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1 Introduction

Let � be a domain is R
N , N ≥ 2, d a locally bounded and measurable function

defined in � and p a real number larger than 1. This article deals with the study
of positive solutions of

−div(|Du|p−2 Du) − d(x)u p−1 = 0 in � (1.1)

which admit an isolated singularity on the boundary of �. It is known since
the starting pioneering work of Serrin [12] that one of the main goals for
studying the regularity of solutions of quasilinear equations consists in obtain-
ing Harnack inequalities. The simplest form of this inequality is the follow-
ing: Assume B2r ⊂⊂ � and d ∈ L∞(B2r ), then there exists a constant C =
C(N , p, r(‖d‖L∞(B2r )

)1/p) ≥ 1 such that any nonnegative solution u of (1.1) in
B2r satisfies

u(x) ≤ Cu(y) ∀(x, y) ∈ Br × Br . (1.2)

Actually this inequality is valid for a much wider class of operators in divergence
form with a power-type growth. Among the important consequences of this in-
equality are the Hölder continuity of the weak solutions of (1.1 ) and the two-side
estimate of solutions admitting an isolated singularity. Among more sophisticated
consequences are the obtention of local upper estimates of solutions of the same
equation near a singular point. This program has been carried out by Gidas and
Spruck for equation

−�u = uq (1.3)

in the case N ≥ 2 and 1 < q < (N + 2)/(N − 2) [6], and recently by Serrin and
Zhou [13] for equation

−div(|Du|p−2 Du) = uq (1.4)
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in the case N ≥ p and p −1 < q < N p/(N − p)−1. A third type of applications
of Harnack inequality linked to the notion of isotropy leads to the description of
positive isolated singularities of solutions. This was carried out by Véron [18] for

−�u + uq = 0 (1.5)

in the case 1 < q < N/(N − 2), and by Friedman and Véron [5] for

−div(|Du|p−2 Du) + uq = 0 (1.6)

when p − 1 < q < N (p − 1)/(N − p). When the singularity of u is not an
internal point but a boundary point, the situation is more complicated and the
mere inequality (1.2) with only one function has no meaning. Boundary Harnack
inequalities which deals with two nonnegative solutions of (1.1) vanishing on a
part of the boundary asserts that the two solutions must vanish at the same rate.
For linear second order elliptic equations they are used for studying the properties
of the harmonic measure [3] (see also [1]). For p-harmonic function in a ball, a
sketch of construction is given by Manfredi and Weitsman [10] in order to obtain
Fatou type results. In this article we consider singular solutions of (1.1) with a
singular potential type reaction term. The first result we prove is the following:
Assume ∂� is C2 and d is measurable, locally bounded in �\{a} for some a ∈ ∂�
and satisfies

|d(x)| ≤ C0 |x − a|−p a. e. in BR(a) ∩ � (1.7)

for some C0, R > 0 and p > 1. Then there exists a positive constant C depending
also on N, p and C0 such that if u ∈ C1(� \ {a}) is a nonnegative solution of
(1.1) vanishing on ∂� \ {a}, there holds

u(y)

Cρ(y)
≤ u(x)

ρ(x)
≤ Cu(y)

ρ(y)
∀(x, y) ∈ � × � s.t. |x | = |y| . (1.8)

where ρ(.) is the distance function to ∂�. Another form of this estimate, usually
called boundary Harnack inequality, asserts that if u1 and u2 are two nonnegative
solutions of (1.1) vanishing on ∂� \ {a}, there holds

u1(x)

Cu1(y)
≤ u2(x)

u2(y)
≤ Cu1(x)

u1(y)
∀(x, y) ∈ � × � s.t. |x | = |y| . (1.9)

for some structural constant C > 0. Another consequence of the construction
leading to (1.8) is the existence of a power-like a priori estimate: Assume � is a
bounded C2 domain with a ∈ ∂�, A ∈ � is an arbitrary point and d a measurable
function such that

|d(x)| ≤ C0 |x − a|−p a.e. in �. (1.10)

Then there exist two positive constants α > 0 depending on N, p, � and C0, and
C depending on the same parameters and also on A such that, any nonnegative
solution u ∈ C(� \ {a}) ∩ W 1,p

loc (� \ {a})) which vanishes on ∂� \ {a} verifies

u(x) ≤ C
ρ(x)

|x − a|α+1
u(A) ∀x ∈ � \ {a}. (1.11)
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The precise value of α is unknown and surely difficult to know explicitely,
even in the simplest case when u is a p-harmonic function. In several cases the
value of α is associated to the construction of separable p-harmonic functions
called the spherical p-harmonics. Another striking applications of the boundary
Harnack principle deals with the structure of the set of positive singular solutions.
We prove the following: Let � be C2 and bounded, a ∈ ∂� and d satisfies (1.10).
Assume also that the operator v 
→ −div(|Dv|p−2 Dv) − d(x)v p−1 satisfies the
comparison principle in � \ Bε(a) for any ε > 0, among nonnegative solutions
which vanishes on ∂� \ Bε(a). If u and v are two positive solutions of (1.1) in �
which vanish on ∂� \ {a}, there exists k > 0 such that

k−1u(x) ≤ v(x) ≤ ku(x) ∀x ∈ �. (1.12)

Furthermore, if we assume also either p = 2, either p > 2 and u has no critical
point in �, or 1 < p < 2 and d ≥ 0, there exists k > 0 such that

v(x) = ku(x) ∀x ∈ �. (1.13)

In the last section we give some partial results concerning the existence of singular
solutions of equations of type (1.1) and their link with separable solutions which
are solutions under the form u(x) = |x |−γ φ(x/ |x |). If d ≡ 0 such specific
solutions, studied by Kroll and Maz’ya [8], Tolksdorff [15], Kichenassamy and
Véron [7], are called spherical p-harmonics.

Our paper is organized as follows: 1- Introduction. 2 The boundary Harnack
principle. 3 The set of singular solutions. 4 Existence of singular solutions. 5 Ref-
erences.

2 The boundary Harnack principle

In this section we consider nonnegative solutions of

−div(|Du|p−2 Du) − d(x)u p−1 = 0 (2.1)

in a domain � which may be Lipschitz continuous or C2. The function d , is sup-
posed to be measurable and singular in the sense that it satisfies

|d(x)| ≤ C0 |x − a|−p a.e. ∈ � (2.2)

for some point a ∈ ∂� and some C0 ≥ 0. By a solution of (2.1) vanishing on
∂�\ {a}, we mean a u ∈ C(�̄\ {a}) such that Du ∈ L p(K ) for every K compact,
K ⊂ �̄ \ {a} which verifies

∫
�

(|Du|p−2 Du.Dζ + d(x)u p−1ζ ) dx = 0 (2.3)

for every ζ ∈ C1(�̄), with compact support in �̄ \ {a}.
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2.1 Estimates near the boundary in Lipschitz domains

Let � be a bounded domain in R
N with a Lipschitz continuous boundary. Then

there exist m > 1 and r0 > 0 such that for any Q ∈ ∂� there exists an isometry
IQ in R

N and a Lipschitz continuous real valued function φ defined in R
N−1 such

that
|φ(x) − φ(y)| ≤ m |x − y| ∀(x, y) ∈ R

N−1 × R
N−1, (2.4)

and

B2r0(Q) ∩ {x = (x ′, xN ) = (x1, . . . , xN ) : xN ≥ φ(x ′)} = IQ(� ∩ B2r0(Q)).

For any A ∈ Br0(Q) ∩ ∂�, A = (a′, φ(a′), r > 0 and γ > 0, we denote by CA,r,γ
the truncated cone

CA,r,γ = {x = (x ′, xN ) : xN > φ(a′) , γ |x ′ − a′| ≤ xN − φ(a′)} ∩ Br (A)

The opening angle of this cone is θγ = tan−1(1/γ ) Clearly, for every γ ≥ m
and 0 < r ≤ r0, I−1

Q (CA,r,γ ) is included into �. Up to an orthogonal change of
variable, we shall assume that IQ = I d . We denote also by ρ(x) the distance from
x to ∂�. The next result is a standard geometric construction which can be found
in [1]

Lemma 2.1 Let Q ∈ ∂� and 0 < r < r0/5 and h > 1 an integer. There exists
N0 ∈ N depending only on m such that for any points x and y in �∩B3r/2(Q) ver-
ifying min{ρ(x), ρ(y)} ≥ r/2h, there exists a connected chain of balls B1, . . . B j
with j ≤ N0h such that

x ∈ B1, y ∈ B j , Bi ∩Bi+1 �= ∅ and 2Bi ⊂ B2r (Q)∩� for 1 ≤ i ≤ j−1. (2.5)

Lemma 2.2 Assume u is a nonnegative solution of (2.1) in B2r (P) where
|a − P| ≥ 4r . Then there exists a positive constant c1 depending on p, N and
C0 such that

u(x) ≤ c1u(y) ∀(x, y) ∈ Br (P) × Br (P). (2.6)

Proof By a result of Trudinger [16, Theorem 1.1], if u is a nonnega-
tive solution of (2.1) in B2r (P) there exists a constant C ′ depending on
N , p, r and ‖|d|1/p‖L∞(B2r (P)) such that (2.6) holds. Furthermore C ′ ≤
C2 exp(C3r‖|d|1/p‖L∞(B2r (P))) where C2 and C3 depend on N and p. This im-
plies (2.6) since, by (2.2), r‖|d|1/p‖L∞(B2r (P)) remains bounded by a constant
depending on p and C0. ��

Up to a translation, we shall assume that the singular boundary point a is the
origin of coordinates.

Lemma 2.3 Assume � is as in Lemma 2.1 with Q �= 0 ∈ ∂�, 0 < r ≤
min{r0, |Q| /4} and u is a nonnegative solution of (2.1) in B2r (Q). Then there
exists a positive constant c2 > 1 depending on p, N , m and C0 such that

u(x) ≤ ch
2 u(y), (2.7)

for every x and y in B3r/2(Q) ∩ � such that min{ρ(x), ρ(y)} ≥ r/2h for some
h ∈ N.



Singular solutions of quasilinear elliptic equations 163

Proof By Lemma 2.1 there exists N0 ∈ N
∗ and a connected chain of j ≤ N0h

balls Bi with respective radii ri and centers xi , satisfying (2.5). Thus

max
Bi

u ≤ c1 min
Bi

u ∀i = 1, . . . , j, (2.8)

by the previous lemma. Therefore (2.7) holds with c2 = cN0
1 . ��

Lemma 2.4 Let 0 < r ≤ |Q| /4 and u be a nonnegative solution of (2.1) in
B2r (Q) ∩ � which vanishes on ∂� ∩ B2r (Q). If P ∈ ∂� ∩ Br (Q) and 0 < s <
r/(1 + m) so that Bs(P) ⊂ B2r (Q), there exist two positive constants δ and c3
depending on N, p, m and C0 such that

u(x) ≤ c3
|x − P|δ

sδ
Ms,P(u) (2.9)

for all x ∈ Bs(P) ∩ �, where Ms,P(u) = max{u(z) : z ∈ Bs(P) ∩ �}.
Proof Since ∂� is Lipschitz, it is regular in the sense that there exists θ > 0,
s1 > 0 such that

meas (�c ∩ Bs(y)) ≥ θ meas (Bs(y)), ∀y ∈ ∂�, ∀0 < s < s1.

By [16, Theorem 4.2] there exists δ ∈ (0, 1) depending on p, N , C0, θ and s1,
such that for any y ∈ ∂�, there holds

|u(z) − u(z′)| ≤ C

(
s

s1

)δ(1−γ )

∀(z, z′) ∈ Bs(y) ∩ � × Bs(y) ∩ �, (2.10)

where C depends on p, N , C0 and supBs1 (y)∩� u = Ms1,y(u). Because the equa-
tion is homogeneous with respect to u, this local estimate is invariant if we replace
u by ũ = u/Ms1,y(u). Thus the dependence is homogeneous of degree 1 with re-
spect to Ms1,y(u), which implies

|u(z) − u(z′)| ≤ C ′
(

s

s1

)δ(1−γ )

Ms1,y(u) ∀(z, z′) ∈ Bs(y) ∩ � × Bs(y) ∩ �.

(2.11)
Taking z′ = P = y, s = |x − P|, we derive (2.9). ��

If X ∈ B2r0(0)∩∂� and r > 0, we denote by Ar (X) the point with coordinates
(x ′, φ(x ′) + r). The next result is the key point in the construction. Although it
follows [1], we give the proof for the sake of completeness.

Lemma 2.5 Let 0 < r ≤ min{2r0, |Q| /8, s1, 25} and u be a nonnegative solution
of (2.1) in B2r (Q) ∩ � which vanishes on ∂� ∩ B2r (Q). Then there exists a
positive constant c4 depending only on N, p, m and C0 such that

u(x) ≤ c4u(Ar/2(Q)) ∀x ∈ Br (Q) ∩ �. (2.12)
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Proof The proof is by contradiction. We first notice from (2.9) that if P ∈
B2r (Q) ∩ ∂� verifies Bs(P) ∩ � ⊂ B2r (Q) ∩ � and if c5 = (2c3)

1/δ , there
holds

Ms/c5,P(u) ≤ 1

2
Ms,P(u). (2.13)

By Lemma 2.3, if y ∈ B3r/2(Q) satisfies u(y) > ch
2 u Ar/2(Q), it means that ρ(y) <

r/2h . Let M > 0 such that 2M > c2 (defined in Lemma 2.3), N = max{1+E(6+
M ln c5/ ln 2), M + 5}, so that 2N > 26cM

5 , and c4 = cN
2 . Let u be a positive

solution of (2.1) vanishing on B2r (Q) ∩ ∂� which satisfies

u(Y0) > cN
2 u(Ar/2(Q)), (2.14)

for some Y0 ∈ Br (Q) ∩ �. Then ρ(Y0) < r/2N . Let Q0 ∈ ∂� such that ρ(Y0) =
|Y0 − Q0|. Then

|Q − Q0| ≤ |Y0 − Q0| + |Y0 − Q| ≤ r/2N + r ≤ r(1 + 2−5)

Therefore Q0 ∈ B3r/2(Q) ∩ ∂�. Set s2 = cM
5 r/2N , then Bs2(Q0) ⊂

Br(1+2−5+2−6)(Q) ⊂ B3r/2(Q) because s2 ≤ 2−6 by the choice of N . Applying
(2.13) with s = s2 yields to

Ms2,Q0(u) ≥ 2M Ms2/cM
5 ,Q0

(u) ≥ 2M u(Y0) ≥ 2M cN
2 u(Ar/2(Q))

≥ cN+1
2 u(Ar/2(Q)),

since |Y0 − Q0| ≤ r/2N = s2/cM
5 and 2M > c2. Hence we can choose Y1 ∈

Bs2(Q0) ∩ � which realizes Ms2,Q0(u) and this implies that ρ(Y1) < r/2N+1. A
point Q1 ∈ ∂� such that ρ(Y1) = |Y1 − Q1| satisfies also

|Q − Q1| ≤ |Q − Q0| + |Q0 − Q1| ≤ r(1 + 2−5 + 2−6).

Now

Ms2/2,Q1(u) ≥ 2M Mr/2N+1,Q1
(u) ≥ 2M u(Y1)

≥ 22M cN
2 u(Ar/2(Q)) ≥ 2N+2 Ar/2(Q).

Iterating this procedure, we construct two sequences {Yk} of points such that
ρ(Yk) < r/2k+N and {Qk} such that Qk ∈ ∂� and |Q − Qk | ≤ r(1 + 2(2−5 +
2−6 + · · · + 2−5−k)) < 3r/2 and

u(Yk) ≥ 2N+k Ar/2(Q) ∀k ∈ N
∗.

Since Yk ∈ B3r/2 and ρ(Yk) → 0 as k → ∞ we get a contradiction with the fact
that Ar/2(Q) > 0. ��
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Remark The proof of the previous lemma shows that estimate (2.12) is valid for a
much more general class of equations under the form

−divA(x, u, Du) + B(x, u, Du) = 0 (2.15)

where A and B are respectively vector and real valued Caratheodory functions
defined on �×R×R

N and verifying, for some constants γ > 0 and a0, a1, C0 ≥
0,

A(x, r, q).q ≥ γ |q|p ,

|A(x, r, q)| ≤ a0 |q|p−1 + a1 |r |p−1 ,

and
|B(x, r, q)| ≤ C0 |r |p−1 |x |−p ,

for (x, r, q) ∈ � × R × R
N .

2.2 Estimates near the boundary in C2 domains

From now we assume that � is a bounded domain with a C2 boundary. For any
x ∈ ∂�, we denote by νx the normal unit outward vector to ∂� at x . Let R0 > 0
be such that for any x ∈ ∂�, the two balls BR0(x − R0νx ) and BR0(x + R0νx )

are subsets of � and �̄c respectively. If P ∈ ∂�, we denote by Nr (P) and Nr (P)
the points P − rνP and = P + rνP . Notice that r ≤ R0 implies ρ(Nr (P)) =
ρ(Nr (P)) = r .

Lemma 2.6 Let Q ∈ ∂� \ {0}, 0 < r ≤ min{R0/2, |Q| /2} and u be a nonnega-
tive solution of (2.1) in B2r (Q) ∩ � which vanishes on B2r (Q) ∩ ∂�. Then there
exist b ∈ (0, 2/3) and c6 > 0 depending respectively on N, p and C0 and N, p,
R0 and C0 such that

t

c6r
≤ u(Nt (P))

u(Nr/2(Q))
≤ c6t

r
(2.16)

for any P ∈ Br (Q) ∩ ∂� and 0 ≤ t ≤ rb/2.

Proof Up to a dilation, we can assume that |Q| = 1, since if we replace x by
x/ |Q|, Eq. (2.1) and the estimates (2.16) are structuraly invariant (which means
that C0 and the Ci are unchanged), while the curvature constant R0 is replaced by
R0/ |Q| which is no harm since � is bounded.

Step 1 The lower bound. For a > 0 and α > 0 to be made precise later on, let us
define

v(x) = V (|x − Nr/2(P)|) = e−a(|x−Nr/2(P)|/r)α − e−a/2α

e−a/4α − e−a/2α

for x ∈ Br/2(Nr/2(P)) ∩ Br/4(P). We set s = |x − Nr/2(P)|. Since |Q| = 1, the
function d satisfies −C̃0 ≤ d(x) ≤ C̃0. Next

−div(|Dv|p−2 Dv) + C̃0v
p−1

= − ∣∣V ′∣∣p−2 (
(p − 1)V ′′ + (N − 1)V ′/s

) + C̃0V p−1.
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Therefore this last expression will be nonpositive if and only if

(p − 1)

(
aαsα

rα
+ 1 − α

)
+ 1 − N

≥ C̃0

(aα

rα

)1−p
e(p−1)a(s/r)α sθ

(
e−a(s/r)α − e−a/2α )p−1 (2.17)

where θ = p + (1 − p)α. But θ = 0 by choosing α = p/(p − 1), thus (2.17) is
equivalent to

(p − 1)

(
aαsα

rα
+ 1 − α

)
+ 1 − N ≥ C̃0

(aα

rα

)1−p (
1 − ea(1/4α−1/2α)

)p−1
.

If r/4 ≤ s ≤ r/2 ≤ 1/4,

(p −1)

(
aαsα

rα
+ 1 − α

)
+1− N ≥ (p −1)

(aα

4α
+ 1 − α

)
+1− N = pa

4α
− N ,

while (aα

rα

)1−p (
1 − ea(1/4α−1/2α)

)p−1 ≤
(aα

rα

)1−p ≤ a1−p.

Therefore, if we choose a such that

a p−1
(ap

4α
− N

)
≥ C̃0, (2.18)

we derive
−div(|Dv|p−2 Dv) + C̃0v

p−1 ≤ 0 (2.19)

in Br/2(Nr/2(P)) ∩ Br/4(P). Furthermore ρ(x) ≥ r/16 for any x ∈ ∂ Br/4(P) ∩
Br/2(Nr/2(P)), therefore

u(x) ≥ c−4
2 u(Nr/2(P))v(x), (2.20)

by Lemma 2.3 and since v ≤ 1. Because u is a supersolution for (2.19), we obtain
that (2.20) holds for any x ∈ Br/4(P) ∩ Br/2(Nr/2(P)). Finally

v(x) ≥ e−a/2α
(2−α − (s/r)α)

e−a/4α − e−a/2α ≥ C(a, α)(1 − (1 − 2t/r)α) ≥ C ′(a, α)t

r

if x = Nt (P) with 0 ≤ t ≤ r/2. This gives the left-hand side of (2.16).

Step 2 The upper bound. Let b ∈ (0, 2/3] be a parameter to be made precise
later on. By the exterior sphere condition, B3br (N3rb(P)) ⊂ �̄c. Let φ1 be the
first eigenfunction of the p-Laplace operator in B3 \ B̄1 with Dirichlet boundary
conditions and λ1 the corresponding eigenvalue. It is well known that φ1 is radial.
We normalize φ1 by φ1(y) = 1 on {y : |y| = 2} (notice that φ1 is radial) and set

φrb(x) = φ1

( |x − Nrb(P)|
rb

)
,

thus

−div(|Dφrb|p−2 Dφrb) = λ1

(rb)p
φ

p−1
rb
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in B3rb(Nrb(P))\ B̄rb(Nrb(P)) and vanishes on the boundary of this domain. For
b small enough λ1/(rb)p ≥ 1 + C̃0 for any r ∈ (0, 1/2], thus

−div(|Dφrb|p−2 Dφrb) − C̃0φ
p−1
rb ≥ φ

p−1
rb (2.21)

in � ∩ B3rb(Nrb(P)) \ B̄rb(Nrb(P)) ⊇ � ∩ B2rb(Nrb(P)) while u verifies

−div(|Du|p−2 Du) − C̃0u p−1 ≤ 0 (2.22)

in the same domain. We can also take b > 0 such that B2br (Nbr (P)) ⊂ Br (Q),
thus

u(x) ≤ c4u(Nr/2(Q))

for x ∈ ∂ B2rb(Nrb(P)) ∩ � by Lemma 2.5. Now the function φ̃rb =
c4u(Nr/2(Q))φrb satisfies (2.21) in � ∩ B2rb(Nrb(P)) and dominates u on
∂(� ∩ B2rb(Nrb(P))) = (∂ B2rb(Nrb(P)) ∩ �) ∪ (B2rb(Nrb(P)) ∩ ∂�). By the
Diaz-Saa inequality [4]

∫
�∩B2rb(Nrb(P))

(
div(|Du p−2|Du)

u p−1
− div(|Dφ̃rb|p−2 Dφ̃rb)

φ̃
p−1
rb

) (
u p−φ̃

p
rb

)
+dx ≤ 0,

valid because (u p − φ
p
rb)+ ∈ W 1,p

0 (� ∩ B2rb(Nrb(P))). Therefore
∫

�∩B2rb(Nrb(P))

(
u p − φ̃

p
rb

)
+dx ≤ 0,

from which follows the inequality u ≤ φ̃rb in � ∩ B2rb(Nrb(P)). In particular

u(Nt (P)) ≤ c4φ1

( |Nt (P) − Nrb(P)|
rb

)
u(Nr/2(Q)).

Since φ1(s) ≤ C(s − 1) for s ∈ [1, 2], we obtain the right-hand side of (2.16). ��
The main result of this section is the following

Theorem 2.7 There exists two constants α > 0 and c7 > 0 depending on N, p,
C0 and N, p, C0 and R0 respectively such that if u is any nonnegative solution of
(2.1) vanishing on ∂� \ {0} there holds

1

c7
ρ(x) |x |α−1 u(A) ≤ u(x) ≤ c7ρ(x) |x |−α−1 u(A) (2.23)

for any x ∈ �, where A is a fixed point in � such that ρ(A) ≥ R0.

Proof Step 1: Tangential estimate. Let x ∈ � such that |x | = 2r ≤ R0 and
ρ(x) = t < br/2. Let Q ∈ ∂� \ {0} such that |Q| = |x | and x ∈ Br (Q), the
previous lemma implies

2

c6 |x |ρ(x)u(Nr/2(Q)) ≤ u(x) ≤ 2c6

|x | ρ(x)u(Nr/2(Q)). (2.24)
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There exists a fixed integer k > 2 such that we can connect two points lying on
∂ B2r (0) ∩ ∂� by k connected balls B j ( j = 1, . . . , k) with radius r/4 and center
on ∂ B2r (0). In particular we can connect Nr/2(Q) with N2r (0) = −2rν0 and all
the balls can be taken such that the distance of their center to ∂� be larger that
r/2. Since by Lemma 2.2 there holds

sup
B j

u ≤ c1 inf
B j

u ∀ j = 1, . . . k,

we derive

2

ck
1c6 |x |ρ(x)u(N2r (0)) ≤ u(x) ≤ 2ck

1c6

|x | ρ(x)u(N2r (0)). (2.25)

Let A0 = −R0ν0, b1 = −2rν0 = N2r (0), for � ≥ 2, b� = −2(1 + 3(2�−1 −
1)/2)rν0 and r� = 2�−1r . Applying again Lemma 2.2 in B2r�

(b�) ⊂ �, we have

sup
Br� (b�)

u ≤ c1 inf
Br� (b�)

u ∀� = 1, 2, . . . (2.26)

Let τ be the solution of

2(1 + 3(2τ−1 − 1)/2)r = R0 ⇔ τ = ln(R0 + r) − ln 3r

ln 2
+ 1

and �0 = E(τ )+ 1, then A0 ∈ Br�0
(b�0), and the combination of (2.25) and (2.26)

(applied �0 times) yields to

1

ck+�0
1 c6 |x |ρ(x)u(A0) ≤ u(x) ≤ ck+�0

1 c6

|x | ρ(x)u(A0). (2.27)

Since r ≤ R0/2, the computation of τ yields to

2τ = 2(R0 + r)

3r
≤ R0

r
:cτ

1 ≤
(

R0

r

)ln c1/ ln 2

.

This implies (2.23) with α = ln c1/ ln 2.

Step 2: Internal estimate. If x ∈ � satisfies |x | ≤ R0 and ρ(x) ≥ b/4 absx , we
can directly procede without using Lemma 2.6. Using internal Harnack inequality
(2.6) and connecting x to Nr (0) and then to A0 we obtain

1

c7
|x |α u(A) ≤ u(x) ≤ c7 |x |−α u(A), (2.28)

from which (2.24) is derived since ρ(x) ≥ b |x | /4. Finally, if |x | ≥ R0 and
ρ(x) ≤ R0, we can replace the singular point 0 by a regular point B ∈ ∂� such
that |x − B| ≤ R0. The previous procedure leads to the same estimate. At end,
if ρ(x) > R0 we apply again the internal Harnack inequality (2.6). Since � is
bounded, x and A0 can be joined by at most d = 2 diam (�)/R0 balls Bi with
radius R0/2 and center bi satisfying ρ(bi ) ≥ R0. Then using d times (2.6) yields
to (2.24). ��
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Remark If p = 2 and d is regular, it is proved that Lemma 2.6 holds even if
∂� is Lipschitz continuous. The previous proof is adapted by replacing the
doubling property of the radius on the connecting balls Br�

(b�) by radii such
that r�+1 = βr�, where β > 0 depends on the opening of the standard cone C
associated to the inside cone property of �. This observation shows that in the
general case p �= 2 and d singular, the validity of Lemma 2.6 implies Theorem
2.7 when � is a bounded domain satisfying the inside cone property.

Remark In the case p = 2 and limx→0 |x |2 d(x) = 0 the value of α is known and
equal to N − 1. When p �= 2 the value of α is unknown, even in the case where
d = 0.

The next result is a consequence of the method used in the proof of Theorem
2.7.

Theorem 2.8 Let u ∈ C1(�̄ \ {0}) be a positive solutions of (2.1) vanishing on
B2R0 ∩ (∂�\ {0}). Then there exists a constant c9 > 0 depending on p, N , C0 and
R0 such that

1

c9

u(y)

ρ(y)
≤ u(x)

ρ(x)
≤ c9

u(y)

ρ(y)
, (2.29)

for every x and y in BR0(0) ∩ � satisfying |y| /2 ≤ |x | ≤ 2 |y|.
Proof By (2.25) we have

1

c′ |x |u(N|x |(0)) ≤ u(x)

ρ(x)
≤ c′

|x |u(N|x |(0)).

for any x ∈ � such that |x | ≤ R0/2 and ρ(x) ≤ b |x | /4. If we assume that
x ∈ � ∩ BR0/2(0) verifies |x | ≤ R0/2 and ρ(x) > b |x | /4 we can connect x
to N|x |(0) by a fixed number n of balls of radius b |x | /8 with their center at a
distance to ∂� larger than b |x |. The classical Harnack inequality yields to

1

cn
1

u(N|x |(0)) ≤ u(x) ≤ cn
1u(N|x |(0)).

Since ρ(x) ≤ |x | ≤ ρ(x)/b, we obtain, for any x ∈ BR0/2(0) ∩ �,

1

c8 |x |ρ(x)u(N|x |(0)) ≤ u(x) ≤ c8

|x |ρ(x)u(N|x |(0)). (2.30)

where c8 depends on p, N , C0 and R0. By Harnack inequality, we can replace
u(N|x |(0)) by u(Ns(0)) for any |x | /2 ≤ s ≤ 2 |x | and get

1

c1c8 |x |ρ(x)u(Ns(0)) ≤ u(x) ≤ c1c8

|x | ρ(x)u(Ns(0)). (2.31)

If y ∈ BR0/2(0) ∩ � satisfies |x | /2 ≤ |y| ≤ |x |, we apply twice (2.31) and we get
(2.30) with c9 = c2

1c2
8. ��

Another consequence of this method and of Lemma 2.2 and Lemma 2.5 is the
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Theorem 2.9 There exists a constant c′
9 depending on N, p, C0 and R0 such that

any u ∈ C1(�̄\{0}) be a positive solutions of (2.1) vanishing on B2R0 ∩(∂�\{0})
verifies

u(x) ≤ c′
9u(Nr (0)) (2.32)

for every 0 < r ≤ R0/2 and any x ∈ � ∩ B2r (0) \ Br/2(0).

Remark Since Lemma 2.2 and Lemma 2.5 are valid in Lipschitz continuous
domains and the construction of connected chain of balls too by Lemma 2.1, the
above inequality remains valid if � is Lipschitz continuous.

The next result is known as the boundary Harnack inequality.

Theorem 2.10 Let Q ∈ ∂�, 0 < r ≤ min{R0/2, |Q| /2}, and u1 and u2 be two
nonnegative solutions of (2.1) in B2r (Q)∩� which vanish on B2r (Q)∩ ∂�. Then
there exists c10 > 0 depending respectively on N, p and C0 such that

1

c10

u1(x)

u1(y)
≤ u2(x)

u2(y)
≤ c10

u1(x)

u1(y)
(2.33)

for any x, y ∈ Br (Q) ∩ �.

Proof If x ∈ Br (Q) ∩ � satisfies ρ(x) ≤ br/2, we denote by Px = P the unique
projection of x on ∂� and put t = ρ(x). By (2.16),

t

c6r
≤ ui (x)

ui (Nr/2(Q))
≤ c6t

r
(2.34)

1

c2
6

u1(x)

u1(Nr/2(Q))
≤ u2(x)

u2(Nr/2(Q))
≤ c2

6
u1(x)

u1(Nr/2(Q))
(2.35)

from which (2.33) is derived with a first constant c10 = c4
6. Next, if x ∈ Br (Q)∩�

satisfies ρ(x) > br/2, we denote β = 2 + E(− ln b/ ln 2), thus ρ(x) > r/2β . By
2.3

1

cβ

2

≤ ui (x)

ui (Nr/2(Q))
≤ cβ

2 , (2.36)

for i = 1, 2. Therefore (2.35) holds with c2
6 replaced by cβ

2 . Finally (2.33) is

verified with c10 = max{c4
6, c2β

2 }. ��
The next result is another form of the boundary Harnack inequality

Theorem 2.11 Let ui ∈ C1(�̄ \ {0}) (i = 1, 2) be two nonnegative solutions
of (2.1) vanishing on B2R0 ∩ (∂� \ {0}). Then there exists c11 > 0 depending
respectively on N, p and C0 such that for any r ≤ R0

sup

(
u1(x)

u2(x)
: x ∈ � ∩ (Br (0) \ Br/2(0)

)

≤ c11 inf

(
u1(x)

u2(x)
: x ∈ � ∩ (Br (0) \ Br/2(0)

)
. (2.37)
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Proof Applying twice 2.8, we get

1

c2
9

u1(x)

u1(y)
≤ u2(x)

u2(y)
≤ c2

9
u1(x)

u1(y)
, (2.38)

for any x and y such that |x | /2 ≤ |y| ≤ 2 |x |. Equivalently

1

c2
9

u1(x)

u2(x)
≤ u1(y)

u2(y)
≤ c2

9
u1(x)

u2(x)
, (2.39)

which the claim with c11 = c2
9. ��

3 The set of singular solutions

We still assume that � is a bounded domain with a C2 boundary containing the
singular point 0. We introduce the following assumption on the function d .

Definition 3.1 A measurable function d satisfying (2.2) with a = 0 ∈ ∂� is
said to satisfy the local comparison principle in � if, for any ε > 0 and any
ui ∈ C1(�̄ε) (i = 1, 2) nonnegative solutions of (2.1) in �ε = � \ B̄e(0) which
vanish on ∂∗�ε = ∂� \ Bε(0), u1(x) ≥ u2(x) on � ∩ ∂ Bε(0) implies u1 ≥ u2 in
�̄ε .

Clearly, if d is nonpositive it satisfies the local comparison principle. However
there are many other cases, depending either on the value of C0 or the rate of
blow-up of d near 0 which insure this principle.

Theorem 3.2 Assume d satisfies the local comparison principle and there exists
a nonnegative nonzero solution u to (2.1) in � which vanishes on ∂� \ {0}. If v
is any other nonnegative solution of (2.1) in � vanishing on ∂� \ {0} there exists
k ≥ 0 such that v ≤ ku.

Proof Since any nontrivial nonnegative solution is positive by Harnack inequali-
ties we can assume that both u and v are positive in �. We denote by H the set of
h > 0 such that v < hu in � and we assume that H is empty otherwhile the results
is proved. Then for any n ∈ N∗ there exists xn ∈ � such that v(xn) ≥ nu(xn).
We can assume that xn → ξ for some ξ ∈ �̄. Clearly ξ ∈ � is impossible. Let
us assume first that ξ ∈ ∂� \ {0} and denote by ξn the projection of xn onto ∂�.
Thus

v(xn) − v(ξn)

ρ(xn)
≥ n

u(xn) − u(ξn)

ρ(xn)
.

Because u and v are C1 in �̄ \ {0},

lim
n→∞

v(xn) − v(ξn)

ρ(xn)
= ∂v

∂νξ

(ξ) and lim
n→∞

u(xn) − u(ξn)

ρ(xn)
= ∂u

∂νξ

(ξ).

Since Hopf boundary lemma is valid (see [15], and [11] for a thoroughful treat-
ment of strong maximum principle), the two above normal derivative at ξ are
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negative, which leads to a contradiction. Thus we are left with the case xn → 0.
Set rn = |xn|. By Theorem 2.11

inf

{
v(x)

u(x)
: |x | = rn

}
≥ c−1

11
v(xn)

u(xn)
≥ c−1

11 n

By the local comparison principle assumption, v ≥ nc−1
11 u in �rn . This again leads

to a contradiction. ��
The next statement is useful to characterize unbounded solutions

Proposition 3.3 Assume u is a nonnegative solution of (2.1) vanishing on ∂�\{0},
unbounded and without extremal points near 0. Then

lim
x→0

|x | u(x)

ρ(x)
= ∞. (3.1)

Proof Assume that (3.1) is not true. Then there exist a sequence {sn} converging
to 0 and a constant M > 0 such that

sup

{ |x | u(x)

ρ(x)
: |x | = sn

}
≤ M.

Therefore sup {u(x) : |x | = sn} ≤ M . Because u has no extremal points near 0,
say in Bs0(0) for some s0 > 0, the maximum of u in � ∩ (Bs0(0) \ Bsn (0)) is
achieved either on |x | = s0 or on |x | = sn . Therefore

max{u(x) : x ∈ � ∩ (Bs0(0) \ Bsn (0))}
≤ max{M, max{u(x) : x ∈ � ∩ ∂ Bs0(0)}t} = M.

Since this is valid for any n, it implies that u is bounded in �, contradiction. ��
Such a solution is called a singular solution. The next result, which extends a

previous result in [2], made more precise the statement of Theorem 3.2.

Theorem 3.4 Assume d satisfies the local comparison principle and there exists
a positive singular solution u to (2.1) in � vanishing on ∂� \ {0}. Assume also
either 1 < p ≤ 2 and d ≥ 0, or p > 2, u admits no critical point in � and

lim inf
x→0

|x | |Du(x)|
u(x)

> 0. (3.2)

If v is any other positive solution of (2.1) in � vanishing on ∂� \ {0} there exists
k ≥ 0 such that v = ku.

Proof Let us assume that v is not zero. By Theorem 3.2 there exists a minimal
k > 0 such that v ≤ ku. As in the proof of Theorem 3.2 the following holds:

(i) either the graphs of v and ku are tangent at some ξ ∈ �. If we set w = ku − v,
then w(ξ) = 0, and −Lw − Dw = 0 (3.3)

where L is a linear elliptic operator and D = d(x)(k p−1u p−1 − v p−1)/w. Since
ku(ξ) = v(ξ) > 0, D is locally bounded near ξ . If p > 2 and u admits no critical
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point in �, L is uniformly elliptic ([5, 12]) for details in a similar situation). Thus
the strong maximum principles holds and w is locally zero. Since � is connected
w ≡ 0 in �. If 1 < p ≤ 2, the strong maximum principle holds to and we have
the same conclusion.

(ii) either the graphs of v and ku are not tangent inside �, but tangent on ∂�\ {0}.
Since the normal derivatives of ku and v at ξ coincide, L is uniformly elliptic. If
p ≥ 2 the coefficient D is locally bounded. If 1 < p ≤ 2 this is not the case but
D remains nonnegative. In both case Hopf maximum principle applies and yields
to ∂w/∂νξ (ξ) < 0. This is again a contradiction.

(iii) or v < ku in �, ∂v/∂ν > k∂u/∂ν on ∂� \ {0} and there exists a sequence
{xn} ⊂ � converging to 0 such that

lim
n→∞

v(xn)

u(xn)
= k.

Furthermore we can assume that

v(xn)

u(xn)
= sup

{
v(x)

u(x)
: |x | = |xn| =: rn

}

Put an = max{u(x) : |x | = rn}. By Theorem 2.9 there exists c′
9 > 0 depending

on N , p, C0 and R0 such that

u(Nrn (0)) ≤ an ≤ c′
9u(Nrn (0)), (3.4)

which implies
max{u(x) : rn/2 ≤ |x | ≤ 2rn} ≤ c′

9an. (3.5)

We set un(x) = u(rn x)/an , vn(x) = v(rn x)/an and dn(x) = r p
n d(rnx). Then both

un and vn are solutions of

−div(|D f |p−2 D f ) − dn f p−1 = 0

in �n = �/rn and vanish on ∂�n \{0}. By (3.5), un and vn are uniformly bounded
in �̃n = �n ∩(B2(0)\ B̄1/2(0)). Since ∂�n ∩(B2(0)\ B̄1/2(0)) is uniformly C2 we
deduce by the degenerate elliptic equations theory [9] that, up to subsequences, un
and vn converge in the C1

loc(�̄n ∩ (B2(0) \ B̄1/2(0)))-topology to functions U and
V which satisfy

−div(|D f |p−2 D f ) − d∞ f p−1 = 0

in H ∩ (B2(0)\ B̄1/2(0))), where H is the half space {η ∈ R
N : η.ν0 < 0} and d∞

is some weak limit of dn in the weak-star topology of L∞. Moreover, if p > 2,
(3.2), jointly with (3.4) and (3.5), implies that

|Dun(x)| = rn Du(rn x)

an
≥ γ (3.6)

for 2/5 ≤ |x | ≤ 8/5, where γ > 0. We put

�n = inf

{
v(x)

u(x)
: |x | = |xn| =: rn

}
≤ k
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and ξn = xn/rn . Up to another choice of subsequence, we can also assume that
�n → � and ξn → ξ with ξ = 1. Furthermore V ≤ kU , V (ξ) = kU (ξ) and, if
ξ ∈ ∂ H ∩ (B2(0) \ B̄1/2(0))),

∂V

∂ν0
(ξ) = k

∂U

∂ν0
(ξ) < 0.

In this case, and more generally if the coincidence set � of V and kU has a
nonempty intersection with ∂ H ∩ (B2(0) \ B̄1/2(0))), Hopf boundary lemma ap-
plies and implies that V = kV in the whole domain. If this is not the case we
use (3.6) to conclude again by the strong maximum principle that V = kU in
H ∩ (B2(0) \ B̄1/2(0))). Therefore � = k and for any ε > 0 there exists nε ∈ N

such that n ≥ nε implies

(k − ε)u(x) ≤ v(x) ≤ ku(x) ∀x ∈ � ∩ ∂ Brn (0).

By the local comparison principle the same estimate holds in �rn . Since this is
valid for any n and any ε, we conclude that v = ku. ��

4 Existence of singular solutions

4.1 Separable solutions

The existence of N-dimensional regular separable p-harmonic functions associ-
ated to cones is due to Tolksdorff [15]. Extension to singular function is proved
in [19]. These solutions are obtained as follows: Let (r, σ ) ∈ R+ × SN−1 be the
spherical coordinates in R

N and S ⊂ SN−1 a smooth spherical domain. Then
there exists two couples (γS, ψS) and (βS, φS), where γS and βS are positive real
numbers and ψS and φS belong to C2(S̄) and vanish on ∂S, such that

US = rγS ψS and VS = r−βS φS, (4.1)

are p-harmonic functions in the cone CS = {(r, σ ) : r > 0, σ ∈ S}. These couples
are unique up to homothety over ψS and φS. Furthermore the following equation
holds

{−div
(
(a2η2 + |∇η|2)(p−2)/2∇η

) = λ(a)(a2η2 + |∇η|2)(p−2)/2η in S

η = 0 on ∂S.
(4.2)

where λ(a) = a(a(p − 1) + p − N ) if (a, η) = (βS, φS), and
λ(a) = a(a(p − 1) + N − p) if (a, η) = (γS, ψS).

If p �= 2 and N �= 2, γS and βS are unknown except if S = SN−1+ = SN−1 ∩
{x = (x ′, xN ) : xN > 0 ∈ R

N }, in which case γS = 1 and ψS = xN . If N = 2,
equation (4.2) is completely integrable and the values of the γS and βS are known
([8, 7]). When p �= 2, the existence of solutions to (4.2) is not easy since this
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is not a variational problem on S. Tolksdorff’s method ([15]) is based upon a N -
dimensional shooting argument: he constructs the solution v of

{−div
(|Dv|p−2 Dv

) = 0 in C1
S = CS ∩ {x : |x | ≥ 1}

v = (2 − |x |)+ on ∂C1
S .

(4.3)

Then he proves, thanks to an equivalence principle, that the function v stabilizes
at infinity under the asymptotic form v(x) ≈ |x |−β φ(x/ |x |), with β > 0, which
gives (4.2) and the function VS . The domain S characterizes the exponent β. The
same argument applies if (4.3) is replaced by

⎧⎨
⎩

−div
(|Dv|p−2 Dv

) + cu p−1

|x |p = 0 in C1
S = CS ∩ {x : |x | ≥ 1}

v = (2 − |x |)+ on ∂C1
S .

(4.4)

with c > 0. This gives rise to a solution of (4.4) in CS under the form VS,c =
r−βc,S η where βc,S > 0 and

⎧⎨
⎩

−div
(
(β2

c,Sη
2 + |∇η|2)(p−2)/2∇η

)
+cηp−1 = λ(βc,S)(β

2
c,Sη

2 + |∇η|2)(p−2)/2η in S
η = 0 on ∂S.

(4.5)

With these considerations we can construct singular solutions of (2.1) under a
restrictive geometry assumption on �, by taking S = SN−1+ , the upper half unit
sphere.

Theorem 4.1 Assume d(x) = −c |x |−p with c ≥ 0 and � is a bounded domain
with a C2 boundary containing 0. Assume also ∂� is flat in a neighborhood of
0. Then there exists a positive solution of (2.1) which vanishes on ∂� \ {0} and
satisfies

lim
x → 0
x/ |x | → σ

|x |βc,SN−1+ u(x) = η(σ ) (4.6)

uniformly for σ ∈ SN−1+ , where η is a positive solution of (4.5).

Proof We denote by � := ∂ H the hyperplane {x : x .ν0 = 0}. Since � is flat in
a neighborhood of 0, there exists γ > 0 such that Dγ (0) = Bγ (0) ∩ � ⊂ ∂�.
Let K = max{Vc,SN−1+

(x) : x ∈ ∂� \ Dγ (0)} and k = min{Vc,SN−1+
(x) : x ∈

∂� \ Dγ (0)}. Since Vc,SN−1+
: x 
→ |x |−β

c,SN−1+ η(x/ |x |) is a singular solution of

−div(|Dv|p−2 Dv) + c

|x |p |v|p−2 v = 0 (4.7)

which vanishes on �∩∂�\{0} and is positive in H , K > 0 and k ≤ 0. Furthermore
Vc,SN−1+

− K (resp. Vc,SN−1+
− k) is a subsolution (resp. a supersolution) of (2.1)
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which is nonpositive (resp. nonnegative) on ∂� \ {0}. For any ε > 0 let uε be the
solution of

⎧⎪⎪⎨
⎪⎪⎩

−div(|Duε |p−2 Duε) + c

|x |p |uε |p−2 uε = 0 in � \ Bε(0)

uε = 0 on ∂� ∩ Bc
ε (0)

uε = Vc,SN−1+
on � ∩ ∂ Bε(0).

(4.8)

Then (Vc,SN−1+
− K )+ ≤ uε ≤ Vc,SN−1+

− k. Since uε is locally uniformly bounded

in �̄ \ {0}, it follows, by the classical regularity theory for degenerate equations
that it is relatively compact in the C1

loc(�̄ \ {0})-topology. Thus, up to some sub-
sequence, uε converges to some u and u is a solution of (2.1) which vanishes on
∂� \ {0} and satisfies (4.6). ��
Remark If N = p the set of p-harmonic functions is invariant under the Möebius
group, and in particular under the transformation x 
→ I(x) = x/ |x |2 which
preserves CS . In such a case βSN−1+

= 1. By using the transformation I it is

possible to prove (see [2]) that there exist positive N -harmonic functions in
any bounded domain � having a singularity at a point a of the boundary and
vanishing on ∂� \ {a}.
Remark When p = 2 it is possible to prove the existence of a singular solution to

{−�u + d(x)u = 0 in �
u = 0 on ∂� \ {a} (4.9)

where a ∈ ∂�, for any C2 domain � and any d locally bounded in �̄ \ {a} such
that

−∞ < lim inf
x→a

|x − a|2 d(x) ≤ lim sup
x→a

|x − a|2 d(x) < N 2/4.

We conjecture that such a result holds for (2.1) and p �= 2 although the precise
upper limit as x → a of |x − a|p d(x). We believe that at least if N ≥ p and
lim supx→a |x − a|2 d(x) ≤ ((N − p)/p)p, (the Hardy constant for W 1,p in R

N ),
such a singular solution do exist.
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