5\)](#page-2-0) holds automatically for $u \in W^{1,2}(\Omega, N)$ with $K = 1$.

- (b) For $n \ge 3$ and $g \in C^2(\Omega)$, it is well-known that both minimizing harmonic maps and stationary (or C^2)-harmonic maps enjoy the quasi-monotonicity inequality property (cf. [\[21\]](#page-18-0), Preiss [\[18\]](#page-18-8), and Schoen [\[20\]](#page-18-9)).
- (c) In proposition [5.1](#page-12-0) and [5.2](#page-13-0) below, we verify that for $n \geq 3$, both minimizing harmonic maps with respect to Dini continuous *g* and stationary harmonic maps with respect to Lipschitz continuous *g* enjoy the quasi-monotonicity inequality property.

It is also well-known that certain regularity of the coefficients is necessary for the regularity of second order elliptic systems (cf. [\[8\]](#page-18-6)). To this end, we recall

Definition 3 (a) For any open set $U \subset \mathbb{R}^n$, a function $f \in BMO(U)$, if $f \in L^1_{loc}(U)$ and

$$
[f]_{\text{BMO}(U)} := \sup \left\{ \frac{1}{|B_r(x)|} \int\limits_{B_r(x)} |f - f_{x,r}| \mid B_r(x) \subset U \right\} < \infty
$$

where $f_{x,r} = \frac{1}{|B_r(x)|} \int_{B_r(x)} f$.

(b) For any open set $U \subset \mathbb{R}^n$, a function $f \in VMO(U)$, if $f \in BMO(U)$ and

$$
\lim_{r \to 0} \sup_{x \in U} [f] BMO_{(U \cap B_r(x))} = 0.
$$

Now we are ready to state our second theorem.

Theorem B *For n* \geq 3 *and* $g \in VMO(\Omega)$, suppose that $u \in W^{1,2}(\Omega, N)$ is a weakly har*monic map satisfying the quasi-monotonicity inequality* [\(1.5\)](#page-2-0)*. Then there exist a closed set* $\Sigma \subset \Omega$, with $H^{n-2}(\Sigma) = 0$, and $\alpha \in (0, 1)$ such that $u \in C^{\alpha}(\Omega \setminus \Sigma, N)$. Here H^{n-2} denotes *the* $(n-2)$ *-dimensional Hausdorff measure with respect to* g_0 *.*

We would like to mention that Shi [\[22](#page-18-10)] proved the partial regularity theorem, similar to theorem [B,](#page-2-2) for minimizing harmonic maps from manifolds with L^∞ -Riemannian metrics. However, the argument in [\[22](#page-18-10)] relies heavily on the minimality property. Our method is of PDE nature and partly motivated by the techniques developed by [\[1](#page-18-5)[,6](#page-18-4)[,12,](#page-18-2)[13](#page-18-3)].

The paper is written as follows. In Sect. 2, for any C^5 -Riemannian manifold N, we outline the Coulomb gauge frame construction by Hélein [\[12](#page-18-2)[,13\]](#page-18-3) on $u^*TN|_{\Omega}$ with respect to *g*. In Sect. 3, we utilize the $W_0^{1,p}$ -solvablity theorem on $\nabla \cdot (A \nabla u) = \nabla \cdot F$ by Meyers [\[17\]](#page-18-11) $(n = 2)$ and Di Fazio $\overline{5}$ $(n > 3)$ for bounded measurable elliptic matrix *A* to obtain the Div-Curl decomposition theorem on (Ω, g) . In Sect. 4, we establish the decay Lemma on the $M^{p,n-p}$ norm of *u*, $||u||_{M^{p,n-p}(\cdot)}$, under the smallness condition of $||\nabla u||_{M^{2,n-2}(\cdot)}$. In Sect. 5, we provide two examples in which the quasi-monotonicity inequality (1.5) holds. In Sect. 6, we make some final remarks.

2 Construction of Coulomb gauge frame

In this section, we sketch the Coulomb gauge frame construction on *u*∗*T N* by Hélein [\[12](#page-18-2)[,13\]](#page-18-3) to (Ω, g) for any *C*⁵-Riemannian manifold *N* and *L*[∞]-Riemannian metric *g* on **R**^{*n*}.

Let $l = \dim(N)$. For any ball $B \subset \Omega$, $\{e_i\}_{i=1}^l \subset W^{1,2}(B, \mathbf{R}^k)$ is called to be a frame of u^*TN on *B*, if $\{e_i(x)\}_{i=1}^l$ forms an orthonormal base of $T_{u(x)}N$ for a.e. $x \in B$.

For a vector field $V = (V_1, \ldots, V_n) : \Omega \to \mathbf{R}^n$, define the divergence of V with respect to *g* by

$$
\operatorname{div}_g(V) = \sum_{\alpha,\beta=1}^n \frac{\partial}{\partial x_\alpha} (\sqrt{g} g^{\alpha\beta} V_\beta).
$$

First we have

Lemma 2.1 *Assume that there exist a C*⁵-Riemannian manifold $\hat{N} \subset \mathbb{R}^k$ and a totally geo*desic, isometric embedding* $i : N \to \hat{N}$. If $u \in W^{1,2}(\Omega, N)$ *solves* [\(1.4\)](#page-1-0), *then* $\hat{u} = i \circ u \in$ $W^{1,2}(\Omega, \hat{N})$ also solves [\(1.4\)](#page-1-0).

Proof Straightforward calculations (cf. Jost [\[14](#page-18-13)]) imply that

$$
\Delta_g \hat{u} = \nabla i(u)(\Delta_g u) + \sum_{\alpha,\beta=1}^n g^{\alpha\beta}(\nabla^2 i)(u) \left(\frac{\partial u}{\partial x_\alpha}, \frac{\partial u}{\partial x_\beta}\right)
$$

= $\nabla i(u)(A_g(u)(\nabla u, \nabla u))$
= $\hat{A}_g(\hat{u})(\nabla \hat{u}, \nabla \hat{u})$

where \hat{A} denotes the second fundamental form of \hat{N} in \mathbb{R}^k .

With help of Lemma [2.1](#page-3-0) and the enlargement construction by Hélein [\[12,](#page-18-2)[13](#page-18-3)], we may assume that *N* is parallelizable so that we have

Proposition 2.2 *Assume that* $N \in C^5$ *is parallelizable and g is* L^∞ *-Riemannian metric on* **R**^{*n*}. Let Ω ⊂ **R**^{*n*} *be a bounded domian and B* ⊂ Ω *be a ball. If u* ∈ *W*^{1,2}(*B*, *N*)*, then there exists a Coulomb gauge frame* ${e_i}_{i=1}^l \subset W^{1,2}(B, \mathbf{R}^k)$ *of* u^*TN *on B, i.e.*

$$
div_g(\langle \nabla e_i, e_j \rangle) = 0 \quad \text{in } B, \quad 1 \le i, \ j \le l \tag{2.1}
$$

$$
\sum_{\alpha,\beta=1}^{n} g^{\alpha\beta} \left\langle \frac{\partial e_i}{\partial x_{\beta}}, e_j \right\rangle x_{\beta} = 0 \quad on \ \partial B, \quad 1 \le i, j \le l,
$$
\n(2.2)

and

$$
\sum_{i=1}^{l} \int_{B} |\nabla e_i|^2 dx \le C \int_{B} |\nabla u|^2 dx.
$$
 (2.3)

Proof As *N* is parallelizable, there exists a smooth orthonormal frame $\{\hat{e}_i(y)\}_{i=1}^l$ of *TN*. For $1 \le i \le l$, define $\bar{e}_i(x) = \hat{e}_i(u(x))$ for a.e. $x \in B$. Then $\{\bar{e}_i\}_{i=1}^l$ forms a frame of u^*TN on *B*. Denote SO(*l*) as the special orthonormal group of order *l*, consider the minimization problem:

$$
\inf \left\{ \sum_{i,j=1}^{l} \int_{B} |\nabla (R_{ij} \bar{e}_j)|_g^2 dv_g : R = (R_{ij}) \in W^{1,2}(B, \text{SO}(l)) \right\}.
$$
 (2.4)

By the direct method, there is $R^0 \in W^{1,2}(B, SO(l))$ such that $e_\alpha(x) = \sum_{\beta=1}^l R^0_{\alpha\beta}(x) \bar{e}_\beta(x)$, $1 < \alpha < l$, satisfies

$$
\sum_{\alpha=1}^{l} \int_{B} |\nabla e_{\alpha}|_{g}^{2} dv_{g} \leq \sum_{\alpha,\beta=1}^{l} \int_{B} |\nabla (R_{\alpha\beta}\bar{e}_{\beta})|_{g}^{2} dv_{g}, \quad \forall R \in W^{1,2}(B, \text{SO}(l)).\tag{2.5}
$$

In particular, we have

$$
\sum_{\alpha=1}^l \int_{B} |\nabla e_{\alpha}|_g^2 dv_g \le \sum_{\alpha,\beta=1}^l \int_{B} |\nabla(\delta_{\alpha\beta}\bar{e}_{\beta})|_g^2 dv_g \le C \int_{B} |\nabla u|_g^2 dv_g. \tag{2.6}
$$

This, combined with (1.3) , implies (2.3) . Moreover, the first variation similar to $[12,13]$ $[12,13]$ implies that $\langle \nabla e_i, e_j \rangle$, $1 \leq i, j \leq l$, satisfies the Euler–Lagrange equation [\(2.1\)](#page-3-1) and the Neumann condition (2.2) . Hence the proof is complete.

3 Div–curl decomposition

In this section, we prove that if the metric *g* is either L^{∞} for $n = 2$ or in VMO(Ω) for $n > 3$, then the div–curl decomposition holds, namely, *any* $F \in L^p(\Omega, \mathbb{R}^n)$ *can be decomposed into the sum of* ∇G *, with* $G \in W_0^{1,p}(\Omega)$ *, and a div_g-free* $H \in L^p(\Omega, \mathbf{R}^n)$ *, for p sufficiently close to* $\frac{n}{n-1}$. The key ingredients are $W_0^{1,p}$ -solvability results by Meyers [\[17](#page-18-11)] for $n = 2$, and Di Fazio $[5]$ $[5]$ for $n \geq 3$.

More precisely, we have

Theorem 3.1 Let g be L^{∞} -Riemannian metric on \mathbb{R}^n and $B \subset \Omega \subset \mathbb{R}^n$ be a ball. If, in *addition*, $g \in VMO(\Omega)$ *for* $n \geq 3$ *, then there exists* $\delta_0 = \delta(n, g) > 0$ *such that for* $p \in$ $\left(\frac{n}{n-1}-\delta_0,\frac{n}{n-1}+\delta_0\right)$ and any $F \in L^p(B, \mathbf{R}^n)$ there exist $G \in W_0^{1,p}(B)$ and $H \in L^p(B, \mathbf{R}^n)$, *with div_g*(\hat{H}) = 0 *in* Ω *, such that*

$$
F = \nabla G + H \quad \text{in} \quad B,\tag{3.1}
$$

and

$$
\|\nabla G\|_{L^p(B)} + \|H\|_{L^p(B)} \le C(p, g) \|F\|_{L^p(B)} \tag{3.2}
$$

where $L^p(B)$ *is* L^p *-space with respect to g₀.*

The proof of Theorem [3.1](#page-4-1) relies on the following $W_0^{1,p}$ -solvability result.

Proposition 3.2 [\[17\]](#page-18-11) *For n* \geq 2 *and any ball B* $\subset \Omega$ *, assume that* $A = (a_{ij}) \in L^{\infty}(B, \mathbb{R}^{n \times n})$ *is symmetric and uniformly elliptic, then there exists* $\delta_0 = \delta_0(n) > 0$ *such that, for any* $p \in (2 - \delta_0, 2 + \delta_0)$ *and* $F \in L^p(B, \mathbf{R}^n)$, *there exists a unique solution* $u \in W_0^{1,p}(B)$ *to the Dirichlet problem*:

$$
\sum_{i,j=1}^{n} \frac{\partial}{\partial x_i} \left(a_{ij} \frac{\partial u}{\partial x_j} \right) = \sum_{i=1}^{n} \frac{\partial F_i}{\partial x_i}, \quad \text{in } B,
$$

 $u = 0, \quad \text{on } \partial B.$ (3.3)

Moreover,

$$
\|\nabla u\|_{L^p(B)} \le C(p, A) \|F\|_{L^p(B)}.
$$
\n(3.4)

Proposition 3.3 [\[5\]](#page-18-12) *For n* \geq 3 *and ball B* $\subset \Omega$ *, assume that* $A = (a_{ij}) \in L^{\infty} \cap \Omega$ *VMO*(*B*, $\mathbb{R}^{n \times n}$) *is symmetric and uniformly elliptic, then for any* $p \in (1, +\infty)$ *and* $F \in$ $L^p(B, \mathbf{R}^n)$ *, there exists a unique solution* $u \in W_0^{1,p}(B)$ *<i>to* [\(3.3\)](#page-5-0) *satisfying* [\(3.4\)](#page-5-1)*.*

Proof of Theorem [3.1](#page-4-1) Consider the Dirichlet problem:

$$
\text{div}_g(\nabla G) = \text{div}_g(F), \text{ in } B
$$

$$
G = 0, \text{ on } \partial B.
$$
 (3.5)

Observe that (3.5) is equivalent to

$$
\sum_{i,j=1}^{n} \frac{\partial}{\partial x_i} \left(a_{ij} \frac{\partial G}{\partial x_j} \right) = \sum_{i=1}^{n} \frac{\partial \hat{F}_i}{\partial x_i}, \text{ in } B
$$

$$
G = 0, \text{ on } \partial B
$$
 (3.6)

where $a_{ij} = \sqrt{g}g^{ij}$ and $\hat{F}_i = \sum_{j=1}^n \sqrt{g}g^{ij}F_j$. Since *g* satisfies [\(1.1\)](#page-0-0), it is easy to see that (a_{ij}) ∈ $L^\infty(B, \mathbf{R}^{n \times n})$ is symmetric and uniformly elliptic. Moreover, we have $\|\hat{F}\|_{L^p(B)}$ ≤ $||F||_{L^p(B)}$. For $n = 2$, Proposition [3.2](#page-5-3) implies that there exists $\delta_0 > 0$ such that [\(3.5\)](#page-5-2) is uniquely solvable in $W_0^{1,p}(B)$ for any $p \in (2 - \delta_0, 2 + \delta_0)$. For $n \ge 3$, since $g \in VMO(B)$ implies (a_{ij}) ∈ VMO(*B*), Proposition [3.3](#page-5-4) implies [\(3.5\)](#page-5-2) is uniquely solvable in $W_0^{1,p}(B)$ for any $1 < p < \infty$. Set $H = F - \nabla G$, [\(3.5\)](#page-5-2) implies div_g(*H*) = 0 in *B*. Moreover, for any $p \in (\frac{n}{n-1} - \delta_0, \frac{n}{n-1} + \delta_0)$, [\(3.4\)](#page-5-1) yields

$$
||H||_{L^{p}(B)} \le ||F||_{L^{p}(B)} + ||\nabla G||_{L^{p}(B)} \le C ||F||_{L^{p}(B)}.
$$
\n(3.7)

The completes the proof of Theorem [3.1.](#page-4-1)

4 Decay estimate in Morrey spaces

In this section, we prove both Theorems [A](#page-2-1) and [B.](#page-2-2) The crucial step is to establish that under the smallness condition of $\|\nabla u\|_{M^{2,n-2}(B)}$, $\|u\|_{M^{p,n-p}(B_r)}$ decays as r^{α} for some $\alpha \in (0, 1)$. The ideas are suitable modifications of techniques developed by Hélein [\[12,](#page-18-2)[13](#page-18-3)], Evans [\[6\]](#page-18-4), and Bethuel [\[1](#page-18-5)]. In order to achieve it, we need two new ingredients: (1) the div–curl decomposition Proposition 3.1, and (2) a new approach to estimate the L^p norm of div_g-free vector fields.

First we define Morrey spaces.

Definition 4.1 For $1 \leq p \leq n$ and any open set $U \subset \mathbb{R}^n$, the Morrey space $M^{p,n-p}(U)$ is defined by

$$
M^{p,n-p}(U) = \left\{ f \in L^p(U) \mid \|f\|_{M^{p,n-p}(U)}^p \equiv \sup_{B_r(x) \subset U} \left\{ r^{p-n} \int_{B_r(x)} |f|^p dx \right\} < +\infty \right\}.
$$

Now we have

Lemma 4.1 (ϵ_0 -decay estimate) *For any bounded domain* $\Omega \subset \mathbb{R}^n$ *and* L^∞ -*Riemannian metric g on* \mathbb{R}^n . If, *in addition*, $g \in VMO(\Omega)$ *for* $n \geq 3$, *then there exist* $\delta_n > 0$, $\epsilon_0 =$ $\epsilon_0(g, N) > 0$, and $\theta_0 = \theta_0(g, N) \in (0, \frac{1}{2})$ such that if $u \in W^{1,2}(\Omega, N)$ is a weakly *harmonic map satisfying the quasi-monotonicity inequality* [\(1.5\)](#page-2-0), *and for* $B_r(x) \subset \Omega$,

$$
r^{2-n} \int\limits_{B_r(x)} |\nabla u|_g^2 dv_g \le \epsilon_0^2 \tag{4.1}
$$

then, for any $p \in \left(\frac{n}{n-1} - \delta_n, \frac{n}{n-1}\right)$,

$$
\|\nabla u\|_{M^{p,n-p}(B_{\theta_0 r}(x))} \le \frac{1}{2} \|\nabla u\|_{M^{p,n-p}(B_r(x))}.
$$
\n(4.2)

Proof of Lemma [4.1](#page-6-0) By Lemma [2.1,](#page-3-0) assume that *N* is parallelizable. For $x \in \Omega$ and $r > 0$, let $g_{x,r}(y) = g(x + ry)$ and $u_{x,r}(y) = u(x + ry)$ for $y \in B$. Observe that $g_{x,r}$ is *L*[∞]-Riemannian metric on *B* and $u_{x,r}$ ∈ $W^{1,2}(B, N)$ is a weakly harmonic map with respect to $g_{x,r}$, satisfies the quasi-monotonicity inequality [\(1.5\)](#page-2-0), and

$$
\int_{B} |\nabla u|_{g_{x,r}}^2 dv_{g_{x,r}} = r^{2-n} \int_{B_r(x)} |\nabla u|_g^2 dv_g \le \epsilon_0^2.
$$
\n(4.3)

Hence, without loss of generality, assume $x = 0$ and $r = 1$. It follows from [\(1.5\)](#page-2-0) that there exists $K > 0$ such that

$$
\|\nabla u\|_{M^{2,n-2}(B_{\frac{1}{2}})} \le K \|\nabla u\|_{L^2(B)} \le K\epsilon_0^2. \tag{4.4}
$$

For any $\theta \in (0, \frac{1}{2})$, let $B_{2\theta} \subset B_{\frac{1}{2}}$ be an arbitrary ball of radius 2θ and $\eta \in C_0^{\infty}(B)$ be such that $0 \le \eta \le 1$, $\eta \equiv 1$ on B_θ , $\eta = 0$ outside $B_{2\theta}$, and $|\nabla \eta| \le 2\theta^{-1}$. Denote the average of *u* over $B_{2\theta}$ by $u_{2\theta} = \frac{1}{|B_{2\theta}|} \int_{B_{2\theta}} u \, dv_g$, and $|B_{2\theta}|$ is the volume of $B_{2\theta}$ with respect to *g*.

Let ${e_{\alpha}}_{\alpha=1}^{l} \in W^{1,2}(B_{2\theta}, \mathbf{R}^{k})$ be the Coulomb gauge frame of u^*TN on $B_{2\theta}$ given by Proposition [2.2.](#page-3-2)

Let

$$
\langle p, q \rangle = \sum_{i=1}^{n} p_i q_i, \ \langle p, g \rangle_g = \sum_{i,j=1}^{n} g^{ij} p_i q_j, \quad p = (p_1, \dots, p_n), \ q = (q_1, \dots, q_n) \in \mathbb{R}^n
$$

denote the inner products with respect to g_0 and g on \mathbb{R}^n , respectively.

By Theorem [3.1,](#page-4-1) there exists $\delta_n > 0$ such that for any $p \in (\frac{n}{n-1} - \delta_n, \frac{n}{n-1})$, there are $\phi_{\alpha} \in W_0^{1,p}(B_{2\theta})$ and $\psi_{\alpha} \in L^p(B_{2\theta})$ such that

$$
\langle \nabla ((u - u_{2\theta})\eta), e_{\alpha} \rangle = \nabla \phi_{\alpha} + \psi_{\alpha}, \quad \text{div}_g(\psi_{\alpha}) = 0, \quad \text{in } B_{2\theta}, \tag{4.5}
$$

and

$$
\|\nabla \phi_{\alpha}\|_{L^p(B_{2\theta})} + \|\psi_{\alpha}\|_{L^p(B_{2\theta})} \leq C \|\nabla ((u - u_{2\theta})\eta)\|_{L^p(B_{2\theta})} \leq C \|\nabla u\|_{L^p(B_{2\theta})} \tag{4.6}
$$

where we have used the Poincaré inequality in the last inequality of (4.6) .

Using the Coulomb gauge frame $\{e_{\alpha}\}_{\alpha=1}^{l}$, [\(1.4\)](#page-1-0) can be written as:

$$
\operatorname{div}_g(\langle \nabla u, e_\alpha \rangle) = \sum_{\beta=1}^l \sum_{i,j=1}^n g^{ij} \left\langle \frac{\partial u}{\partial x_i}, \left\langle \frac{\partial e_\alpha}{\partial x_j}, e_\beta \right\rangle \right\rangle e_\beta \quad \text{in } B_{2\theta}.\tag{4.7}
$$

We estimate ϕ_{α} , ψ_{α} as follows. Let $\phi_{\alpha}^{(1)} \in W^{1,2}(B_{\theta})$ be the weak solution of

$$
\sum_{i,j=1}^{n} \frac{\partial}{\partial x_i} \left(a_{ij} \frac{\partial \phi_{\alpha}^{(1)}}{\partial x_j} \right) = 0, \quad \text{in } B_{\theta}
$$
 (4.8)

$$
\phi_{\alpha}^{(1)} = \phi_{\alpha}, \quad \text{on } \partial B_{\theta}.
$$
\n(4.9)

where $a_{ij} = \sqrt{g}g^{ij}$, $1 \le i, j \le n$. Let $\phi_{\alpha}^{(2)} = \phi_{\alpha} - \phi_{\alpha}^{(1)}$, then $\phi_{\alpha}^{(2)}$ satisfies

$$
\sum_{i,j=1}^{n} \frac{\partial}{\partial x_i} \left(a_{ij} \frac{\partial \phi_{\alpha}^{(2)}}{\partial x_j} \right) = \sum_{\beta=1}^{l} \sum_{i,j=1}^{n} g^{ij} \left\langle \frac{\partial u}{\partial x_i}, \left\langle \frac{\partial e_{\alpha}}{\partial x_j}, e_{\beta} \right\rangle \right\rangle e_{\beta}, \text{ in } B_{\theta}, \quad (4.10)
$$

$$
\phi_{\alpha}^{(2)} = 0, \quad \text{on } \partial B_{\theta}.\tag{4.11}
$$

Step I(a) Estimation of $\nabla \phi_{\alpha}^{(1)}$.

It is well-known (cf. [\[11](#page-18-14)]) that there exists $\delta \in (0, 1)$ such that $\phi_{\alpha}^{(1)} \in C^{\delta}(B_{\theta})$, and for any $0 < r \leq \frac{\theta}{2}$ and $p > 1$,

$$
[\phi_\alpha^{(1)}]_{C^\delta(B_r)}^p \leq C\theta^{p-n} \int\limits_{B_\theta} |\nabla \phi_\alpha^{(1)}|^p dx, \quad 0 < r \leq \frac{\theta}{2}.
$$

On the other hand, since $\phi_{\alpha}^{(2)} \in W_0^{1,2}(B_\theta)$ satisfies

$$
\sum_{i,j=1}^n \frac{\partial}{\partial x_i} \left(a_{ij} \frac{\partial \phi_\alpha^{(2)}}{\partial x_j} \right) = \sum_{i,j=1}^n \frac{\partial}{\partial x_i} \left(a_{ij} \frac{\partial \phi_\alpha}{\partial x_j} \right), \quad \text{in } B_\theta,
$$

Theorem [3.1](#page-4-1) implies that there exists $\delta_n > 0$ such that, for $p \in (\frac{n}{n-1} - \delta_n, \frac{n}{n-1})$,

$$
\|\nabla \phi_\alpha^{(2)}\|_{L^p(B_\theta)} \leq C \|\nabla \phi_\alpha\|_{L^p(B_\theta)} \leq C \|\nabla u\|_{L^p(B_{2\theta})}.
$$

In particular, we have

$$
\|\nabla \phi_{\alpha}^{(1)}\|_{L^p(B_\theta)} \le \|\nabla \phi_{\alpha}\|_{L^p(B_\theta)} + \|\nabla \phi_{\alpha}^{(2)}\|_{L^p(B_\theta)} \le C \|\nabla u\|_{L^p(B_{2\theta})},
$$

and, for $0 < r \leq \frac{\theta}{2}$ and $p \in (\frac{n}{n-1} - \delta_n, \frac{n}{n-1})$,

$$
[\phi_\alpha^{(1)}]_{C^{\delta}(B_r)}^p \leq C\theta^{p-n} \int\limits_{B_{2\theta}} |\nabla u|^p \, dx.
$$

 $\hat{\mathcal{D}}$ Springer

This, combined with the Cacciopolli inequality, implies that for any $\tau \in (0, \frac{1}{4})$ and $p \in$ $\left(\frac{n}{n-1} - \delta_n, \frac{n}{n-1}\right)$, we have

$$
(\tau \theta)^{p-n} \int\limits_{B_{\tau \theta}} |\nabla \phi_{\alpha}^{(1)}|^p dx \le C [\phi_{\alpha}^{(1)}]_{C^{\delta}(B_{2\tau \theta})}^p
$$

\n
$$
\le C \tau^{p\delta} \theta^{p-n} \int\limits_{B_{2\theta}} |\nabla u|^p dx \qquad (4.12)
$$

\n
$$
\le C \tau^{p\delta} \|\nabla u\|_{M^{p,n-p}(B_1)}.
$$

Step I(b) Estimation of $\nabla \phi_{\alpha}^{(2)}$.

First, we claim

There exists $\delta_n > 0$ *such that for any* $p \in (\frac{n}{n-1} - \delta_n, \frac{n}{n-1})$ *, if* $f \in W_0^{1,p}(B_\theta)$ *then*

$$
\|\nabla f\|_{L^p(B_\theta)} \le C \sup \left\{ \int_{B_\theta} \langle \nabla f, \nabla v \rangle_g \, dv_g : v \in W_0^{1, p'}(B_\theta), \|\nabla v\|_{L^{p'}(B_\theta)} = 1 \right\} \tag{4.13}
$$

where $p' = \frac{p}{p-1}$ *.*

To see [\(4.13\)](#page-8-0), observe that by L^p -duality, there exists $v \in L^{p'}(B_\theta)$, with $||v||_{L^{p'}(B_\theta)} = 1$, such that

$$
\|\nabla f\|_{L^p(B_\theta)} \le C \int_{B_\theta} \langle \nabla f, v \rangle_g \, dv_g. \tag{4.14}
$$

On the other hand, by Theorem [3.1,](#page-4-1) there exists $\delta_n > 0$ such that if $p \in (\frac{n}{n-1} - \delta_n, \frac{n}{n-1})$, then there exist $v_1 \in W_0^{1,p'}(B_\theta)$ and $v_2 \in L^{p'}(B_\theta, \mathbf{R}^n)$, with div_g(v_2) = 0 in B_θ , such that

$$
v = \nabla v_1 + v_2 \quad \text{in } B_\theta, \ \|\nabla v_1\|_{L^{p'}(B_\theta)} + \|v_2\|_{L^{p'}(B_\theta)} \le C \|v\|_{L^{p'}(B_\theta)}.
$$
 (4.15)

This and [\(4.14\)](#page-8-1) imply

$$
\begin{aligned} \|\nabla f\|_{L^p(B_\theta)} &\leq C \left(\int\limits_{B_\theta} \langle \nabla f, \nabla v_1 \rangle_g \, dv_g + \int\limits_{B_\theta} \langle \nabla f, v_2 \rangle_g \, dv_g \right) \\ &= C \int\limits_{B_\theta} \langle \nabla f, \nabla v_1 \rangle_g \, dv_g, \end{aligned}
$$

where we have used div_g(v_2) = 0 in the last step. Hence [\(4.13\)](#page-8-0) holds.

Applying [\(4.13\)](#page-8-0) to eqn. [\(4.7\)](#page-7-1), we have that for $p \in (\frac{n}{n-1} - \delta_n, \frac{n}{n-1})$, there exists $v \in$ $W_0^{1,p'}(B_\theta)$ such that

$$
\|\nabla \phi_{\alpha}^{(2)}\|_{L^{p}(B_{\theta})} \leq C \int_{B_{\theta}} \langle \nabla \phi_{\alpha}^{(2)}, \nabla v \rangle_{g} dv_{g}
$$

=
$$
-C \sum_{\beta=1}^{l} \sum_{i,j=1}^{n} \int_{B_{\theta}} \sqrt{g} g^{ij} \left\langle \frac{\partial u}{\partial x_{i}}, \left\langle \frac{\partial e_{\alpha}}{\partial x_{j}}, e_{\beta} \right\rangle \right\rangle (e_{\beta} v) dx.
$$
 (4.16)

To estimate the right hand side, we need the Hardy-BMO duality theorem (cf. [\[7](#page-18-15)]) and the tri-linear estimate (cf. $[3,6]$ $[3,6]$ $[3,6]$).

Proposition 4.2 ([\[6](#page-18-4)]) *Suppose that* $f \in W^{1,2}(\mathbb{R}^n)$ *,* $h \in L^2(\mathbb{R}^n, \mathbb{R}^n)$ *with div*(*h*) = $\sum_{i=1}^n$ $\frac{\partial h_i}{\partial x_i}$ = 0*, and v* ∈ *BMO*(\mathbb{R}^n)*. Then we have*

$$
\left| \int_{\mathbf{R}^n} \langle \nabla f, h \rangle v \, dx \right| \le C \|\nabla f\|_{L^2(\mathbf{R}^n)} \|h\|_{L^2(\mathbf{R}^n)} \|v\|_{BMO(\mathbf{R}^n)}.
$$
\n(4.17)

Let $\hat{u}: \mathbb{R}^n \to \mathbb{R}^k$ be an extension of *u* such that

$$
\|\nabla \hat{u}\|_{L^{2}(\mathbf{R}^{n})} \leq C \|\nabla u\|_{L^{2}(B_{2\theta})}, \quad [\hat{u}]_{\text{BMO}(\mathbf{R}^{n})} \leq C[u]_{\text{BMO}(B_{2\theta})}. \tag{4.18}
$$

Let $w_{\alpha}^i = \sum_{\beta=1}^l \sum_{j=1}^n \sqrt{g} g^{ij} \langle \frac{\partial e_{\alpha}}{\partial x_j}, e_{\beta} \rangle$, $1 \le i \le n$, and $w_{\alpha} = (w_{\alpha}^1, \dots, w_{\alpha}^n)$. Then, by (2.1) , we have

$$
\operatorname{div}(w_{\alpha}) = \sum_{i=1}^{n} \frac{\partial w_{\alpha}^{i}}{\partial x_{i}} = \sqrt{g} \sum_{\beta=1}^{l} \operatorname{div}_{g}(\langle \nabla e_{\alpha}, e_{\beta} \rangle) = 0 \text{ on } B_{2\theta}.
$$

This, combined with [\(2.2\)](#page-3-1), implies that there exists an extension $\hat{w}_{\alpha} \in L^2(\mathbf{R}^n, \mathbf{R}^n)$ of w_{α} such that

$$
\operatorname{div}(\hat{w}_{\alpha}) = 0 \text{ in } \mathbf{R}^n, \quad \|\hat{w}_{\alpha}\|_{L^2(\mathbf{R}^n)} \le C \|w_{\alpha}\|_{L^2(B_{2\theta})} \le C \|\nabla u\|_{L^2(B_{2\theta})}. \tag{4.19}
$$

Putting (4.17) – (4.19) into (4.16) , we have

$$
\begin{split} \|\nabla \phi_{\alpha}^{(2)}\|_{L^{p}(B_{\theta})} &\leq -C \int \langle \nabla u, \hat{\omega}_{\alpha} \rangle (ve_{\alpha}) \, dx \\ &= C \int \langle \hat{u}, \hat{w}_{\alpha} \rangle \nabla (ve_{\alpha}) \, dx \\ &\leq C [\hat{u}]_{\text{BMO}(\mathbf{R}^{n})} \|\hat{w}_{\alpha}\|_{L^{2}(\mathbf{R}^{n})} \|\nabla (ve_{\alpha})\|_{L^{2}(\mathbf{R}^{n})} \\ &\leq C \|\nabla u\|_{L^{2}(B_{2\theta})} [u]_{\text{BMO}(B_{2\theta})} \|\nabla (ve_{\alpha})\|_{L^{2}(B_{\theta})}. \end{split} \tag{4.20}
$$

To estimate $\|\nabla(v e_{\alpha})\|_{L^2(B_\theta)}$, note that for $p \in (1, \frac{n}{n-1})$, $p' = \frac{p}{p-1} > n$ and hence the Sobolev embedding theorem implies $v \in W_0^{1,p'}(B_\theta) \subset C_0^{1-\frac{n}{p'}}(B_\theta)$, and

$$
||v||_{L^{\infty}(B_{\theta})} \leq C\theta^{1-\frac{n}{p'}} = C\theta^{1-n+\frac{n}{p}}.
$$
\n(4.21)

Moreover, by Hölder inequality, we have

$$
\|\nabla v\|_{L^{2}(B_{\theta})} \leq C\theta^{\frac{n}{2}-\frac{n}{p'}}\|\nabla v\|_{L^{p'}(B_{\theta})} \leq C\theta^{\frac{n}{p}-\frac{n}{2}}.
$$
\n(4.22)

Therefore we have

$$
\begin{split} \|\nabla(\nu e_{\alpha})\|_{L^{2}(B_{\theta})} &\leq C(\|\nabla v\|_{L^{2}(B_{\theta})} + \|v\|_{L^{\infty}(B_{\theta})} \|\nabla e_{\alpha}\|_{L^{2}(B_{\theta})}) \\ &\leq C\theta^{\frac{n}{p} - \frac{n}{2}} [1 + \theta^{1 - \frac{n}{2}} \|\nabla u\|_{L^{2}(B_{2\theta})}] \\ &\leq C\theta^{\frac{n}{p} - \frac{n}{2}} (1 + \|\nabla u\|_{M^{2,n-2}(B_1)}) \\ &\leq C\theta^{\frac{n}{p} - \frac{n}{2}} (1 + \epsilon_0) \leq C\theta^{\frac{n}{p} - \frac{n}{2}} . \end{split} \tag{4.23}
$$

 \bigcirc Springer

Putting [\(4.23\)](#page-9-2) into [\(4.20\)](#page-9-3), and combining with [\(4.12\)](#page-8-3), we have, for any $\tau \in (0, \frac{1}{4})$,

$$
\left\{ (\tau \theta)^{p-n} \int\limits_{B_{\tau \theta}} |\nabla \phi_{\alpha}|^p dx \right\}^{\frac{1}{p}} \le C[\tau^{\delta} + \tau^{1-\frac{n}{p}} \epsilon_0] \|\nabla u\|_{M^{p,n-p}(B_1)} \tag{4.24}
$$

where we have used the Poincaré inequality:

$$
[u]_{BMO(B_{2\theta})} \le C \|\nabla u\|_{M^{p,n-p}(B_{2\theta})} \le C \|\nabla u\|_{M^{p,n-p}(B_1)}.
$$
\n(4.25)

Step II Estimation of ψ_{α} .

It follows from [\(4.5\)](#page-6-1) and Proposition [4.2](#page-9-4) that we have

$$
\int_{B_{\theta}} |\psi_{\alpha}|_{g}^{2} dv_{g} = \sum_{i,j=1}^{n} \int_{B_{\theta}} a_{ij} \psi_{\alpha}^{i} \psi_{\alpha}^{j} dx
$$
\n
$$
= \sum_{i,j=1}^{n} \int_{B_{\theta}} a_{ij} \psi_{\alpha}^{i} \left\langle \frac{\partial ((u - u_{2\theta})\eta)}{\partial x_{j}}, e_{\alpha} \right\rangle dx
$$
\n
$$
- \sum_{i,j=1}^{n} \int_{B_{\theta}} a_{ij} \psi_{\alpha}^{i} \frac{\partial \phi_{\alpha}}{\partial x_{j}} dx
$$
\n
$$
= - \sum_{i,j=1}^{n} \int_{B_{\theta}} a_{ij} \psi_{\alpha}^{i} \left\langle (u - u_{2\theta})\eta, \frac{\partial e_{\alpha}}{\partial x_{j}} \right\rangle dx
$$
\n
$$
\leq C ||\psi_{\alpha}||_{L^{2}(B_{\theta})} ||\nabla e_{\alpha}||_{L^{2}(B_{\theta})} ||(\nabla u ||_{H^{p,n-p}(B_{1})})
$$
\n
$$
\leq C ||\psi_{\alpha}||_{L^{2}(B_{\theta})} ||\nabla u||_{L^{2}(B_{\theta})} ||\nabla u||_{H^{p,n-p}(B_{1})}
$$
\n(4.26)

where we have used the fact div_g(ψ_{α}) = 0, i.e.

$$
\sum_{i,j=1}^n \int_{B_\theta} a_{ij} \psi_\alpha^i \frac{\partial \eta}{\partial x_j} dx = 0, \quad \forall \eta \in W_0^{1,2}(B_\theta),
$$

and

$$
[(u - u_{2\theta})\eta]_{\text{BMO}(B_{\theta})} \le C[u]_{\text{BMO}(B_{2\theta})} \le C\|\nabla u\|_{M^{p,n-p}(B_1)}.
$$
 (4.27)

By Hölder inequality, [\(4.26\)](#page-10-0) yields

$$
\left\{\theta^{p-n} \int\limits_{B_{\theta}} |\psi_{\alpha}|^p dx \right\}^{\frac{1}{p}} \leq C\epsilon_0 \|\nabla u\|_{M^{p,n-p}(B_1)}.
$$
\n(4.28)

It follows from [\(4.5\)](#page-6-1), [\(4.24\)](#page-10-1), and [\(4.28\)](#page-10-2) that for any $\tau \in (0, \frac{1}{4})$, any ball $B_{2\theta} \subset B_{\frac{1}{2}}$,

$$
\left\{ (\tau \theta)^{p-n} \int\limits_{B_{\tau \theta}} |\nabla u|^p dx \right\}^{\frac{1}{p}} \leq C (\tau^{\delta} + \tau^{1-\frac{n}{p}} \epsilon_0) \|\nabla u\|_{M^{p,n-p}(B_1)}.
$$
 (4.29)

² Springer

Taking superum over all balls $B_{2\theta} \subset B_{\frac{1}{2}}$, we have

$$
\|\nabla u\|_{M^{p,n-p}(B_{\frac{r}{2}})} \le C(\tau^{\delta} + \tau^{1-\frac{n}{p}} \epsilon_0) \|\nabla u\|_{M^{p,n-p}(B_1)}.
$$
\n(4.30)

Therefore, by choosing $\tau = \tau_1 = 4C^{-\frac{1}{\delta}}$ and $\epsilon_0 = \frac{1}{4C} \tau_0^{\frac{n}{\rho}-1}$ sufficiently small, we have, for $\tau_0 = \frac{\tau_1}{2} > 0,$

$$
\|\nabla u\|_{M^{p,n-p}(B_{\tau_0})} \le \frac{1}{2} \|\nabla u\|_{M^{p,n-p}(B_1)}.
$$
\n(4.31)

This completes the proof of Lemma [4.1.](#page-6-0)

Proof of Theorem [A](#page-2-1) For $n = 2$, the absolute continuity of $\int |\nabla u|^2$ implies that there exists $r_0 > 0$ such that

$$
\int_{B_r(x)} |\nabla u|^2 dx \le \epsilon_0^2, \quad \forall r \le r_0, \ x \in \Omega.
$$
 (4.32)

Hence, applying Lemma [4.1](#page-6-0) repeatedly, we have that for some $p \in (1, 2)$ and $\tau_0 \in (0, \frac{1}{2})$,

$$
(\tau_0^m r_0)^{p-2} \int\limits_{B_{\tau_0^m r_0}(x)} |\nabla u|^p \le 2^{-pm} \epsilon_0^p, \quad \forall m \ge 1, \quad \forall x \in \Omega.
$$
 (4.33)

This implies that there exists $\alpha_0 \in (0, 1)$ such that

$$
r^{p-2} \int\limits_{B_r(x)} |\nabla u|^p \le C(\epsilon_0, p) r^{\alpha}, \quad \forall r \in (0, r_0), \ x \in \Omega.
$$
 (4.34)

Hence, by Morrey's Lemma (cf. [\[8](#page-18-6)]), we conclude $u \in C^{\alpha}(\Omega, N)$. This completes the proof of Theorem [A.](#page-2-1)

Proof of Theorem [B](#page-2-2) Define

$$
\Sigma = \left\{ x \in \Omega : \lim_{r \downarrow 0} r^{2-n} \int\limits_{B_r(x)} |\nabla u|^2 \geq \epsilon_0^2 \right\}.
$$

It is well-known (cf. [\[21\]](#page-18-0)) that $H^{n-2}(\Sigma) = 0$. Moreover, by Lemma [4.1,](#page-6-0) $\Sigma \subset \Omega$ is a closed set. For any $x_0 \in \Omega \backslash \Sigma$, there exists $r_0 > 0$ such that $B_{2r_0}(x_0) \cap \Sigma = \emptyset$, and

$$
r^{2-n} \int\limits_{B_r(x)} |\nabla u|^2 \leq \epsilon_0^2, \quad \forall x \in B_{r_0}(x_0), \ r \leq r_0.
$$

Therefore, by Lemma [4.1,](#page-6-0) we have that for some $p \in (1, \frac{n}{n-1})$ and $\tau_0 \in (0, 1)$,

$$
(\tau_0^m r_0)^{p-n} \int\limits_{B_{\tau_0^m r_0}(x)} |\nabla u|^p \le 2^{-pm} \epsilon_0^p, \quad \forall m \ge 1, \quad \forall x \in B_{r_0}(x_0). \tag{4.35}
$$

This implies that there is $\alpha \in (0, 1)$ such that

$$
r^{p-n} \int\limits_{B_r(x)} |\nabla u|^p \le C(\epsilon_0, p) r^{p\alpha}, \quad \forall x \in B_{r_0}(x_0), \quad \forall r \in (0, r_0).
$$
 (4.36)

 \circledcirc Springer

Hence, by Morrey's Lemma, we conclude $u \in C^{\alpha}(B_{r_0}(x_0), N)$ and $u \in C^{\alpha}(\Omega \setminus \Sigma, N)$. \square

5 Quasi-monotonicity inequality

In this section, we derive the quasi-monotonicity inequality (1.5) for two classes of harmonic maps in dimensions $n \geq 3$: (1) minimizing harmonic maps with respect to Dini-continuous metrics *g*, and (2) stationary harmonic maps with respect to Lipschitz continuous metrics *g*.

Definition 5.1 A map $u \in W^{1,2}(\Omega, N)$ is a minimizing harmonic map, if

$$
\int_{\Omega} |\nabla u|_{g}^{2} dv_{g} \le \int_{\Omega} |\nabla v|_{g}^{2} dv_{g}, \quad \forall v \in W^{1,2}(\Omega, N) \quad \text{with } v|_{\partial \Omega} = u|_{\partial \Omega}. \tag{5.1}
$$

Recall that $f : \Omega \to \mathbf{R}^{n \times n}$ is Dini-continuous, if there exist $r_0 > 0$ and a monotonically non-decreasing ω : $[0, r_0] \to \mathbf{R}_+$, with $\omega(0) = 0$ and $\int_0^{r_0} \frac{\omega(t)}{t} dt < \infty$, such that

$$
|f(x) - f(y)| \le \omega(|x - y|), \quad \forall x, y \in \Omega, \ |x - y| \le r_0.
$$
 (5.2)

Proposition 5.1 *For n* \geq 3, *suppose that g is a Dini-continuous metric on* Ω *and* $u \in$ $W^{1,2}(\Omega, N)$ *is a minimizing harmonic map. Then u satisfies the quasi-monotonicity inequality* [\(1.5\)](#page-2-0)*.*

Proof It suffices to prove [\(1.5\)](#page-2-0) for $x = 0 \in \Omega$. Assume $g_0 = g(0)$ is the Euclidean metric on \mathbb{R}^n . For $0 < r < \min\{r_0, \text{dist}(0, \partial \Omega)\}\)$, define

$$
v(x) = u\left(\frac{rx}{|x|}\right), \quad x \in B_r
$$

$$
= u(x), \quad x \in \Omega \backslash B_r.
$$

Then the minimality of *u* implies

$$
\int_{B_r} |\nabla u|_g^2 dv_g \le \int_{B_r} |\nabla v|_g^2 dv_g.
$$
\n(5.3)

It follows from the Dini-continuity of *g* that

$$
\max_{x \in B_r} |g(x) - g_0| \le \omega(r), \quad \forall 0 < r \le \min\{r_0, \text{dist}(0, \partial \Omega)\},
$$

where ω is the modular of continuity of *g*. This and [\(5.3\)](#page-12-1) imply that there exists $C_0 > 0$ such that

$$
(1 - C_0 \omega(r)) \int\limits_{B_r} |\nabla u|^2 dx \le \int\limits_{B_r} |\nabla v|^2 dx, \quad \forall 0 < r \le \min\{r_0, \text{dist}(0, \partial \Omega)\}. \tag{5.4}
$$

Direct calculations imply

$$
\int_{B_r} |\nabla v|^2 dx = \frac{r}{n-2} \int_{\partial B_r} \left(|\nabla u|^2 - |\frac{\partial u}{\partial r}|^2 \right) dH^{n-1}.
$$

Therefore we have, for $0 < r \le \min\{r_0, \text{dist}(0, \partial \Omega)\}\,$

$$
(n-2)(1 - C_0 \omega(r))r^{1-n} \int_{B_r} |\nabla u|^2 dx \le r^{2-n} \int_{\partial B_r} |\nabla u|^2 dH^{n-1}
$$

$$
-r^{2-n} \int_{\partial B_r} |\frac{\partial u}{\partial r}|^2 dH^{n-1}.
$$
(5.5)

This yields, for $0 < r \le \min\{r_0, \text{dist}(0, \partial \Omega)\}\,$

$$
\frac{d}{dr}\left\{e^{\{(n-2)C_0\int_0^r\frac{\omega(t)}{t}dt\}}r^{2-n}\int\limits_{B_r}|\nabla u|^2 dx\right\}
$$
\n
$$
\geq e^{\{(n-2)C_0\int_0^r\frac{\omega(t)}{t}dt\}}r^{2-n}\int\limits_{\partial B_r}|\frac{\partial u}{\partial r}|^2 dH^{n-1}
$$
\n
$$
\geq r^{2-n}\int\limits_{\partial B_r}|\frac{\partial u}{\partial r}|^2 dH^{n-1}.
$$
\n(5.6)

Integrating [\(5.6\)](#page-13-1), we have, for $0 < r \le R \le \min\{r_0, \text{dist}(0, \partial \Omega)\}\,$

$$
\int_{B_R \setminus B_r} |x|^{2-n} |\frac{\partial u}{\partial r}|^2 dx + r^{2-n} \int_{B_r} |\nabla u|^2 dx
$$

\n
$$
\leq e^{\{(n-2)C_0 \int_0^R \frac{\omega(t)}{t} dt\}} R^{2-n} \int_{B_R} |\nabla u|^2 dx.
$$
 (5.7)

This implies [\(1.5\)](#page-2-0) holds for $K = e^{((n-2)C_0 \int_0^{r_0} \frac{\omega(t)}{t} dt)}$

Next we consider stationary harmonic maps.

Definition 5.2 A weakly harmonic map $u \in W^{1,2}(\Omega, N)$ is a stationary harmonic map, if it is a critical point of E_2 with respect to the domain variations:

$$
\frac{d}{dt}|_{t=0} \int\limits_{\Omega} |\nabla u(x + tX(x))|_{g}^{2} dv_{g} = 0, \quad \forall X \in C_{0}^{1}(\Omega, \mathbf{R}^{n}).
$$
\n(5.8)

We have

Proposition 5.2 *For n* \geq 3*, let g be a Lipschitz continuous Riemannian metric on* Ω *. Then any stationary map* $u \in W^{1,2}(\Omega, N)$ *satisfies* [\(1.5\)](#page-2-0) *for some* $K = K(n, g) > 0$.

Proof For simplicity, assume $x = 0 \in \Omega$ and $g(0) = g_0$. Define the energy-stress tensor

$$
S_{\alpha\beta}=\frac{1}{2}|\nabla u|_{g}^{2}g_{\alpha\beta}-\left\langle \frac{\partial u}{\partial x_{\alpha}},\frac{\partial u}{\partial x_{\beta}}\right\rangle, \quad 1\leq \alpha, \beta\leq n.
$$

Then it is well-known (cf. $[13]$) that the stationarity (5.8) implies

$$
\sum_{\alpha,\beta=1}^{n} \int_{\Omega} (L_X g^{\alpha\beta}) S_{\alpha\beta} dv_g = 0
$$
\n(5.9)

 $\circled{2}$ Springer

.

where

$$
L_X g^{\alpha\beta} = \sum_{\gamma=1}^n \left[X_\gamma \frac{\partial g^{\alpha\beta}}{\partial x_\gamma} - \frac{\partial X_\alpha}{\partial x_\gamma} g^{\gamma\beta} - \frac{\partial X_\beta}{\partial x_\gamma} g^{\gamma\alpha} \right]
$$

is the Lie derivative of $(g^{\alpha\beta})$ with respect to *X*.

For $B_r \subset \Omega$, and $\eta(x) = \eta(|x|) \in C_0^1(B_r)$ with $0 \le \eta \le 1$, let $X(x) = x\eta(|x|)$. Then we have

$$
\frac{\partial X_{\alpha}}{\partial x_{\gamma}} = \delta_{\alpha\gamma} \eta(|x|) + \eta'(|x|) \frac{x_{\alpha} x_{\gamma}}{|x|}, \quad 1 \le \alpha, \gamma \le n,
$$

and

$$
L_X g^{\alpha\beta} = \eta(|x|) \sum_{\gamma=1}^n x_\gamma \frac{\partial g^{\alpha\beta}}{\partial x_\gamma} - 2\eta(|x|) g^{\alpha\beta} - 2\eta'(|x|) \sum_{\gamma=1}^n \frac{x_\beta x_\gamma}{|x|} g^{\alpha\gamma}.
$$

Since *g* is Lipschitz continuous, there exist $r_0 > 0$ and $C_0 > 0$ depending on Lip(*g*) such that

$$
\|\nabla g^{\alpha\beta}\|_{L^{\infty}(B_r)} \le C_0 \text{Lip}(g), \quad \forall 0 < r \le r_0. \tag{5.10}
$$

Let
$$
I = \sum_{\alpha, \beta, \gamma=1}^{n} \int_{B_r} x_{\gamma} \eta(|x|) \frac{\partial g^{\alpha\beta}}{\partial x_{\gamma}} S_{\alpha\beta} dv_g
$$
. Then we have
\n
$$
|I| \leq \sum_{\alpha, \beta, \gamma=1}^{n} \int_{B_r} |x_{\gamma}| |\frac{\partial g^{\alpha\beta}}{\partial x_{\gamma}}| |S_{\alpha\beta}| dv_g
$$
\n
$$
\leq r \| \nabla g^{\alpha\beta} \|_{L^{\infty}(B_r)} \sum_{\alpha, \beta=1}^{n} \int_{B_r} |S_{\alpha\beta}| dv_g \leq Cr \int_{B_r} |\nabla u|_g^2 dv_g
$$

for $C = C_0 \text{Lip}(g)$.

Set II $\equiv -2 \sum_{\alpha,\beta=1}^{n} \int_{B_r} \eta(|x|) g^{\alpha\beta} S_{\alpha\beta} dv_g$. Then we have

$$
\begin{split} \Pi &= -2 \sum_{\alpha,\beta=1}^{n} \int_{B_r} \eta(|x|) g^{\alpha\beta} \left(\frac{1}{2} |\nabla u|_g^2 g_{\alpha\beta} - \left\langle \frac{\partial u}{\partial x_\alpha}, \frac{\partial u}{\partial x_\beta} \right\rangle \right) dv_g \\ &= (2-n) \int_{B_r} \eta(|x|) |\nabla u|_g^2 dv_g. \end{split}
$$

For III $\equiv -2 \sum_{\alpha,\beta,\gamma=1}^{n} \int_{B_r} \eta'(|x|) \frac{x_{\beta} x_{\gamma}}{|x|} g^{\alpha \gamma} S_{\alpha \beta} dv_g$, we have

III = -2
$$
\sum_{\alpha, \beta, \gamma=1}^{n} \int_{B_r} \eta'(|x|) \frac{x_{\beta} x_{\gamma}}{|x|} g^{\alpha \gamma} \left(\frac{1}{2} |\nabla u|_g^2 g_{\alpha \beta} - \left\langle \frac{\partial u}{\partial x_{\alpha}}, \frac{\partial u}{\partial x_{\beta}} \right\rangle \right) dv_g
$$

\n= $-\int_{B_r} \eta'(|x|) |x| |\nabla u|_g^2 dv_g$
\n+2 $\sum_{\alpha, \beta, \gamma=1}^{n} \int_{B_r} \eta'(|x|) \frac{x_{\beta} x_{\gamma}}{|x|} g^{\alpha \gamma} \left\langle \frac{\partial u}{\partial x_{\alpha}}, \frac{\partial u}{\partial x_{\beta}} \right\rangle dv_g$
\n= IV + V.

Observe that [\(5.10\)](#page-14-0) implies, for $0 < r \le r_0$,

$$
g^{\alpha\gamma}(x) = \delta_{\alpha\gamma} + h_{\alpha\gamma}(x), \ \ |h_{\alpha\gamma}|(x) \le C_0 \text{Lip}(g)|x|, \ \ \forall x \in B_r, \ \forall 1 \le \alpha, \gamma \le n.
$$

Hence we have

$$
V = 2\int\limits_{B_r} |x|\eta'(|x|) \left| \frac{\partial u}{\partial r} \right|^2 dv_g + 2 \sum\limits_{\alpha,\gamma=1}^n \int\limits_{B_r} \eta'(|x|) x_\gamma h_{\alpha\gamma} \left\langle \frac{\partial u}{\partial x_\alpha}, \frac{\partial u}{\partial r} \right\rangle dv_g. \tag{5.11}
$$

As

$$
0 = \sum_{\alpha,\beta=1}^{n} \int_{\Omega} (L_X g^{\alpha\beta}) S_{\alpha\beta} dv_g = I + II + III,
$$

we have

$$
(2-n)\int_{B_r} \eta(|x|)|\nabla u|_g^2 dv_g - \int_{B_r} |x|\eta'(|x|) \left(|\nabla u|_g^2 - 2|\frac{\partial u}{\partial r}|^2\right) dv_g
$$

\n
$$
\geq -Cr\int_{B_r} |\nabla u|_g^2 dv_g - 2\sum_{\alpha,\gamma=1}^n \int_{B_r} \eta'(|x|) x_\gamma h_{\alpha\gamma} \left\langle \frac{\partial u}{\partial x_\alpha}, \frac{\partial u}{\partial r} \right\rangle dv_g.
$$
 (5.12)

For small $\epsilon > 0$, let $\eta = \eta_{\epsilon}(|x|) \in C_0^{0,1}(B_r)$ be such that $\eta_{\epsilon}(t) = 1$ for $0 \le t \le r - \epsilon$, $\eta_{\epsilon}(t) = 0$ for $t \ge r$, and $\eta'_{\epsilon}(t) = -\frac{1}{\epsilon}$ for $r - \epsilon \le t \le r$. Putting η into [\(5.12\)](#page-15-0) and sending ϵ to zero, we obtain

$$
(2 - n) \int_{B_r} |\nabla u|_g^2 dv_g + r \int_{\partial B_r} |\nabla u|_g^2 dH_g^{n-1}
$$

\n
$$
\geq 2r \int_{\partial B_r} |\frac{\partial u}{\partial r}|^2 dH_g^{n-1} - Cr \int_{B_r} |\nabla u|_g^2 dv_g
$$

\n
$$
+ 2 \sum_{\alpha, \gamma=1}^n \int_{\partial B_r} x_{\gamma} h_{\alpha \gamma} \langle \frac{\partial u}{\partial x_{\alpha}}, \frac{\partial u}{\partial r} \rangle dH_g^{n-1}
$$

\n
$$
\geq 2r \int_{\partial B_r} |\frac{\partial u}{\partial r}|^2 dH_g^{n-1} - Cr \int_{B_r} |\nabla u|_g^2 dv_g
$$

\n
$$
-Cr^3 \int_{\partial B_r} |\nabla u|_g^2 dH_g^{n-1}
$$
\n(5.13)

² Springer

where dH_g^{n-1} is the $(n-1)$ -dimensional Hausdorff measure with respect to *g*, and we have used the Hölder inequality in the last step:

$$
2\sum_{\alpha,\gamma=1}^{n}|\int_{\partial B_r} x_{\gamma}h^{\alpha\gamma} \left\langle \frac{\partial u}{\partial \alpha}, \frac{\partial u}{\partial r} \right\rangle dH_g^{n-1}|
$$

\n
$$
\leq r \int_{\partial B_r} |\frac{\partial u}{\partial r}|^2 dH_g^{n-1} + r \left(\sum_{\alpha,\gamma=1}^{n} \max_{B_r} |h^{\alpha\gamma}|^2 \right) \int_{\partial B_r} |\nabla u|_g^2 dH_g^{n-1}|
$$

\n
$$
\leq r \int_{\partial B_r} |\frac{\partial u}{\partial r}|^2 dH_g^{n-1} + Cr^3 \int_{\partial B_r} |\nabla u|_g^2 dH_g^{n-1}.
$$

Let $f(r) = \int_{B_r} |\nabla u|_g^2 dv_g$, we have $f'(r) = \int_{\partial B_r} |\nabla u|_g^2 dH^{n-1}$ for a.e. $r > 0$. Hence (5.13) yields

$$
(2 - n + Cr)f(r) + r(1 + Cr)f'(r) \ge r \int\limits_{\partial B_r} \left| \frac{\partial u}{\partial r} \right|^2 dH_g^{n-1}.
$$

In particular, there exists a small $r_0 > 0$ depending on *g* such that for $0 < r \le r_0$,

$$
(2 - n + O(r))f(r) + rf'(r) \ge \frac{r}{2} \int\limits_{\partial B_r} \left| \frac{\partial u}{\partial r} \right|^2 dH_g^{n-1}
$$
 (5.14)

where $C^{-1}r \leq O(r) \leq Cr$. Therefore we have, $0 < r \leq r_0$,

$$
\frac{d}{dr}(e^{O(r)}r^{2-n}f(r)) \ge \frac{1}{2}e^{O(r)}r^{2-n}\int\limits_{\partial B_r}\left|\frac{\partial u}{\partial r}\right|^2 dH_g^{n-1}.
$$
\n(5.15)

Integrating [\(5.15\)](#page-16-0) over $0 < r \le R \le r_0$, we have

$$
e^{O(R)}R^{2-n}f(R) \ge r^{2-n}f(r) + \frac{1}{2}\int\limits_{B_R\setminus B_r} |x|^{2-n} \left|\frac{\partial u}{\partial r}\right|^2 dv_g.
$$
 (5.16)

This, combined with [\(1.3\)](#page-1-1), implies [\(1.5\)](#page-2-0) with $K = e^{O(r_0)}$. . — Первый процесс в серверності процесс в процесс в серверності процесс в серверності процесс в серверності <mark>п</mark>

Remark 5.1 The monotonicity inequality [\(5.15\)](#page-16-0) has been derived by Garofalo–Lin [\[10](#page-18-17)] for second order elliptic equations with divergence structure by a different method.

6 Final remarks

This section is devoted to some further discussions on Theorems [A](#page-2-1) and [B.](#page-2-2) The first remark asserts that for $n \geq 3$, $g \in VMO(\Omega)$ can be weaken. The second remark concerns the optimal Hausdorff dimension estimate on minimizing harmonic map from domains with Dini continuous metrics. The third remark concerns the blow-up analysis of stationary harmonic maps from domians with Lipschitz continuous Riemannian metrics.

Theorem 6.1 *For n* \geq 3, *there exists* δ_0 > 0 *such that if g is a L*[∞]-*Riemannian metric on* Ω *with* $[g]_{BMO(\Omega)} \leq \delta_0$ *and* $u \in W^{1,2}(\Omega, N)$ *is a weakly harmonic map satisfying the* *quasi-monotonicity inequality* [\(1.5\)](#page-2-0), *then there are* $\alpha \in (0, 1)$ *and closed subset* $\Sigma \subset \Omega$. *with* $H^{n-2}(\Sigma) = 0$, *such that* $u \in C^{\alpha}(\Omega \setminus \Sigma, N)$.

Proof It follows from the same arguments as in Theorem [B,](#page-2-2) except that we need to replace Proposition [3.3](#page-5-4) by the following proposition, due to Byun–Wang [\[2](#page-18-18)] (see also Caffarelli– Peral [\[4\]](#page-18-19)).

Lemma 6.2 *For n* \geq 3 *and ball B* $\subset \Omega$, *assume that* $A = (a_{ij}) \in L^{\infty}(B, \mathbb{R}^{n \times n})$ *is symmetric, and uniformly elliptic with ellipticity constant* $\Lambda > 0$ *. For any p* ∈ (1, + ∞) *and* $F \in L^p(B, \mathbf{R}^n)$, *there exists* $\delta_p > 0$ *such that if* $[g]_{BMO(B)} \leq \delta_p$, *then there exists a unique solution* $G \in W_0^{1,p}(B)$ *to the Dirichlet problem*:

$$
\sum_{i,j=1}^{n} \frac{\partial}{\partial x_i} \left(a_{ij} \frac{\partial G}{\partial x_j} \right) = \sum_{i=1}^{n} \frac{\partial F_i}{\partial x_i}, \quad \text{in } B
$$
 (6.1)

$$
G = 0, \quad on \ \partial B. \tag{6.2}
$$

⎫

Moreover,

$$
\|\nabla G\|_{L^p(B)} \le C([A]_{BMO(B)}, n, \Lambda)\|F\|_{L^p(B)}.
$$
\n(6.3)

$$
\Box
$$

Theorem 6.2 *For n* \geq 3 *and a Dini-continuous Riemannian metric g in* $\Omega \subset \mathbb{R}^n$, *if* $u \in$ $W^{1,2}(\Omega, N)$ *is a minimizing harmonic map, then there exist* $\alpha \in (0, 1)$ *and closed subset* $\Omega \subset \Omega$, which is discrete for $n = 3$ and has Hausdorff dimension at most $(n-3)$ for $n \ge 4$, *such that* $u \in C^{\alpha}(\Omega \setminus \Sigma, N)$ *.*

Proof Note that the Dini-continuity of *g* implies $g \in VMO(\Omega)$. Since *u* is a minimizing harmonic map, Proposition [5.1](#page-12-0) implies that *u* satisfies the monotonicity inequality [\(5.7\)](#page-13-3). Define

 \mathbf{f}

$$
\Sigma = \left\{ x \in \Omega \mid \Theta(u, x) \equiv \lim_{r \downarrow 0} r^{2-n} \int\limits_{B_r(x)} |\nabla u|^2 \ge \epsilon_0^2 \right\}
$$
(6.4)

where ϵ_0 is given by Lemma [4.1.](#page-6-0) Then, by theorem [B,](#page-2-2) we have that $u \in C^{\alpha}(\Omega \setminus \Sigma, N)$ for some $\alpha \in (0, 1)$.

To prove the Hausdorff dimension estimate of Σ , define the rescalled map $u_{x_0,r_i}(x) =$ $u(x_0 + r_i x)$: $B_2 \to N$ for any $x_0 \in \Sigma$ and $r_i \downarrow 0$. It is easy to see that u_{x_0, r_i} is minimizing harmonic map with respect to $g_i(x) = g(x_0 + r_i x)$. Since *g* is Dini-continuous, we know $g_i \rightarrow g_0$, the Euclidean metric, uniformly on B_2 .

It follows from Luckhaus' extension Lemma (see $[16]$) and the minimality of u that there exists a minimizing harmonic map $\phi \in W^{1,2}(B_2, N)$ with respect to g_0 such that after taking possible subsequences, $u_{x_0,r_i}(x) \equiv u(x_0 + r_i x) \rightarrow \phi$ strongly in $W^{1,2}(B_2, N)$. Moreover, the monotonicity inequality [\(5.7\)](#page-13-3) yields $\frac{\partial \phi}{\partial r} = 0$ a.e. in B_2 and $\phi(x) = \phi(\frac{x}{|x|})$ for a.e. $x \in B_2$. Now we can apply Federer's dimension reduction argument (cf. [\[21\]](#page-18-0)) to conclude that Σ is discrete for $n = 3$, and has Hausdorff dimension at most $(n - 3)$ for $n \ge 4$.

Theorem 6.3 *For n* \geq 3 *and a Lipschitz continuous metric g on* $\Omega \subset \mathbb{R}^n$. Assume that N *doesn't support nonconstant harmonic maps from* S^2 *. If* $u \in W^{1,2}(\Omega, N)$ *is a stationary harmonic map, then there exist* $\alpha \in (0, 1)$ *and closed subset* $\Sigma \subset \Omega$ *, which is discrete for n* = 4*, and has Hausdorff dimension at most* $(n-4)$ *for n* ≥ 5*, such that u* ∈ $C^{\alpha}(\Omega\setminus \Sigma, N)$ *.*

Proof Note that the Lipschitz continuity of *g* implies $g \in VMO(\Omega)$. It follows from the stationarity and Proposition [5.2](#page-13-0) that *u* satisfies the monotonicity inequality [\(5.16\)](#page-16-1). Therefore, Theorem [B](#page-2-2) implies $u \in C^{\alpha}(\Omega \backslash \Sigma, N)$ for some $\alpha \in (0, 1)$, with Σ given by [\(6.4\)](#page-17-0).

For any $x_0 \in \Sigma$ and $r_i \downarrow 0$, $u_{x_0,r_i} \in W^{1,2}(B_2, N)$ are stationary harmonic maps with respect to *g_i*. It follows from [\(5.16\)](#page-16-1) that there is a harmonic map $\phi \in W^{1,2}(B_2, N)$ with respect to *g*0, which is homogeneous of degree zero, such that after passing to subsequences, $u_{x_0,r_i}(x) \equiv u(x_0 + r_i x) \rightarrow \phi$ weakly in $W^{1,2}(B_2, N)$. One can check the blow-up analysis by Lin [\[15](#page-18-21)] applies to stationary harmonic maps with respect to Lipschitz continuous metrics *g* as long as we have theorem [B,](#page-2-2) [\(5.16\)](#page-16-1), and *N* doesn't support harmonic S^2 's. In particular, $u_{x_0,r_i} \to \phi$ strongly in $W^{1,2}(B_2, N)$. With this strong convergence, one can show Σ is discrete for *n* = 4, and has Hausdorff dimension at most $(n - 4)$ for $n > 5$. □

References

- 1. Bethuel, F.: On the singular set of stationary harmonic maps. Manu. Math. **78**(4), 417–443 (1993)
- 2. Byun, S., Wang, L.: Elliptic equations with BMO coefficients in Reifenberg domains. Comm. Pure Appl. Math. **57**(10), 1283–1310 (2004)
- 3. Coifman, R., Lions, P., Meyer, Y., Semmes, S.: Compensated compactness and Hardy spaces. J. Math. Pure Appl. (9) **72**(3), 247–286 (1993)
- 4. Caffarelli, L., Peral, I.: On *W*1,*^p* estimates for elliptic equations in divergence form. Comm. Pure Appl. Math. **51**(1), 1–21 (1998)
- 5. Di Fazio, G.: L^p estimates for divergence form elliptic equations with discontinuous coefficients. Boll. Un. Mat. Ital. A (7) **10**(2), 409–420 (1996)
- 6. Evans, L.C.: Partial regularity for stationary harmonic maps into spheres. Arch. Ration. Mech. Anal. **116**(2), 101–113 (1991)
- 7. Fefferman, C., Stein, E.: *H ^p* spaces of several variables. Acta Math. **129**(3–4), 137–193 (1972)
- 8. Giaquinta M.: Multiple integrals in the calculus of variations and nonlinear elliptic systems. Ann. Math. Stud., vol. 105. Princeton University Press, Princeton
- 9. Giaquinta M., Giusti, E.: The singular set of the minima of certain quadratic functionals. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) **11**(1):45–55 (1984)
- 10. Garofalo, N., Lin, F.H.: Monotonicity properties of variational integrals, *Ap* weights and unique continuation. Indiana Univ. Math. J. **35**(2), 245–268 (1986)
- 11. Gilbarg, D., Trudinger, N.: Elliptic Partial Differential Equations of Second Order. Springer, Heidelberg (1984)
- 12. Hélein, F.: Régularité des applications faiblement harmoniques entre une surface et une varit riemannienne. C. R. Acad. Sci. Paris Sr. I Math. **312**(8), 591–596 (1991)
- 13. Hélein, F.: Harmonic maps, conservation laws and moving frames. Translated from the 1996 French original. With a foreword by James Eells, 2nd edn. In: Cambridge Tracts in Mathematics, vol. 150. Cambridge University Press, Cambridge (2002)
- 14. Jost, J.: Two-dimensional geometric variational problems. Pure and Applied Mathematics (New York). A Wiley-Interscience Publication. Wiley, Chichester (1991)
- 15. Lin, F.H.: Gradient estimates and blow-up analysis for stationary harmonic maps. Ann. Math. (2) **149**(3), 785–829 (1999)
- 16. Luckhaus, S.: Partial Hlder continuity for minima of certain energies among maps into a Riemannian manifold. Indiana Univ. Math. J. **37**(2), 349–367 (1988)
- 17. Meyers, N.: An *LP* e-estimate for the gradient of solutions of second order elliptic divergence equations. Ann. Scuola Norm. Sup. Pisa **17**(3), 189–206 (1963)
- 18. Price, P.: A monotonicity formula for Yang-Mills fields. Manu. Math. **43**(2–3), 131–166 (1983)
- 19. Riviére, T.: Everywhere discontinuous harmonic maps into spheres. Acta Math. **175**(2), 197–226 (1995)
- 20. Schoen, R.: Analytic aspects of the harmonic map problem. Seminar on nonlinear partial differential equations. Berkeley, California, 1983, pp. 321–358. Math. Sci. Res. Inst. Publ., 2, Springer, New York (1984)
- 21. Schoen, R., Uhlenbeck, K.: A regularity theory for harmonic maps. J. Diff. Geom. **17**(2), 307–335 (1982)
- 22. Shi, Y.G.: A partial regularity result of harmonic maps from manifolds with bounded measurable Riemannian metrics. Comm. Anal. Geom. **4**(1–2), 121–128 (1996)