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Abstract We establish the existence of infinitely many weak solutions for the
the one-dimensional version of the well-known and widely used Perona-Malik
anisotropic diffusion equation model in image processing. We establish the ex-
istence result under the homogeneous Neumann condition with smooth non-
constant initial values. Our method is to convert the problem into a partial dif-
ferential inclusion problem.

Keywords Perona-Malik model · One-dimensional · Infinitely many solutions ·
Differential inclusion · Relaxation property

1 Introduction

In this paper we establish the existence of infinitely many weak solutions for the
one-dimensional Perona-Malik anisotropic diffusion equation under the homoge-
neous Neumann boundary condition:

⎧⎨
⎩

ut = σ(ux )x , (t, x) ∈ (0, T ) × (0, l) := QT ,

u(0, x) = u0(x), 0 ≤ x ≤ l,

ux (t, 0) = ux (t, l) = 0, 0 ≤ t ≤ T,

(1.1)

where σ(s) = s/(1 + s2).
This work can be viewed as an unexpected application of the variational tech-

niques originated by Ball and James [6, 7] for the study of material microstructure
to forward-backward diffusion equations. The main idea is to rephrase (1.1) into a
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Fig. 1 1-d Peronal-Malik model σ(s) = s/(1 + s2) for k = 1 with scaling

first order partial differential inclusion problem and apply the variational methods
for such problems developed in the last decade [9, 10, 18, 23–27].

The Perona-Malik anisotropic diffusion equation [28] was introduced in 1990
as an edge enhancement model in image processing. The model has a great im-
pact in the study of image enhancement and edge detection by using evolutionary
partial differential equations. It has motivated many new models and methods (see
e.g. [3, 8, 29, 32] and references therein).

The original Perona-Malik equation is a two dimensional forward-backward
diffusion equation in the form

ut (t, x) = div(ρ(|Du(t, x)|)Du(t, x)), in (0, T ) × �

under the homogeneous Neumann boundary condition ∂u
∂ν

= 0 on ∂�, where
� ⊂ R

2 is a square. Perona and Malik proposed two models for ρ(s), that is

either ρ(s) = 1

1 + ( s
k

)2
, or ρ(s) = exp

(
−

( s

k

)2
)

, (k > 0).

In both cases, the Perona-Malik equations are diffusion equations of non-coercive
and of forward-backward type. Let k = 1 for simplicity and let σ(s) = s/(1+s2),
we see that σ(s) reaches its maximum at s = 1.

The main mathematical results on Perona-Malik model is mostly for the one-
dimensional version (1.1). So far, there were no existence results when the initial
datum u0 has large derivative |(u0)x |. In [19] it was proved that for small |(u0)x |,
(1.1) has a global smooth solution, as one only needs to use the increasing part of
σ(·) and the maximum principle. Also in [19], it was reported that an attempt to
use the vanishing viscosity argument did not seem to produce a solution. It was
shown in [17] that for large initial data, there are no C1 solutions. In [5], a one-
dimensional steady-state model of Perona-Malik equation was studied by using
regularization and �-convergence, showing the formation of staircase function as
a possible limit. A connection between Perona-Malik model and the Mumford-
Shah functional was established via �-convergence in [22]. In a famous work on
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Fig. 2 Illustration of a ‘one-dimensional image’

evolutionary partial differential equation models for image processing [4], it was
suggested that the solutions of Perona-Malik model might not be stable.

The one-dimensional Perona-Malik model (1.1) can be viewed as a reduced
two-dimensional problem when the initial value depends only on one variable
(see Fig. 2 for an illustration).

A one-dimensional equation deduced from Perona-Malik model is also used in
the continuum modelling for movements of biological organisms by Horstmann,
Painter and Othmer [16], where the equation is

vt = σ(v)xx .

Obviously, if u is a weak solution of the Perona-Malik equation (1.1), v = ux is
a solution of the biological model above. For large initial data, numerical compu-
tations in [16] indicate that the approximate solutions may oscillate very fast in
certain regions.

There are many numerical schemes [8, 12, 16, 29, 32] to simulate the solution.
The schemes intuitively work well except that the staircase phenomenon may oc-
cur [8, 29, 32]. However, there is no proof that any numerical schemes devised so
far converge to a solution of the original Peronal-Malik equation except when the
initial value has small gradient.

As for the existence problem of general coercive forward-backward diffusion
equations, it was shown in the pioneering work of K. Höllig [15] that for a special
piecewise affine flux function σ(·) as illustrated in Fig. 3, infinitely many weak
solutions for (1.1) can be constructed.

The construction of solutions by Höllig depends heavily on the fact that σ(·)
is piecewise affine and satisfies the coercivity condition σ(s)s ≥ c|s|2 for some
constant c > 0. We observe that neither requirements hold for the one-dimensional
Perona-Malik model σ(s) = s/(1 + s2).

In this paper, we rephrase the one dimensional Perona-Malik model (1.1) as a
partial differential inclusion problem and establish the existence of infinitely many
weak solutions in W 1,∞(QT ) for smooth (say C3,1) initial values u0 satisfying
the boundary condition (u0)x (0) = (u0)x (l) = 0, whose derivative (u0)x is not
identically zero. In other words, u0 is not identically a constant.

As a by product, our main result also implies that the following one-
dimensional model for movements of biological organisms [16] has infinitely
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Fig. 3 Höllig’s σ(s) in Eq. (1.1)

many weak solutions in L∞(QT ) if the initial value v0 satisfies v0(0) = v0(l) = 0
and is not identically zero.⎧⎨

⎩
vt = σ(v)xx , in QT ,

v(0, x) = v0(x), 0 ≤ x ≤ l,

v(t, 0) = v(t, l) = 0, 0 ≤ t ≤ T,

(1.2)

where σ(s) = s/(1 + s2). It is clear that a W 1,∞ solution for (1.1) gives rise to an
L∞ solution for (1.2) if we let v = ux .

When s∗ := max[0, l] |(u0)x (x)| < 1, we denote by uK (t, x) the smooth solu-
tion of (1.1) obtained in [19]. This solution was obtained by modifying σ(s) for
|s| ≥ s∗ by straight lines so that the resulting flux function is strictly increasing
and agrees with σ(s) when |s| ≤ s∗. As the maximum principle applies to (uK )x ,
we have |(uK )x (t, x)| ≤ s∗.

The following are our main results.

Theorem 1.1 Suppose σ(s) = s/(1 + s2) for s ∈ R. Let u0 ∈ C3,α([0, l]) (0 <
α ≤ 1), with

(u0)x (0) = (u0)x (l) = 0, and max
[0, l]

|(u0)x (x)| 	= 0.

Then the Neumann problem⎧⎨
⎩

ut − σ(ux )x = 0, (t, x) ∈ QT ,

u(0, x) = u0(x), x ∈ [0, l],
ux (t, 0) = ux (t, l) = 0, 0 ≤ t ≤ T

(1.3)

has infinitely many weak solutions u ∈ W 1,∞(QT ) satisfying that

(a) for every ψ ∈ C1
0(QT ),∫

QT

[utψ + σ(ux )ψx ] dx dt = 0; (1.4)
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(b) for some δ > 0,

u ∈ C1,2((0, T ) × {(0, δ) ∪ (l − δ, l)}), ut − σ(ux )x = 0,

(t, x) ∈ (0, T ) × {(0, δ) ∪ (l − δ, l)}; (1.5)

(c) the initial condition holds:

u(0, x) = u0(x), x ∈ [0, l]; (1.6)

(d) and the boundary condition is satisfied:

ux (t, 0) = ux (t, l) = 0, 0 ≤ t ≤ T . (1.7)

In case max[0, l] |(u0)x (x)| < 1, the solutions u above are different from the
smooth solution uK obtained in [19] in the sense that ux (t, x) 	= (uK )x (t, x) on a
set of positive measure in QT .

Items (a)–(d) in Theorem 1.1 simply say that our solutions are classical so-
lutions of the original problem (1.3) near the boundary, satisfying the Neumann
boundary condition in the classical sense.

Remark 1.1 I will not speculate the importance of Theorem 1.1 in anisotropic dif-
fusion modelling of image enhancement. However, Theorem 1.1 is the first non-
trivial existence result for the Perona-Malik equation. It simply says that for any
non-constant initial value, the one-dimensional Perona-Malik model will generate
infinitely many non-smooth weak solutions no matter whether the derivative of
the initial value is large or small. This is in contrast with the result in [19] that
for initial value with small derivative, the smooth solution exists and is unique.
Theorem 1.1 gives a new multiplicity result even under the assumptions of [19].

As for the initial condition and the solution, I have claimed in Theorem 1.1 that
for smooth initial values, there are solutions u in W 1,∞(QT ) hence are continuous.
Some people might argue that both initial value u0 and the solutions must be
full of jump discontinuities. My answer to that is that before this work the only
known existence result Perona-Malik model (1.1) is for initial values with small
derivative [19]. Also it is necessary to show that there are solutions in the first
place under reasonable mathematical assumptions before an attempt to generalize
the existence theory to ‘bad’ initial data and to ‘bad’ solutions.

Similarly, for the homogeneous Dirichlet problem (1.2), we have

Corollary 1.2 Suppose σ(s) = s/(1 + s2), s ∈ R. Let v0 ∈ C2,α([0, l]) with
v0(0) = v0(l) = 0, and max[0, l] |v0(x)| 	= 0. Then the Dirichlet problem⎧⎨

⎩
vt + σ(v)xx = 0, (t, x) ∈ QT ,

v(0, x) = v0(x), x ∈ [0, l],
v(t, 0) = v(t, l) = 0, t ≥ 0,

(1.8)

has infinitely many solutions in L∞(QT ) in the sense that∫
QT

[vψt − σ(v)ψxx ] dx dt = 0,
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for every ψ ∈ C1,2
0 (QT ) (see notation below). Furthermore, every weak solution

v is smooth (C2) near the boundary {0, 1} × [0, T ), satisfying Eq. (1.8) and the
corresponding boundary conditions.

Our approach to problem (1.3) (or (1.4)–(1.7)) is based on a completely
different idea from that of [15]. Instead, we rephrase the weak form (1.4) of
equation (1.3) into a partial differential inclusion problem as we did earlier in
[31] for Young measure solutions. We write D = (∂t , ∂x ) as the gradient in
R

2 = {(t, x), t, x ∈ R}. Our question can be stated alternatively as:
Find � ∈ W 1,∞(QT , R

2) with �(t, x) = (ψ(t, x), u(t, x)) such that

D�(t, x) ∈ K (u(t, x)), a.e. (t, x) ∈ QT , (1.9)

with K (u(t, x)) an appropriate subset of

�(u(t, x)) :=
{(

σ(X) u(t, x)

Y X

)
∈ M2×2, X, Y ∈ R

}
.

We can easily see this. Suppose � = (ψ, u) is a W 1,∞ solution of the differ-
ential inclusion problem (1.9) above, we obtain ψt = σ(ux ), ψx = u. Since
curl Dψ = 0 in the sense of distributions, we have σ(ux )x − ut = 0 in the sense
of distributions. Thus u is a W 1,∞ weak solution for (1.3).

Let M N×n be the space of N × n real matrices. The study of systems of ho-
mogeneous partial differential inclusion problem under affine Dirichlet boundary
condition

D f (x) ∈ K ⊂ M N×n a.e. x ∈ � ⊂ R
n u(x) = Ax x ∈ ∂�

and its inhomogeneous counterpart D f (x) ∈ K (x, f (x)) has been a very ac-
tive area of research [9–11, 18, 23–27, 30]. The original problem was motivated
from the variational approach to material microstructure using nonlinear elastic-
ity models [6, 7]. A particular problem that is directly connected to homogeneous
partial differential inclusions is the so-called attainment problem for the double-
well model in two dimension [23]. For classical ordinary differential inclusions
(n = 1), we refer to [2]. For systems of partial differential inclusions (n, N > 1),
there are two main approaches. One approach [23–27, 30] uses the idea of convex
integrals introduced by Gromov [14]. The other applies the Baire category theory
[9–11]. B. Kirchheim [18] attempted to unify the two approaches. As shown in
[18] (also see [27] for the in-approximation approaches), both approaches require
the so-called Relaxation Property or Reduction Property. We use the homogeneous
case as an example to explain what is required.

Let K , E ⊂ M N×n be two bounded subsets with K compact. We say that
E has the relaxation property with respect to K (or E can be reduced to K ) if
for every bounded open set � ⊂ R

n , any affine function u A(x) = Ax + b with
A ∈ E , and any ε > 0, there is a piecewise affine function uε ∈ W 1,∞(�, R

N )
(or piecewise C1 function in the inhomogeneous case [9–11]) such that uε = u A
on ∂�, Duε ∈ K ∪ E a.e. in � and

∫
�

dist(Duε(x), K )dx < ε.

Note that in the above definition, piecewise affine (piecewise C1 respectively)
in �̄ means that the function uε is allowed to be affine (C1) on countably many



Existence of infinitely many solutions for the one-dimensional Perona-Malik model 177

‘pieces’ with complement of their union in �̄ to be of measure zero. For the inho-
mogeneous problems, so far for the issue of general existence, it is assumed that
the corresponding set E above must be either open in the Baire-category approach
[10, 11], or in the convex-integral approach, certain continuity with respect to the
parameters is required for E [27] and the piecewise affine boundary values are
assumed.

In our case, we cannot apply any of the general theorems [10, 11, 18, 27]
directly. However, we may view the problem as a differential inclusion problem
with constraints which is somehow related to that in [25] where the constraint is
on the Jacobian: det D f (x) = 1. If we let V ⊂ M2×2 be the subspace of lower
triangular matrices and PV the orthogonal projection to V , then, we may rewrite
our differential inclusion problem as

PV (D�(t, x)) ∈ K (0), a.e. in QT subject to ψx = u in QT .

We will take the in-approximation like approach [23–27] streamlined by B.
Kirchheim [18]. In order to apply the method, we need to establish the relax-
ation property (Lemma 3.2 below). In Sect. 2, we give some preliminary results
which are needed for establishing Theorem 1.1. We prove Theorem 1.1 in Sect. 3
accepting the technical result Lemma 3.1 and Lemma 3.2 first. We then establish
Lemma 3.2 - the relaxation property, followed by some comments on the long time
behaviour of the solutions. The last section is devoted to the proof of Lemma 3.1.

2 Notation and preliminaries

For a measurable set � ⊂ R
n , we denote by |�| its Lebesgue measure. The norm

|X | of a matrix X ∈ M N×n - the space of N × n matrices is identified with its
standard Euclidean norm in R

Nn . Let QT = (0, T ) × (0, l) with T > 0, l > 0.
We denote by Ck+α/2,2k+α(Q̄T ) the parabolic Hölder space on Q̄T - the closure
of QT , where k ≥ 0 is an integer and 0 ≤ α < 1 [13, 20, 21]. We write, for a
function u defined on QT , the partial derivatives as ut , uxx etc. However, for an
interval or a finite union of intervals I ⊂ R, we write Ck,1(I ) as Ck functions on
I whose k-th order derivatives are Lipschitz functions on I . The Sobolev space
W 1,∞(QT ) is defined as usual [1].

Let K ⊂ R
n be bounded and let dist(X, K ) be the Euclidean distance function

from a point X ∈ R
n to K , given by dist(X, K ) = min{|X − Q|, Q ∈ K }.

The following one-dimensional version of the theorem concerning the exis-
tence, uniqueness and regularity result for one-dimensional parabolic equations is
well known [13, 20, 21].

Lemma 2.1 Suppose σ ∗ ∈ C2,1(R) satisfies 0 < λ ≤ (σ ∗)′(s) ≤ � for some
constants 0 < λ < �. Let u0 ∈ C3,α[0, l], (0 < α < 1) be such that (u0)x (0) =
(u0)x (l) = 0. Then the problem

⎧⎨
⎩

ut − σ ∗(ux )x = 0, (t, x) ∈ QT ,

u(0, x) = u0(x), x ∈ [0, l],
ux (t, 0) = ux (t, l) = 0, t ≥ 0.

(2.1)
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has a unique solution u∗ ∈ C1+α/2,2+α(Q̄T ) satisfying

‖Du∗‖C0(Q̄T ) ≤ C‖(u0)x‖C0[0,l], ‖u∗‖C0(Q̄T ) ≤ CT . (2.2)

In particular, by the maximum principle,

max
(t,x)∈Q̄T

|u∗
x (t, x)| = max

0≤x≤l
|(u0)x (x)|.

The following construction of two simple piecewise affine functions is crucial
for the proof of our main result.

Given a > 0, b > 0, δ > 0, we define in the triangular domain

� = {(t, x) ∈ R
2, 0 ≤ x ≤ δ(t + 1), −1 ≤ t ≤ 0}

two piecewise affine functions.

g+(t, x) =

⎧⎪⎨
⎪⎩

bx, 0 ≤ x ≤ aδ(t + 1)

a + b
, −1 ≤ t ≤ 0,

aδ(t + 1) − ax, δ(t + 1) ≥ x ≥ aδ(t + 1)

a + b
, −1 ≤ t ≤ 0.

g−(t, x) =

⎧⎪⎨
⎪⎩

−ax, 0 ≤ x ≤ bδ(t + 1)

a + b
, −1 ≤ t ≤ 0,

bx − aδ(t + 1), δ(t + 1) ≥ x ≥ bδ(t + 1)

a + b
, −1 ≤ t ≤ 0.

We denote by �+
T and �−

T respectively the union of the finitely many line seg-
ments contained in T (0, 1, δ) on which g+ and g− are not differentiable. We ex-
tend g+ and g− respectively in the x-direction as odd functions: g±(−x, t) =
−g±(x, t) then extend the resulting function along the t-direction as even func-
tions in t respectively. Let the diamond-shaped domain thus obtain for g± as
T (0; 1, δ) representing the centre at the origin 0, the horizontal length 1 from the
centre to the right and the left vertices, and vertical length to the top and bottom
vertices. We define g± = 0 outside T (0; 1, δ). We also call the length between
the top and bottom vertices as the hight of T (0; 1, δ) and we denote it by h. We
see that h = 2δ. We parameterize the bottom part of the boundary ∂T (0, 1, δ) by
(t, xT (t), −1 ≤ t ≤ 1, where

xT (t) =
{−δ(1 + t), −1 ≤ t ≤ 0,

−δ(1 − t), 0 ≤ t ≤ 1.

We call T (0; 1, δ) the standard tile. When we need to be more precise about the
parameters, we write g = g±(−a, b, δ, t, x). Fig. 3 below shows the tile T (0; 1, δ)
and the domains on which Dg±(t, x) equal a constant. The following are some
properties of g±(t, x) whose proofs are easy as g is odd in x and the integrals of
(g+)t and (g−)t against x cancel each other.

Lemma 2.2 The piecewise affine functions g±(t, x) defined above satisfy
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(i) Along any vertical line across T (0, 1, δ), the integral of g± against x are
both zero: ∫ δ(1−|t |)

−δ(1−|t |)
g±(t, x)dx = 0, |t | ≤ 1,

and for (x, t) ∈ T (0, 1, δ) \ �±
T ,

∂

∂t

∫ x

xT (t)
g±(t, s)ds =

∫ x

xT (t)
(g±)t (t, s)ds,

due to the fact that g±(t, xT (t)) = 0 for −1 ≤ t ≤ 1.
(ii) The partial derivatives (g+)t and (g−)t satisfy∫ δ(1−|t |)

−δ(1−|t |)
(g+)t (t, x)dx = 2ab(1 − |t |)δ2

a + b
,

∫ δ(1−|t |)

−δ(|t |+1)

(g−)t (t, x)dx = −2ab(1 − |t |)δ2

a + b
,

when −1 < t < 0 and∫ δ(1−|t |)

−δ(1−|t |)
(g+)t (t, x)dx = −2ab(1 − |t |)δ2

a + b
,

∫ δ(1−|t |)

−δ(|t |+1)

(g−)t (t, x)dx = 2ab(1 − |t |)δ2

a + b
,

when 0 < t < 1.
(iii) The gradient Dg±(t, x) = ((g±)t (t, x), (g±)x (t, x)) take values

Dg+(t, x) ∈ {(−aδ, −a), (aδ, −a), (0, b)}
Dg−(t, x) ∈ {(−bδ, b), (bδ, b), (0, −a)}.

(iv) Furthermore,

|g±(t, x)| ≤ (a + b)

4
δ. (2.3)

Remark 2.3 Later we need to scale and translate the construction of the above
standard tile T (0, 1, δ) to be centred at a general point p = (t0, x0) with horizonal
width 2μ and height 2μδ. We denote such a tile by T (p, μ, μδ). Similarly by
translation and scaling we may define functions by translating and scaling g±(t, x)
on T (p, μ, δμ). In fact we may define

gT± (t, x) = g±(−a, b, μ, μδ, p, t, x) = μg±
(

t − t0
μ

,
x − x0

μ

)
.

We see that similar properties as Lemma 2.2 hold for gT± on T (p, μ, δμ). Let
(t, xT (t)) be the parameterization of the bottom part of T (p, μ, μδ) obtained
from that of T (0, 1, δ) and �±

T be the union of finitely many line segments con-
tained in T (p, μ, μδ) on which gT± (t, x) are respectively not differentiable. We
have
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(a) The diamond shaped tile T (p, μ, μδ) is centred at p with width 2μ and height
2μδ.

(b) The functions gT± is supported on T (p, μ, μδ) and along almost every vertical
sections of T (p, μ, μδ), the integrals of gT± and gT+ +gT− across T (p, μ, μδ)
against x equal to zero.

(c) DgT+ (t, x) ∈ {(−aδ,−a), (aδ, −a), (0, b)}, DgT− (t, x)) ∈ {(−bδ, b), (bδ, b),
(0,−a)} a.e. in T (p, μ, μδ) and

∣∣gT± (t, x)
∣∣ ≤ (a + b)

4
μδ.

(d) For (t, x) ∈ T (p, μ, μδ) \ �±
T ,

∂

∂t

∫ x

xT (t)
gT± (t, s)ds =

∫ x

xT (t)
(gT± )t (t, s)ds.

Remark 2.4 The advantages of the constructions of the piecewise affine functions
g±(t, x) over simpler functions with four affine pieces is that the integral across
the tile T (0, 1, δ) against x-variable is zero, so that in our later proofs, we may
localize the approximate solutions to a single tile (see the proof of Lemma 3.2)
and ‘semi-localize’ the partial derivative against t of these approximate solutions.

The following result was established by B. Kirchheim [18, Lemma 3.27].

Lemma 2.4 Let � ⊂ R
m be bounded and open. For a Lipschitz mapping f :

� → R
n and k ∈ N, let r( f, k) be the supremum of all r > 0 such that there is a

compact set K ⊂ � with |� \ K | < 2−k and

| f (x + y) − f (x) − 〈D f (x), y〉| ≤ 1

k
|y| if x ∈ K and |y| ≤ kr .

By Rademacher’s Theorem, r( f, k) > 0. Consider a sequence fk : � → R
n of

uniformly Lipschitz mappings and suppose 0 < rk < min{1/k2, r( fk, k)} for all
k. If f ∈ ∩k B∞( fk, rk), then limk→∞ D fk(x) → D f (x) for a.e. x ∈ �.

We need the following well-known covering result for a bounded open set
of R

n which is called the Vitali covering principle [27] or simply the exhaustion
argument [18].

Lemma 2.5 Let U ⊂ R
n be a bounded open set satisfying the regularity condition

|∂U | = 0 and let V ⊂ R
n be another bounded open set. Then there is a sequence

(xi , ri ) ∈ R
n × (0,∞), i = 1, 2, . . . , such that

(a) Ui = xi + riU is contained in V , where xi + riU = {xi + ri x, x ∈ U };
(b) Ui ∩ U j = ∅ if i 	= j ;
(c) |V \ ⋃

i=1 Ui | = 0.
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Fig. 4 Tile T (0; 1, δ) and values of Dg+(t, x) and Dg−(t, x) in each affine pieces

3 Proof of Theorem 1.1

In this section we establish our main result Theorem 1.1 and the crucial relax-
ation lemma (Lemma 3.2). We will leave the proof of the elementary technical
Lemma 3.1 to next section.
Proof of Theorem 1.1 As we will convert our original problem (1.3)–(1.7) to an
inhomogeneous differential inclusion problem similar to (1.9), we need to define
two subsets K (u(t, x)) and E(u(t, x)) in M2×2 and establish an relaxation prop-
erty [10] or reduction property [18]. Then we apply Lemma 2.4 to find a solution.

We define bounded subsets K (u) and E(u) ⊂ M2×2 as follows. First note that
we may identify diagonal matrices by vectors in R

2 through a simple isometry
(x, y) → diag(x, y). So we define certain sets in R

2 first, then identify them with
2 × 2 diagonal matrices. This means that for K̃ ⊂ R

2, we define

K =
{(

x 0
0 y

)
, (x, y) ∈ K̃

}
.

Given initial value u0, without loss of generality, we may assume that

max
x∈[0,l]

|(u0)x (x)| = max
x∈[0,l]

(u0)x (x) := s∗ > 0

and set m∗ = min0≤x≤l(u0)x (x) ≤ 0, then obviously, −s∗ ≤ −m∗. Let 0 < y− <

y+ < σ(s∗) and let < x (1)
− < x (2)

− < s∗ < x+(2) < x (1)
+ be such

σ
(
x (1)
±

) = y−, σ
(
x (2)
±

) = y+.
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Fig. 5 K̃ 0, Ũ 0 and the strictly increasing function σ ∗(s) in Lemma 3.3

Now for some ε0 > 0 sufficiently small, we define (see Fig. 5 above) K̃ 0 =
K̃ 0

0 ∪ K̃ 0− ∪ K̃ 0+, with

K̃ 0
0 = {

(σ (s), s), |s| ≤ x (2)
− + ε0

}
,

K̃ 0+ = {
(σ (s), s), x (2)

+ ≤ s ≤ x (1)
+ + ε0

}
, (3.1)

K̃ 0− = {
(σ (s), s), −x (2)

+ ≥ s ≥ −x (1)
+ − ε0

}
.

Next we define Ẽ0 = Ũ− ∪ Ũ+ with

Ũ+ = {
(t, s), x (1) < s < x (2)

+ , y− < t < min{σ(s), y+}},
Ũ− = −Ũ+ = {

(t, s), −x (1) > s > −x (2)
+ , −y− > t > max{σ(s), −y+}}.

(3.2)

Note on Fig. 5. In Fig. 5 above, K̃ 0
0 is the thicker curve in the middle of the picture

while K̃ 0− and K̃ 0+ are the thicker curves on the left and right respectively. Ũ 0+ and
Ũ 0− the two shaded open domains respectively. If s∗ ≤ 1, we denote it by s∗ = s∗−.
If s∗ > 1, we denote it by s∗ = s∗− in the sketch.

Let K 0, K 0
0 , K 0+, K 0−, U−, U+ and E0 = U− ∪ U+ be the corresponding sets

of 2 × 2 diagonal matrices. We also define intervals

I (t) = {s ∈ R, (t, s) ∈ Ẽ0} := (α(t), β(t))

and for δ > 0, we set

I−δ(t) = (α(t) + δ, β(t) − δ).

It is easy to see that both α(·) and β(·) are Lipschitz functions with |α′(t)| ≤ M ,
|β ′(t)| ≤ M a.e. for some absolute constant M > 0. Let ei j ∈ M2×2 be the matrix
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with (i, j)-entry 1 and other entries zero. Now we define, for fixed u ∈ R and
m > 0

(
K 0

0

)
m(0) =

{(
s u
r t

)
, −2m ≤ r ≤ 2m, (s, t) ∈ K̃ 0

0

}
,

(K 0+)m(0) =
{(

s u
r t

)
, −2m ≤ r ≤ 2m, (s, t) ∈ K̃ 0+

}
,

(K 0−)m(0) =
{(

s u
r t

)
, −2m ≤ r ≤ 2m, (s, t) ∈ K̃ 0−

}
, (3.3)

Km(0) = (
K 0

0

)
m(0) ∪ (K 0+)m(0) ∪ (K 0−)m(0), Km(u) = Km(0) + ue12,

Em(u) =
{(

s u
r t

)
, −m ≤ r ≤ m, (s, t) ∈ U0

}
.

We see that

Km(u) = (
K 0

0

)
m(u) ∪ (K 0+)m(u) ∪ (K 0−)m(u) = Km(0) + ue12

with Km(0) ⊂ V compact and Em(u) = Em(0) + ue12 with Em(0) ⊂ V open in
V . From now on we take m = ‖u∗

t ‖C0(Q̄T ) + 1 where u∗ is given by Lemma 2.1
and restrict u to the interval [−a, a] with a = ‖u∗‖C0(Q̄T ) + 1.

Later, we need to consider two pairs of points y− < y+ and y′− < y+′, we

denote by (x (1)
+ )′, (K̃ 0)′, (K 0)′ etc. for the corresponding parameters and sets for

the pair y′− < y+′.
Now we define a strictly increasing function σ ∗ : R → R by the following

(see Fig. 5 above)

Lemma 3.1 Given x (i)
− , x (i)

+ , i = 1, 2, y−, y+ as above, there is a strictly increas-
ing function σ ∗ : R → R satisfying

(i) σ ∗(s) = σ(s) for |s| ≤ x (1)
− and

y− < σ ∗(s∗) < y+, −y− > σ ∗(−s∗) > −y+.

(ii) there exists c > 0 depending on x (i)
− , x (i)

+ , i = 1, 2, y−, y+, and σ ′(·), such
that (σ ∗)′(s) > c for s ∈ R;

(iii) σ ∈ C2,1(R).

We prove Lemma 3.1 in Sect. 4.

Proof of Theorem 1.1 (continued). By using the above σ ∗(·) and Lemma 3.1,
we see that the corresponding solution u∗ of (2.1) satisfies ‖u∗

x‖C0(Q̄T ) =
‖(u0)x‖C0[0,l]. From now on we take m = ‖(u0)x‖C0[0,l] + 1 drop the subscript
m. We restrict u to the interval [−a, a] with a = CT + 1, where CT is the bound
of the solution u∗ given by Lemma 2.1.

We observe that for each fixed u ∈ R, K (u) = K (0) + e12u with K (0) ⊂ V
compact in the subspace of lower-triangular matrices

V =
{(

s 0
r t

)
, s, r, t ∈ R

}
⊂ M2×2.
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and E(u) = E(0) + e12u with E(0) open in V . We denote by PV the orthogonal
projection from M2×2 to V .

Remark 3.2 Let X ∈ M2×2. We denote by diag(X) the 2 × 2 diagonal matrix
consists of the diagonal entries of X . Given X ∈ E(0) ∪ K (0) ⊂ V , we have

dist(X, K (0)) = min
Y∈K 0+∪K 0−, −2m≤z≤2m

(| diag(X) − Y |2 + |x21 − z|2)1/2

= min
Y∈K 0+∪K 0−

| diag(X) − Y | = dist(diag(X), K 0+ ∪ K 0−).

Now since u∗
x is uniformly continuous in Q̄T and u∗

x (t, 0) = u∗
x (t, l) = 0

(0 ≤ t ≤ T ), there is some δ > 0, such that |u∗
x (t, x)| ≤ x (1)

− /2 whenever

(t, x) ∈ Qδ
T := ([0, T ] × [0, δ]) ∪ ([0, T ] × [l − δ, l]), where x (1)

− < x (2)
− < 1 are

given by Lemma 3.1 (see Fig. 5). Let Q∗ = QT \ Qδ
T .

Since u∗ is smooth, and curl(σ ∗(u∗
x ), u∗) = 0 in QT , there is some ψ∗ ∈

C1(Q̄T ) such that (σ ∗(u∗
x ), u∗) = (ψ∗

t , ψ∗
x ) in QT . If we let �∗ = (ψ∗, u∗), we

see that

D�∗(t, x) ∈ K (u∗) ∪ E(u∗), (t, x) ∈ Q∗,
D�∗(t, x) ∈ K (u∗), (t, x) ∈ Qδ

T .

Now we try to solve the following inhomogeneous differential inclusion prob-
lem:

Find � = (ψ, u) ∈ W 1,∞(Q∗, R
2),

{
D�(t, x) ∈ K (u), (t, x) ∈ Q∗ a.e.

�|∂ Q∗ = �∗.
(3.4)

Suppose � is a solution of (3.4), then we extend � to Q̄T by �∗. Thus
� ∈ W 1 ∞(QT , R

2) remains a solution of the differential inclusion problem
D�(t, x) ∈ K (u(t, x)), (t, x) ∈ QT a.e. hence Dψ = (σ (ux ), u). This im-
plies that u is a solution of the equation ut − (σ (ux ))x = 0 in the weak sense.
As on Qδ

T , u = u∗, we see that u satisfies the homogeneous Neumann boundary
condition ux (t, 0) = ux (t, l) = 0 as well.

We will show that even in the case 0 < s∗ ≤ 1, solutions we obtained are
different from those uK obtained in [19] in the last paragraph of the proof.

We define a piecewise C1 function f on an bounded open set � ⊂ R
2 to be

such that there are at most countably many disjoint open triangular-shaped open
domains Gi ⊂ �, f ∈ C1(Ḡi ) is continuous and |�\∪∞

i=1Gi | = 0. Obviously, in
the definition, if Gi is not a triangular shaped domain, we can further divide it into
at most countably many triangular-shaped sub-domains Gk

i satisfying Gk
i ⊂ Gi ,

|Gi \ ∪∞
k=1Gk

i | = 0 and f ∈ C1(Ḡk
i ).

We denote the set of all piecewise C1 function on � as C1
pw(�).

Let

P = {
� = (ψ, u) ∈ C1

pw(Q∗, R
2),

D�(t, x) ∈ K (u) ∪ E(u), a.e. �|∂ Q∗ = �∗}.
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Clearly P 	= ∅ as �∗ = (ψ∗, u∗) ∈ P . Let P̄∞ be the closure of P under L∞
norm. Firstly, we have

Lemma 3.2 For any ε > 0,

Pε =
{
� ∈ P,

∫
Q∗

dist(D�(t, x), K (u))dtdx < ε|Q∗|
}

is dense in P under the L∞ norm.

We will establish Lemma 3.2 after the proof of Theorem 1.1. Accepting the
conclusion of Lemma 3.2 for the moment, we can prove Theorem 1.1 following
roughly the general approach of B. Kirchheim [18, Theorem 3.28].

Proof of Theorem 1.1 (continued) Suppose we are given any ball
B∞(�2k−1, r2k−1) ⊂ P̄∞ with k ≥ 1. Since the ball intersects the set P
itself, we may use Lemma 3.2 to find

�2k ∈ B∞(�2k−1, r2k−1/2) ∩ P with �2k = (ψ2k, u2k) satisfying∫
Q∗

dist(D�2k(t, x), K (u2k(t, x))dt dx <
1

2k
.

By Lemma 2.4, we take R2k = r(�2k, k). We then take our new radius as

r2k = min

{
R2k, r2k−1/3,

1

k2

}
.

Now we consider B∞(�2k, r2k) which is included in the ball we were given. Since
r2k → 0+ as k → ∞, we see that (�2k) is a Cauchy sequence in P̄∞. Let
� = limk→∞ �2k . Write � = (ψ, u). By Lemma 2.4,

lim
k→∞ D�2k(t, x) = D�(t, x), a.e.

Next we show that D�(t, x) ∈ K (u(t, x)) a.e. in Q∗. We have, by our choice
of �2k that �2k ∈ P ,∫

Q∗
dist(D�2k(t, x), K (u2k(t, x))))dt dx <

1

2k
.

We also have

dist(D�2k(t, x), K (u2k(t, x))) = dist

((
(ψ2k)t 0
0 (u2k)x

)
, K 0+ ∪ K 0−

)
= dist[((ψ2k)t , (u2k)x ), K̃ 0].

Since K̃ 0 ⊂ R
2 is compact, the distance function X → dist(X, K̃ 0) is Lipschitz,

hence continuous, we have, by passing to the limit k → ∞ that

lim
k→∞

∫
Q∗

dist(D�2k(t, x), K (u2k(t, x)))dt dx

=
∫

Q∗
dist[((ψ2k)t , (u2k)x ), K̃ 0]dt dx

=
∫

Q∗
dist[(ψt , ux ), K̃ 0]dt dx = 0.
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Since (ψ2k)x = u2k a.e., we also see that, as k → ∞, we obtain ψx = u a.e.
Consequently,

0 =
∫

Q∗
dist[(ψt , ux ), K̃ 0]dt dx =

∫
Q∗

dist(D�(t, x), K (u(t, x)))dt dx .

Thus Psi ∈ P̄∞ satisfies

D� ∈ K (u), a.e. in Q∗, (3.5)

and � is a solution of (3.4).
Clearly, if we extend the solution � = (ψ, u) of (3.4) to QT by �∗ = (ψ∗, u∗)

outside Q∗, then the extended mapping � is still Lipschitz and satisfies (3.5) a.e.
in QT . Hence the extended u is a weak solution of the Neumann problem (1.4)–
(1.7) in W 1,∞(QT ).

Now we give a geometric proof that the Neumann problem (1.4)–(1.7) has
infinitely many solutions in W 1,∞(QT ). An alternative proof is easily obtained
following the proof of Lemma 3.2 and Remark 3.4

Let 0 < y− < y+ < y′− < y′+ < σ(s∗). Let K (0) and K ′(0) be the com-
pact set K (0) defined early corresponding to the pairs (y−, y+) and (y′−, y′+)
respectively (see (3.1), (3.2), (3.3) for notation). We let K (u) = K (0) + ue12,
K ′(u) = K ′(0) + ue12 and require the corresponding ε0 and ε′

0 in the definition
of K ′(0) and K ′(0) to be sufficiently small so that

(K̃ 0+ ∪ K̃ 0−) ∩ ( ˜(K ′)0
+ ∪ ˜(K ′)0

−) = ∅, K̃ 0
0 ⊂ ˜(K ′)0

0.

Now we have two solutions �1 and �2 such that

D�1(t, x) ∈ K (u1(t, x)), (t, x) ∈ Q∗,
D�2(t, x) ∈ K ′(u2(t, x)), (t, x) ∈ (Q′)∗.

By extending �1 and �2 to be defined in QT as we did earlier we obtain two
solutions of (1.4)–(1.7). Now we show that these two solutions cannot be the same.
Otherwise, �1 = �2 := � in QT so that u1 = u2 := u. From our construction of
K (u) and K ′(u) we see that

D�(t, x) ∈ K (u(t, x)) ∩ K ′(u(t, x)), (t, x) ∈ Q∗,

hence

(σ (ux (t, x)), ux (t, x)) ∈ K̃ 0 ∩ ˜(K ′)0 = K̃ 0
0 .

This implies that

|ux (t, x)| ≤ x (2)
− + ε0, (3.6)

a.e. in Q̄T .
We consider two different cases.

Case (i) s∗ > 1.

In this case we see that (3.6) implies that

|ux (t, x)| ≤ x (2)
− + ε0 < 1 < s∗,
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a.e. in Q̄T . By Lemma 3.1, we may construct yet another strictly monotone
function (still denoted by σ ∗(·)) such that σ ∗ ∈ C2,1(R), σ(s) = σ ∗(s) if
|s| ≤ x (2)

− + ε0, (σ ∗)′(s) ≥ c0 > 0 for s ∈ R and σ ∗(s) is affine when |s| is
large.

Thus u is a weak solution of (2.1) given by Lemma 2.1, hence u ∈ C1(Q̄T ).
Now since u satisfies the initial condition u(0, x) = u0(x) so that ux (0, x) =
(u0)x (x) in (0, l). By our assumption for Case (i),

max
[0, l]

|(u0)x (x)| = max
[0, l]

(u0)x (x) = s∗ > 1,

and we may find some x0 ∈ (0, l), ux (0, x0) = (u0)x (x0) = s∗ > 1. Now we see
that for small t > 0, ux (t, x0) > 1. This contradicts to (3.6). Thus �1 	= �2.

Case (ii) s∗ ≤ 1.

In this case we see that (3.6) implies that

|ux (t, x)| ≤ x (2)
− + ε0 < s∗ ≤ 1,

a.e. in Q̄T . Again by Lemma 3.1, we may construct yet another strictly monotone
function (still denoted by σ ∗(·)) such that σ ∗ ∈ C2,1(R), σ(s) = σ ∗(s) if |s| ≤
x (2)
− + ε0, (σ ∗)′(s) ≥ c0 > 0 for s ∈ R and σ ∗(s) is affine when |s| is large. Again

u is a weak solution of (2.1) given by Lemma 2.1, satisfying the initial condition,
hence u ∈ C1(Q̄T ).

As σ ∗(x (2)
− + ε0) < σ ∗(s∗) and at the maximal point (0, x0), ux (0, x0) = s∗,

for small t > 0, we see that

σ ∗(ux (t, x0)) > σ ∗(x (2)
− + ε0

) ≥ σ ∗(ux (t, x))

for all (t, x) ∈ QT . This is a contradiction.
Now we show that in the interval [0, σ (s∗)] we can easily find infinitely many

pairs of disjoint intervals {[y−(i), y+(i)] ∪ [−y+(i), −y−(i)]}∞i=1 with y+(i) <
y−(i + 1), hence the Neumann problem (1.4)–(1.7) has infinitely many solutions
in W 1,∞(QT ).

Finally we show that in case that 0 < s∗ ≤ 1, our solutions above are different
from the solution uK obtained in [19]. For any solution u obtained above, we
always have D�(t, x) ∈ K (u(t, x)). Let y± and x (i)

± (i = 1, 2) are the points
in the definition of K (0), we see that our solution satisfies either ux (t, x)) ≤
x (2)
− + ε0 < s∗ ≤ 1 or ux (t, x)) ≥ x (2)

+ − ε0 > 1 ≥ s∗ a.e. in QT (see Fig. 5,
where our s∗ in the present case is represented by s∗−).

In [19] the monotone function σ ∗∗(·) modified from σ(·) agrees with σ(·) in
the interval [−s∗, s∗]. Let uK be the unique smooth solution obtained in [19]. By
the maximum principle, (uK )x (t, x) reaches its maximum value s∗ > 0 at some
point (0, x0), so that (uK )x (0, x0) = (u0)x (x0) = s∗, by continuity, we see that
for small τ > 0, on Qτ := (0, δ] × [x0 − δ, x0 + δ] ⊂ QT , we may have

x (2)
− + ε0 < (uK )x (t, x)) < x (2)

+ − ε0.

Thus (uK )x (t, x) 	= ux (t, x) for (t, x) ∈ Qτ . Geometrically, in Fig. 5, we have
that the value (σ (ux ), ux )) of our solution u stays in the set K̃ 0 which consists of
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three pieces of thick curves. The value of ux is given by the projection of the thick
curves to the s-axis. The image of this projection has a positive distance to our s∗
which is s∗− in Fig. 5. As s∗ = s∗− is reached by (uK )x at some initial point (0, x0),
by continuity of (uK )x , we see that in a neighbourhood of (0, x0), the values of
(uK )x is close to s∗− hence in this small neighbourhood, (uK )x 	= ux . The last
claim in Theorem 1.1 is proved. �

Proof of Lemma 3.2 Before we proceed, let us notice that for any � ∈ P , we have,
as � = (ψ, u) satisfies ψx = u a.e. in Q∗,

dist(D�(t, x), K (u(t, x))) = dist(PV (D�(t, x)), K (0)).

Also if we let ∂|V E(u(t, x)) = u(t, x)e12 + ∂|V E(0), where ∂|V E(0) is the
boundary of E(0) in V , we have

dist[D�(t, x), K (u(t, x)) ∪ ∂|V E(u(t, x))]
= dist[PV (D�(t, x)), K (0) ∪ ∂V E(0)].

These simple observations help us to simplify K (u) and E(u). So under the
constraint ψx = u, we only need to consider a ‘homogeneous’ problem
PV (D�(t, x)) ∈ K (0). However, the difficulty remains that in any modification
of �, the constraint ψx = u must be kept.

Given � ∈ P and let 0 < η < 1, we need to find some �η ∈ Pε such that
‖�η − �‖∞ < η.

As D�(t, x) ∈ K (u(t, x)) ∪ E(u(t, x)) a.e. in Q∗, for each open set Gi on
which � ∈ C1(Ḡi ) we may find δi > 0 such that the closed set

Ki = {(t, x) ∈ Ḡi , dist[D�(t, x), K (u) ∪ ∂|V E(u(t, x))] ≤ δi }, (δi < 1)

satisfies ∫
Ki

dist(D�(t, x), K (u(t, x))dtdx <
ε

2i+2
|Q∗|.

This is due to the fact that near K (u(t, x), the distance itself is small while near

∂|V E(u(t, x)) \ K (u(t, x)) = u(t, x)e12 + ∂|V E(0) \ K (0),

the integral is small because Dψ(t, x) ∈ K (u(t, x) ∪ E(u(t, x) a.e. in Q∗.
Furthermore we may require that the boundary of Ĝi := Gi \ Ki has measure

zero. This can be easily achieved as the function

dist(D�(t, x), K (u(t, x)) = dist(PV (D�(t, x)), K (0))

is continuous on Ḡi , the set on which the function equal to a constant c ≥ 0 must
be of measure zero except on possibly countably many c’s.

Since Ki is closed, Ĝi \ Ki ⊂ Gi is open and on each G̃i ,

dist(D�(t, x), K (u) ∪ ∂|V E(u(t, x)) > δi .

As we need to defined piecewise C1 functions, we consider

K̂i = {(t, x) ∈ Ḡi , dist[D�(t, x), K (u) ∪ ∂|V E(u(t, x))] < δi }
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which is an open set. Notice that

∂ K̂i ∪ ∂Ĝi ⊂ ∂Gi ∪ {(t, x) ∈ Gi , dist[PV (D�(t, x)), K (0) ∪ ∂|V E(0)] = δi ,

so we define �η = � on ∪i K̂i as implicitly we have decomposed ∪i K̂i into
countably many triangular shaped domains.

Now we cover each Ĝi , by at most countably many squares {Dk
i }∞k=1 whose

sides parallel to the coordinate axes with disjoint interiors. Let pk
i ∈ Dk

i be the
centre of Dk

i . By continuity of D� on Ḡi , there is ηi > 0, such that |D�(t, x) −
D�(t ′, x ′)| < ρδi , if (t, x), (t ′, x ′) ∈ Ḡi , |(t, x) − (t ′, x ′)| < ηi , where ρ > 0 is
to be determined (see (3.10) below). We further divide each Dk

i if the side length
lk
i ≥ ηi . Thus we may assume that all Dk

i satisfy lk
i < ηi . Consequently, on each

Dk
i , |D�(t, x) − D�(pk

i )| < ρδi .
Note that

dist
[
Dψ

(
pk

i

)
, K

(
u
(

pk
i

)) ∪ ∂V E
(
u
(

pk
i

))]
> δi ,

so that Dψ(pk
i ) ∈ E(ux (pk

i ) which implies (ψt (pk
i ), ux (pk

i )) ∈ Ũ 0− ∪ Ũ 0+. With-
out loss of generality, we may assume that ux (pk

i ) > 0 so that (ψt (pk
i ), ux (pk

i )) ∈
Ũ 0+. Therefore

ψt
(

pk
i

) ∈ I−δi

(
ux

(
pk

i

) = (
α
(
ux

(
pk

i

) + δi , β
(
ux

(
pk

i

) − δi
)
.

Now we define ak
i > 0, bk

i > 0 be such that

dist

((
ψt (pk

i ) 0
0 ux (pk

i ) − ak
i

)
, K 0

0

)
= δi

2

dist

((
ψt (pk

i ) 0
0 ux (pk

i ) + bk
i

)
, K 0+

)
= δi

2
.

Consequently,

ψt
(

pk
i

) ∈ I−δi /2
(
ux

(
pk

i

) − ak
i

)
, ψt

(
pk

i

) ∈ I−δi /2
(
ux

(
pk

i

) + bk
i

)
. (3.7)

If (ψt (pk
i ), ux (pk

i )) ∈ Ũ 0−, by symmetry, we may define ak
i , −bk

i using U 0−, K 0
0

and K 0−.
Next we construct φ on each Dk

i . We we decompose Dk
i into countably may

symmetric tiles T k
i,s centred at pk

i,s as described in Remark 2.3 immediately after

Lemma 2.2 and define functions gk
i,s,+(t, x) supported on T k

i,s by

gk
i,s,+(t, x) := g+

( − ak
i , bk

i , ξ
k
i,s, ξ

k
i,sδ

∗
i , pk

i,s, t, x
)

with T̄ k
i,s = T (pk

i,s, ξ
k
i,s, ξ k

i,sρδi ) as its support, where ξ k
i,s > 0 is the scaling factor

for g+ as Remark 2.3 with ρ > 0 to be defined. Note that maxi,k{ak
i , bi

k} ≤ x (1)
+ ,

we have ∣∣(gk
i,s,+

)
t (t, x)

∣∣ ≤ ρδi x (1)
+ , (t, x) ∈ T k

i,s \ �+
T k

i,s
.
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Now we define φk
i (t, x) = ∑∞

s=1 gk
i,s,+(t, x). Let φ = ∑

i,k φk
i , and define

ψ0(t, x) =
∫ x

δ0

φ(t, τ ) dτ, x ∈ [δ0, l − δ0], t ∈ [0, T ].

Next we show that �η = (ψη, uη) with ψη = ψ + ψ0, uη = u + φ satisfies
�η ∈ Pε and ‖� − �η‖L∞ < η if we further require that the largest vertical
dimension of T k

i,s to be small enough.
We need to prove that

(i) �η = �∗ on ∂ Q∗;
(ii) �η ∈ C1

pw(Q∗);
(iii) (ψη)x = uη a.e. in Q∗, that is, ψx (t, x) + (ψ0)x (t, x) = u(t, x) + φ(t, x) for

a.e.(t, x) ∈ Q∗;
(iv) ψt (t, x) + (ψ0)t (t, x) ∈ I (ux (t, x) + φx (t, x)).
(v) |ut + φt | < m so that together with (iv), one has D�η ∈ K (uη) ∪ E(uη);

(vi)
∫

Q∗ dist(D�η, K (uη))dtdx < ε|Q∗|.
Assertion (i) is easy to prove. Obviously φ = 0 on ∂ Q∗ by construction. Since

ψ0(t, x) =
∫ x

δ0

φ(t, s)ds, (3.8)

we have ψ0(t, δ0) = 0. For each fixed t ∈ (0, T ), the set {x ∈ [δ0, l −
δ0], φ(t, x) 	= 0} is a countable union of open intervals. Each of such intervals
is the intersection of the vertical line lt := {(t, x), δ0 < x < l − δ0} and
some T k

i,s . The integral of φ(t, ·) over such an interval against x is zero, hence

ψ0(t, l − δ0) = ∫ l−δ0
δ0

φ(t, s)ds = 0. By our construction of φ we see that
ψ0(0, x) = ψ0(T, x) = 0 for x ∈ [δ0, T − δ0]. Thus �0 = �∗ on ∂ Q∗.

Remark 3.3 We observe that the values of the approximation ψ0 defined by (3.8)
is localized by φ as it depends only on the values of φ in each individual T k

i,s .

Next we prove (ii). Obviously φ is piecewise affine on ∪i,k,s T k
i,s . To show that

φ, ψ0 ∈ C1
pw(Q̄∗), we only need to prove that ψ0 ∈ C1

pw(Q̄∗) as it is simpler to
establish the same property for φ. Due to the cancellation property of the integral
of φ(t, ·) across each T k

i,s , we see that ψ0 	= 0 only in ∪T k
i,s) and ψ0 = 0 on

Q∗ \ [∪T k
i,s)]. The boundary ∂(∪sT k

i,s,) ⊂ D̄k
i is of measure zero. Also on the

open set ∪K̂i , ψ0 = 0, φ = 0 with∣∣Q∗ \ [
(∪i K̂i ) ∪ ( ∪i,k,s T k

i,s

)]∣∣ = 0.

Thus both ψ0 and φ are piecewise C1 in Q∗.
Item (iii) is easy to prove as ψx (t, x) = u(t, x) and ψ0(t, x) = ∫ x

δ0
φ(t, τ )dτ .

Now we prove (iv).
For each t ∈ (0, T ) the line lt := {(t, x), δ0 < x < l − δ0) intersects

at most countably many T k
i,s’s. Outside these T k

i,s’s, φ(t, x) = 0. The value of

φt (t, x) = (gk
i,s,+)t (t, x) in T k

i,s \ �+
T k

i,s
will be in the set {−ρδi ai

k, ρδi ai
k, 0} and
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integrating φ across each T k
i,s against x is zero due to Remark 2.3 (b). We also

have, for (t, x) ∈ T k
i,s ,

ψ0(t, x) =
∫ x

xT k
i,s

(t)
gk

i,s,+(t, s)ds, so that

(ψ0)t (t, x) =
∫ x

xT k
i,s

(t)

(
gk

i,s,+
)

t (t, s)ds, (t, x) ∈ T k
i,s \ �+

T k
i,s

.

Therefore we have the bound

|(ψ0)t (t, x)| ≤ ηi
kρδi x (1)

− a.e. in T k
i,s .

Since max{ai
k, bi

k} ≤ x (1)
− for all i, k, where ηi

k is the side-length of Di
k . By further

dividing Di
k if necessary, we may assume that ηi

k < η/2 < 1/2 so that

|(ψ0)t (t, x)| ≤ η

2
ρδi x

(1)
− < ρδi x (1)

− a.e. in Di
k . (3.9)

Thus, if (t, x) ∈ T k
i,s and φx (t, x) = −ak

i ,

ψt (t, x) + (ψ0)t (t, x) = ψt
(

pk
i

) + [
ψt (t, x) − ψt

(
pk

i

)] + (ψ0)t (t, x)

∈ I−δi /2
(
ux

(
pk

i

) − ak
i

) − [
ψt

(
pk

i

) − ψt (t, x)
] + (ψ0)t (t, x).

Here we have assumed as before that (ψt (pk
i ), ux (pk

i )) ∈ Ũ 0+ (see Fig. 5). As the
symmetrical case (ψt (pk

i ), ux (pk
i )) ∈ Ũ 0− can be treated similarly. Therefore

ψt (t, x)+(ψ0)t (t, x)≥α
(
ux

(
pk

i − ak
i

)+ δi

2
− [

ψt
(

pk
i

) − ψt (t, x)
]+(ψ0)t (t, x)

= α
(
ux (t, x) − ak

i

) + δi

2
+ [

α
(
ux (t, x) − ak

i

) − α
(
ux

(
pk

i

) − ak
i

)]
+ [

ψt
(

pk
i

) − ψt (t, x)
] + (ψ0)t (t, x)

≥ α(ux (t, x) + φx (t, x)) + δi

2
− M

∣∣ux (t, x) − ux
(

pk
i

)∣∣ − ∣∣ψt
(

pk
i

)
− ψt (t, x)

∣∣ − |(ψ0)t (t, x)|
α(ux (t, x) + φx (t, x)) + δi

2
− Mρδi − ρδi − ρδi x (1)

−

≥ α(ux (t, x) + φx (t, x)) + δi

4
,

if we require

ρ <
1

4
(
M + x (1)

− + 1
) . (3.10)
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Similarly, we have

ψt (t, x) + (ψ0)t (t, x) ≤ β(ux (t, x) + φx (t, x)) − δi

4
,

so that

ψt (t, x) + (ψ0)t (t, x) ∈ I−δi /4(ux (t, x) + φx (t, x)).

If φx (t, x) = bk
i , we can prove the same assertion. Thus (iv) is proved. �

Remark 3.4 A different pair (φ, ψ0) can be constructed by using gk
i,s,− instead of

gk
i,s,+ on T k

i,s where gk
i,s,− is defined by using the functiong−. Thus on each T k

i,s
we have two choices of defining φ and ψ0. Therefore we may construct infinitely
many weak solutions of (1.3) satisfying (1.4)–(1.7).

Item (v) is easy to prove as on each T k
i,s , |ut | < m − δi so that

|ut + φt | ≤ m − δi + |φt | ≤ m − δi + ρδi x (1)
− ≤ m − δi

2
< m

as (3.10) implies that ρ < 1/(2x (1)
− ).

Now we prove (vi). We have∫
Q∗

dist(D�η(t, x), K (u(t, x) + φ(t, x)))dtdx

=
∞∑

i=1

∫
Ki

dist(D�η(t, x), K (u(t, x) + φ(t, x)))dtdx

+
∞∑

i=1

∫
Gi

dist(D�η(t, x), K (u(t, x) + φ(t, x)))dtdx

≤ ε

2
|Q∗| +

∞∑
i=1

∑
k,s

∫
T k

i,s

dist(D�η(t, x), K (u(t, x) + φ(t, x)))dtdx .

Given any T i
k,s , we assume as before that (ψt (pk

i ), ux (pk
i )) ∈ Ũ 0+). Let (t, x) ∈

T i
k,s such that φx (t, x) = −ak

i , then by (3.9) and (3.10),

dist(D�η(t, x), K (u(t, x) + φ(t, x)))

≤ dist

[(
ψt (t, x) + (ψ0)t (t, x) 0

0 ux (t, x) + φx (t, x)

)
, K 0

0 ∪ K 0+
]

≤ dist

[(
ψt

(
pk

i

)
0

0 ux
(

pk
i

) − ak
i

)
, K 0

0 ∪ K 0+

]

+ ∣∣ψt (t, x) − ψt
(

pk
i

)∣∣ + |(ψ0)t (t, x)| + ∣∣ux
(

pk
i

) − ux (t, x)
∣∣

≤ δi

2
+ 2ρδi + hk

i,sρδi s
∗
2 ≤

(
1

2
+ 2ρ + x (1)

− ρ

)
δi < δi <

1

4
ε,
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if we require that δi < ε/4 for all i > 0. The proof for the case when (t, x) ∈ T i
k,s

with φx (t, x) = bk
i is similar.

Consequently,

∞∑
i=1

∑
k,s

∫
T k

i,s

dist(D�η(t, x), K (u(t, x) + φ(t, x)))dt dx

≤
∞∑

i=1

∑
k,s

1

4
ε
∣∣T k

i,s

∣∣ = 1

4
ε
∣∣ ∪i,k,s T k

i,s

∣∣
≤ 1

4
ε|Q∗|.

Thus (vi) is proved.
Finally, by adjusting hk

i,s in the definition of T k
i,s , we may have

‖�η − �‖L∞(Q∗) < η. ��

Remark 3.5 In Theorem 1.1 we see that for any T > 0, problem (1.3) has in-
finitely many solutions satisfying (1.4)–(1.7). To construct solutions for all t > 0,
a plausible approach is to take a sequence of Tj → ∞ and see whether a cor-
responding sequence of solutions u j converges, in some sense to a solution on
Q∞ = (0, +∞) × (0, l). However, this is potentially very difficult as the se-
quence, if not carefully selected might converge in some weak sense to a Young
measure-valued solution.

Alternative constructions are the following:

(A) We take a fixed increasing function σ ∗ : R → R obtained by Lemma 3.1
and let Tj = j ≥ 0 j = 1, 2, . . . . Let u∗ be the smooth solution of
(2.1) obtained by Lemma 2.1 using this particular σ ∗(·). We may consider in
Q j = (Tj , Tj+1 problem (1.3) for initial value u(Tj , x) = u∗(Tj , x). We de-
note by u j ∈ W 1,∞(Q j ) the corresponding solution of (1.4)–(1.7) on Q j and let
u∞ ∈ W 1,∞(Q∞) the function defined by u∞(t, x) = u j (t, x) if (t, x) ∈ Q̄ j ,
j = 1, 2, . . . . Then from our construction of weak solutions in Theorem 1.1, we
see that u∞ is Lipschitz continuous in Q∞ and satisfies (1.4)–(1.7) for T = ∞
because �∞ = (ψ∞, u∞) satisfies

D�∞(t, x) ∈ �(u(t, x)), a.e. (t, x) ∈ Q∞,

where

�(u(t, x)) :=
{(

σ(X) u(t, x)

Y X

)
∈ M2×2, X, Y ∈ R

}
,

and u∞ satisfies the boundary condition (u∞)x (t, 0) = (u∞)x (t, l) = 0 in the
classical sense.

Another interesting observation is that when the smooth solution u∗ given by
Lemma 2.1 satisfies

lim
t→+∞ max

x∈[0, l]
|u∗

x (t, x)| = 0,
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by our construction of σ ∗(·) in Lemma 3.1, we have that for large t > 0 then
σ ∗(u∗

x (t, x)) = σ(u∗
x (t, x)) hence for large t > 0 u∗ is a smooth solution of the

Perona-Malik equation, satisfying the homogeneous Neumann condition hence
u∞(t, x) = u∗(t, x). This solution will eventually become smooth and decay to
zero.

(B) If in Q j we solve (1.3) by using a modified σ ∗
j (·) as we did in the

proof of Theorem for initial values with small derivative, we may let s∗
j =

maxx∈[0,l] |(u∗
j−1)x (Tj , x)| where u∗

j−1 is the solution obtained in Q j−1. When
the maximum s∗

j is small, we may define σ ∗
j (·) in Lemma 3.1 to have very ‘flat’

slope, that is, to have very small derivative (σ ∗
j )

′(s) for when |s| is, say greater
that s∗

j /2. If we write our solution in Q j as u j satisfying the initial condition

u j (Tj , x) = (u j−1)(Tj , x) and let u∞(t, x) = u j (t, x) when (t, x) ∈ Q̄ j , we

see that u∞ ∈ W 1,∞
loc (Q∞). As the value −y j

+ ≤ σ((u j )x (t, x) ≤ y j
+ and y j

+
can be very small if s∗

j is small (see Fig. 5), we see that (u j )x (t, x) oscillates be-
tween points very close to zero and points close to infinity. We may then view
this as the so-called ‘stair-case’ phenomenon described in the image processing
literature [29, 32].

4 Proof of Lemma 3.1

Now we prove the technical result Lemma 3.1 whose proof involves only elemen-
tary calculus. We prove the lemma in two steps. We first establish the following

Claim Let h > 0 and σ ∈ C2,1[0, h] be such that

(i) σ ′(s) ≥ α > 0 for s ∈ [0, h] and for some fixed α > 0;
(ii) |σ ′′(s)| ≤ M for s ∈ [0, h] and |σ ′′(s) − σ ′′(t)| ≤ M|s − t | for s, t ∈ [0, h],

where M > 0 is a fixed constant.

Then for ε > 0 sufficiently small and every 0 < δ < α/2, there is a function
σε,δ ∈ C2,1[0,∞) such that

(a) σε,δ(0) = σ(0), σ ′
ε,δ(0) = σ ′(0) and σ ′′

ε,δ(0) = σ ′′(0);
(b) σ ′

ε,δ(s) > δ/2 for s ∈ [0, ∞), and σ ′
ε,δ(s) = δ for s ∈ [2ε, h];

(c) σε,δ(s) < σ(s) for s ∈ (0, h].
Proof of Claim We define, for some m > 0 to be determined later,

σ ′′
ε,δ(s) =

⎧⎪⎨
⎪⎩

σ ′′(0) − 1
ε
(σ ′′(0) + m)s, s ∈ [0, ε],

m

ε
(s − 2ε), s ∈ [ε, 2ε],

0, s ∈ [2ε, ∞).

(4.1)

Clearly, σ ′′
ε,δ(·) thus defined is a Lipschitz function. Next by requiring σ ′

ε,δ(0) =
σ ′(0) and σ ′

ε,δ(s) = δ when s ≥ 2ε, we have

σ ′
ε,δ(s) =

⎧⎪⎪⎨
⎪⎪⎩

σ ′(0) + σ ′′(0)s − ε

2
(σ ′′(0) + m)s2, s ∈ [0, ε],

σ ′(0) + ε

2
σ ′′(0) − εm + m

2ε
(s − 2ε)2, s ∈ [ε, 2ε],

δ, s ∈ [2ε, ∞).

(4.2)
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In order to satisfy σ ′
ε,δ(2ε) = δ, we have to satisfy

σ ′(0) + ε

2
σ ′′(0) − εm = δ,

hence we choose

m = 1

ε

(
σ ′(0) − δ

) + 1

2
σ ′′(0). (4.3)

Clearly, m > 0 if ε > 0 is small enough.
Before we proceed, we notice that

σ ′′(s) > σ ′′
ε,δ(s), s ∈ (0, ε].

This is due to the fact that

σ ′′(s) − σ ′′
ε,δ(s) ≥ σ ′′(0) − Ms −

(
σ ′′(0) − 1

ε
(σ ′′(0) + m)s

)

≥ s

ε2
(σ ′(0) − δ − Mε − Mε2) ≥ s

ε2

(α

2
− 2Mε

)
> 0,

if ε < min{1, α/(2M)}. This implies that

σ ′(s) > σ ′
ε,δ(s), s ∈ (0, ε].

By integrating σ ′
ε,δ(s) with the initial condition σε,δ(0) = σ(0), we obtain

σε,δ(s)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

σ(0) + σ ′(0)s + σ ′′(0)

2
s2 − 1

6ε
(σ ′′(0) + m)s3,

s ∈ [0, ε],
σ (0) + σ ′(0)s + ε

2
σ ′′(0)s2 − mε(s − ε) − 1

6
σ ′′(0)ε2 + m

6ε
(s − 2ε)3,

s ∈ [ε 2ε],
σ (0) + 2σ ′(0)ε − 5σ ′′(0)

6
ε2 − m

2
ε2 + δ(s − 2ε),

s ∈ [2ε, ∞). (4.4)

From our construction of σε,δ(s) it is clear that item (a) holds. Now we prove
(b). We have, by recalling (4.3), that for s ∈ (0, ε],

σ ′
ε,δ(s) = σ ′(0) + σ ′′(0)s − 1

2ε
(σ ′′(0) + m)s2

= σ ′(0) + σ ′′(0)s − s2

2ε
σ ′′(0) − 1

2ε

(
σ ′′(0) − δ

ε
+ σ ′′(0)

2

)

=
(

1 − s2

2ε2

)
σ ′(0) +

(
s − 3s2

4ε2

)
σ ′′(0) + s2

2ε2
δ

≥ σ ′(0)

2
− Mε ≥ α

2
− Mε >

α

4
>

δ

2
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if ε < α/(4M). Next, for s ∈ (ε, 2ε), we have

σ ′
ε,δ(s) = σ ′(0) + ε

2
σ ′′(0) − εm + m

2ε
(s − 2ε)2

= (s − 2ε)2

2ε2

(
σ ′(0) + σ ′′(0)ε

) +
(

1 − (s − 2ε)2

2ε2

)
δ

≥ (s − 2ε)2

2ε2 (α − δ − Mε) + δ > δ >
δ

2
,

as s ∈ (ε, 2ε). We also have

σ ′
ε,δ(s) = δ ≥ δ

2

when s ∈ [2ε, ∞). Thus item (b) is proved.
Finally we prove item (c). As σε,δ(0) = σ(0) σ ′

ε,δ(s) < σ ′(s) in (0, ε), we
see that

σε,δ(s) < σ(s) in (0, ε].
Now for s ∈ (ε, 2ε], we have

σ(s) − σε,δ(s)

= σ(s) −
(

σ(0) + σ ′(0)s + ε

2
σ ′′(0)s − mε(s − ε)

− 1

6
σ ′′(0)ε2 + m

6ε
(s − 2ε)3

)

≥ σ(0) + σ ′(0)s + ε

2
σ ′′(0)s2 − Ms3

6

−
(

σ(0) + σ ′(0)s + ε

2
σ ′′(0)s − mε(s − ε) − 1

6
σ ′′(0)ε2 + m

6ε
(s − 2ε)3

)

= mε(s − ε) + m

6ε
(2ε − s)3 + σ ′′(0)

2
s(s − ε) + σ ′′(0)

6
ε2 − M

6
ε3

≥
(

σ ′′(0)

2
(s + ε) + σ ′(0) − δ

)
(s − ε)

+
(

σ ′(0) − δ + σ ′′(0)

2
ε

)
(2ε − s)3

ε2
− M

6
ε2 − 2M

3
ε3

≥
(

α

2
− 3M

2
ε

)
(s − ε) + (2ε − s)3

ε2

(
α

2
− M

2
ε

)
− 5M

6
ε2

≥ 1

2
(α − 3M)

(
(s − ε) + (2ε − s)3

ε2

)
5M

6
ε2

≥ 1

2
(α − 3M)

ε

6
− 5M

6
ε2 = ε

12
(α − 13Mε) > 0,
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if we further require that ε < α/(13M). Here we have used the fact that

(s − ε) + (2ε − s)3

ε2
≥ ε

6
as s ∈ [ε, 2ε]. In particular, we have the bounds for σε,δ(2ε):

1

2

(
σ ′(0) − 11

3
Mε

)
ε ≤ σε,δ(2ε) ≤

(
σ ′(0) + 11

6
Mε

)
ε,

hence

σε,δ(2ε) = o(ε) as ε → 0+.

Now when s ∈ (2ε, h], we notice that σε,δ(s) = σε,δ(2ε) + δ(s − 2ε), hence

σ(s) − σε,δ(s) = [σ(s) − σ(2ε)] + [σ(2ε) − σε,δ(2ε)] − δ(s − 2ε)

> σ(s) − σε,δ(s) − δ(s − 2ε) >
(α

2
− δ

)
(s − 2ε) > 0. ��

Proof of Lemma 3.1 Let 0 < y− < y+ < 1 with y+ − y− small, we can easily
check that that for s, r ∈ {t ∈ (0, x (2)

− ), one has, for some α > 0 and M > 0 that

σ ′(s) ≥ α > 0,

|σ ′′(s)| ≤ M,

|σ ′′(s) − σ ′′(r)| ≤ M|s − r |.
Now we define

σ ∗
ε,δ(s) = σε,δ(s − x (1)

− ),

where σε,δ(·) is defined in the above Claim. As ε > 0 is sufficiently small, we
may claim that the extended function

σ ∗(s) =
{

σ(s), s ∈ (
0, x (1)

−
]
,

σ ∗
ε,δ(s), s ∈ [

x (1)
− , ∞]

,

is of C2,1((0, ∞]), strictly increasing and σ ∗(x (1)
− + 2ε) < y+, for 0 < δ < α/2.

Notice that the function

δ → σ ∗
ε,δ

(
x (2)
− + ) = σε,δ

(
x (2)
+ − x (1)

−
)

is continuous for δ ∈ [0, α/2]. When δ = 0,

σ ∗
ε,0(x (2)

− +) = σε,0(x (2)
+ − x (1)

− ) = σε,0(2ε) < y+.

Therefore, for sufficiently small δ > 0, σ ∗
ε,δ(x (2)

− +) < y+, so that

σ ∗(s) := σ ∗
ε,δ(s), s ∈ [0, ∞), ε > 0, δ > 0 small

satisfies the requirement of Lemma 3.1.
Finally, by reflecting the graph of σ ∗(·) with respect to the origin, we may

define σ ∗(s) for s ≤ 0. The proof is finished. �
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23. Müller, S., Šverák, V.: Attainment results for the two-well problem by convex integration.
In: Jost, J. (ed.) Geometric analysis and the calculus of variations, pp. 239–251. Interna-
tional Press (1996)
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