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Abstract We consider the following Liouville equation in R
4

�2u = 6e4u in R
4,

∫

R4

e4udx < ∞.

For each fixed x0 ∈ R
4, 1 ≤ k ≤ 4, α ∈ (1 − k

4 , 2) and a j > 0 for 1 ≤ j ≤ k, we construct
a solution to the above equation with the following asymptotic behavior:

u(x) = −
k∑

j=1

a j (x j − x0
j )

2 − α log |x | + c0 + o(1), |x | > 1,

∫

R4

e4u(x)dx = 4π2α

3
.
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374 J. Wei, D. Ye

1 Introduction

Recently, there have been lots of work on the study of higher order conformally invariant
operators. A notable example is the so-called Paneitz operator (see [10])

Pu = �2u + δ

(
2

3
K0 I − 2Ric

)
du (1)

and the associated Q-curvature:

Q = 1

12

(
K 2

0 −�K0 − 3|Ric|2) , (2)

where δ denotes the divergence, d the differential, Ric is the Ricci curvature of (M, g0), a
four dimensional manifold and K0 is the scalar curvature. In [3,4], Chang and Yang studied
the existence of extreme functions for the associated variational problem:

I I [u] = 〈Pu, u〉 +
∫

Q0wdVg0 −
(∫

Q0dVg0

)
log
∫

e4wdVg0 .

For background material and other related problems, we refer to [2–4,6] and the references
therein. The extreme function u of I I [u] satisfies a conformal invariant elliptic equation of
fourth order:

Pu + 2Q0 = 2Qe4w, (3)

where Q is a constant. To study the qualitative behavior (such as blow up, a priori estimates)
of solutions of (3), it is important to classify all solutions to the following reduced fourth
order equation

�2u = 6e4u in R
4,

∫

R4

e4udx < ∞. (4)

In [7] (see also [12] for higher order cases), Lin classified the solutions to (4) and proved the
following theorem.

Theorem 1.1 (Theorems 1.1 and 1.2 of [7]) Suppose u is a solution to (4). Then the following
statements hold true.

(i) After an orthogonal transformation, u(x) can be represented by

u(x) = 3

4π2

∫

R4

e4u(y) log
|y|

|x − y|dy −
4∑

j=1

a j (x j − x0
j )

2 + c0

= −
4∑

j=1

a j (x j − x0
j )

2 − α log |x | + c0 + o(1) (5)

as the Euclidean norm |x | tends to ∞. Here a j ≥ 0, c0 are constants and x0 = (x0
1 , . . . , x0

4 ) ∈
R

4. Moreover, if a j �= 0 for all j , then u is symmetric with respect to the hyperplane{
x | x j = x0

j

}
. If a1 = a2 = a3 = a4, then u is radially symmetric with respect to x0.

(ii) The total integration

α = 3

4π2

∫

R4

e4u(y)dy ≤ 2.
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If α = 2, then all a j are zero and u has the following form:

u(x) = log
2λ

1 + λ2|x − x0|2 , with λ > 0. (6)

(iii) If u(x) = o(|x |2) at ∞, then α = 2.

Lin’s theorem shows a striking difference between (4) and its second order analogue:

�u + e2u = 0 in R
2,

∫

R2

e2udx < ∞. (7)

It is known (see [5]) that all solutions to (7) are radially symmetric (with respect to one point)
and have the form (6).

An interesting question in Lin’s theorem is: given any a j ≥ 0, 1 ≤ j ≤ 4 and α > 0,
are there solutions to (4) satisfying (5)? In the case a1 = a2 = a3 = a4, by Lin’s theorem,
solutions are radially symmetric up to translation. Chang and Chen [1] proved the existence
of at least one solution to (4) for any α ∈ (0, 2), they proved also the existence of at least
one radially symmetric solution with asymptotic behavior −ar2 near infinity for any a > 0.
It remains to study the nonradially symmetric case, that is exactly the purpose of this paper.

Here, we show that the converse of Lin’s theorem is also true.

Theorem 1.2 Let x0 ∈ R
4, 1 ≤ k ≤ 4, α ∈ (1 − k

4 , 2
)

and a j > 0 for 1 ≤ j ≤ k. Then
there exists c0 ∈ R and a solution of (4) such that

u(x) = −
k∑

j=1

a j (x j − x0
j )

2 − α log |x | + c0 + o(1) (8)

for |x | tends to ∞. Moreover,
∫

R4

e4u(x)dx = 4π2α

3
.

Remark 1.3 Lin remarked that the condition α > 1 − k
4 is necessary for the existence of

solution if we have just a j > 0 for 1 ≤ j ≤ k, see the comments under (3.8) in p. 224 of [7].
Our result means that this condition is also sufficient. Note that when k = 4, this condition
becomes just α ∈ (0, 2), so we recover the results in [1]. For example, for all a > 0 and
α ∈ (0, 2), we have a radial solution of (4) with asymptotic behavior as −ar2 − α log r at
∞.

Theorem 1.2 shows that there are abundant nonradially symmetric solutions to the confor-
mally invariant equation (4). More precisely, for any α ∈ (0, 2), even up to translation and
the gauge transformation u(λx) + 4 log λ, there exist infinitely many nonradial solutions.
This is quite surprising.

In the next section, we shall prove Theorem 1.2. We make use an idea of McOwen [8],
where he constructed solutions to

�u + k(x)e2u = 0 in R
2, (9)

with prescribed asymptotic behavior. Our difficulty is to show a priori estimates, our main
arguments are blow-up analysis and Pohozaev’s identity.

123



376 J. Wei, D. Ye

2 Proof of Theorem 1.2

Fix 1 ≤ k ≤ 4, a j > 0 for 1 ≤ j ≤ k and 1 − k/4 < α < 2. Using translation, we can
assume that x0 = 0. First, we fix u0 ∈ C∞(R4) such that u0(x) = − log |x | for any |x | ≥ 1.
Clearly, �2u0 is compactly supported and∫

R4

�2u0(x)dx = 8π2. (10)

Define

v = u +
k∑

j=1

a j x2
j − αu0

def= u + u1 − αu0. (11)

Then u is a solution of (4) if and only if�2v = K e4v −α�2u0 where K (x) = 6e−4u1+4αu0 .
For constructing v, we shall use some ideas of McOwen. Let Mp

s,δ be the weighted Sobolev

spaces, the completion of C∞
0 (R

4) with the norm

∑
|�|≤s

∥∥∥∥
(
1 + |x |2) δ+|�|

2 D�φ

∥∥∥∥
L p(R4)

where p ∈ (1,∞), s ∈ N, δ ∈ R, � ∈ N
4 and |�| = ∑

1≤i≤4 �i . The following are some
useful properties of Mp

s,δ (cf. [9]).

Lemma 2.1 Let p > 1 and δ ∈
(
− 4

p ,− 4
p + 1

)
. Let L p

δ = Mp
0,δ , then the operator �2 is

an isomorphism from Mp
4,δ into

� =

⎧⎪⎨
⎪⎩ f ∈ L p

4+δ,
∫

R4

f dx = 0

⎫⎪⎬
⎪⎭ .

On the other hand, if p > 1, δ > −4/p and s > 4/p, Mp
s,δ is compactly embedded in

C0(R
4).

Here C0(R
4) denotes the space of continuous functions which tend to zero at ∞, endowed

with the norm ‖ · ‖∞.

Remark 2.2 For 1 ≤ k ≤ 4, if a j > 0 for 1 ≤ j ≤ k and α > 1 − k/4, we can always

choose p > 1 and δ ∈
(
− 4

p ,− 4
p + 1

)
such that K ∈ L p

4+δ ∩ L1(R4). In fact, a sufficient

condition is just p(4α − δ − 4) > 4 − k.

For any v ∈ C0(R
4), define

cv = log
(
8π2α

)
4

− 1

4
log

⎛
⎜⎝
∫

R4

K e4vdx

⎞
⎟⎠ . (12)

Thanks to Remark 2.2, cv is well defined and it is easy to see that K e4(v+cv) − α�2u0

belongs to� for suitable p > 1 and δ ∈
(
− 4

p ,− 4
p + 1

)
. By Lemma 2.1, there exists unique

v ∈ Mp
4,δ such that �2v = K e4(v+cv) − α�2u0, we define then v = Tv. Applying again
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Lemma 2.1, T is a continuous and compact mapping from C0(R
4) into itself. Now we will

try to find a fixed point for T, which enables us to get a solution of (4).
In our analysis, a crucial argument is the following result.

Lemma 2.3 Let u be a smooth function satisfying�2u = K e4u in B1 ⊂ R
4, such that K is

continuous and positive in B1, ∫

B1

K e4udy ≤ β < 16π2 (13)

and there exists C0 > 0 verifying

∀ B(x, r) ⊂ B1, ‖�u‖L1(B(x,r)) ≤ C0r2. (*)

Then there exists C > 0 (depending on β and C0) such that

max
B1/4

u ≤ C. (14)

The proof of this lemma is given by contradiction and blow-up analysis. One of the
key points is that the condition (∗) remains stable under the gauge transformation uλ(y) =
u(x + λy)+ 4 log λ. Moreover, this condition prevents to have some a j > 0 for the solution
after the blow-up, which will force the total integration to be just 16π2 and contradicts then
β < 16π2.

Proof of Lemma 2.3 Suppose that the constant C does not exist, we have then a family of
smooth functions un such that �2un = K e4un in B1, verifies (∗) and∫

B1

K e4un dy ≤ β, max
B1/4

un ≥ n.

Consider

hn(x) = un(x)+ 4 log

(
1

2
− |x |

)
in B1/2.

Then maxB1/2 hn ≥ n − 4 log 4 → ∞. Define

µn = hn(xn) = max
B1/2

hn, σn = 1

2
− |xn | and λn = σne−µn/4.

Clearly σn/λn → ∞. Define also wn(y) = un(xn + λn y) + 4 log λn . For |y| ≤ σn/(2λn),
we have

1

2
− |xn + λn y| ≥ 1

2
− |xn | − λn |y| ≥ σn − σn

2
= σn

2
,

hence

un(xn + λn y) ≤ µn − 4 log
(σn

2

)
= −4 log λn + log 16.

In other words, wn(y) ≤ log 16 for |y| ≤ σn/(2λn). Therefore, we obtain
⎧⎨
⎩
�2wn = K (xn + λn y)e4wn in Bσn/(2λn)

wn ≤ log 16 in Bσn/(2λn)

wn(0) = 1.
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378 J. Wei, D. Ye

Moreover, for any R > 0, y0 ∈ R
4 such that B(y0, R) ⊂ Bσn/(2λn), the condition (∗) implies

∫

B(y0,R)

|�wn |dy = 1

λ2
n

∫

B(xn+λn y0,λn R)

|�un |dx ≤ C0 R2. (15)

Using standard elliptic theory, it is not difficult to prove

Lemma 2.4 Let R > 0 and w be a family of functions satisfying w(0) = 1 and

‖�2w‖L∞(BR) + ‖�w‖L1(BR)
+ sup

BR

w ≤ A,

then there exists CR > 0 depending on R and A such that w ≥ −CR in BR/2.

Applying this result on wn . Up to a subsequence, we can assume that xn → x∗, wn → w

in C∞
loc(R

4), solution of

�2w = K (x∗)e4w in R
4

and ∫

R4

K (x∗)e4wdy ≤ lim inf
n→∞

∫

Bσn/(2λn )

K (xn + λn y)e4wn dy ≤ β < 16π2.

Noting that K (x∗) is a constant, w must be a solution given by (5), so

�w(x) = − K (x∗)
4π2

∫

R4

e4w(y)

|x − y|2 dy − 2
4∑

j=1

a j = O
(|x |−2)− 2

4∑
j=1

a j .

Otherwise, if we take limit in (15), we get ‖�w‖L1(BR)
≤ C0 R2 for any R > 0. Since a j ≥ 0,

all the coefficients a j must be equal to zero. By Lin’s result, we have w(y) = o(|y|2), hence
∫

R4

K (x∗)e4wdy = 16π2,

which is a contradiction. Our proof is completed. ��
Remark 2.5 We can prove similar results for a family of equicontinuous functions Kn which
verifies 0 < a ≤ Kn ≤ b < ∞. The gauge transformation yields also that the result is true
in any ball BR .

Proof of Theorem 1.2 completed Suppose that v is a fixed point for the operator tT in C0(R
4)

with t ∈ (0, 1], that is v = tTv and v ∈ C0(R
4). We claim then

v(x) = − t

8π2

∫

R4

log |x − y|K e4(v+cv)dy − tαu0(x)+ C1
def= ṽ(x)+ C1. (16)

Indeed, as e4(v+cv) ∈ L∞(R4), under the assumption on α and k, ṽ is well defined. It is clear
that �2 (̃v − v) = 0 in R

4. Moreover, since for |x | > 1,

ṽ(x) = t

8π2

∫

R4

K e4(v+cv) log
|x |

|x − y|dy (17)
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and K e4(v+cv) ∈ C0 ∩ L1(R4), we get ṽ(x) = o(log |x |) at ∞. Liouville’s theorem yields
then v − ṽ ≡ constant.

Take

w = v + cv + tαu0 + log t

4
,

then �2w = Qe4w in R
4 with

Q = K e−4tαu0 = 6e−∑ j≤k a j x2
j +4(1−t)αu0 .

Clearly,
∫

R4

Qe4wdx = t
∫

R4

K e4(v+cv)dx ≤ 8π2α < 16π2,

since t ∈ (0, 1] and α < 2. On the other hand, thanks to (16),

�w(x) = − 1

4π2

∫

R4

Qe4w

|x − y|2 dy.

Since −�w ≥ 0 and

−
∫

B(x0,r)

�w(x) = 1

4π2

∫

R4

Qe4w(y)
∫

B(x0,r)

1

|x − y|2 dxdy

≤ 1

4π2

∫

R4

Qe4w(y)
∫

B(y,r)

1

|x − y|2 dxdy

≤ Cr2
∫

R4

Qe4w(y)dy

≤ Cr2.

Thus w satisfies the condition (∗). By Lemma 2.3 and Remark 2.5, we obtain then w is
locally uniformly upper bounded. Using the representation formula, we get also |∇v| and
�v are locally bounded, as e4w is locally bounded. For example, fix R > 0, for any x ∈ BR ,

|�v(x)| = |�w(x)| = 1

4π2

∫

R4

Qe4w

|x − y|2 dy

= 1

4π2

∫

B2R

Qe4w

|x − y|2 dy + 1

4π2

∫

R4\B2R

Qe4w

|x − y|2 dy

≤ CR

∫

B2R

1

|x − y|2 dy + 1

4π2 R2

∫

R4\B2R

Qe4wdy

≤ CR + 2α

R2 .

From the uniform upper bound of w, it follows then w = v + cv + log t/4 is locally
uniformly upper bounded. So we conclude
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Lemma 2.6 Let k, a j and α be as in Theorem 1.2. For any R > 0, there exists CR > 0 such
that if v = tTv with t ∈ (0, 1],

sup
BR

v + cv + log t

4
+ ‖∇v‖L∞(BR) + ‖�v‖L∞(BR) ≤ CR .

It remains to study the exterior domain. For that, we apply the Pohozaev’s identity (see
[11]). For any R ≥ 1, as supp(�2u0) ⊂ B1,∫

BR

K e4wdx + 1

4

∫

BR

(x · ∇K )e4wdx

= −
∫

B1

tα(x · ∇v)�2u0dx + 1

4

∫

∂BR

K (x)|x |e4wdx

−
∫

∂BR

|x | (�v)
2

2
dσ +

∫

∂BR

∂v

∂r

∂(�v)

∂r
dσ +

∫

∂BR

�v
∂

∂r

(
r
∂v

∂r

)
dσ. (18)

By Lemma 2.6, we know that the first term in the right-hand side is uniformly bounded. The
following lemma shows the behavior of last three terms, its proof is technical and delayed to
the next section. There we will use intensively the assumption α > 1 − k/4.

Lemma 2.7 Let k, a j and α be as in Theorem 1.2. For each fixed v satisfying v = tTv with
t ∈ (0, 1], the last three terms in (18) tend to zero as R → ∞.

Since

∀ x ∈ R
4 \ B1, x · ∇K = −

⎛
⎝∑

j≤k

8a j x2
j + 4α|x |

⎞
⎠ K ≤ 0, (19)

passing to the limit R → ∞ in (18), we obtain

−1

4

∫

R4

(x · ∇K )e4wdx ≤
∫

B1

tα(x · ∇v)�2u0dx +
∫

R4

K e4wdx .

Applying again Lemma 2.6, by (19),

αR
∫

R4\BR

K e4wdx ≤ C + 8π2tα + 1

4

∫

B1

(x · ∇K )e4wdx ≤ C ′, if R > 1.

For any ε > 0, there exists R0 > 1 (depending only on ε) such that∫

R4\BR0

K e4wdx ≤ ε. (20)

As α > 1 − k/4, we can verify that |x |−8 K (x |x |−2) ∈ L p(B1) for some p > 1. Choose
ε = 16π2/q with

q = p(p + 1)

p − 1
,

and R0 such that (20) holds. Consider the Kelvin’s transformation

ζ = w ◦ ϕ with ϕ(x) = R0x

|x |2 for |x | ≤ 1.
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Therefore �2ζ = R4
0 |x |−8 K ◦ ϕ(x)e4ζ in B1, since supp(�2u0) ⊂ B1. As
∫

B1

R4
0 |x |−8 K ◦ ϕ(x)e4ζ dx =

∫

R4\BR0

K e4wdx ≤ ε,

by Moser–Trudinger’s inequality (see [7]), the upper bound for ζ and |�ζ | on ∂B1, we can
prove ‖e4ζ ‖Lq (B1) ≤ C so that ‖|x |−8 K ◦ ϕ(x)e4ζ ‖L(p+1)/2(B1)

≤ C . Thus ζ is uniformly
upper bounded in B1 by elliptic theory.

Finally, w is uniformly upper bounded in R
4 \ BR0 , so w is uniformly upper bounded in

R
4. Furthermore, as �2v = K e4w − tα�2u0, we get easily that v is uniformly bounded by

Lemma 2.1, that is

If v ∈ C0(R
4), v = tTv with t ∈ (0, 1], then ‖v‖∞ ≤ C.

In conclusion, as T is compact, the Leray–Schauder’s theory ensures the existence of a fixed
point v for T, so we get the desired solution as u = v − u1 + αu0.

3 Proof of Lemma 2.7

For fixed v, we recall the Pohozaev identity (18)∫

BR

K e4wdx + 1

4

∫

BR

(x · ∇K )e4wdx

= −
∫

B1

tα(x · ∇v)�2u0dx + 1

4

∫

∂BR

K (x)|x |e4wdx

−
∫

∂BR

|x | (�v)
2

2
dσ −

∫

∂BR

|x |∂v
∂r

∂(�v)

∂r
dσ +

∫

∂BR

�v
∂

∂r

(
r
∂v

∂r

)
dσ

= J1 + J2 + J3 + J4 + J5.

We claim then, under the condition of Theorem 1.2 for α and a j ,

lim
R→∞ J3 = lim

R→∞ J4 = lim
R→∞ J5 = 0. (21)

Remark 3.1 By similar arguments, we can also show that limR→∞ J2 = 0, but it is not
necessary for the proof of Theorem 1.2.

Let ε > 0. For |x | > 1,

|x |2�v(x) = − |x |2
4π2

∫

R4

K e4w

|x − y|2 dy − |x |2tα�u0 = − |x |2
4π2

∫

R4

K e4w

|x − y|2 dy + 2tα

= 1

4π2

∫

R4

K e4w
[

1 − |x |2
|x − y|2

]
dy

= 1

4π2

∫

R4

|y|2 − 2x · y

|x − y|2 K e4wdy
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We decompose the integral over three sub domains, �1 = {|y| ≤ R1}; �2 = B(x, |x |/2)
and �3 = R

4 \ (�1 ∪�2), assuming that |x | = R > 2R1 > 2.
On�3, since |x − y| ≥ |x |/2 implies |x − y| ≥ |y|/4 (we can discuss the cases |y| ≤ 2|x |

and |y| ≥ 2|x |), by taking R1 big enough (depending on v),∣∣∣∣∣∣∣
∫

�3

|y|2 − 2x · y

|x − y|2 K e4wdy

∣∣∣∣∣∣∣
≤ C

∫

R4\BR1

K e4wdy ≤ ε. (22)

Fix R1, for |x | > 2R1, ∣∣∣∣∣∣∣
∫

�1

|y|2 − 2x · y

|x − y|2 K e4wdy

∣∣∣∣∣∣∣
≤ C |x |−1. (23)

It remains to consider �2 where |y| ≤ 3|x |/2. Denote y = (y j )1≤ j≤k ∈ R
k for any y ∈ R

4,∣∣∣∣∣∣∣
∫

�2

|y|2 − 2x · y

|x − y|2 K e4wdy

∣∣∣∣∣∣∣
≤ C

∫

�2

|x |2e−a|y|2

|x − y|2 |y|−4αdy

= C R4−4α
∫

B(ξ,1/2)

e−a R2|η|2

|ξ − η|2 |η|−4αdη

where a = min1≤ j≤k a j is positive and we use the change of variables x = Rξ and y = Rη.
Since |η| ≥ 1/2, we have

|x |2�v(x) = O(ε)+ O(R−1)+ O(A2)

where

A2
def= R4−4α

∫

B(ξ,1/2)

e−a R2|η|2

|ξ − η|2 dη.

with |ξ | = 1. Similarly, if |x | = R > 2R1, by decomposing R
4 as above,

|x |∂v
∂r
(x) = − 1

8π2

∫

R4

x · (x − y)

|x − y|2 K e4wdy + tα

= 1

8π2

∫

R4

−y · (x − y)

|x − y|2 K e4wdy

= O(ε)+ O(R−1)+ O(A1), (24)

|x | ∂
∂r

(
r
∂v

∂r

)
(x) = 1

4π2

∫

R4

[|x |2 · y − (x · y)x
] · (x − y)

|x − y|4 K e4wdy

+ 1

8π2

∫

R4

x · y

|x − y|2 K e4wdy

= O(ε)+ O(R−1)+ O(A2)+ O(A3), (25)
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and

|x |3 ∂(�v)
∂r

(x) = 1

2π2

∫

R4

|x |2(y − x) · x

|x − y|4 K e4wdy + 4tα

= 1

2π2

∫

R4

[ |y|2 − 2x · y

|x − y|2 − |x |2(x − y) · y

|x − y|4
]

K e4wdy

= O(ε)+ O(R−1)+ O(A2)+ O(A3). (26)

Here

A j (x)
def= R4−4α

∫

B(ξ,1/2)

e−a R2|η|2

|ξ − η| j
dη, ∀ 1 ≤ j ≤ 3

with |ξ | = 1. Of course, A1 ≤ 2A2 and A2 ≤ 2A3, so it suffices to estimate A3.
If k = 4, it is easy to see that e−a R2|η|2 ≤ e−a R2/4 in B(ξ, 1/2) since |η| = |η| > 1/2.

Hence ‖A3‖L∞(BR) = o(1) as R tends to infinity. Finally, (21) follows easily from

lim|x |→∞ |x |2�v = lim|x |→∞ |x |∂v
∂r

= lim|x |→∞ |x |3 ∂(�v)
∂r

= lim|x |→∞ |x | ∂
∂r

(
r
∂v

∂r

)
= 0. (27)

3.1 Case k = 1

Consider now k = 1. By rearrangement argument, the integral of f g is less than that of their
Schwarz-symmetrizations f ∗g∗. Applying that to each hyperplane (ηi )2≤i≤4 = constant, we
obtain

∫

B(ξ,1/2)

e−a R2η2
1

|ξ − η|3 dη =
∫

B(0,1/2)

e−a R2(ξ1+η1)
2

|η|3 dη ≤
∫

B(0,1/2)

e−a R2η2
1

|η|3 dη.

Using the sphere coordinates, η1 = r cos θ , η2 = r sin θ cosϕ etc, we get

R4α−4 A3 ≤ C

1/2∫

0

π/2∫

0

e−a R2r2 cos2 θ sin2 θdrdθ = C

1/2∫

0

1∫

0

e−a R2s2t2√
1 − t2dsdt

≤ C (I1 + I2)

where

I1 =
1/2∫

0

1∫

1/2

e−a R2s2t2√
1 − t2dsdt ≤ 1

2

1/2∫

0

e−a R2s2/4ds ≤ 1

R

∞∫

0

e−as2
ds = C

R

and

I2 =
1/2∫

0

1/2∫

0

e−a R2s2t2√
1 − t2dsdt ≤ 1

R

√
R/2∫

0

√
R/2∫

0

e−as2t2
dsdt ≤ C log R

R
,

thanks to the following lemma.
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Lemma 3.2 Let

�(M) =
M∫

0

M∫

0

e−as2t2
dsdt,

then �(M) = O(log M) as M tends to ∞.

Therefore A3 = O
(
R3−4α log R

)
, so limR→∞ ‖A3‖L∞(BR) = 0 as α > 3/4. Since ε is

arbitrary, we obtain easily (27). We finish by the proof of Lemma 3.2. Indeed (for M ≥ 1),

�(M) = 2

M∫

0

s∫

0

e−as2t2
dsdt = 2

M∫

0

1∫

0

e−as4t2
sdsdt =

M2∫

0

1∫

0

e−as2t2
dsdt

≤ C +
M2∫

1

⎛
⎝

∞∫

0

e−as2t2
dt

⎞
⎠ ds

= C + C ′
M2∫

1

ds

s

which yields �(M) ≤ C log M for all M ≥ 2.

3.2 Case k = 2

In this case, we take the change of variables η1 + iη2 = r cos θeiϕ and η3 + iη4 = r sin θeiψ .

R4α−4 A2 ≤
∫

B(0,1/2)

e−a R2(η2
1+η2

2)

|η|2 dη ≤ C

1/2∫

0

π/2∫

0

e−a R2r2 cos2 θr sin θ cos θdrdθ

= C

R2

1/2∫

0

1

r

(
1 − e−a R2r2

)
dr

= C

R2

R/2∫

0

1

s

(
1 − e−as2

)
ds

≤ C log R

R2 .

Therefore, A2 = O(R2−4α log R) and tends uniformly to zero as α > 1/2. Consequently,

lim|x |→∞ |x |2�v = lim|x |→∞ |x |∂v
∂r

= 0.

For A3(x), we cannot prove a uniform estimate tending to zero at ∞ as in previous case.
However, we will show that limR→∞ ‖A3‖L1(∂BR)

= o(R3) by suitable pointwise estimate.
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In fact, denote y = (y1, y2) and y′ = (y3, y4) for any y ∈ R
4, we have

R4α−4 A3(x) ≤ C
∫

R2

e−a R2|η|2
⎛
⎜⎝

∫

B
R2 (0,R)

dη′

|ξ − η|3 + |η′|3

⎞
⎟⎠ dη

≤ C
∫

R2

e−a R2|η|2
⎛
⎝

R∫

0

rdr

|ξ − η|3 + r3

⎞
⎠ dη,

which implies

R4α−4 A3(x) ≤ C
∫

R2

e−a R2|η|2

|ξ − η| dη = C

R

∫

R2

e−a|y|2

|x − y|d y

≤ C |x |
R

e−a|x |2/4 + C

R|x |
∫

R2\B(x,|x |/2)
e−a|y|2 d y.

Hence

R4α−4 A3(x) ≤ C

R(1 + |x |) .
Since α > 1/2,

∫

∂BR

A3(x)dσ ≤ C R3−4α

π/2∫

0

R3 sin θ cos θ

1 + R cos θ
dθ ≤ C R5−4α = o(R3).

Now we can claim (21). For example,

J5 =
∫

∂BR

o
(
R−2)× [o (R−1)+ O

(
R−1 A3

)]
dσ =o(1)+ O

⎛
⎜⎝R−3

∫

∂BR

A3(x)dσ

⎞
⎟⎠ = o(1).

3.3 Case k = 3

Here, we prove the following pointwise estimates for A1, A2 and A3.

Lemma 3.3 If k = 3, for any R > 2 and x ∈ ∂BR, we have

A2(x) ≤ C R1−4α log R, A2(x) ≤ C R2−4α

1 + |x | and A3(x) ≤ C R3−4α

1 + |x |2 , (28)

where x = (x1, x2, x3).

With these estimates, we obtain again (21). Since the proof is very similar to that for
A3(x) in the case k = 2, we just show how to handle J3 using (28) and leave other details
for interested readers. As �v(x) = o(R−2)+ O(R−2 A2) for |x | = R,

2|J3| =
∫

∂BR

|x |(�v)2dσ ≤ C R
∫

∂BR

o(R−4)dσ + C R−3
∫

∂BR

(
R2−4α

1 + |x |
)2

dσ

≤ o(1)+ C R1−8α
∫

∂BR

dσ

1 + |x |2 .
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Taking the sphere coordinates x4 = r cos θ , x3 = r sin θ cosϕ etc,

∫

∂BR

dσ

1 + |x |2 = C

π∫

0

R3 sin2 θ

1 + R2 sin2 θ
dθ ≤ C R,

so we have |J3| ≤ o(1)+ C R2−8α , which yields limR→∞ J3 = 0 when α > 1/4. The proof
is completed.
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