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1 Introduction

In a recent paper [4], Hencl and Koskela came up with a very elegant question.
Namely, they studied the regularity of f −1 for a homeomorphism f of the Sobolev
class W

1,p
loc (�, �′) where p ≥ 1 and � and �′ are domains in the plane. In gen-

eral, even the inverse of a Lipschitz homeomorphism can fail to belong to W 1,1
loc ,

see [4]. Analyzing the situation more carefully, one may notice a crucial aspect:
the differential of the mapping does not vanish in the zero set of the Jacobian. For
the non-negative Jacobian determinant almost everywhere1 there doesn’t exist a
measurable function K◦ : � → [0,∞), which is finite almost everywhere so that

|D f (x)|n ≤ K◦(x) J (x, f ). (1)

Avoiding this phenomenon, Hencl and Koskela were able to prove that the inverse
lies in W 1,1

loc under the minimal possible regularity assumption of a mapping.
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1 The assumtion J (x, f ) ≥ 0 a.e is not restrictive. In this paper mappings are differentiable al-
most everywhere and homeomorphisms; thus, either the Jacobian of the mapping is non-negative
or non-positive almost everywhere, therefore, for simplicity, we can assume that J (x, f ) ≥ 0
almost everywhere.
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Theorem 1.1 (HenclandKoskela) Let � and �′ be domains in R
2. Suppose that

f ∈ W 1,1
loc (�, �′) is a homeomorphism of finite distortion such that f satisfies the

distortion inequality (1). Then f −1 ∈ W 1,1
loc (�′, �) and f −1 is a mapping of finite

distortion.

The purpose of this paper is to carry out Theorem 1.1 to higher dimensions.
Before arriving at the results, it is necessary to recall a few basic definitions. First,
f : � → R

n is a mapping of finite distortion if the following three conditions are
satisfied:

(i) f ∈ W 1,1
loc (�, R

n),
(ii) The Jacobian determinant J (x, f ) of f is locally integrable,

(iii) There is a measurable function K◦ = K◦(x), finite almost everywhere, such
that f satisfies the distortion inequality

|D f (x)|n ≤ K◦(x) J (x, f ) a.e. x ∈ �. (2)

Above we used the operator norm of the differential matrix, defined by |D f (x)| =
sup{|D f (x)h| |h| = 1}. Geometrically, inequality (2) means that at almost every
point x ∈ � the differential D f (x) : R

n → R
n deforms the unit sphere onto an

ellipsoid whose eccentricity is controlled by Ko(x). Thus, in particular, the case
Ko = 1 results in conformal deformations. Also assumption (i i) becomes natural
because the Jacobian of a weakly differentiable homeomorphism is always locally
integrable. The smallest function K◦(x) for which the distortion inequality (2)
holds is called the outer distortion function of f , defined by

K◦(x, f ) =






|D f (x)|n
J (x, f )

, if J (x, f ) > 0

1, otherwise.
(3)

For more about the theory of mappings with finite distortion, please refer to the
monograph by Iwaniec and Martin [5].

Theorem 1.2 Suppose a homeomorphism f : � → �′ belongs to the Sobolev
class W

1,p
loc (�, �′) for some p > n − 1 and f has finite distortion. Then f −1 is

a mapping of finite distortion. Furthermore, f −1 is differentiable almost every-
where.

This result has been known under the natural Sobolev regularity W 1,n
loc -assumption

of the mapping [12] and [9]. Roughly speaking, this is the minimal regularity as-
sumption that guarantees integration by parts against the Jacobian determinant i.e.
one can apply Stokes’ theorem. In this sense, it seems very surprising that we can
relax the Sobolev regularity assumption here. The proof by Hencl and Koskela is
based on the approximation argument. They construct Lipschitz approximations
to f −1 and prove that the approximations converge to the inverse. In higher di-
mensions, auxiliary estimates for the inverse are more complicated, and proving
that the approximation to f −1 converges is no longer as easy as in the case n = 2.
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To overcome these difficulties we implement a new method in approaching the
problem. We believe that these techniques will be very useful in the future studies
of mappings with finite distortion.

In developing a theory of mappings with finite distortion, we are usually faced
on the following question: How regular does the distortion function have to be to
guarantee the desired properties for the mapping or the inverse? Here the natural
Sobolev regularity W 1,n

loc also plays a special role, making it useful to know under
which assumption of the distortion function the differential of the inverse map-
ping has the Sobolev n-regularity. The estimate (28) in the proof of Theorem 1.2
guarantees that this is the case provided K◦(·, f ) ∈ Ln−1(�); however, knowing
a priori that f −1 ∈ W 1,n

loc (�′, �), it is possible to prove the identity
∫

�′
|D f −1(y)|n dy =

∫

�

KI (x, f ) dx . (4)

This identity has been known under the natural Sobolev regularity f ∈
W 1,n

loc (�, �′) [7] and [1]. In [7], it was shown that the n-regularity assumption
can be slightly relaxed. It is enough to assume that |D f |n log−1(1 + |D f |) is
locally integrable, primarily because we can still integrate by parts against the
non-negative Jacobian determinant. This is not true when we only assume that
f ∈ W

1,p
loc (�, �′) for some p < n. This identity plays a central role in exam-

ining extremal mappings of finite distortion in [1]. In the non-linear elasticity we
have information on the differential, and on its cofactor matrix D� f . For example,
Šverák, Müller, Qi, and Yan in [9, 11] studied topological properties of the class

A+
p, n

n−1
(�) = {

f ∈ W 1,p
loc (�, R

n) : |D� f | ∈ L
n

n−1
loc (�) and J (x, f ) > 0 a.e.

}
.

Thus, we are led to an examination of the inner distortion function KI (·, f ), de-
fined by

KI (x, f ) =






|D� f (x)|n
J (x, f )n−1

, if J (x, f ) > 0

1, if |D� f (x)| = 0

∞, if J (x, f ) = 0 and |D� f (x)| 	= 0.

(5)

Geometrically, the cofactor matrix D� f made up of cofactors of D f controls the
change of surface elements, D f controls the change of line elements, and J (·, f )
controls the change of volume. Inequality (2) translates into a similar one for D� f ,

|D� f (x)|n ≤ KI (x, f ) J (x, f )n−1 = KI (x, f ) det D� f (x) a.e. (6)

where 1 ≤ KI (x, f ) ≤ K n−1◦ (x, f ) < ∞, see [5, p. 109]. We observe, however,
that in dimension n ≥ 3 this does not imply the outer distortion inequality (2). For
example, consider f (x1, . . . , xn) = (x1, 0, . . . , 0). Also, notice that in dimension
2 both distortion functions coincide, i.e. KI (x, f ) = K◦(x, f ) almost everywhere.
Thus, the following question is raised; is it true that |D f −1| ∈ Ln(�) if we only
assume that the inner distortion function is integrable? This question is highly
motivated by studing extremal mappings of finite distortion in higher dimensions.



334 J. Onninen

For more details, please refer to [1]. Our second theorem gives an affirmative
answer to the question.

Theorem 1.3 Suppose f ∈ W
1,p

loc (�, �′), p > n − 1, is a homeomorphism of
finite distortion with

∫

�

KI (x, f ) dx < ∞. (7)

Then the inverse map f −1 : �′ → � belongs to W 1,n
loc (�′, �), has finite distortion

and we have
∫

�′
|D f −1(y)|n dy =

∫

�

KI (x, f ) dx . (8)

We believe that Theorems 1.2 and 1.3 hold under the regularity assumption
p = n − 1 in the higher dimension cases (n ≥ 3) as well, but we have not been
able to verify these.

2 Regularity of the inverse mapping

Our starting point is to prove the following auxiliary inequality which is a coun-
terpart of the corresponding planar estimate from [4], see also [8]. If n = 2, then
we can choose p = 1 in the inequality. This is the reason why in Theorem 1.1 it
is enough to assume the Sobolev regularity n − 1 = 1 in this case.

Lemma 2.1 Suppose a homeomorphism f belongs to the Sobolev class W
1,p

loc
(�, �′) for some p > n − 1. Then

diam( f −1(Br )) ≤ C p(n)r1−n| f −1(B2r )|
p−n+1

p

(∫

f −1(B2r )

|D f |p
) n−1

p

(9)

for all balls Br = B(y, r) such that B3r = B(y, 3r) ⊂ �′.

Before giving the proof of this lemma, we recall a well-known fact that a
function in the Sobolev class W

1,p
loc (�) where � ⊂ R

n , is Hölder continuous
with exponent 1 − n/p provided p > n. More precisely, we have the following
oscillation lemma, see for example [2, p. 143].

Lemma 2.2 Let u be a function belonging to the Sobolev class W
1,p

loc (�) where
� ⊂ R

n and p > n. Then

|u(x) − u(y)| ≤ C p(n)s1− n
p

(∫

Bs

|∇u|p
) 1

p

(10)

for almost every x, y ∈ Bs = B(z, s) ⊂ �.
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Proof of Lemma 2.1 We may assume that diam f −1(Br ) = d and that the set
f −1(Br ) contains the origin and the point (0, 0, . . . , 0, d). For 0 < t < d , we
write

Lt = {
x ∈ f −1(B2r ); xn = t

}
(11)

and fix a point z(t) ∈ Lt ∩ f −1(Br ). Also, we choose a radius s(t) > 0 such that a
(n−1)-dimensional ball Bn−1(z(t), s(t)) ⊂ Lt and ∂ Bn−1(z(t), s(t))∩∂ f −1(B2r )
is non-empty. For shorter notation we write Bt = Bn−1(z(t), s(t)). Fix p > n −1
and applying Lemma 2.2, for almost every t ∈ (0, d) we have

r ≤ C p(n) s(t)1− n−1
p

(∫

Bt
|D f |p

) 1
p

. (12)

This estimate can be equivalently written as

s(t)n−p−1 ≤ [C p(n)]p r−p
∫

Bt
|D f |p. (13)

Integrating this inequality from 0 to d over t’s we find that
∫ d

0
s(t)n−p−1 dt ≤ [C p(n)]p r−p

∫

f −1(B2r )

|D f |p. (14)

Here we used the fact that Bt ⊂ Lt . For estimating the integral on the left hand
side, we set a positive number α = (n − 1)(p − n + 1)/p and compute

d
p

n−1 =
(∫ d

0
s(t)−αs(t)α dt

) p
n−1

≤
(∫ d

0
s−α

p
n−1

)( ∫ d

0
sα

p
p−n+1

) p−n+1
n−1

=
(∫ d

0
sn−p−1

)( ∫ d

0
sn−1

) p−n+1
n−1

≤
(∫ d

0
s(t)n−p−1 dt

)

| f −1(B2r )|
p−n+1

n−1 . (15)

Here we again used the fact that Bt ⊂ Lt . Combining the previous estimate with
(14), the claim follows.

3 Proof of Theorem 1.2

Before jumping into the proof, we state a crucial version of the area formula for
us. Let G ⊂ � be a measurable set. Suppose that g is a homeomorphism such that
g is differentiable at every point of G. Let u be a non-negative Borel-measurable
function in R

n . Then
∫

G

u(g(x))|J (x, g)| dx ≤
∫

Rn
u(y) dy. (16)

This follows from [3, Theorem 3.1.8] together with the area formula for Lipschitz
mappings.



336 J. Onninen

Under the assumptions of Theorem 1.2, the estimate (9) gets the following
slightly weaker form:

diam( f −1(Br )) ≤ C p(n)r1−n| f −1(B2r )|
p−n+1

p

(∫

B2r

�(y) dy

) n−1
p

(17)

where

�(y) = |(D f )( f −1(y))|p

J ( f −1(y), f )
χ f (A)(y) (18)

and
A = {x ∈ �; f is differentiable at x and J (x, f ) > 0}.

Indeed, since f has finite distortion i.e. the differential of f vanishes a.e. in the
zero set of the Jacobian determinant and a homeomorphism in the Sobolev class
W

1,p
loc (�, �′), p > n − 1, is differentiable almost everywhere we find that

D f (x) = 0 almost everywhere in � \ A. (19)

This elegant differentiable result goes back to the work of Väisälä [13]. Now,
the inequality (17) follows from the change of variable formula (16) for f .
The estimate (17) is only slightly weaker in terms of that the function � is lo-
cally integrable in �′: For every y ∈ f (A), f is differentiable at f −1(y) and
J ( f −1(y), f ) > 0. Therefore, f −1 is differentiable at y and

J (y, f −1) = 1

J ( f −1(y), f )
for all y ∈ f (A). (20)

Therefore, for every open subset of �′, say �̃′, we have
∫

�̃′
�(y) dy =

∫

�̃′
|(D f )( f −1(y))|p J (y, f −1)χ f (A)(y) dy

≤
∫

f −1(�̃′)
|D f |p, (21)

as desired. Here, we also applied the change of variable formula (16) for the
mapping f −1.

Step 1 Our first step is to show that f −1 is differentiable almost everywhere and
f −1 has finite distortion. For that, we remind the reader that the volume derivate
of f −1 at y, denote by µ′

f −1(y), is finite almost everywhere [14, Theorem 24.2],
that is,

µ′
f −1(y) = lim

r→0

| f −1(B(y, r))|
|B(y, r)| < ∞ a.e. y ∈ �′. (22)

By Rademacher-Stepanov Theorem, see [14, Theorem 29.1], f −1 is differentiable
almost everywhere provided that

lim sup
r→0

diam f −1(B(y, r))

r
< ∞ a.e. y ∈ �′. (23)
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Fix a point y ∈ �′ such that
µ′

f −1(y) < ∞ (24)

and

lim sup
r→0

−
∫

B(y,r)

�(z) dz = �(y) < ∞. (25)

Notice, that almost every point in �′ satisfies these conditions. For shorter the
notation we write Bs = B(y, s), for s > 0. The estimate (17) implies

lim sup
r→0

diam f −1(Br )

r
≤ C p(n) lim sup

r→0

(

−
∫

B2r

�

) n−1
p

( | f −1(B2r )|
|B2r |

) p−n+1
p

≤ C p(n)[�(y)] n−1
p [µ′

f −1(y)] p−n+1
p . (26)

Hence f −1 is diferentiable almost everywhere in �′. Let y ∈ �′ be a point where
f −1 is differentiable, then the above estimate together with the definition of �
gives

|D f −1(y)| ≤ C p(n) [�(y)]
n−1

p J (y, f −1)
p−n+1

p

= C p(n)
|(D f )( f −1(y))|n−1

J ( f −1(y), f )
n−1

p

J (y, f −1)
p−n+1

p χ f (A)(y)

= C p(n)|(D f )( f −1(y))|n−1 J (y, f −1)χ f (A)(y). (27)

Here we also used the identity (20). Combining (27) with the assumption that f
has finite distortion we find that

|D f −1(y)| ≤ C p(n)K◦( f −1(y), f )
n−1

n J ( f −1(y), f )
n−1

n J (y, f −1)χ f (A)(y)

= C p(n)K◦( f −1(y), f )
n−1

n χ f (A)(y) J (y, f −1)
1
n (28)

Therefore, f −1 has finite distortion.

Step 2 Next, we will prove that f −1 ∈ W 1,1
loc (�′, �). For that we need only to

show that f −1 is ACL i.e. absolutely continuous on almost all lines parallel to the
coordinate axes, since the estimate (27) guarantees the local integrability of the
partial derivatives. Indeed, applying the area formula for f −1 we see that one im-
mediately. For the ACL-property, fix an open cube Q such that Q ⊂ �′ it suffices
to show that f −1 is ACL in this cube. By symmetry it is enough to consider line
segments parallel to the xn-axis. Assume that Q = Q0 × I, where Q0 is an open
cube in R

n−1 and I = (a, b) ⊂ R. Next, for each Borel set E ⊂ Q0 we define

η(E) = | f −1(E × I)|. (29)

By Lebesgue theorem [14, Theorem 23.5], the set function η has a finite derivative
η′(y) for almost every y ∈ Q0, that is,

η′(y) = lim sup
r→0

η(Bn−1(y, r))

rn−1
< ∞. (30)
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Denote by V0 the measure zero set in Q0 where η′ does not exist or is infinity. Also,
we know that �, defined in (18), is locally integrable function in �′. Therefore,
there exists a measurable zero set in Q0, denoted by V1, such that

∫

I

�(y, t) dt < ∞ for all y ∈ V1 (31)

Let A(I) = A be a finite union of closed intervals in I whose end-points are
rational numbers. Clearly, this set is countable. For all I ∈ A(I) we define a
function ψI : Q0 → R such that

ψI (x) =
∫

I
�(y, t) dt when y ∈ Q0 \ V1.

Now by Fubini ψI ∈ L1(Q0). Thus almost every y ∈ Q0 is a Lebesgue point for
ψI . Denote by VI the measure zero set of non-Lebesgue points. Now

V = V0 ∪ V1 ∪
( ⋃

I∈A
VI

)

has a measure zero, because it is a countable union of sets of measure zero.
Fix y ∈ Q0 \ V. We will prove that f −1 is absolutely continuous on the seg-

ment y × I, which proves the claim. Let {�i }	i=1, �i = [ai , bi ], be an union of
closed intervals on I whose interiors are mutually disjoint and whose endpoints
are rational numbers.

Fix a natural number β such that

1

β
<

min{dist
( ∪ �i , ∂Q

)
, b1 − a1, . . . , b	 − a	}
17

.

Now a standard covering argument [14, Lemma 31.1] gives us a number δ depends
on β such that for 0 < r < δ we have a covering Bi

1, . . . , Bi
κi

of �i which has
properties

• diam(Bi
j ) = 2r

• overlapping of Bi
j is at most 4

• Bi
j ⊂ 1

β
-neighborhood of �i .

Define balls B
i
j = B(xi

j , r) such that y × Bi
j is the diameter of the ball. For shorter

the notation we write A
i
j = f −1

B(xi
j , 2r). Now, applying the estimate (17) and
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Hölder’s inequality we have

	∑

i=1

| f −1(y, ai ) − | f −1(y, bi )| ≤
	∑

i=1

κi∑

j=1

diam
(

f −1
B

i
j

)

≤ C p(n)

	∑

i=1

κi∑

j=1

r1−n
∣
∣Ai

j

∣
∣

p−n+1
p

(∫

2B
i
j

�(y) dy

) n−1
p

= C p(n)

	∑

i=1

κi∑

j=1

( |Ai
j |

rn−1

) p−n+1
p

(
1

rn−1

∫

2B
i
j

�(y) dy

) n−1
p

≤ C p(n)

(
1

rn−1

	∑

i=1

κi∑

j=1

|Ai
j |
) p−n+1

p
(

1

rn−1

	∑

i=1

κi∑

j=1

∫

2B
i
j

�(y) dy

) n−1
p

.

From the geometry of our covering, it follows that the overlapping of 2B
i
j is at

most 14. Therefore, we have

	∑

i=1

κi∑

j=1

∣
∣Ai

j

∣
∣ ≤ 14η(Bn−1(y, r)) (32)

and
	∑

i=1

κi∑

j=1

∫

2B
i
j

�(y) dy ≤ 14
∫

B2r ×I β

�(y) dy (33)

where B2r = B
n−1(y, 2r) and I β = ∪	

i=1[ai − 1/β, bi + 1/β]. By taking upper
limit when r → 0 and then letting β → ∞ we conclude that

	∑

i=1

| f −1(y, ai ) − f −1(y, bi )| ≤ C p(n)[η′(y)] p−n+1
p

(∫

∪	
i=1[ai ,bi ]

�(y, t)dt

) n−1
p

.

This estimate holds for rational numbers a j , b j ∈ I. By continuity of f −1 it holds
for all possible choices of a j , b j ∈ I. Therefore, f −1 is absolutely continuous on
the line segment y × I, as desired.

3.1 Proof of Theorem 1.3

Theorem 1.2 gives that f −1 is differentiable almost everywhere in �′ and has
finite distortion. Therefore, the measure of the set

O
′ = {y ∈ �′; J (y, f −1) > 0 and f −1 is differentiable at y} (34)

equals |{y ∈ �′ ; D f −1(y) 	= 0}| and so
∫

�′
|D f −1(y)|n dy =

∫

O′
|D f −1(y)|n dy. (35)
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Arguing the same way as in (20), we find that
∫

O′
|D f −1(y)|n dy =

∫

O′
|D f −1(y)|n J ( f −1(y), f )J (y, f −1) dy. (36)

Applying (16) for f −1, we have
∫

O′
|D f −1(y)|n J ( f −1(y), f )J (y, f −1) dy ≤

∫

�

|D f −1( f (x)
)|n J (x, f ) dx .

(37)
Above estimates guarantee that

∫

�′
|D f −1(y)|n dy ≤

∫

�

|D f −1( f (x))|n J (x, f ) dx . (38)

On the other hand, the change of variable (16) for f gives
∫

�′
|D f −1(y)|n dy ≥

∫

�

|D f −1( f (x))|n J (x, f ) dx . (39)

Combining this with (38) we find that
∫

�′
|D f −1(y)|n dy =

∫

�

|D f −1( f (x)
)|n J (x, f ) dx . (40)

By [6, Theorem 1.2.], the Jacobian determinant of f is strictly positive almost
everywhere. Here we also used the point-wise inequlity K◦(x, f ) ≤ K n−1

I
(x, f )

for f with finite distortion, see [5, p. 109]. The familiar Cramer’s rule gives
∫

�

|D f −1( f (x))|n J (x, f ) dx =
∫

�

|D� f (x)|n
J (x, f )n−1

dx

=
∫

�

KI (x, f ) dx . (41)

The desired identity follows.
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