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Abstract We consider the Monge–Ampère equation det D2u = b(x) f (u) > 0 in �,
subject to the singular boundary condition u = ∞ on ∂�. We assume that b ∈ C∞(�) is
positive in� and non-negative on ∂�. Under suitable conditions on f , we establish the exis-
tence of positive strictly convex solutions if � is a smooth strictly convex, bounded domain
in R

N with N ≥ 2. We give asymptotic estimates of the behaviour of such solutions near
∂� and a uniqueness result when the variation of f at∞ is regular of index q greater than
N (that is, limu→∞ f (λu)/ f (u) = λq , for every λ > 0). Using regular variation theory, we
treat both cases: b > 0 on ∂� and b ≡ 0 on ∂�.
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1 Introduction and main results

Let � be a smooth, strictly convex, bounded domain in R
N with N ≥ 2.
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168 F. C. Cîrstea, C. Trombetti

The Dirichlet problem for the Monge–Ampère equation (that is, find u ∈ C∞(�) such
that

det D2u = G(x, u, Du) > 0 in �, u = ϕ on ∂�, (1.1)

where G andϕ are smooth) has been studied extensively, see [5,8,18,24,25,31,37–42]. Using
barrier techniques and maximum principles, it is shown in [5] that the solvability reduces to
the existence of smooth convex subsolutions. In the case of a non-smooth data, P.-L. Lions
[24] proved, via a penalization method, that the solvability of the Dirichlet problem can be
reduced to the existence of a generalized subsolution in the sense of A. D. Aleksandrov. A
condition under which such a subsolution exists was also provided. Necessary and sufficient
conditions for the existence of solutions are studied in [40].

Boundary value problems for Hessian equations (involving the k-Hessian operator Sk(D2

u)where k ∈ {1, . . . , N } and Sk is the kth elementary symmetric function of the eigenvalues
of the Hessian matrix D2u of u) received increasing attention in recent years. We refer
the reader to [8,17,18,37–42]. The Laplace operator and the Monge–Ampère operator are
well-known examples of Hessian operators corresponding to k = 1 and k = N , respectively.

Our purpose here is to investigate the Monge–Ampère equation

det D2u = b(x) f (u) > 0 in �, (1.2)

subject to an infinite Dirichlet boundary condition

u(x)→∞ as d(x) := dist(x, ∂�)→ 0, (1.3)

where we assume, throughout, that f ∈ C[0,∞) ∩ C∞(0,∞) is positive increasing such
that f (0) = 0 and b ∈ C∞(�) is positive in �.

Problems of this type have first been considered by Cheng and Yau [6,7] (with f (u) = eK u

in bounded convex domains and with b(x) f (u) = e2u in unbounded domains). The Monge–
Ampère equation with boundary blow-up has been treated in [23,29] and [19], while the
more general case of Hessian equations has been studied in [34] and [14]. We refer to [36]
for recent new results on boundary blow-up problems for k-curvature equations.

The study of boundary blow-up solutions has been initiated by Bieberbach [3] and
Rademacher [32] for the equation �u = eu in a smooth bounded domain in R

2 and R
3,

respectively. Since then many papers have been dedicated to resolving existence, unique-
ness and asymptotic behaviour issues for blow-up solutions of semilinear/quasilinear elliptic
equations; see e.g., [1,2,10–13,16,22,26–28,30] and their references.

If � is a smooth bounded domain in R
N (N ≥ 2) and f1 satisfies{

f1 is locally Lipschitz continuous on [0,∞),
positive and non-decreasing on (0,∞) with f1(0) = 0,

(H0)

then, �u = f1(u) in �, subject to (1.3), possesses positive C2(�)-solutions if and only if
f1 satisfies the Keller–Osserman condition (see [22,30]):

∞∫
1

dt√
F1(t)

<∞, where F1(t) =
t∫

0

f1(s) ds. (H1)

We first establish the existence of smooth blow-up solutions of (1.2). By a blow-up solution
of (1.2) we mean any positive C2(�)-solution of (1.2)+(1.3).
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On the Monge–Ampère equation with boundary blow-up 169

Theorem 1.1 (Existence) Let � be a smooth, strictly convex, bounded domain in R
N with

N ≥ 2. Suppose that there exists a function f0 on [0,∞) such that:

(A1) f0(u) ≤ f (u), for every u > 0;
(A2) f 1/N

0 satisfies (H0) and (H1), that is they hold with f 1/N
0 instead of f1;

(A3) f −1/N
0 is convex on (0,∞).

Then, (1.2) admits strictly convex blow-up solutions in C∞(�).

In particular, the assumptions (A2) and (A3) are met by the following functions:

(i) f0(u) = (eu − 1)p , for every p > 0;
(ii) f0(u) = uq with q > N ;

(iii) f0(u) = uN [ln(u + 1)]β with β > 2N .

When f (u) = uq with q > N , Theorem 1.1 was established in [23]. More general existence
results are obtained in Theorems 1.1 and 1.2 of [19], whose assumption (1.3) is of the type
(A1) with f0 in the special case (ii). However, this kind of growth restriction on f is not
optimal as proved by taking in our Theorem 1.1 the particular case f = f0 and f0 as in (iii)
above.

Our proof rests upon the solvability of the Dirichlet problem for the Monge–Ampère
equation and the convexity of the minimal positive solution umin of �u = f 1/N

0 (u) in �,
subject to (1.3). The existence of umin is ensured by (A2), while its convexity follows from
Theorem 3.1 in [14], which requires (A3). A comparison principle (Proposition 2.4) and
the arithmetic-geometric inequality (3.3) for convex functions will be used to conclude the
existence of a blow-up solution of (1.2).

If b is a positive smooth function on � and f (u) = uq with q > N , then it is shown in
[23] that (1.2) admits a unique blow-up solution u ∈ C∞(�). Moreover, there exist positive
constants c1 and c2 such that for x ∈ �

c1[d(x)]−α ≤ u(x) ≤ c2[d(x)]−α, where α = (N + 1)/(q − N ). (1.4)

Our next aim is to establish the asymptotic behaviour near ∂� of the blow-up solutions
of (1.2) in a general setting when b is allowed to vanish on the whole boundary ∂�. This
corresponds to a critical case, 0 · ∞ on ∂�, which arises in the right-hand side of (1.2).

To remove the positivity restriction of b on ∂�, which appears in previous papers on
the topic (such as [14,23,29,34]), we will proceed in a substantially different manner. As
a special feature, we will present our main results (Theorems 1.2 and 1.6) in connection
with regular variation theory arising in probability theory (see Sect. 4). Let us recall here the
definition of a regularly varying function, while more details on the regular variation theory
can be found in Sect. 4.

A positive measurable function R defined on [A,∞), for some A > 0, is called regularly
varying (at infinity) with index q ∈ R, written R ∈ RVq , provided that

lim
u→∞

R(λu)

R(u)
= λq , for all λ > 0. (1.5)

When the index q is zero, we say that the function is slowly varying.
Note that R ∈ RVq if and only if L(u) := R(u)/uq is slowly varying.
Notation. If H is a non-decreasing function on R, then we denote by H← the (left con-

tinuous) inverse of H (see [33]), that is

H←(y) = inf{s : H(s) ≥ y}.
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170 F. C. Cîrstea, C. Trombetti

By f1(u) ∼ f2(u) as u → u0 ∈ R we mean that f1(u)/ f2(u)→ 1 as u → u0.
If α > 0 is sufficiently large, we define

P(u) = sup

{
f (y)

yN
: α ≤ y ≤ u

}
, for u ≥ α. (1.6)

For an open bounded subset � of R
N with boundary of class C2 and every x ∈ ∂�, we

denote by ρ1(x), . . . , ρN−1(x) the principal curvatures of ∂� at x . For m ∈ {1, . . . , N − 1},
we define the mth curvature σm(x) of ∂� at x by

σm(x) = Sm(ρ1(x), . . . , ρN−1(x)) =
∑

1≤i1<···<im≤N−1

ρi1(x) · · · ρim (x).

Recall that� (as above) is said to be m-convex if σ j (x) ≥ 0, for every x ∈ ∂� and every
j ∈ {1, . . . ,m}, and it is called strictly m-convex if it is m-convex and σm(x) > 0 for every
x ∈ ∂�. In particular, the (strict) (N − 1)-convexity for domains is equivalent to the usual
(strict) convexity.

Let K
 denote the set of all positive non-decreasing C1-functions k defined on (0, ν), for
some ν > 0, for which there exists

lim
t→0

(
K (t)

k(t)

)′
= 
, where K (t) =

∫ t

0
k(s) ds. (1.7)

Note that 
 ∈ [0, 1] and limt→0 K (t)/k(t) = 0, for every k ∈ K
. A complete character-
ization of K
 (according to 
 �= 0 or 
 = 0) is provided by [13] (see [9] for a more general
result and a different approach).

It is easy to check that the following functions belong to K
 with the specified 
:

(a) k(t) = (−1/ ln t)p with 
 = 1,
(b) k(t) = t p with 
 = 1/(p + 1),
(c) k(t) = e−1/t p

with 
 = 0, where p > 0 is arbitrary in (a)–(c).

The class K
 will be used to model the behaviour of b near ∂� (see (1.8)).
The next result establishes lower and upper estimates for the growth of the blow-up solu-

tions of (1.2) near ∂� when f ∈ RVq with q > N and (1.8) holds.

Theorem 1.2 (Asymptotic behaviour) Let N ≥ 2 and � be a smooth, strictly convex,
bounded domain in R

N . Assume that f ∈ RVq with q > N and there exists k ∈ K

such that

0 < β− = lim inf
d(x)→0

b(x)

k N+1(d(x))
and lim sup

d(x)→0

b(x)

k N+1(d(x))
= β+ <∞. (1.8)

Then, every strictly convex blow-up solution u∞ of (1.2) satisfies

ξ− ≤ lim inf
d(x)→0

u∞(x)
φ(d(x))

and lim sup
d(x)→0

u∞(x)
φ(d(x))

≤ ξ+, (1.9)

where φ is defined by

φ(t) = P←([K (t)]−N−1), for t > 0 small, (1.10)

and ξ± are positive constants given by

(ξ+)N−q

β−
max
∂�

σN−1 = (ξ−)N−q

β+
min
∂�

σN−1 = [(q − N )/(N + 1)]N+1

1+ 
(q − N )/(N + 1)
. (1.11)
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On the Monge–Ampère equation with boundary blow-up 171

Remark 1.3 In the setting of Theorem 1.2, the limit limd(x)→0 u∞(x)/φ(d(x)) exists pro-
vided that � is a ball and (1.8) holds with β− = β+ ∈ (0,∞). The latter condition is
equivalent to saying that

b(x) ∼ k N+1(d(x)) as d(x)→ 0, for some k ∈ K
. (1.12)

More exactly, when � is a ball of radius R > 0, Theorem 1.2 reads as follows.

Corollary 1.4 Let � ⊂ R
N be a ball of radius R > 0 and f ∈ RVq with q > N. If (1.12)

holds, then every strictly convex blow-up solution u∞ of (1.2) satisfies

u∞(x) ∼ ξφ(d(x)) as d(x)→ 0, (1.13)

where φ is defined by (1.10) and ξ is given by

ξ =
{ [(q − N )/(N + 1)]N+1 RN−1

1+ 
(q − N )/(N + 1)

}1/(N−q)

. (1.14)

Remark 1.5 If f ∈ RVq (q > N ) and k ∈ K
, then the explosion rate of φ(t) at t = 0 (φ
defined by (1.10)) is significantly faster when 
 = 0. A precise description of the variation
of φ(1/u) at u = ∞ is given by Proposition 5.7 according to 
 = 0 (when φ(1/u) �∈ RVm ,
for every m ∈ R) or 
 �= 0 (when φ(1/u) ∈ RV(N+1)/[
(q−N )]).

We now assert that, under slightly more restrictive conditions than those in Theorem 1.2,
there is at most one strictly convex blow-up solution of (1.2).

Theorem 1.6 (Uniqueness) Let� be a smooth, strictly convex, bounded domain in R
N (N ≥

2). Suppose f ∈ RVq with q > N and f (u)/uN is increasing on (0,∞).
Then, (1.2) has at most one strictly convex blow-up solution provided that either

(i) b is positive on � or
(ii) b is zero on ∂�, � is a ball of radius R > 0 and (1.12) holds.

Remark 1.7 In view of Corollary 1.4, the case (ii) of Theorem 1.6 yields a precise asymptotic
behaviour of any strictly convex blow-up solution of (1.2) at ∂�. This fact is essentially used
to prove the claim of Theorem 1.6. In contrast to this appears case (i), when we conclude that
any two strictly convex blow-up solutions of (1.2) must coincide without using any a priori
blow-up estimates near the boundary. Our argument modifies an idea in [23], which treats
the case (i) for f (u) = uq for every u > 0 (with q > N ).

We see that f ∈ RVq if and only if it can be written as

f (u) = T (u)uq exp

⎛
⎝ u∫

D

ε(t)

t

⎞
⎠ , u ≥ D, (1.15)

for some D > 0, where ε ∈ C[D,∞) satisfies limu→∞ ε(u) = 0 and T (u) is measurable on
[D,∞) such that limu→∞ T (u) = T̂ ∈ (0,∞) (use Proposition 4.7 with L(u) = f (u)/uq ).
If f is of the form (1.15) with T (u) = Const. > 0, then we say that f is normalised regularly
varying of index q (and write f ∈ N RVq ).

Remark 1.8 If f ∈ N RVq with q > N , then f (u)/uN is increasing for u > 0 large. Hence,
P(u) defined by (1.6) coincides with f (u)/uN .
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172 F. C. Cîrstea, C. Trombetti

In Sect. 5 we promote the use of regular variation theory (initiated by Karamata [20,21])
and its extensions (due de Haan [15]) to gain insight into the blow-up rate of the solutions of
(1.2) at ∂�. Our results treat the case f ∈ RVq (q > N ) for various decay rates of b at ∂�,
as illustrated below:

(i) b(x) ∼ [−1/ ln d(x)]p(N+1) as d(x)→ 0;
(ii) b(x) ∼ [d(x)]p(N+1) as d(x)→ 0;

(iii) b(x) ∼ e−(N+1)/[d(x)]p as d(x)→ 0;

where p is a positive constant (see Example 5.9 in Sect. 5).
The use of regular variation theory in the study of the blow-up solutions to semilinear

elliptic equations originates with [11,12] (see also [10] or [13]). These papers are concerned
with the uniqueness and asymptotics of the blow-up solutions to (1.2) with the Laplacian
instead of the Monge–Ampère operator. We point out a significant difference which arises
between these two cases: the first term in the asymptotic expansion near ∂� of the blow-
up solution in the former case (Laplacian) is independent of the geometry of the boundary,
whereas in the latter case (Monge–Ampère operator) we prove here the involvement of the
boundary through its Gauss curvature.

The plan of this paper is as follows. In Sect. 2 we prove a general formula for det D2h(g
(x)) (where g ∈ C2(�) and h ∈ C2(R)), which is pertaining to our local argument near ∂�
in the proof of Theorem 1.2. In Sect. 3 we deduce the existence assertion of Theorem 1.1.
In Sect. 4 we provide the necessary definitions and properties from regular variation theory.
In Sect. 5 we discuss the asymptotic properties of the function φ involved in the asymptotic
formulas of Theorem 1.2 and Corollary 1.4. Sections 6 and 7 are dedicated respectively to
the proofs of Theorems 1.2 and 1.6.

2 Basics

Proposition 2.1 Let � be an open subset of R
N with N ≥ 2. If g ∈ C2(�) and h ∈ C2(R),

then the following holds

det D2h(g(x)) =[h′(g(x))]N−1h′′(g(x)) < Co
(
D2g(x)

)
Dg(x), Dg(x) >

+ [h′(g(x))]N det D2g(x), ∀x ∈ �, (2.1)

where Dg(x) = col
(
∂g(x)
∂x1

, . . . ,
∂g(x)
∂xN

)
and Co

(
D2g(x)

)
denotes the cofactor matrix of

D2g(x).

Proof Let x ∈ � be fixed. For every integers i , j between 1 and N , we have

∂2h(g(x))

∂xi∂x j
= ∂

∂xi

(
h′(g(x)) ∂g(x)

∂x j

)
= h′′(g(x)) ∂g(x)

∂xi

∂g(x)

∂x j
+ h′(g(x)) ∂

2g(x)

∂xi∂x j
.

This shows that

D2h(g(x)) = h′′(g(x))Dg(x)⊗ Dg(x)+ h′(g(x))D2g(x).

Since the determinant is linear in each of its columns, we can write the determinant of
D2h(g(x)) as the sum of 2N determinants, where each summand has the j th column either

h′′(g(x)) ∂g(x)

∂x j
col

(
∂g(x)

∂x1
,
∂g(x)

∂x2
, . . . ,

∂g(x)

∂xN

)
(2.2)
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On the Monge–Ampère equation with boundary blow-up 173

or

h′(g(x))col

(
∂2g(x)

∂x1∂x j
,
∂2g(x)

∂x2∂x j
. . . ,

∂2g(x)

∂xN ∂x j

)
. (2.3)

We denote by M j the matrix whose j th column is of the form (2.2) and the rest of its columns
are of the type (2.3). By expanding the determinant of M j along the j th column, we find

det M j = [h′(g(x))]N−1h′′(g(x)) ∂g(x)

∂x j

N∑
i=1

∂g(x)

∂xi
Ci j (x),

where Ci j (x) stands for the cofactor of the (i, j)th entry of the symmetric matrix D2g(x).
Thus, we have

N∑
j=1

det M j = [h′(g(x))]N−1h′′(g(x))
〈
Co(D2g(x))Dg(x), Dg(x)

〉
. (2.4)

If M0 denotes the matrix with all its columns of the type (2.3), then

det M0 = [h′(g(x))]N det (D2g(x)). (2.5)

Since the determinant of any matrix with two different columns of the type (2.2) is zero, we
infer that

det D2h(g(x)) = det M0 +
N∑

j=1

det M j .

From (2.4) and (2.5), we conclude the proof of (2.1). ��
For µ > 0, we set �µ = {x ∈ � : d(x) < µ}.

Remark 2.2 If � is bounded and ∂� ∈ Ck for k ≥ 2, then there exists a positive constant µ
depending on � such that d ∈ Ck(�µ) (cf. Lemma 14.16 in [17]).

Corollary 2.3 Let� be bounded with ∂� ∈ Ck for k ≥ 2. Assume that µ > 0 is small such
that d ∈ C2(�µ) and h is a C2-function on (0, µ). Let x0 ∈ �µ \ ∂� and y0 ∈ ∂� be such
that |x0 − y0| = d(x0). Then, we have

det D2h(d(x0)) = [−h′(d(x0))]N−1h′′(d(x0))�
N−1
i=1

ρi (y0)

1− ρi (y0) d(x0)
, (2.6)

where ρ1(y0), . . . , ρN−1(y0) are the principal curvatures of ∂� at y0.

Proof Lemma 14.17 in [17] gives the expression of the Hessian matrix of d at x0 in terms
of a principal coordinate system at y0, namely

[D2d(x0)] = diag

[ −ρ1(y0)

1− ρ1(y0) d(x0)
, . . . ,

−ρN−1(y0)

1− ρN−1(y0) d(x0)
, 0

]
. (2.7)

Since

Dd(x0) = col(0, . . . , 0, 1),

we obtain 〈
Co(D2d(x0))Dd(x0), Dd(x0)

〉 = (−1)N−1�N−1
i=1

ρi (y0)

1− ρi (y0) d(x0)
. (2.8)

Applying Proposition 2.1 with g(x) = d(x) and using (2.7), (2.8) we derive (2.6). ��
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174 F. C. Cîrstea, C. Trombetti

Proposition 2.4 (Comparison principle) Let � be a bounded domain in R
N with N ≥ 2

and let u, u ∈ C2(�) ∩ C(�). Suppose g(x, u) is defined for x ∈ � and u in some interval
containing the ranges of u and u.

If the following holds:

(i) g(x, u) is increasing in u for all x ∈ �,

(ii) the matrix
[

∂2u
∂xi ∂x j

]
is positive definite in �,

(iii) det D2u(x) ≥ g(x, u(x)) and det D2u(x) ≤ g(x, u(x)), for every x ∈ �,
(iv) u(x) ≤ u(x), for every x ∈ ∂�,

then we have

u(x) ≤ u(x), ∀x ∈ �.
For the proof of Proposition 2.4 we refer to Lemma 2.1 in [23].

3 Proof of Theorem 1.1

By Theorem 7.1 in [5] we see that the following problem{
det D2u = (b(x)+ 1/n) f (u) in �,

u = n ≥ 1 on ∂�,
(3.1)

possesses a unique strictly convex solution un ∈ C∞(�).
Since un ≤ un+1 on ∂� and

det D2un+1 = [b(x)+ 1/(n + 1)] f (un+1) ≤ (b(x)+ 1/n) f (un+1) in �,

by Proposition 2.4 it follows that un ≤ un+1 in �.
We next show that the sequence (un)n≥1 is uniformly bounded from above on every

compact set D included in �. We distinguish two cases:

Case 1 b > 0 on ∂�. Then b0 := min� b is positive. From (A2) it follows that the boundary
blow-up problem {

�u = Nb1/N
0 f 1/N

0 (u) in �,

u = ∞ on ∂�,
(3.2)

admits a minimal positive C2(�)-solution, say u�. Since (A3) holds, by Theorem 3.1 in [14]
we infer that u� is convex.

Recall now the arithmetic–geometric inequality for C2-convex functions v in �:

det D2v ≤
(
�v

N

)N

in �. (3.3)

Applying (3.3) for u� and using (A1), we deduce

det D2u� ≤
(
�u�

N

)N

= b0 f0(u�) ≤ (b(x)+ 1/n) f (u�) in �. (3.4)

By (3.1) and (3.2), we have n = un < u� = ∞ on ∂�. Thus, using (3.4) and Proposition
2.4, we deduce that un ≤ u� in �, for every n ≥ 1.
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On the Monge–Ampère equation with boundary blow-up 175

Case 2 b ≥ 0 on ∂�. Let D be an arbitrary compact set included in � and let τ > 0 be
small such that D ⊂ �τ , where �τ = {x ∈ � : d(x) > τ }. Set bτ := min{b(x) : x ∈ �τ }.
Let v� denote the minimal positive solution of (3.2) where � and b0 are replaced by �τ and
bτ , respectively. From Case I above we obtain that v� is convex in �τ and un ≤ v� in �τ ,
for every n ≥ 1.

Consequently, in both cases we have proved that the pointwise limit U (x) := limn→∞ un

(x) exists, for every x ∈ �. Using now an argument as in [23] (proof of Theorem 2.1) or
[29] (proof of Theorem 2.4), we deduce that U ∈ C∞(�) and det D2U = b(x) f (U ) in �.
This finishes the proof of Theorem 1.1. ��

4 Regular variation theory

We give a brief account of the definitions and properties of regularly varying functions
involved in this article (see [4,33] or [35]).

Definition 4.1 A positive measurable function R defined on [A,∞), for some A > 0, is
called regularly varying (at infinity) with index q ∈ R, written R ∈ RVq , provided that

lim
u→∞

R(λu)

R(u)
= λq , for all λ > 0. (4.1)

When the index q is zero, we say that the function is slowly varying.

We make the convention not to mention “at infinity” from now on.
Note that if R ∈ RVq , then L(u) := R(u)/uq is a slowly varying function.

Example 4.1 The following functions are slowly varying:

(1) Any measurable function on [A,∞) which has a positive limit at infinity.
(2) The logarithm log u, its iterates logm u and powers of logm u.
(3) exp {(log u)α} with α ∈ (0, 1).

Proposition 4.2 (Uniform Convergence Theorem) If L is slowly varying then
L(λu)/L(u)→ 1 as u →∞ holds uniformly on each compact λ-set in (0,∞).
Proposition 4.3 (Elementary properties of slowly varying functions) Assume
that L is slowly varying. The following hold:

(i) log L(u)/ log u → 0 as u →∞;
(ii) For any α > 0, uαL(u)→∞, u−αL(u)→ 0 as u →∞;

(iii) (L(u))α varies slowly for every α ∈ R;
(iv) If L1 varies slowly, so do L(u)L1(u) and L(u)+ L1(u).

Remark 4.4 Assume that R ∈ RVq . If q > 0 (resp., q < 0), then limu→∞ R(u) = ∞ (resp.,
0). However, if q = 0 then the behavior of R at infinity cannot be completely described. For
instance, L(u) = exp

{
(log u)1/3 cos((log u)1/3)

}
is slowly varying with

lim inf
u→∞ L(u) = 0, lim sup

u→∞
L(u) = ∞.

Proposition 4.5 (Karamata’s Theorem; direct half) Let R ∈ RVq be locally
bounded in [A,∞). Then
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(i) for any j ≥ −(q + 1),

lim
u→∞

u j+1 R(u)∫ u
A x j R(x) dx

= j + q + 1. (4.2)

(ii) for any j < −(q + 1) (and for j = −(q + 1) if
∫∞ x−(q+1)R(x) dx <∞)

lim
u→∞

u j+1 R(u)∫∞
u x j R(x) dx

= −( j + q + 1). (4.3)

Proposition 4.6 (Karamata’s Theorem; converse half) Let R be positive and locally inte-
grable in [A,∞).
(i) If (4.2) holds for some j > −(q + 1), then R ∈ RVq.

(ii) If (4.3) is satisfied for some j < −(q + 1), then R ∈ RVq.

Proposition 4.7 (Representation Theorem) A function L(u) is slowly varying if and only if
it can be written in the form

L(u) = M(u) exp

⎧⎨
⎩

u∫
B

ε(t)

t
dt

⎫⎬
⎭ (u ≥ B) (4.4)

for some B > 0, where ε ∈ C[B,∞) satisfies limu→∞ ε(u) = 0 and M(u) is measurable
on [B,∞) such that limu→∞ M(u) := M̂ ∈ (0,∞).

By (4.4), we see that L(u) ∼ L̂(u) as u →∞, where

L̂(u) = M̂ exp

⎧⎨
⎩

u∫
B

ε(t)

t
dt

⎫⎬
⎭ (u ≥ B). (4.5)

Of course, L̂(u) is a slowly varying function, whose benefit is a C1-regularity such that
ε(u) = uL̂ ′(u)/L̂(u), for each u ≥ B.

A function L̂(u) of the form (4.5) will be called a normalised slowly varying function.
Moreover, any function L̂ ∈ C1[B,∞) which is positive and satisfies

lim
u→∞ uL̂ ′(u)/L̂(u) = 0 (4.6)

is a normalised slowly varying function.
In general, if R̂(u)/uq (q ∈ R) is a normalised slowly varying function, then we call R̂(u)

a normalised regularly varying function of index q and denote R̂ ∈ N RVq .
Notice that N RVq ⊂ RVq , since the function f (u) = uq + sin(uq+1) (defined for large

u) is an example that belongs to RVq but not to N RVq .
A function R̂ ∈ RVq belongs to N RVq if and only if

R̂ ∈ C1[B,∞), for some B > 0, and lim
u→∞ u R̂′(u)/R̂(u) = q.

Remark 4.8 For any R ∈ RVq , there exists R̂ ∈ N RVq such that R̂(u)/R(u) → 1 as
u → ∞. Indeed, let L(u) := R(u)/uq and use Proposition 4.7 to find L̂(u) as above. Set
R̂(u) = uq L̂(u). Then, we have

R̂ ∈ C1, lim
u→∞

R̂(u)

R(u)
= 1, lim

u→∞
u R̂′(u)
R̂(u)

= q + lim
u→∞

uL̂ ′(u)
L̂(u)

= q.
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Proposition 4.9 (Proposition 0.8 in [33]) We have

(i) If R ∈ RVq, then limu→∞ log R(u)/ log u = q.
(ii) If R1 ∈ RVq1 and R2 ∈ RVq2 with limu→∞ R2(u) = ∞, then

R1 ◦ R2 ∈ RVq1q2 .

(iii) Suppose R is non-decreasing and R ∈ RVq, 0 < q <∞. Then

R← ∈ RVq−1 .

(iv) Suppose R1, R2 are non-decreasing and q-varying with q ∈ (0,∞). Then, for c ∈
(0,∞), we have

lim
u→∞

R1(u)

R2(u)
= c if and only if lim

u→∞
R←1 (u)

R←2 (u)
= c−1/q .

The next result shows that any function R varying regularly with non-zero index is asymp-
totic to a monotone function.

Proposition 4.10 (see Theorem 1.5.3 in [4]) Let R ∈ RVq and choose B ≥ 0 so that R is
locally bounded on [B,∞). If q > 0, then

(a) R(u) := sup{R(y) : B ≤ y ≤ u} ∼ R(u) as u →∞,
(b) R(u) := inf{R(y) : y ≥ u} ∼ R(u) as u →∞.

If q < 0, then

(c) sup{R(y) : y ≥ u} ∼ R(u) as u →∞,
(d) inf{R(y) : B ≤ y ≤ u} ∼ R(u) as u →∞.

5 Asymptotic properties of φ

The aim of this section is to give an insight into the asymptotic properties of φ(t) (in (1.10))
at the origin. An important role in this pursuit is played by Karamata’s theory of regular
variation and its extensions.

Lemma 5.1 Let k ∈ K
 and f ∈ RVq with q > N. If φ is defined by (1.10), then there
exists a function ψ ∈ C2(0, τ ) with τ > 0 which satisfies limt→0 ψ(t)/φ(t) = 1 and the
following:

(i) lim
t→0

ψ(t)ψ ′′(t)
[ψ ′(t)]2 = 1+ (q − N )


N + 1
,

(ii) lim
t→0

[−ψ ′(t)]N−1ψ ′′(t)
k N+1(t) f (ψ(t))

=
(

N + 1

q − N

)N+1 [
1+ (q − N )


N + 1

]
,

where 
 appears in (1.7).

Proof (i) Denote g(u) = f (u)/uN . Since g ∈ RVq−N and q > N , by Proposition 4.10
we have limu→∞ g(u)/P(u) = 1. By Remark 4.8 we infer that there exists a function
ĝ ∈ C2(0, τ ) such that limu→∞ ĝ(u)/g(u) = 1 and

lim
u→∞

uĝ′(u)
ĝ(u)

= q − N , lim
u→∞

uĝ′′(u)
ĝ′(u)

= q − N − 1. (5.1)
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We define ψ as follows

ĝ(ψ(t)) = [K (t)]−N−1 for t > 0 small. (5.2)

From (1.10) and Proposition 4.9, we see that limt→0 ψ(t)/φ(t) = 1.
By differentiating (5.2) we obtain

ĝ′(ψ(t))ψ ′(t) = −(N + 1)[K (t)]−N−2k(t), for t > 0 small. (5.3)

This, jointly with (5.1) and (5.2), shows that

ψ ′(t)
ψ(t)

∼ −(N + 1)

q − N

k(t)

K (t)
as t → 0. (5.4)

We differentiate (5.3), then use (1.7) and (5.1) to deduce that as t → 0

ĝ′(ψ(t)) [ψ
′(t)]2
ψ(t)

(
q − N − 1+ ψ(t)ψ

′′(t)
[ψ ′(t)]2

)
∼ (N + 1)(N + 1+ 
)k2(t)[K (t)]−N−3. (5.5)

The assertion of (i) follows now from (5.3)–(5.5).
(ii) From (5.2) and (5.4), we find

lim
t→0

[
−ψ

′(t)
ψ(t)

]N+1 1

k N+1(t)ĝ(ψ(t))
=
(

N + 1

q − N

)N+1

.

This, combined with (i), proves the claim of (ii). ��
The next result has been proved in [13] (see [9] for a different proof).

Proposition 5.2 The following hold:

(i) k ∈ K
 with 
 �= 0 if and only if k is non-decreasing on some interval (0, ν) with
ν > 0 and u �−→ k(1/u) belongs to N RV1−1/
.

(ii) k ∈ K
 with 
 = 0 if and only if K is of the form

K (t) = d0 exp

⎛
⎝−

d1∫
t

ds

ζ0(s)

⎞
⎠ , 0 < t < d1, (5.6)

for some positive constants d0, d1 and a positive function ζ0 in C1(0, d1) such that
limt→0+ ζ

′
0(t) = 0.

To describe the variation of φ at zero, we need some concepts that are naturally extending
regular variation theory. For the reader’s convenience, we recall below some definitions and
results to be found elsewhere.

Definition 5.1 A positive measurable function R defined on a neighborhood of∞ is called
rapidly varying at infinity of index∞ (notation R ∈ RV∞) if

lim
u→∞ R(λu)/R(u) =

⎧⎪⎨
⎪⎩

0 if λ ∈ (0, 1),

1 if λ = 1,

∞ if λ = ∞,
(5.7)
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and is called rapidly varying at infinity of index −∞ (notation R ∈ RV−∞) if

lim
u→∞ R(λu)/R(u) =

⎧⎪⎨
⎪⎩
∞ if λ ∈ (0, 1),

1 if λ = 1,

0 if λ = ∞.
(5.8)

Example 5.3 The function g(u) = eu is rapidly varying at∞ of index∞, while g(u) = e−u

is rapidly varying at∞ of index −∞.

An important subclass of functions rapidly varying at infinity is represented by that of
�-varying functions introduced by de Haan ([15]) (see also [33,4]).

Definition 5.2 ([33]) A non-decreasing function U defined on an interval (A,∞) is
�-varying at ∞ if limx→∞U (x) = ∞ and there exists a positive function χ defined on
(A,∞) such that

lim
x→∞

U (x + λχ(x))
U (x)

= eλ, ∀λ ∈ R. (5.9)

The function χ is called an auxiliary function and is unique up to asymptotic equivalence.
If (5.9) is satisfied for χ1 and χ2 then χ1(x) ∼ χ2(x) as x → ∞. Conversely, if (5.9) is
fulfilled for χ and χ1(x) ∼ χ(x) as x →∞, then (5.9) also holds with χ1.

Example 5.4 ([15]) The following functions U satisfy (5.9) with the specified auxiliary func-
tions χ :

(1) U (x) = exp(x p) for p > 0 with χ(x) =
{

1 for x ≤ 0,

p−1x1−p for x > 0.

(2) U (x) = exp(x log+ x) with χ(x) =
{

1 for x ≤ 1,

(log x)−1 for x > 1.
(3) U (x) = exp(ex ) with χ(x) = e−x .

More examples of �-varying functions can be constructed using the next result.

Proposition 5.5 (Theorem 1.5.6 in [15]) If U1 is monotone and regularly varying of index
ρ > 0 and U2 ∈ � with auxiliary function χ , then U defined by

U (x) = U1(U2(x)) for large x > 0

belongs to � with auxiliary function (1/ρ)χ .

Remark 5.6 If U belongs to �, then U is rapidly varying at infinity of index∞ (see Propo-
sition 3.10.3 in [4]).

We are now ready to analyze the variation of φ(1/u) at u = ∞, where φ is defined by
(1.10). Assuming that f ∈ RVq with q > N , we will see that φ(1/u) is �-varying at u = ∞
if k ∈ K0, in contrast to the case k ∈ K
 with 
 �= 0 when φ(1/u) is regularly varying at
u = ∞ of index (N + 1)/[
(q − N )].
Proposition 5.7 (Variation speed of φ) Assume that f ∈ RVq with q > N and k ∈ K
. The
following hold:

(i) If 
 �= 0, then u �−→ φ(1/u) ∈ RV(N+1)/[
(q−N )];
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(ii) If 
 = 0, then u �−→ φ(1/u) �∈ RVm, for every m ∈ R. In this case, φ(1/u) is
�-varying at u = ∞ with the auxiliary function

(q − N )u2 K (1/u)

(N + 1)k(1/u)
.

(iii) Let f̂ (u) ∼ f (u) as u → ∞ be such that J (u) := f̂ (u)/uN is non-decreasing
for large u > 0. If r(t) ∼ C K−N−1(t) as t → 0, for some constant C > 0, then
φ̂(t) ∼ C1/(q−N )φ(t) as t → 0, where φ̂(t) is defined by

φ̂(t) = J←(r(t)) for small t > 0. (5.10)

Proof By Propositions 4.9 and 4.10, we have

P(u) ∼ f (u)/uN as u →∞ and P← ∈ RV1/(q−N ). (5.11)

(i) If 
 �= 0, then u �−→ k(1/u) ∈ N RV(
−1)/
 (cf. Proposition 5.2 (i)). Hence, we have
u �−→ K (1/u) ∈ RV−1/
. Since φ(1/u) = P←([K (1/u)]−N−1), the assertion of (i) follows
now from (5.11) and Proposition 4.9 (ii).

(ii) If 
 = 0, then by Proposition 5.2 and [33, p. 106] we obtain [K (1/u)]−N−1 is�-varying
at u = ∞ with the auxiliary function ζ(u) given by

ζ(u) = u2 K (1/u)

(N + 1)k(1/u)
.

In particular, u �−→ k(1/u) is rapidly varying at∞with index−∞. It follows that φ(1/u) �∈
RVm , for every m ∈ R. By (5.11) and Proposition 5.5 we conclude that φ(1/u) is �-varying
at u = ∞ with the auxiliary function (q − N )ζ(u).

(iii) From (5.11) and Proposition 4.9, we have J← ∈ RV1/(q−N ) and J←(u) ∼ P←(u)
as u →∞. Using r(t) ∼ C K−N−1(t) as t → 0 and Proposition 4.2, we conclude the proof
of Proposition 5.7. ��
Remark 5.8 The function r(t) defined, for small t > 0, as follows

r(t) =
{ [
tk(t)]−N−1 if k ∈ K
 with 
 �= 0,

[k2(t)/k′(t)]−N−1 if k ∈ K0,

possesses the property that r(t) ∼ [K (t)]−N−1 as t → 0.

Keeping in mind that the asymptotic behaviour of φ is of interest, we can simplify the
calculation by using Remark 5.8 and Proposition 5.7 (iii).

Example 5.9 Let f (u) ∼ uq as u →∞, for some q > N . If p > 0, then

(1) k(t) = (−1/ ln t)p ∈ K1 and φ(1/u) ∼ (u ln u)(N+1)/(q−N ) as u →∞.
(2) k(t) = t p ∈ K1/(p+1) and φ(1/u) ∼ [(p + 1)u p+1](N+1)/(q−N ) as u →∞.
(3) k(t) = e−1/t p ∈ K0 and φ(1/u) ∼ [pu p+1eu p ](N+1)/(q−N ) as u →∞.

Clearly, (1) and (2) in the above example illustrate Proposition 5.7 (i), whereas (3) agrees
with the findings of Proposition 5.7 (ii). Indeed, by Example 5.4 (1) and Proposition 5.5, we
remark that [

pu p+1eu p
](N+1)/(q−N )
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is �-varying at u = ∞ with the auxiliary function

(q − N )u1−p

p(N + 1)
.

On the other hand,

(q − N )u2 K (1/u)

(N + 1)k(1/u)
∼ (q − N )u1−p

p(N + 1)
as u →∞,

since, by Remark 5.8, we have

K (t)

k(t)
∼ k(t)

k′(t)
= t p+1

p
as t → 0.

6 Proof of Theorem 1.2

Fix ε ∈ (0, 1/2). We choose δ > 0 small enough such that

(a) k is non-decreasing on (0, 2δ).
(b) β−(1− ε)k N+1(d(x)) ≤ b(x) ≤ β+(1+ ε)k N+1(d(x)), for every x ∈ �2δ , where for

λ > 0 we set

�λ = {x ∈ � : d(x) < λ}.
(c) d(x) is a C2-function on �2δ = {x ∈ � : d(x) < 2δ}.
(d) ψ ′ < 0 on (0, 2δ) and ψ,ψ ′′ > 0 on (0, 2δ), where ψ is as in Lemma 5.1.
(e) �N−1

i=1 (1 − ρi (y)d(x)) > 1 − ε, for every x ∈ �2δ . Recall that ρi (y)
(with i ∈ {1, . . . , N − 1}) denote the principal curvatures of ∂� at y, where y ∈ ∂� is
such that |x − y| = d(x).

Fix τ ∈ (0, δ). With ξ± given by (1.11), we set

η± = [(1∓ ε)(1∓ 2ε)]1/(N−q) ξ±. (6.1)

Let us now define{
v+τ (x) = η+ψ(d(x)− τ), ∀x ∈ �2δ \�τ ,
v−τ (x) = η−ψ(d(x)+ τ), ∀x ∈ �2δ−τ .

Step 1 We prove that, near the boundary, v+τ (resp., v−τ ) is an upper (resp., lower) solution
of (1.2), that is {

det D2v+τ (x) ≤ b(x) f (v+τ (x)), ∀x ∈ �2δ \�τ ,
det D2v−τ (x) ≥ b(x) f (v−τ (x)), ∀x ∈ �2δ−τ .

(6.2)

By (a) and (b), it suffices to show that{
det D2v+τ (x) ≤ β−(1− ε)k N+1(d(x)− τ) f (v+τ (x)), ∀x ∈ �2δ \�τ ,
det D2v−τ (x) ≥ β+(1+ ε)k N+1(d(x)+ τ) f (v−τ (x)), ∀x ∈ �2δ−τ .

(6.3)

We denote by

m+ = max
y∈∂� σN−1(y) and m− = min

y∈∂� σN−1(y).
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Using Corollary 2.3 and (e), we obtain

det D2v+τ (x) = (η+)N [−ψ ′(d(x)− τ)]N−1ψ ′′(d(x)− τ) σN−1(y)

�N−1
i=1 [1− ρi (y)(d(x)− σ)]

≤ (η+)N

1− ε m+[−ψ ′(d(x)− τ)]N−1ψ ′′(d(x)− τ), ∀x ∈ �2δ \�τ .

Similarly, we have

det D2v−τ (x) = (η−)N [−ψ ′(d(x)+ τ)]N−1ψ ′′(d(x)+ τ) σN−1(y)

�N−1
i=1 [1− ρi (y)(d(x)+ σ)]

≥ (η−)N

1+ ε m−[−ψ ′(d(x)+ τ)]N−1ψ ′′(d(x)+ τ), ∀x ∈ �2δ−τ .

Therefore, to deduce (6.3) it is enough to establish

lim
t→0

(η±)N m±

β∓
[−ψ ′(t)]N−1ψ ′′(t)
k N+1(t) f (η±ψ(t))

= (1∓ ε)(1∓ 2ε). (6.4)

Since f ∈ RVq , (6.4) is valid thanks to Lemma 5.1 and our choice of η± in (6.1).
Step 2 Every strictly convex blow-up solution u∞ of (1.2) satisfies (1.9).
Let C = maxd(x)=δ u∞(x). Notice that{

v+τ (x)+ C = ∞ > u∞(x), ∀x ∈ � with d(x) = τ,
v+τ (x)+ C ≥ u∞(x), ∀x ∈ � with d(x) = δ.

Using (6.2) we deduce that, for every x ∈ �δ \�τ ,

det D2(v+τ (x)+ C) = det D2(v+τ (x)) ≤ b(x) f (v+τ (x)) ≤ b(x) f (v+τ (x)+ C).

Since u∞ is a solution to (1.2), by Proposition 2.4 we find

v+τ (x)+ C ≥ u∞(x), ∀x ∈ �δ \�τ . (6.5)

We set C ′ = ξ−ψ(δ). Hence, we have C ′ ≥ v−τ (x) for every x ∈ � with d(x) = δ − τ . It
follows that

u∞(x)+ C ′ ≥ v−τ (x), ∀x ∈ ∂�δ−τ .
We see that, for every x ∈ �δ−τ ,

det D2(u∞(x)+ C ′) = det D2(u∞(x)) = b(x) f (u∞(x)) ≤ b(x) f (u∞(x)+ C ′),

while by (6.2) we have

det D2v−τ (x) ≥ b(x) f (v−τ (x)), ∀x ∈ �δ−τ .
Using again Proposition 2.4, we infer that

u∞(x)+ C ′ ≥ v−τ (x), ∀x ∈ �δ−τ . (6.6)

By (6.5) and (6.6), letting τ → 0 we obtain{ [(1+ ε)(1+ 2ε)]1/(N−q)ξ−ψ(d(x))− C ′ ≤ u∞(x), ∀x ∈ �δ,
u∞(x) ≤ [(1− ε)(1− 2ε)]1/(N−q)ξ+ψ(d(x))+ C, ∀x ∈ �δ.

(6.7)
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Dividing by ψ(d(x)) and letting d(x)→ 0, we obtain⎧⎪⎪⎨
⎪⎪⎩

lim inf
d(x)→0

u∞(x)
ψ(d(x))

≥ [(1+ ε)(1+ 2ε)]1/(N−q)ξ−,

lim sup
d(x)→0

u∞(x)
ψ(d(x))

≤ [(1− ε)(1− 2ε)]1/(N−q)ξ+.
(6.8)

Since ε > 0 is arbitrary, we let ε → 0 and conclude (1.9). This completes the proof of
Theorem 1.2. ��

7 Proof of Theorem 1.6

We divide the proof into two steps:
Step 1 For every strictly convex blow-up solutions u1, u2 of (1.2), it holds

lim
d(x)→0

u1(x)/u2(x) = 1.

Our argument is different depending on whether (i) or (ii) is satisfied:
Case (i) b > 0 on �.
Since u1 and u2 are arbitrary, it suffices to show that

lim inf
d(x)→0

u1(x)/u2(x) ≥ 1. (7.1)

Without loss of generality, we can assume that 0 belongs to �.
Let ε ∈ (0, 1) be fixed and let λ > 1 be close to 1.
For a subset ω of R

N , we denote by

(1/λ)ω = {(1/λ)x : x ∈ ω}.
We set

Cλ =
[
(1+ ε)λ2N max

x∈(1/λ)�

(
b(λx)

b(x)

)]1/(q−N )

. (7.2)

Notice that Cλ → (1+ε)1/(q−N ) asλ→ 1. Hence, by Proposition 4.2 and limd(x)→0 u1(x) =
∞, we deduce that there exists δ = δ(ε) > 0, which is independent of λ, such that

Cq
λ

f (u1(x))

f (Cλu1(x))
≤ 1+ ε, ∀x ∈ �δ and λ > 1 close to 1. (7.3)

We now define Uλ as follows

Uλ(x) = Cλu1(λx), ∀x ∈ (1/λ)�δ. (7.4)

We assert that Uλ satisfies

det D2Uλ(x) ≤ b(x) f (Uλ(x)), ∀x ∈ (1/λ)�δ. (7.5)

Indeed, by (7.2)–(7.4) we infer that, for every x ∈ (1/λ)�δ ,
det D2Uλ(x) = λ2N C N

λ b(λx) f (u1(λx))

≤ λ2N C N−q
λ (1+ ε)b(λx) f (Cλu1(λx))

≤ b(x) f (Cλu1(λx)) = b(x) f (Uλ(x)).
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Since f is increasing on (0,∞), it follows that (7.5) holds when Uλ(x) is replaced by
Uλ(x) + M , for every constant M > 0. Notice also that Uλ(x) = ∞ > u2(x), for every
x ∈ (1/λ)∂�. Moreover, x ∈ (1/λ)∂� implies that d(x) < δ (as λ > 1 is close to 1). Thus,
if we choose M > 0 large enough (e.g., M = max

d(x)=δ u2(x)), then by Proposition 2.4 we

obtain

Uλ(x)+ M ≥ u2(x), ∀x ∈ �δ ∩ (1/λ)�δ. (7.6)

Letting λ→ 1 in (7.6), we find

(1+ ε)1/(q−N )u1(x)+ M ≥ u2(x), ∀x ∈ �δ.
This implies that

lim inf
d(x)→0

u1(x)

u2(x)
≥ (1+ ε)1/(N−q).

Since ε > 0 is arbitrary, letting ε → 0 we conclude (7.1).
Case (ii) b ≡ 0 on ∂�, � is a ball of radius R > 0 and (1.12) holds.
By Corollary 1.4, every strictly convex blow-up solution u∞ of (1.2) satisfies

lim
d(x)→0

u∞(x)
φ(d(x))

=
{ [(q − N )/(N + 1)]N+1 RN−1

[1+ 
(q − N )/(N + 1)]
}1/(N−q)

, (7.7)

where φ is defined by (1.10) and 
 appears in (1.7).
Hence, the assertion of Step 1 is proved in both situations (i) and (ii).
Step 2 There is at most one strictly convex blow-up solution of (1.2).
If u1, u2 are arbitrary strictly convex blow-up solutions of (1.2), it suffices to show that

u1 ≤ u2 in �.
Fix ε > 0. By Step 1 we infer that

lim
d(x)→0

[u1(x)− (1+ ε)u2(x)] = −∞. (7.8)

Since f (u)/uN is increasing on (0,∞), we deduce that

det D2((1+ ε)u2(x)) = (1+ ε)N det D2u2(x)

= (1+ ε)N b(x) f (u2(x))

≤ b(x) f ((1+ ε)u2(x)), ∀x ∈ �.
(7.9)

By (7.8), (7.9) and Proposition 2.4, we find u1 ≤ (1+ ε)u2 in �. Letting ε → 0 we obtain
u1 ≤ u2 in �. This completes the proof of Theorem 1.6. ��
Acknowledgments The authors wish to thank Professors N. S. Trudinger and Xu-Jia Wang for their interests
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11. Cîrstea, F.-C., Rădulescu, V.: Uniqueness of the blow-up boundary solution of logistic equations with
absorption. C. R. Math. Acad. Sci. Paris 335, 447–452 (2002)
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