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Abstract For a bounded domain � ⊂ Rn endowed with L∞-metric g, and a
C5-Riemannian manifold (N , h) ⊂ Rk without boundary, let u ∈ W 1,2(�, N ) be a weakly
harmonic map, we prove that (1) u ∈ Cα(�, N ) for n = 2, and (2) for n ≥ 3, if, in additions,
g ∈ VMO(�) and u satisfies the quasi-monotonicity inequality (1.5), then there exists a
closed set � ⊂ �, with Hn−2(�) = 0, such that u ∈ Cα(�\�, N ) for some α ∈ (0, 1).

Mathematics Subject Classification (2000) 58J05 · 35J55

1 Introduction

For n ≥ 2, let � be a bounded domain in Rn . Throughout this paper, let g be a bounded
(or L∞), measurable Riemannian metric on Rn , namely, there exists � > 0 such that g =∑n
α,β=1 gαβ dxα dxβ satisfies:

�−1 In ≤ (gαβ)(x) ≤ �In, ∀x ∈ Rn . (1.1)

Let (N , h) ⊂ Rk be a compact, at least C5-Riemannian manifold without boundary, isomet-
rically embedded into an Euclidean space Rk . For 1 < p < ∞, define the Sobolev space
W 1,p(�, N ) by

W 1,p(�, N ) := {u : � → Rk | E p(u) < +∞, u(x) ∈ N for a.e. x ∈ �}
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where

E p(u) =
∫

�

(
k∑

i=1

|∇ui |2g
) p

2

dvg

is the pth Dirichlet energy of u with respect to g,

|∇ui |2g =
n∑

α,β=1

gαβ
∂ui

∂xα

∂ui

∂xβ
, 1 ≤ i ≤ k,

where (gαβ) = (gαβ)−1, and dvg = √
g dx = √

det(gαβ) dx is the volume element of
(�, g).

Let dg(x, y) and d0(x, y) ≡ |x − y| be the distance functions with respect to g and g0

(the Euclidean metric), respectively. Since g is L∞-Riemannian metric on Rn , it is easy to
see that there exists 0 < C� < +∞ such that

C−1
� d0(x, y) ≤ dg(x, y) ≤ C�d0(x, y), ∀x, y ∈ Rn . (1.2)

In particular, f ∈ Cα(�, N ) with respect to g iff f ∈ Cα(�, N ) with respect to g0, and for
any open set U ⊂ Rm and 1 ≤ p < +∞,

C−1
�

∫

U

|h|p
g dvg ≤

∫

U

|h|p dx ≤ C�

∫

U

|h|p
g dvg (1.3)

holds for any vector field h ∈ L p(U,Rn), here |h| = (
∑n

i=1 h2
i )

1
2 and dx is the volume

element of g0.

Definition 1 A map u ∈ W 1,2(�, N ) is a weakly harmonic map, if it is a critical point of
E2(·).

It is readily seen that any weakly harmonic map u ∈ W 1,2(�, N ) satisfies the harmonic
map equation:

�gu + Ag(u)(∇u,∇u) = 0, in D′(�) (1.4)

where �g = 1√
g

∑n
α,β=1

∂
∂xα
(
√

ggαβ ∂
∂xβ
) is the Laplace-Beltrami operator of (�, g), and

A(y)(·, ·) : Ty N × Ty N → (Ty N )⊥, y ∈ N is the second fundamental form of N ⊂ Rk ,
and

Ag(u)(∇u,∇u) =
n∑

α,β=1

gαβ A(u)

(
∂u

∂xα
,
∂u

∂xβ

)

.

Regularity of harmonic maps from manifolds with C∞-Riemannian metrics g has been
extensively studied by many people. Schoen-Uhlenbeck [21], Giaquinta-Guisti [9] indepen-
dently proved that any minimizing harmonic map is smooth off a closed set whose Hausdorff
dimension is at most (n − 3). Hélein [12,13] proved that any weakly harmonic map from
a Riemannian surface is smooth. Evans [6] and Bethuel [1] proved that any stationary har-
monic map in dimensions at least three is smooth off a closed set of zero (n −2)-dimensional
Hausdorff measure.

In this paper, we are mainly interested in seeking the minimal regularity assumption on
Riemannian metrics g such that any weakly harmonic map u ∈ W 1,2(�, N ) enjoys (partial)
Hölder continuity.
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Harmonic maps from manifolds of L∞-Riemannian metrics 389

In this context, our first theorem is

Theorem A For n = 2 and a L∞-Riemannian metric g on Rn, let u ∈ W 1,2(�, N ) be a
weakly harmonic map. Then u ∈ Cα(�, N ) for some α ∈ (0, 1).

Remark 1 For n ≥ 2, if, in addition, g ∈ Cm,β(�) for some m ≥ 0 and β ∈ (0, 1) and
N ∈ Cm+5 , then theorem A and the theory of higher regularity of harmonic maps (cf.
Giaquinta [8]) imply that if u ∈ Cα(�, N ), then u ∈ Cm+1,δ(�, N ) for δ = min{α, β}.

For n ≥ 3, Riviére [19] constructed an example of weakly harmonic map from B3 to S2

that is singular everywhere. It turns out that the stationarity or suitable energy monotonicity
inequality plays a crucial role for the partial regularity of weakly harmonic maps. To this
end, we introduce

Definition 2 (quasi-monotonicity inequality) A map u ∈ W 1,2(�, N ) enjoys the quasi-
monotonicity inequality property, if there exist K = K (n, g) > 0 and r0 = r0(n, g) > 0
such that for any x ∈ � and 0 < r ≤ R < min{r0, dist(x, ∂�)}, we have

r2−n
∫

Br (x)

|∇u|2 dx ≤ K R2−n
∫

BR(x)

|∇u|2 dx . (1.5)

Remark 2 (a) For n = 2, (1.5) holds automatically for u ∈ W 1,2(�, N ) with K = 1.
(b) For n ≥ 3 and g ∈ C2(�), it is well-known that both minimizing harmonic maps and

stationary (or C2)-harmonic maps enjoy the quasi-monotonicity inequality property (cf.
[21], Preiss [18], and Schoen [20]).

(c) In proposition 5.1 and 5.2 below, we verify that for n ≥ 3, both minimizing harmonic
maps with respect to Dini continuous g and stationary harmonic maps with respect to
Lipschitz continuous g enjoy the quasi-monotonicity inequality property.

It is also well-known that certain regularity of the coefficients is necessary for the regularity
of second order elliptic systems (cf. [8]). To this end, we recall

Definition 3 (a) For any open set U ⊂ Rn , a function f ∈ BMO(U ), if f ∈ L1
loc(U ) and

[ f ]BMO(U ) := sup

⎧
⎪⎨

⎪⎩

1

|Br (x)|
∫

Br (x)

| f − fx,r | | Br (x) ⊂ U

⎫
⎪⎬

⎪⎭
< ∞

where fx,r = 1
|Br (x)|

∫
Br (x)

f .
(b) For any open set U ⊂ Rn , a function f ∈ VMO(U ), if f ∈ BMO(U ) and

lim
r→0

sup
x∈U

[ f ]BMO(U∩Br (x)) = 0.

Now we are ready to state our second theorem.

Theorem B For n ≥ 3 and g ∈ VMO(�), suppose that u ∈ W 1,2(�, N ) is a weakly har-
monic map satisfying the quasi-monotonicity inequality (1.5). Then there exist a closed set
� ⊂ �, with Hn−2(�) = 0, and α ∈ (0, 1) such that u ∈ Cα(�\�, N ). Here Hn−2 denotes
the (n − 2)-dimensional Hausdorff measure with respect to g0.
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We would like to mention that Shi [22] proved the partial regularity theorem, similar to
theorem B, for minimizing harmonic maps from manifolds with L∞-Riemannian metrics.
However, the argument in [22] relies heavily on the minimality property. Our method is of
PDE nature and partly motivated by the techniques developed by [1,6,12,13].

The paper is written as follows. In Sect. 2, for any C5-Riemannian manifold N , we outline
the Coulomb gauge frame construction by Hélein [12,13] on u∗T N |� with respect to g. In
Sect. 3, we utilize the W 1,p

0 -solvablity theorem on ∇ · (A∇u) = ∇ · F by Meyers [17]
(n = 2) and Di Fazio [5] (n ≥ 3) for bounded measurable elliptic matrix A to obtain the
Div-Curl decomposition theorem on (�, g). In Sect. 4, we establish the decay Lemma on the
M p,n−p norm of u, ‖u‖M p,n−p(·), under the smallness condition of ‖∇u‖M2,n−2(·). In Sect. 5,
we provide two examples in which the quasi-monotonicity inequality (1.5) holds. In Sect. 6,
we make some final remarks.

2 Construction of Coulomb gauge frame

In this section, we sketch the Coulomb gauge frame construction on u∗T N by Hélein [12,13]
to (�, g) for any C5-Riemannian manifold N and L∞-Riemannian metric g on Rn .

Let l = dim(N ). For any ball B ⊂ �, {ei }l
i=1 ⊂ W 1,2(B,Rk) is called to be a frame of

u∗T N on B, if {ei (x)}l
i=1 forms an orthonormal base of Tu(x)N for a.e. x ∈ B.

For a vector field V = (V1, . . . , Vn) : � → Rn , define the divergence of V with respect
to g by

divg(V ) =
n∑

α,β=1

∂

∂xα
(
√

ggαβVβ).

First we have

Lemma 2.1 Assume that there exist a C5-Riemannian manifold N̂ ⊂ Rk and a totally geo-
desic, isometric embedding i : N → N̂ . If u ∈ W 1,2(�, N ) solves (1.4), then û = i ◦ u ∈
W 1,2(�, N̂ ) also solves (1.4).

Proof Straightforward calculations (cf. Jost [14]) imply that

�gû = ∇i(u)(�gu)+
n∑

α,β=1

gαβ(∇2i)(u)

(
∂u

∂xα
,
∂u

∂xβ

)

= ∇i(u)(Ag(u)(∇u,∇u))

= Âg(û)(∇û,∇û)

where Â denotes the second fundamental form of N̂ in Rk . ��
With help of Lemma 2.1 and the enlargement construction by Hélein [12,13], we may

assume that N is parallelizable so that we have

Proposition 2.2 Assume that N ∈ C5 is parallelizable and g is L∞-Riemannian metric on
Rn. Let � ⊂ Rn be a bounded domian and B ⊂ � be a ball. If u ∈ W 1,2(B, N ), then there
exists a Coulomb gauge frame {ei }l

i=1 ⊂ W 1,2(B,Rk) of u∗T N on B, i.e.

divg(〈∇ei , e j 〉) = 0 in B, 1 ≤ i, j ≤ l (2.1)
n∑

α,β=1

gαβ
〈
∂ei

∂xβ
, e j

〉

xβ = 0 on ∂B, 1 ≤ i, j ≤ l, (2.2)
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and

l∑

i=1

∫

B

|∇ei |2 dx ≤ C
∫

B

|∇u|2 dx . (2.3)

Proof As N is parallelizable, there exists a smooth orthonormal frame {êi (y)}l
i=1 of T N .

For 1 ≤ i ≤ l, define ēi (x) = êi (u(x)) for a.e. x ∈ B. Then {ēi }l
i=1 forms a frame of u∗T N

on B. Denote SO(l) as the special orthonormal group of order l, consider the minimization
problem:

inf

⎧
⎨

⎩

l∑

i, j=1

∫

B

|∇(Ri j ē j )|2g dvg : R = (Ri j ) ∈ W 1,2(B,SO(l))

⎫
⎬

⎭
. (2.4)

By the direct method, there is R0 ∈ W 1,2(B, SO(l)) such that eα(x) = ∑l
β=1 R0

αβ(x)ēβ(x),
1 ≤ α ≤ l, satisfies

l∑

α=1

∫

B

|∇eα|2g dvg ≤
l∑

α,β=1

∫

B

|∇(Rαβ ēβ)|2g dvg, ∀R ∈ W 1,2(B,SO(l)). (2.5)

In particular, we have

l∑

α=1

∫

B

|∇eα|2g dvg ≤
l∑

α,β=1

∫

B

|∇(δαβ ēβ)|2g dvg ≤ C
∫

B

|∇u|2g dvg. (2.6)

This, combined with (1.3), implies (2.3). Moreover, the first variation similar to [12,13]
implies that 〈∇ei , e j 〉, 1 ≤ i, j ≤ l, satisfies the Euler–Lagrange equation (2.1) and the
Neumann condition (2.2). Hence the proof is complete. ��

3 Div–curl decomposition

In this section, we prove that if the metric g is either L∞ for n = 2 or in VMO(�) for n ≥ 3,
then the div–curl decomposition holds, namely, any F ∈ L p(�,Rn) can be decomposed
into the sum of ∇G, with G ∈ W 1,p

0 (�), and a divg-free H ∈ L p(�,Rn), for p sufficiently

close to n
n−1 . The key ingredients are W 1,p

0 -solvability results by Meyers [17] for n = 2, and
Di Fazio [5] for n ≥ 3.

More precisely, we have

Theorem 3.1 Let g be L∞-Riemannian metric on Rn and B ⊂ � ⊂ Rn be a ball. If, in
addition, g ∈ VMO(�) for n ≥ 3, then there exists δ0 = δ(n, g) > 0 such that for p ∈
( n

n−1 −δ0,
n

n−1 +δ0) and any F ∈ L p(B,Rn) there exist G ∈ W 1,p
0 (B) and H ∈ L p(B,Rn),

with divg(H) = 0 in �, such that

F = ∇G + H in B, (3.1)

and

‖∇G‖L p(B) + ‖H‖L p(B) ≤ C(p, g)‖F‖L p(B) (3.2)

where L p(B) is L p-space with respect to g0.
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The proof of Theorem 3.1 relies on the following W 1,p
0 -solvability result.

Proposition 3.2 [17] For n ≥ 2 and any ball B ⊂ �,assume that A = (ai j ) ∈ L∞(B,Rn×n)

is symmetric and uniformly elliptic, then there exists δ0 = δ0(n) > 0 such that, for any
p ∈ (2 − δ0, 2 + δ0) and F ∈ L p(B,Rn), there exists a unique solution u ∈ W 1,p

0 (B) to the
Dirichlet problem:

n∑

i, j=1

∂

∂xi

(

ai j
∂u

∂x j

)

=
n∑

i=1

∂Fi

∂xi
, in B,

u = 0, on ∂B. (3.3)

Moreover,

‖∇u‖L p(B) ≤ C(p, A)‖F‖L p(B). (3.4)

Proposition 3.3 [5] For n ≥ 3 and ball B ⊂ �, assume that A = (ai j ) ∈ L∞ ∩
VMO(B,Rn×n) is symmetric and uniformly elliptic, then for any p ∈ (1,+∞) and F ∈
L p(B,Rn), there exists a unique solution u ∈ W 1,p

0 (B) to (3.3) satisfying (3.4).

Proof of Theorem 3.1 Consider the Dirichlet problem:

divg(∇G) = divg(F), in B

G = 0, on ∂B. (3.5)

Observe that (3.5) is equivalent to

n∑

i, j=1

∂

∂xi

(

ai j
∂G

∂x j

)

=
n∑

i=1

∂ F̂i

∂xi
, in B

G = 0, on ∂B (3.6)

where ai j = √
ggi j and F̂i = ∑n

j=1
√

ggi j Fj . Since g satisfies (1.1), it is easy to see that

(ai j ) ∈ L∞(B,Rn×n) is symmetric and uniformly elliptic. Moreover, we have ‖F̂‖L p(B) ≤
‖F‖L p(B). For n = 2, Proposition 3.2 implies that there exists δ0 > 0 such that (3.5) is

uniquely solvable in W 1,p
0 (B) for any p ∈ (2 − δ0, 2 + δ0). For n ≥ 3, since g ∈ VMO(B)

implies (ai j ) ∈ VMO(B), Proposition 3.3 implies (3.5) is uniquely solvable in W 1,p
0 (B) for

any 1 < p < ∞. Set H = F − ∇G, (3.5) implies divg(H) = 0 in B. Moreover, for any
p ∈ ( n

n−1 − δ0,
n

n−1 + δ0), (3.4) yields

‖H‖L p(B) ≤ ‖F‖L p(B) + ‖∇G‖L p(B) ≤ C‖F‖L p(B). (3.7)

The completes the proof of Theorem 3.1. ��

4 Decay estimate in Morrey spaces

In this section, we prove both Theorems A and B. The crucial step is to establish that under
the smallness condition of ‖∇u‖M2,n−2(B), ‖u‖M p,n−p(Br ) decays as rα for some α ∈ (0, 1).
The ideas are suitable modifications of techniques developed by Hélein [12,13], Evans [6],
and Bethuel [1]. In order to achieve it, we need two new ingredients: (1) the div–curl decom-
position Proposition 3.1, and (2) a new approach to estimate the L p norm of divg-free vector
fields.

First we define Morrey spaces.
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Definition 4.1 For 1 ≤ p ≤ n and any open set U ⊂ Rn , the Morrey space M p,n−p(U ) is
defined by

M p,n−p(U ) =

⎧
⎪⎨

⎪⎩
f ∈ L p(U ) | ‖ f ‖p

M p,n−p(U ) ≡ sup
Br (x)⊂U

⎧
⎪⎨

⎪⎩
r p−n

∫

Br (x)

| f |p dx

⎫
⎪⎬

⎪⎭
< +∞

⎫
⎪⎬

⎪⎭
.

Now we have

Lemma 4.1 (ε0-decay estimate) For any bounded domain � ⊂ Rn and L∞-Riemannian
metric g on Rn. If, in addition, g ∈ VMO(�) for n ≥ 3, then there exist δn > 0, ε0 =
ε0(g, N ) > 0, and θ0 = θ0(g, N ) ∈ (0, 1

2 ) such that if u ∈ W 1,2(�, N ) is a weakly
harmonic map satisfying the quasi-monotonicity inequality (1.5), and for Br (x) ⊂ �,

r2−n
∫

Br (x)

|∇u|2g dvg ≤ ε2
0 (4.1)

then, for any p ∈
(

n
n−1 − δn,

n
n−1

)
,

‖∇u‖M p,n−p(Bθ0r (x)) ≤ 1

2
‖∇u‖M p,n−p(Br (x)). (4.2)

Proof of Lemma 4.1 By Lemma 2.1, assume that N is parallelizable. For x ∈ � and r > 0,
let gx,r (y) = g(x + ry) and ux,r (y) = u(x + ry) for y ∈ B. Observe that gx,r is
L∞-Riemannian metric on B and ux,r ∈ W 1,2(B, N ) is a weakly harmonic map with respect
to gx,r , satisfies the quasi-monotonicity inequality (1.5), and

∫

B

|∇u|2gx,r
dvgx,r = r2−n

∫

Br (x)

|∇u|2g dvg ≤ ε2
0 . (4.3)

Hence, without loss of generality, assume x = 0 and r = 1. It follows from (1.5) that
there exists K > 0 such that

‖∇u‖M2,n−2(B 1
2
) ≤ K‖∇u‖L2(B) ≤ K ε2

0 . (4.4)

For any θ ∈ (0, 1
2 ), let B2θ ⊂ B 1

2
be an arbitrary ball of radius 2θ and η ∈ C∞

0 (B) be

such that 0 ≤ η ≤ 1, η ≡ 1 on Bθ , η = 0 outside B2θ , and |∇η| ≤ 2θ−1. Denote the average
of u over B2θ by u2θ = 1

|B2θ |
∫

B2θ
u dvg , and |B2θ | is the volume of B2θ with respect to g.

Let {eα}l
α=1 ∈ W 1,2(B2θ ,Rk) be the Coulomb gauge frame of u∗T N on B2θ given by

Proposition 2.2.
Let

〈p, q〉 =
n∑

i=1

pi qi , 〈p, g〉g =
n∑

i, j=1

gi j pi q j , p = (p1, . . . , pn), q = (q1, . . . , qn) ∈ Rn

denote the inner products with respect to g0 and g on Rn , respectively.
By Theorem 3.1, there exists δn > 0 such that for any p ∈ ( n

n−1 − δn,
n

n−1 ), there are

φα ∈ W 1,p
0 (B2θ ) and ψα ∈ L p(B2θ ) such that

〈∇((u − u2θ )η), eα〉 = ∇φα + ψα, divg(ψα) = 0, in B2θ , (4.5)
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394 W. Ishizuka, C. Y. Wang

and

‖∇φα‖L p(B2θ ) + ‖ψα‖L p(B2θ ) ≤ C‖∇((u − u2θ )η)‖L p(B2θ ) ≤ C‖∇u‖L p(B2θ ) (4.6)

where we have used the Poincaré inequality in the last inequality of (4.6).
Using the Coulomb gauge frame {eα}l

α=1, (1.4) can be written as:

divg(〈∇u, eα〉) =
l∑

β=1

n∑

i, j=1

gi j
〈
∂u

∂xi
,

〈
∂eα
∂x j

, eβ

〉〉

eβ in B2θ . (4.7)

We estimate φα,ψα as follows. Let φ(1)α ∈ W 1,2(Bθ ) be the weak solution of

n∑

i,, j=1

∂

∂xi

(

ai j
∂φ

(1)
α

∂x j

)

= 0, in Bθ (4.8)

φ(1)α = φα, on ∂Bθ . (4.9)

where ai j = √
ggi j , 1 ≤ i, j ≤ n. Let φ(2)α = φα − φ

(1)
α , then φ(2)α satisfies

n∑

i, j=1

∂

∂xi

(

ai j
∂φ

(2)
α

∂x j

)

=
l∑

β=1

n∑

i, j=1

gi j
〈
∂u

∂xi
,

〈
∂eα
∂x j

, eβ

〉〉

eβ, in Bθ , (4.10)

φ(2)α = 0, on ∂Bθ . (4.11)

Step I(a) Estimation of ∇φ(1)α .
It is well-known (cf. [11]) that there exists δ ∈ (0, 1) such that φ(1)α ∈ Cδ(Bθ ), and for

any 0 < r ≤ θ
2 and p > 1,

[φ(1)α ]p
Cδ(Br )

≤ Cθ p−n
∫

Bθ

|∇φ(1)α |p dx, 0 < r ≤ θ

2
.

On the other hand, since φ(2)α ∈ W 1,2
0 (Bθ ) satisfies

n∑

i, j=1

∂

∂xi

(

ai j
∂φ

(2)
α

∂x j

)

=
n∑

i, j=1

∂

∂xi

(

ai j
∂φα

∂x j

)

, in Bθ ,

Theorem 3.1 implies that there exists δn > 0 such that, for p ∈ ( n
n−1 − δn,

n
n−1 ),

‖∇φ(2)α ‖L p(Bθ ) ≤ C‖∇φα‖L p(Bθ ) ≤ C‖∇u‖L p(B2θ ).

In particular, we have

‖∇φ(1)α ‖L p(Bθ ) ≤ ‖∇φα‖L p(Bθ ) + ‖∇φ(2)α ‖L p(Bθ ) ≤ C‖∇u‖L p(B2θ ),

and, for 0 < r ≤ θ
2 and p ∈ ( n

n−1 − δn,
n

n−1 ),

[φ(1)α ]p
Cδ(Br )

≤ Cθ p−n
∫

B2θ

|∇u|p dx .
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This, combined with the Cacciopolli inequality, implies that for any τ ∈ (0, 1
4 ) and p ∈

(
n

n−1 − δn,
n

n−1

)
, we have

(τθ)p−n
∫

Bτθ

|∇φ(1)α |p dx ≤ C[φ(1)α ]p
Cδ(B2τθ )

≤ Cτ pδθ p−n
∫

B2θ

|∇u|p dx (4.12)

≤ Cτ pδ‖∇u‖M p,n−p(B1).

Step I(b) Estimation of ∇φ(2)α .
First, we claim
There exists δn > 0 such that for any p ∈ ( n

n−1 − δn,
n

n−1 ), if f ∈ W 1,p
0 (Bθ ) then

‖∇ f ‖L p(Bθ ) ≤ C sup

⎧
⎪⎨

⎪⎩

∫

Bθ

〈∇ f,∇v〉g dvg : v ∈ W 1,p′
0 (Bθ ), ‖∇v‖L p′

(Bθ )
= 1

⎫
⎪⎬

⎪⎭
(4.13)

where p′ = p
p−1 .

To see (4.13), observe that by L p-duality, there exists v ∈ L p′
(Bθ ), with ‖v‖L p′

(Bθ )
= 1,

such that

‖∇ f ‖L p(Bθ ) ≤ C
∫

Bθ

〈∇ f, v〉g dvg. (4.14)

On the other hand, by Theorem 3.1, there exists δn > 0 such that if p ∈ ( n
n−1 − δn,

n
n−1 ),

then there exist v1 ∈ W 1,p′
0 (Bθ ) and v2 ∈ L p′

(Bθ ,Rn), with divg(v2) = 0 in Bθ , such that

v = ∇v1 + v2 in Bθ , ‖∇v1‖L p′
(Bθ )

+ ‖v2‖L p′
(Bθ )

≤ C‖v‖L p′
(Bθ )

. (4.15)

This and (4.14) imply

‖∇ f ‖L p(Bθ ) ≤ C

⎛

⎜
⎝

∫

Bθ

〈∇ f,∇v1〉g dvg +
∫

Bθ

〈∇ f, v2〉g dvg

⎞

⎟
⎠

= C
∫

Bθ

〈∇ f,∇v1〉g dvg,

where we have used divg(v2) = 0 in the last step. Hence (4.13) holds.
Applying (4.13) to eqn. (4.7), we have that for p ∈ ( n

n−1 − δn,
n

n−1 ), there exists v ∈
W 1,p′

0 (Bθ ) such that

‖∇φ(2)α ‖L p(Bθ ) ≤ C
∫

Bθ

〈∇φ(2)α ,∇v〉g dvg

= −C
l∑

β=1

n∑

i, j=1

∫

Bθ

√
ggi j

〈
∂u

∂xi
,

〈
∂eα
∂x j

, eβ

〉〉

(eβv) dx . (4.16)
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To estimate the right hand side, we need the Hardy-BMO duality theorem (cf. [7]) and
the tri-linear estimate (cf. [3,6]).

Proposition 4.2 ([6]) Suppose that f ∈ W 1,2(Rn), h ∈ L2(Rn,Rn) with div(h) = ∑n
i=1

∂hi
∂xi

= 0, and v ∈ BMO(Rn). Then we have
∣
∣
∣
∣
∣
∣

∫

Rn

〈∇ f, h〉v dx

∣
∣
∣
∣
∣
∣
≤ C‖∇ f ‖L2(Rn)‖h‖L2(Rn)‖v‖BMO(Rn). (4.17)

Let û : Rn → Rk be an extension of u such that

‖∇û‖L2(Rn) ≤ C‖∇u‖L2(B2θ )
, [û]BMO(Rn) ≤ C[u]BMO(B2θ )

. (4.18)

Let wi
α = ∑l

β=1
∑n

j=1
√

ggi j 〈 ∂eα
∂x j
, eβ〉, 1 ≤ i ≤ n, and wα = (w1

α, . . . , w
n
α). Then, by

(2.1), we have

div(wα) =
n∑

i=1

∂wi
α

∂xi
= √

g
l∑

β=1

divg(〈∇eα, eβ〉) = 0 on B2θ .

This, combined with (2.2), implies that there exists an extension ŵα ∈ L2(Rn,Rn) of wα
such that

div(ŵα) = 0 in Rn, ‖ŵα‖L2(Rn) ≤ C‖wα‖L2(B2θ )
≤ C‖∇u‖L2(B2θ )

. (4.19)

Putting (4.17)–(4.19) into (4.16), we have

‖∇φ(2)α ‖L p(Bθ ) ≤ −C
∫

Rn

〈∇u, ω̂α〉(veα) dx

= C
∫

Rn

〈û, ŵα〉∇(veα) dx

≤ C[û]BMO(Rn)‖ŵα‖L2(Rn)‖∇(veα)‖L2(Rn)

≤ C‖∇u‖L2(B2θ )
[u]BMO(B2θ )

‖∇(veα)‖L2(Bθ ). (4.20)

To estimate ‖∇(veα)‖L2(Bθ ), note that for p ∈ (1, n
n−1 ), p′ = p

p−1 > n and hence the

Sobolev embedding theorem implies v ∈ W 1,p′
0 (Bθ ) ⊂ C

1− n
p′

0 (Bθ ), and

‖v‖L∞(Bθ ) ≤ Cθ
1− n

p′ = Cθ1−n+ n
p . (4.21)

Moreover, by Hölder inequality, we have

‖∇v‖L2(Bθ ) ≤ Cθ
n
2 − n

p′ ‖∇v‖L p′
(Bθ )

≤ Cθ
n
p − n

2 . (4.22)

Therefore we have

‖∇(veα)‖L2(Bθ ) ≤ C(‖∇v‖L2(Bθ ) + ‖v‖L∞(Bθ )‖∇eα‖L2(Bθ ))

≤ Cθ
n
p − n

2 [1 + θ1− n
2 ‖∇u‖L2(B2θ )

]
≤ Cθ

n
p − n

2 (1 + ‖∇u‖M2,n−2(B1)
)

≤ Cθ
n
p − n

2 (1 + ε0) ≤ Cθ
n
p − n

2 . (4.23)
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Putting (4.23) into (4.20), and combining with (4.12), we have, for any τ ∈ (0, 1
4 ),

⎧
⎪⎨

⎪⎩
(τθ)p−n

∫

Bτθ

|∇φα|p dx

⎫
⎪⎬

⎪⎭

1
p

≤ C[τ δ + τ
1− n

p ε0]‖∇u‖M p,n−p(B1) (4.24)

where we have used the Poincaré inequality:

[u]BMO(B2θ )
≤ C‖∇u‖M p,n−p(B2θ ) ≤ C‖∇u‖M p,n−p(B1). (4.25)

Step II Estimation of ψα .
It follows from (4.5) and Proposition 4.2 that we have

∫

Bθ

|ψα|2g dvg =
n∑

i, j=1

∫

Bθ

ai jψ
i
αψ

j
α dx

=
n∑

i, j=1

∫

Bθ

ai jψ
i
α

〈
∂((u − u2θ )η)

∂x j
, eα

〉

dx

−
n∑

i, j=1

∫

Bθ

ai jψ
i
α

∂φα

∂x j
dx

= −
n∑

i, j=1

∫

Bθ

ai jψ
i
α

〈

(u − u2θ )η,
∂eα
∂x j

〉

dx

≤ C‖ψα‖L2(Bθ )‖∇eα‖L2(Bθ )[(u − u2θ )η]BMO(Bθ )
≤ C‖ψα‖L2(Bθ )‖∇u‖L2(Bθ )‖∇u‖M p,n−p(B1) (4.26)

where we have used the fact divg(ψα) = 0, i.e.

n∑

i, j=1

∫

Bθ

ai jψ
i
α

∂η

∂x j
dx = 0, ∀η ∈ W 1,2

0 (Bθ ),

and

[(u − u2θ )η]BMO(Bθ ) ≤ C[u]BMO(B2θ )
≤ C‖∇u‖M p,n−p(B1). (4.27)

By Hölder inequality, (4.26) yields

⎧
⎪⎨

⎪⎩
θ p−n

∫

Bθ

|ψα|p dx

⎫
⎪⎬

⎪⎭

1
p

≤ Cε0‖∇u‖M p,n−p(B1). (4.28)

It follows from (4.5), (4.24), and (4.28) that for any τ ∈ (0, 1
4 ), any ball B2θ ⊂ B 1

2
,

⎧
⎪⎨

⎪⎩
(τθ)p−n

∫

Bτθ

|∇u|p dx

⎫
⎪⎬

⎪⎭

1
p

≤ C(τ δ + τ
1− n

p ε0)‖∇u‖M p,n−p(B1). (4.29)
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Taking superum over all balls B2θ ⊂ B 1
2
, we have

‖∇u‖M p,n−p(B τ
2
) ≤ C(τ δ + τ

1− n
p ε0)‖∇u‖M p,n−p(B1). (4.30)

Therefore, by choosing τ = τ1 = 4C
−1
δ and ε0 = 1

4C τ
n
p −1

0 sufficiently small, we have, for
τ0 = τ1

2 > 0,

‖∇u‖M p,n−p(Bτ0 )
≤ 1

2
‖∇u‖M p,n−p(B1). (4.31)

This completes the proof of Lemma 4.1. ��
Proof of Theorem A For n = 2, the absolute continuity of

∫ |∇u|2 implies that there exists
r0 > 0 such that

∫

Br (x)

|∇u|2 dx ≤ ε2
0 , ∀r ≤ r0, x ∈ �. (4.32)

Hence, applying Lemma 4.1 repeatedly, we have that for some p ∈ (1, 2) and τ0 ∈ (0, 1
2 ),

(τm
0 r0)

p−2
∫

Bτm
0 r0

(x)

|∇u|p ≤ 2−pmε
p
0 , ∀m ≥ 1, ∀x ∈ �. (4.33)

This implies that there exists α0 ∈ (0, 1) such that

r p−2
∫

Br (x)

|∇u|p ≤ C(ε0, p)rα, ∀r ∈ (0, r0), x ∈ �. (4.34)

Hence, by Morrey’s Lemma (cf. [8]), we conclude u ∈ Cα(�, N ). This completes the proof
of Theorem A. ��
Proof of Theorem B Define

� =

⎧
⎪⎨

⎪⎩
x ∈ � : lim

r↓0
r2−n

∫

Br (x)

|∇u|2 ≥ ε2
0

⎫
⎪⎬

⎪⎭
.

It is well-known (cf. [21]) that Hn−2(�) = 0. Moreover, by Lemma 4.1, � ⊂ � is a closed
set. For any x0 ∈ �\�, there exists r0 > 0 such that B2r0(x0) ∩� = ∅, and

r2−n
∫

Br (x)

|∇u|2 ≤ ε2
0 , ∀x ∈ Br0(x0), r ≤ r0.

Therefore, by Lemma 4.1, we have that for some p ∈ (1, n
n−1 ) and τ0 ∈ (0, 1),

(τm
0 r0)

p−n
∫

Bτm
0 r0

(x)

|∇u|p ≤ 2−pmε
p
0 , ∀m ≥ 1, ∀x ∈ Br0(x0). (4.35)

This implies that there is α ∈ (0, 1) such that

r p−n
∫

Br (x)

|∇u|p ≤ C(ε0, p)r pα, ∀x ∈ Br0(x0), ∀r ∈ (0, r0). (4.36)
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Hence, by Morrey’s Lemma, we conclude u ∈ Cα(Br0(x0), N ) and u ∈ Cα(�\�, N ). ��

5 Quasi-monotonicity inequality

In this section, we derive the quasi-monotonicity inequality (1.5) for two classes of harmonic
maps in dimensions n ≥ 3: (1) minimizing harmonic maps with respect to Dini-continuous
metrics g, and (2) stationary harmonic maps with respect to Lipschitz continuous metrics g.

Definition 5.1 A map u ∈ W 1,2(�, N ) is a minimizing harmonic map, if
∫

�

|∇u|2g dvg ≤
∫

�

|∇v|2g dvg, ∀v ∈ W 1,2(�, N ) with v|∂� = u|∂�. (5.1)

Recall that f : � → Rn×n is Dini-continuous, if there exist r0 > 0 and a monotonically
non-decreasing ω : [0, r0] → R+, with ω(0) = 0 and

∫ r0
0

ω(t)
t dt < ∞, such that

| f (x)− f (y)| ≤ ω(|x − y|), ∀x, y ∈ �, |x − y| ≤ r0. (5.2)

Proposition 5.1 For n ≥ 3, suppose that g is a Dini-continuous metric on � and u ∈
W 1,2(�, N ) is a minimizing harmonic map. Then u satisfies the quasi-monotonicity inequal-
ity (1.5).

Proof It suffices to prove (1.5) for x = 0 ∈ �. Assume g0 = g(0) is the Euclidean metric
on Rn . For 0 < r < min{r0, dist(0, ∂�)}, define

v(x) = u

(
r x

|x |
)

, x ∈ Br

= u(x), x ∈ �\Br .

Then the minimality of u implies
∫

Br

|∇u|2g dvg ≤
∫

Br

|∇v|2g dvg. (5.3)

It follows from the Dini-continuity of g that

max
x∈Br

|g(x)− g0| ≤ ω(r), ∀0 < r ≤ min{r0, dist(0, ∂�)},

where ω is the modular of continuity of g. This and (5.3) imply that there exists C0 > 0 such
that

(1 − C0ω(r))
∫

Br

|∇u|2 dx ≤
∫

Br

|∇v|2 dx, ∀0 < r ≤ min{r0, dist(0, ∂�)}. (5.4)

Direct calculations imply
∫

Br

|∇v|2 dx = r

n − 2

∫

∂Br

(

|∇u|2 − |∂u

∂r
|2

)

d Hn−1.
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Therefore we have, for 0 < r ≤ min{r0, dist(0, ∂�)},

(n − 2)(1 − C0ω(r))r
1−n

∫

Br

|∇u|2 dx ≤ r2−n
∫

∂Br

|∇u|2 d Hn−1

−r2−n
∫

∂Br

|∂u

∂r
|2 d Hn−1. (5.5)

This yields, for 0 < r ≤ min{r0, dist(0, ∂�)},

d

dr

⎧
⎪⎨

⎪⎩
e{(n−2)C0

∫ r
0
ω(t)

t dt}r2−n
∫

Br

|∇u|2 dx

⎫
⎪⎬

⎪⎭

≥ e{(n−2)C0
∫ r

0
ω(t)

t dt}r2−n
∫

∂Br

|∂u

∂r
|2 d Hn−1

≥ r2−n
∫

∂Br

|∂u

∂r
|2 d Hn−1. (5.6)

Integrating (5.6), we have, for 0 < r ≤ R ≤ min{r0, dist(0, ∂�)},
∫

BR\Br

|x |2−n |∂u

∂r
|2 dx + r2−n

∫

Br

|∇u|2 dx

≤ e{(n−2)C0
∫ R

0
ω(t)

t dt} R2−n
∫

BR

|∇u|2 dx . (5.7)

This implies (1.5) holds for K = e{(n−2)C0
∫ r0

0
ω(t)

t dt}. ��
Next we consider stationary harmonic maps.

Definition 5.2 A weakly harmonic map u ∈ W 1,2(�, N ) is a stationary harmonic map, if it
is a critical point of E2 with respect to the domain variations:

d

dt
|t=0

∫

�

|∇u(x + t X (x))|2g dvg = 0, ∀X ∈ C1
0 (�,Rn). (5.8)

We have

Proposition 5.2 For n ≥ 3, let g be a Lipschitz continuous Riemannian metric on �. Then
any stationary map u ∈ W 1,2(�, N ) satisfies (1.5) for some K = K (n, g) > 0.

Proof For simplicity, assume x = 0 ∈ � and g(0) = g0. Define the energy-stress tensor

Sαβ = 1

2
|∇u|2ggαβ −

〈
∂u

∂xα
,
∂u

∂xβ

〉

, 1 ≤ α, β ≤ n.

Then it is well-known (cf. [13]) that the stationarity (5.8) implies

n∑

α,β=1

∫

�

(L X gαβ)Sαβ dvg = 0 (5.9)
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where

L X gαβ =
n∑

γ=1

[

Xγ
∂gαβ

∂xγ
− ∂Xα
∂xγ

gγβ − ∂Xβ
∂xγ

gγα
]

is the Lie derivative of (gαβ) with respect to X .
For Br ⊂ �, and η(x) = η(|x |) ∈ C1

0(Br ) with 0 ≤ η ≤ 1, let X (x) = xη(|x |). Then we
have

∂Xα
∂xγ

= δαγ η(|x |)+ η′(|x |) xαxγ
|x | , 1 ≤ α, γ ≤ n,

and

L X gαβ = η(|x |)
n∑

γ=1

xγ
∂gαβ

∂xγ
− 2η(|x |)gαβ − 2η′(|x |)

n∑

γ=1

xβxγ
|x | gαγ .

Since g is Lipschitz continuous, there exist r0 > 0 and C0 > 0 depending on Lip(g) such
that

‖∇gαβ‖L∞(Br ) ≤ C0Lip(g), ∀0 < r ≤ r0. (5.10)

Let I ≡ ∑n
α,β,γ=1

∫
Br

xγ η(|x |) ∂gαβ

∂xγ
Sαβ dvg . Then we have

|I| ≤
n∑

α,β,γ=1

∫

Br

|xγ ||∂gαβ

∂xγ
||Sαβ | dvg

≤ r‖∇gαβ‖L∞(Br )

n∑

α,β=1

∫

Br

|Sαβ | dvg ≤ Cr
∫

Br

|∇u|2g dvg

for C = C0Lip(g).
Set II ≡ −2

∑n
α,β=1

∫
Br
η(|x |)gαβ Sαβ dvg . Then we have

II = −2
n∑

α,β=1

∫

Br

η(|x |)gαβ
(

1

2
|∇u|2ggαβ −

〈
∂u

∂xα
,
∂u

∂xβ

〉)

dvg

= (2 − n)
∫

Br

η(|x |)|∇u|2g dvg.

For III ≡ −2
∑n
α,β,γ=1

∫
Br
η′(|x |) xβ xγ

|x | gαγ Sαβ dvg , we have

III = −2
n∑

α,β,γ=1

∫

Br

η′(|x |) xβxγ
|x | gαγ

(
1

2
|∇u|2ggαβ −

〈
∂u

∂xα
,
∂u

∂xβ

〉)

dvg

= −
∫

Br

η′(|x |)|x ||∇u|2g dvg

+2
n∑

α,β,γ=1

∫

Br

η′(|x |) xβxγ
|x | gαγ

〈
∂u

∂xα
,
∂u

∂xβ

〉

dvg

= IV + V.
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Observe that (5.10) implies, for 0 < r ≤ r0,

gαγ (x) = δαγ + hαγ (x), |hαγ |(x) ≤ C0Lip(g)|x |, ∀x ∈ Br , ∀1 ≤ α, γ ≤ n.

Hence we have

V = 2
∫

Br

|x |η′(|x |)
∣
∣
∣
∣
∂u

∂r

∣
∣
∣
∣

2

dvg + 2
n∑

α,γ=1

∫

Br

η′(|x |)xγ hαγ

〈
∂u

∂xα
,
∂u

∂r

〉

dvg. (5.11)

As

0 =
n∑

α,β=1

∫

�

(L X gαβ)Sαβ dvg = I + II + III,

we have

(2 − n)
∫

Br

η(|x |)|∇u|2g dvg −
∫

Br

|x |η′(|x |)
(

|∇u|2g − 2|∂u

∂r
|2

)

dvg

≥ −Cr
∫

Br

|∇u|2g dvg − 2
n∑

α,γ=1

∫

Br

η′(|x |)xγ hαγ

〈
∂u

∂xα
,
∂u

∂r

〉

dvg. (5.12)

For small ε > 0, let η = ηε(|x |) ∈ C0,1
0 (Br ) be such that ηε(t) = 1 for 0 ≤ t ≤ r − ε,

ηε(t) = 0 for t ≥ r , and η′
ε(t) = − 1

ε
for r − ε ≤ t ≤ r . Putting η into (5.12) and sending ε

to zero, we obtain

(2 − n)
∫

Br

|∇u|2g dvg + r
∫

∂Br

|∇u|2g d Hn−1
g

≥ 2r
∫

∂Br

|∂u

∂r
|2 d Hn−1

g − Cr
∫

Br

|∇u|2g dvg

+2
n∑

α,γ=1

∫

∂Br

xγ hαγ 〈 ∂u

∂xα
,
∂u

∂r
〉 d Hn−1

g

≥ 2r
∫

∂Br

|∂u

∂r
|2 d Hn−1

g − Cr
∫

Br

|∇u|2g dvg

−Cr3
∫

∂Br

|∇u|2g d Hn−1
g (5.13)
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where d Hn−1
g is the (n − 1)-dimensional Hausdorff measure with respect to g, and we have

used the Hölder inequality in the last step:

2
n∑

α,γ=1

|
∫

∂Br

xγ hαγ
〈
∂u

∂α
,
∂u

∂r

〉

d Hn−1
g |

≤ r
∫

∂Br

|∂u

∂r
|2 d Hn−1

g + r

⎛

⎝
n∑

α,γ=1

max
Br

|hαγ |2
⎞

⎠
∫

∂Br

|∇u|2g d Hn−1
g

≤ r
∫

∂Br

|∂u

∂r
|2 d Hn−1

g + Cr3
∫

∂Br

|∇u|2g d Hn−1
g .

Let f (r) = ∫
Br

|∇u|2g dvg , we have f ′(r) = ∫
∂Br

|∇u|2g d Hn−1 for a.e. r > 0. Hence
(5.13) yields

(2 − n + Cr) f (r)+ r(1 + Cr) f ′(r) ≥ r
∫

∂Br

∣
∣
∣
∣
∂u

∂r

∣
∣
∣
∣

2

d Hn−1
g .

In particular, there exists a small r0 > 0 depending on g such that for 0 < r ≤ r0,

(2 − n + O(r)) f (r)+ r f ′(r) ≥ r

2

∫

∂Br

∣
∣
∣
∣
∂u

∂r

∣
∣
∣
∣

2

d Hn−1
g (5.14)

where C−1r ≤ O(r) ≤ Cr . Therefore we have, 0 < r ≤ r0,

d

dr
(eO(r)r2−n f (r)) ≥ 1

2
eO(r)r2−n

∫

∂Br

∣
∣
∣
∣
∂u

∂r

∣
∣
∣
∣

2

d Hn−1
g . (5.15)

Integrating (5.15) over 0 < r ≤ R ≤ r0, we have

eO(R)R2−n f (R) ≥ r2−n f (r)+ 1

2

∫

BR\Br

|x |2−n
∣
∣
∣
∣
∂u

∂r

∣
∣
∣
∣

2

dvg. (5.16)

This, combined with (1.3), implies (1.5) with K = eO(r0). ��
Remark 5.1 The monotonicity inequality (5.15) has been derived by Garofalo–Lin [10] for
second order elliptic equations with divergence structure by a different method.

6 Final remarks

This section is devoted to some further discussions on Theorems A and B. The first remark
asserts that for n ≥ 3, g ∈ VMO(�) can be weaken. The second remark concerns the opti-
mal Hausdorff dimension estimate on minimizing harmonic map from domains with Dini
continuous metrics. The third remark concerns the blow-up analysis of stationary harmonic
maps from domians with Lipschitz continuous Riemannian metrics.

Theorem 6.1 For n ≥ 3, there exists δ0 > 0 such that if g is a L∞-Riemannian metric
on � with [g]BMO(�) ≤ δ0 and u ∈ W 1,2(�, N ) is a weakly harmonic map satisfying the
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quasi-monotonicity inequality (1.5), then there are α ∈ (0, 1) and closed subset � ⊂ �,

with Hn−2(�) = 0, such that u ∈ Cα(�\�, N ).

Proof It follows from the same arguments as in Theorem B, except that we need to replace
Proposition 3.3 by the following proposition, due to Byun–Wang [2] (see also Caffarelli–
Peral [4]).

Lemma 6.2 For n ≥ 3 and ball B ⊂ �, assume that A = (ai j ) ∈ L∞(B,Rn×n) is sym-
metric, and uniformly elliptic with ellipticity constant � > 0. For any p ∈ (1,+∞) and
F ∈ L p(B,Rn), there exists δp > 0 such that if [g]BMO(B) ≤ δp, then there exists a unique

solution G ∈ W 1,p
0 (B) to the Dirichlet problem:

n∑

i, j=1

∂

∂xi

(

ai j
∂G

∂x j

)

=
n∑

i=1

∂Fi

∂xi
, in B (6.1)

G = 0, on ∂B. (6.2)

Moreover,

‖∇G‖L p(B) ≤ C([A]BMO(B), n,�)‖F‖L p(B). (6.3)

��
Theorem 6.2 For n ≥ 3 and a Dini-continuous Riemannian metric g in � ⊂ Rn, if u ∈
W 1,2(�, N ) is a minimizing harmonic map, then there exist α ∈ (0, 1) and closed subset
� ⊂ �, which is discrete for n = 3 and has Hausdorff dimension at most (n − 3) for n ≥ 4,
such that u ∈ Cα(�\�, N ).

Proof Note that the Dini-continuity of g implies g ∈ VMO(�). Since u is a minimizing
harmonic map, Proposition 5.1 implies that u satisfies the monotonicity inequality (5.7).
Define

� =

⎧
⎪⎨

⎪⎩
x ∈ � | �(u, x) ≡ lim

r↓0
r2−n

∫

Br (x)

|∇u|2 ≥ ε2
0

⎫
⎪⎬

⎪⎭
(6.4)

where ε0 is given by Lemma 4.1. Then, by theorem B, we have that u ∈ Cα(�\�, N ) for
some α ∈ (0, 1).

To prove the Hausdorff dimension estimate of �, define the rescalled map ux0,ri (x) =
u(x0 + ri x) : B2 → N for any x0 ∈ � and ri ↓ 0. It is easy to see that ux0,ri is minimizing
harmonic map with respect to gi (x) = g(x0 + ri x). Since g is Dini-continuous, we know
gi → g0, the Euclidean metric, uniformly on B2.

It follows from Luckhaus’ extension Lemma (see [16]) and the minimality of u that there
exists a minimizing harmonic map φ ∈ W 1,2(B2, N )with respect to g0 such that after taking
possible subsequences, ux0,ri (x) ≡ u(x0 + ri x) → φ strongly in W 1,2(B2, N ). Moreover,
the monotonicity inequality (5.7) yields ∂φ

∂r = 0 a.e. in B2 and φ(x) = φ( x
|x | ) for a.e. x ∈ B2.

Now we can apply Federer’s dimension reduction argument (cf. [21]) to conclude that � is
discrete for n = 3, and has Hausdorff dimension at most (n − 3) for n ≥ 4. ��
Theorem 6.3 For n ≥ 3 and a Lipschitz continuous metric g on � ⊂ Rn. Assume that N
doesn’t support nonconstant harmonic maps from S2. If u ∈ W 1,2(�, N ) is a stationary
harmonic map, then there exist α ∈ (0, 1) and closed subset � ⊂ �, which is discrete for
n = 4, and has Hausdorff dimension at most (n − 4) for n ≥ 5, such that u ∈ Cα(�\�, N ).
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Proof Note that the Lipschitz continuity of g implies g ∈ VMO(�). It follows from the sta-
tionarity and Proposition 5.2 that u satisfies the monotonicity inequality (5.16). Therefore,
Theorem B implies u ∈ Cα(�\�, N ) for some α ∈ (0, 1), with � given by (6.4).

For any x0 ∈ � and ri ↓ 0, ux0,ri ∈ W 1,2(B2, N ) are stationary harmonic maps with
respect to gi . It follows from (5.16) that there is a harmonic map φ ∈ W 1,2(B2, N ) with
respect to g0, which is homogeneous of degree zero, such that after passing to subsequences,
ux0,ri (x) ≡ u(x0 + ri x) → φ weakly in W 1,2(B2, N ). One can check the blow-up analysis
by Lin [15] applies to stationary harmonic maps with respect to Lipschitz continuous metrics
g as long as we have theorem B, (5.16), and N doesn’t support harmonic S2’s. In particu-
lar, ux0,ri → φ strongly in W 1,2(B2, N ). With this strong convergence, one can show � is
discrete for n = 4, and has Hausdorff dimension at most (n − 4) for n ≥ 5. ��
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