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Abstract In this paper, we investigate the minimality of the map ||XT|| from the

Euclidean unit ball B” to its boundary S"~! for weighted energy functionals of the

type Ep f = an F)IVul|Pdx, where f is a non-negative function. We prove

that in each of the two following cases:

i) p =1 and f is non-decreasing,

ii) pisinteger, p <n —1land f =r% witha > 0,
the map ﬁ minimizes E, ; among the maps in wlr®", S""!) which co-
incide with ﬁ on 9B”". We also study the case where f(r) = r¢ with
—n+2 < a < 0 and prove that ;7 does not minimize £, y for a close
to —n + 2 and when n > 6, for « close to 4 — n.
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1 Introduction and statement of results

For n > 3, the map ug(x) = HATH : B" — S"~! from the unit ball B" of R” to
its boundary S"~! plays a crucial role in the study of certain natural energy func-
tionals. In particular, since the works of Hildebrandt, Kaul and Widman ([13]), this
map is considered as a natural candidate to realize, for each real number p € [1, n)

the minimum of the p-energy functional,

Ep(u)=/ IVull? dx
Bn
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among the maps u € WP (B", " ) ={u € WHPB", R"; |lul| =1a.e.} satisfy-
ing u(x) = x on "1

This question was first treated in the case p = 2. Indeed, the minimality of
uo for E, was etablished by Jdger and Kaul ([16]) in dimension n > 7 and by
Brezis, Coron and Lieb in dimension 3 ([2]). In [5], Coron and Gulliver proved
the minimality of uo for £, for any integer p € {1, ..., n — 1} and any dimension
n > 3.

Lin ([17]) has introduced the use of the elegant null Lagrangian method (or
calibration method) in this topic. Avellaneda and Lin showed the efficiency of this
method in [1] where they give a simpler alternative proof to the Coron-Gulliver re-
sult. Note that several results concerning the minimizing properties of p-harmonic
diffeomorphisms were also obtained in this way in particular by Coron, Helein and
El Soufi, Sandier ([4], [12], [7] and [6]).

The case of non-integer p seemed to be rather difficult. It is only ten years
after the Coron-Gulliver article [5], that Hardt, Lin and Wang ([10]) succeeded to
prove that, for all n > 3, the map uo minimizes E, for p € [n — 1, n). Their proof
is based on a deep studies of singularities of harmonic and minimizing maps made
in the last two decades. In dimension n > 7, Wang ([20]) and Hong ([14]) have
independently proved the minimality of u¢ for any p > 2 satisfying p +2,/p <
n—2.

In [15], Hong remarked that the minimality of the p-energy £, p € (2, n—1],
is related to the minimization of the following weighted 2-energy:

E () = [ 2P|V P
Bn

where r = ||x||. Indeed, using Hlder inequality, it is easy to see that if the map ug
minimizes E p» then it also minimizes E, (see [15], p. 465). Unfortunately, as we
will see in Corollary 1.1 below, for many values of p € (2, n), the map ug is not a
minimizer of E p- Therefore, Theorem 6 of ([15]), asserting that #o minimizes E »
seems to be not correct and the question of whether u( is a minimizing map of the
p-energy E, for non-integer p € (2,n — 1) is still open!

The aim of this paper is to study the minimizing properties of the map uq in
regard to some weighted energy functionals of the form:

Ep.p(u) = /B @I VulPdz,

where p € {l,...,n — 1} and f:[0, 1] — R is a non-negative non-decreasing
continuous function. For p = 1, the map u¢ minimizes £ s for a large class of
weights. Indeed, we have the following

Theorem 1.1 Suppose that f is a non-negative differentiable non-decreasing

function. Then the map ug = ”T‘” is a minimizer of the energy E| z, that is, for

' 'We suspect a problem in Theorem 6 p. 464 of [15]. Indeed the author claims that the quantity

ot (v, p), which represents a weighted energy of the map v on the 3-dimensional cone

Cp in B”, is uniformly proportional to the weighted energy on the euclidian ball B3. There is no
reason for this fact to be true, the orthogonal projection of Cy on to B” being not homothetic.
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any uin WHLB™, S" 1) with u(x) = x on "1, we have

/ £ | Vuolidx < / £ I Valldx,
Bn Bﬂ

Moreover, if f has no critical points in (1, 1), then the map ug = ﬁ is the unique
minimizer of the energy E1 ¢, that is, the equality in the last inequality holds if and
only if u = uo.

For p > 2, we restrict ourselves to power functions f(r) = r%,

Theorem 1.2 For any o > 0 and any integer p € {1, ..., n — 1}, the map ug =
ﬁ is a minimizer of the energy Ep ,« that is, for any u in whr@Bnr, s with

u(x) =xon S" ! we have,

/ r"‘||Vuo||de§/ r|Vu|Pdx .
Bn B)l

Moreover, if o > 0, then the map ug = m is the unique minimizer of the energy

Ep o, that is the equality in the last inequality holds if and only if u = uy.

The proof of these two theorems is given in Sect. 2. It is based on a construction of
an adapted null-Lagrangian. The case of p = 1 can be obtained passing through
more direct ways and will be treated independently.

The case of weights of the form f(r) = r%, with o < 0, is treated in Sect. 3.
The weighted energy fB,, r¥||Vuo|*dx of ug = ﬁ is finite for ¢ > —n + 2.

Hence we consider the family of maps,
ug(x) =a+xr(x)(x —a), aeB”,

where A, (x) €R is chosen such that u, (x) € S"~! (that is u, (x) is the intersection
point of S"~! with the half-line of origin a passing by x).

We study the energy E» ,«(u,) of these maps and deduce the following
theorem.

Theorem 1.3 Suppose that n > 3.

(i) Foranya € B",a # 0, there exists a negative real number oy € (—n+2,0),
such that, for any a € (—n + 2, ag] we have

/r“||Vu0||2dx>/ F | Vug||* dx.
Bn Bll

(ii) For any integer n > 6, there exists ag € (4 — n,5 — n) such that, for any
o € (4 —n,aqp), there exists a € B" such that,

/r“||wo||2dx>/ F | Vug||* dx.
Bn BH

Replacing in Theorem 1.3 « by 2 — p, p € (2, n), we obtain the following
corollary:

Corollary 1.1 For any n > 6, there exists po € (n — 3,n — 2) such that,
for any p € (po,n — 2) the map ug = ﬁ does not minimize the functional
fB" r2=P |\ Vu||>dx among the maps u € W“2(B", S"~1) satisfying u(x) = x on
S”_l.
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2 Proof of theorems 1.1 and 1.2

Consider an integer p € {1,...,n—1} and f a differentiable, non-negative, in-
creasing, and non-identically zero map. We can suppose without loss of generality,
that f(1) = 1.

For any subset I = {iy,...,ip} C{l,...,n—1} withi| <i2... <i, and for any
map,
u=@ui,.. up):B"— "1 inC®B",S"") with u(x) =x on "I,

we consider the n-form:

o) =dxy A ANd(fPui) A AN ) A A dxy

Lemma 2.1 We have the identity:
/ wr(u) = / wj(Id) Vx eB" where Id(x)=x.
n Bn

Proof By Stokes theorem, we have:
/ wr(u) = / dxy Ao oNd(fFui) Ao ANdfPui,) Ao A dxy
n B)I

(=D Fyupydxy A A dFG i)
. A AN N oA dxy)
=/ l(—l)i‘_lxildxl/\.../\d(f/(r)\u,'l)
- Ao NA(fPui,) Ao A dxy.

Indeed, on S"~!, we have f(r)u;, = x;; r = 1, f(1) = 1 and u(x) = x).
Iterating, we get the designed identities. Consider the n-form:

Sy =Y wi(u)
lI1=p
By Lemma 2.1, we have:

| s = Z/ wy () = Z/ cr™ 1

1= =

where |S"~!| is the Lebesgue measure of the sphere. O

Lemma 2.2 The n-form S(u) is O (n) —equivariant, that is, for any rotation R
in O (n), we have:

SCRuR)('Rx) = S(u)(x) Vx e B".
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Proof Consider S(u)(x)(eq, ..., e,) where (e, ..., e,) is the stantard basis of R”
and notice that it is equal to (—1)" times the (p+1)"" coefficient of the polynomial
P(}) = det(Jac(fu)(x) — AId) which does not change when we replace fu by
'RfuR. ]

For any x € B”, let R € O (n) be such that "Ru(x) =e, = (0, ..., 0, 1). Consider
y ='Rx ,v ='RuR, so that:

ad
v(y) =e,, d(RuR)(y)(R") C erf that is aﬂ(y) =0 Vje{l,...,n}
Xj

Lemma 2.3 Let ay, ..., a, be n non-negative numbers, and p € {1,...,n — 1}.
Then:
1 n—1 P
. . P .

| Z diy iy < 1),,Cn_1 Za,

i1<..<ip j=1
Proof See for instance Hardy coll. [4], theorem 52. O
Let I = {iy,...,ip} C{1,...,n}. We have:
ifi, #n,

wr()(y) = (dxi Ao Ad(f Vi) A AAF V) AL A dxy) ()
= |f(r)|p(dx1 Ao ndvi Ao Advg, /\.../\dxn)(y).

Indeed, Vj < n—1,d(f(r)v;j(y)) =d(f(r)vj(y) + f(r)dvj(y) = f(r)dvj(y)
since v(y) =ey,.
Ifi, =n,

w1 () (y) = [P (dxy A Advy AL AAF) ).

Indeed, d(f (r)v,)(y) = df (0)va(y) + f()dva(y) = df () (as dv(y) C &)
The Hadamard inequality gives:

IS =] Y or@| < 1£0)I7 > ldxill ... ldvi |

[I|=p I<ij<ip<..<ip=n—1
v, I lldx, ()
P! > ldzxy |l - . lidvi, I
1<ij<ip<..<ip_1<n—1
v, Il f 1)
< |f)P Yol lldvy |

I<ij<ip<..<ip=n—1
1
2

1
v, 1P ldxa P00 | (CF)2

+f' ) f )P > ldxall . dvi, |

I<iy<iz<..<ip_1=<n-—1

o lldvi, 1(y)-
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The Hardy inequality gives, after integration and using the fact that |Vu| =
Vol

C—’f|S"—1| < —/ FP)IVullPdx
n ~( 1)p/2

+L Al Y IVulP dx. (1)
-1

Remark : If f " is positive and if equality holds in (1), then, Vi < n —1,y; =0
and y, = +-*, which implies that u(x) = £~

x> flxl

Proof of the Theorem 1.1 Inequality (1) give

IS" < Vn — 1/Bn F) I Vulldx +/Bn f'(r)dx.

n—1 1

1
/ FIVulldx = V15" / Fr=2dr = / £ Vaoll dx.
B” 0 B"

To see the uniqueness il suffices to refer to the remark above. It gives that for any
x € B ulx) = ”X” or u(x) = As u(x) = x on the unit sphere, we have,

for any x € B"\{0}, u(x) = ” O

Hence:

IXII

Proof of the Theorem 1.2 Let a be a positive real number. From inequality (1)
we have:

p—1

cl c? C
s 1|<—"—1 /2/ r"‘p||Vu||pdx+oz—"_l 1 / rP = vy P dx.
( 1)[1 Bi’l (n — 1) 2 n
By Holder inequality, we have, setting g = %:
cl Cr_
st < "—1/2/ re? | Vu||Pdx
n (n — 1)P/= Jpn
CP—ll 1/p 1/q
+a"—,l(f rP<“—1>dx> (/ r“P||Vu||de>
]2 n BVI
th—l op p
< 0= DP2 Jy rPVul|Pdx
cP! sn=11/p 1/q
+o nilp—l | | 1/p (/ rlxp||vu”pdx>
(n— 17 (n+pla—1) B
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Consider the polynomial function:

p p—1 -
Cozi P Coni |sn e _C_p|Sn )
n

P = (n—1)r/2 n—1'7T (”+P(0€—1))1/1’

Setting A = (an FoP | Vu||P)/4 and B = (an reP||Vug||P)/4, we get P(A) > 0
while

p—1 r—1
C cPh
P(B) n—1 |}’l 1|+ n—1| n—l|__"|Sl’l—1|
pla—1) n+ple—1)
p—1
n—1 - P

C ch
= —|S”_1|( +o— "_l(n—i-p(oz—l))) =
n nC?

n+pla—1)

n—1

On the other hand, V¢ > 0, P'(t) > 0. Hence, P is increasing in [0, +00) and is
equal to zero only for B. Necessarily, we have A > B.

Moreover, if « > 0, A = B implies that equality in the inequality (1) holds.
Referring to the remark above, and as uo(x) = x on the sphere, we have u =
U0 = T XH Replacing o by a/ p we finish the prove of the theorem. O

3 The energy of a natural family of maps

Leta = (0, ...,0) be a point of B” with 0 < 6 < 1 and consider the map,
Ug(x) = a+ra(x)(x —a),

where A,(x) > 0 is chosen so that u,(x) € S"~! for any x € B" \ {0},

VA(x) = (alx —a)

Ilx — all?

Aq(x) =
and
Ag(x) = (1= llalPlx —al® + (alx — a)*.

Notice that u,(x) = x as soon as x is on the sphere. If we denote by {e;}ie(1,...n)
the standard basis of R”, then, Vi < n, we have,

VA, — (alx —a))2

Ilx —all?

I dug (x).ei|> = (

+|: —2%(\/&— (alx — a))

(1 — llal®)(x —alei) + (x — ala)(ale;)
\/_le —al?

(alei) 2
“Tr—al? le —all
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+2(\/A_a_ (alx —a))(_z(x —ale,-)(\/A—a_ (alx _a))

lx —all? lx —all*
(1 = llal®)(x = ale;) + (x — ala)(ale)

_l’_
SBalx —al?
(alei) '
= a||2>(x —alen:

Let us prove that, for each « € (—n, 0), fB,, r*||Vug,l|ldx is finite. Consider the
map:

F:Rt xS — R"
(r,s) +—>a+rs=x.

Then, we have,
1 n
F*(Il v ugll*dx) = = Y Hia(s)r"'dr Ads,
r
i=1

where H; ,(s) is given on the sphere by,
H;o(s) = (1 = llal* + (al)®'/? = (als))?

+[ —2(sle)) (1 — [lall* + (als)H? - (s|a))

(1= lalP)slen) + alen)sla) (“"")T
(1= [[al + (als)D)172 l

+2((1 = flall* + (al)*)'? — (als))
x ( —2(sle) (1 — [lall* + (als)H)? = (s|a))

(1 — llal®)(sle:) + (ale;)(s|a)
(1 —llal?+ (als)?)1/2

- (a|€i)> (slei).

It is clear that H; ,(s) is continuous on S"~1. Therefore, near the pointa,asn > 3,
the map ||x||*||Vu,|| is integrable. Furthermore, near the point 0, asa > —n, this
map is also integrable. In conclusion, for any o € (—n, 0), the energy E,« 2(u,)
is finite.

Proof of Theorem 1.3(i) Since we have

IS"(n — 1)
n+o—2

3

E3pa(ug) = / I 11 Vol *dx =
Bn
the energy E» ,«(up) goes to infinity as « — —n + 2. On the other hand, as the

energy E» o (u,) is continuous in «, there exists a real number g € (—n + 2, 0)
such that, Vo, 2—n <o < o,

2 2
/ 11 Vuol dX>/ 11 Vatall” dx. 0
B B
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Proof of Theorem 1.3(ii) Since a = (6,0, ..., 0), we will study the function,
G(0) = Ezye(uq) = / | Vg |* dx.
B}’l
Precisely, we will show that for any o € (5—n, 4—n), G is two times differentiable

at 0 = 0 with ”(lj—g(O) = 0 and, when « is sufficiently close to 4 — n, ”(’127?(0) < 0.
Assertion (ii) of Theorem 1.3 then follows immediately. We have,

2
Hia(s) = Hio(s) = ({/1-62+6%7 — 651

1— 92 . S 92
+ —2si(,/1—92+92s§—9s1)+( S50
J1-02+62s57

+2( 1624627 — 051 ) | —25i ({/1-62+6257 — 051
(1 —6%)s; + 8i16%s1

J1—-02+62st

where §;; = 0ifi # j and O else.

We notice that H; g (s) is bounded on [0, 1] x S"~! Indeed, for all x, v,z € [0, 1],
excepting (x, y) = (0, 1), we have,

— 8110 | si,

(1—y»)z

X
<
‘\/l—y2+y2x2) VI=y2+y3d) |

Then, for almost all (s, #) € S"~! x [0, 1], we have,

<1 and |

(1 —02)s; +8;10%s51 <1
J1-02+6257

and the others terms are continuous in [0, 1] x $"1L.
We have,

Epya(ug) = / 1| Vitg | Pdx = f la +rs|“"3H@,s),drds
B)I Bll

vo(s)
_ / H@, s)(/ (- +6s1)> +6%(1 — sf))"‘/2;~"—3dr>ds,
sl 0

where yy(s) = /1-02462s7 — 05 and H(0, 5) = X]"_, H; o(s). We notice that
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H (0, s) is indefinitely differentiable in (—1/2, 1/2) x S" ! LetC, bea positive
real number so that, V(0, s) € (—1/2,1/2) x §"~!

0H 6, s) -
a6 -

2H®, s)

|H(97S)| SCYH 892

<C,.

ns

Furthermore, we have,

H(0,s5) = (n=1)=2(n—1)s10+((2n=3)si—n+2)0%+0(6?). (A)

Let us set p = r + 051, (0, 5) = /1 —62+6257 and

pO.5) n=3( 2 , 2 2\\¢/2
F(e,s)=/9 (0 —0s1)"(p* +6%(1 = s7))"" dp.

S1

Notice that p € [—1,3]. Then, G(0) = fS*H H@®,s)F(,s)ds. Let us set
(0, 0,8) = (p = 0s1)" > (p* + 0*(1 — s1)*/. O

Lemma 3.1 The map 0 — G (0) is continuous on (—1/2, 1/2) and continuously
differentiable on (—1/2, 1/2)\{0} for any « > 3—n .

Proof We have, Vs € S”_l\{(:lzl, 0,...,0)},
(p —0s1)* _ 2
(P +02(1—50) " 17
Indeed, (1 —s3)(p —0s1)? < 2(1—s5)(p*+6%) < 2(p>+62(1 —s7)). And then,

n=3

(3.1)

g(p.0,5) < (0> +6%(1 —s%))%. (3.2)

(1-s)

Since @ > 3 — n we deduce that the map (p,0) — g(p, 0, s) is continuous on
(=1/2,1/2) x [—1, 3]. Hence, the map z foz g(p, 0, s)dp is differentiable on
[—1, 3] and,

8 V4
8_/ g(p,0,8)dp =g(z,0,s).
z Jo
Furthermore, for any p € [—1, 3], the map 6 — g(p, 6, s) is differentiable and

g—g(p, 0,5) =—(n—3)s1(p—0s)" (o> +6%(1 — s%))%

+5(p = 051" 20 (1 = s) (0% + 62(1 = 57)) .

Let a, b be two real in (0, 1/2) with @ < b. We have for any |0| € (a, b), for any
s € "IN\ {(£1,0,...,0)},

‘g—g(,o, 0,5) < (n — A" H(a?(1 - 52))?

Hel4 3 (1 = s2) (a2 — 7)) T (3.3)
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This shows that 6 +— fOZ g(p, 0, s)dp is differentiable on (—1/2, 1/2) \ {0} and

z

] g
— ,0,5)dp = > (p,0,s)dp.
20 J, g(p,0,s)dp /0 89(10 s)dp

Moreover the map (z,60) > /07 g—g(,o, 0, s)dp is continuous in [—1,3] X
(=172, 1/2)\{0}. Indeed, 6 +— g—g(p, 6, s) is clearly continuous on (—1/2, 1/2)\
{0} and from (3.3) and by Lebesgue Theorem, 6 +— f6 g—g(p, 0, s)dp is continu-

ous on (—1/2,1/2) \ {0}. Then, for any € > 0, we will have for any sufficiently
small %, k,

=

z+h P z 9

8 8

—(p,0 +k,s)dp — —(p,0,s)d
/0 89('0 s)dp /0 89(’0 s)dp

Zag
= (p, 04k, s)d
/an(p +k, s)dp

z+ha
8
—(p,0+k, s)d
/Z 89(,0, +k, s)dp

<e.

z ag
— | =(p.0,5)d
foae(p s) p‘+

The map (z, 6) — foz g(p, 0, s)dp is differentiable on [—1, 3] x (—1/2, 1/2)\{0}
and the map 6 — F (0, s) is differentiable in (—1/2, 1/2)\ {0} and for any 0 €
(=172, 1/2)\{0},

0 0.5)=""L0.58(80.5.0.5) - 5180510 >+/ﬁ(9’s)ag( 0.5)d
—,85) = —(0,S ,8),0,8)—S §1,0,8 . , 0,8
29 29 g 18(0s1 v 00 p o
(st — 1) 1/2 -3
— ! 7 ((1- 02 +60%7)"" — 0s1)"

(1—6%+06%s7)

B6.5) BO.s)
+[ g1(p,9,s)dp+/ g2(p, 0, 5)dp,
0

S1 Os1

where,

IR

g1(p,6,5) = —(n = 3)s1(p — Os1)"*(p* + 67 (1 = 57))

and
82(0.6,5) = 5 (p — 051" 20(1 = 5) (0 + 6%(1 = s7)) .

Now, the map 8 +— F(6,s) is continuous on (—1/2,1/2). Indeed, since the
map 0 +— g(p,6,s)dp is continuous on (—1/2,1/2) and from (3.2) 6 +
fOZ g(p, 0, s)dp is continuous on (—1/2, 1/2). Then, for any € > 0, we have Vi, k
sufficiently small,

=<

z+h z
‘/0 g(p,0+k,s)dp — /0 g(p,0,s)dp

V4
/ g(p,0+k,s)dp
0

z z+h
- f g(P,O,s)dp‘—i- / g(p, 04k, s)dp| < e.
0 z

Then, the map (z, 0) — foz g(p, 0, s)dp is continuous on [—1, 3] x (—1/2,1/2)
and consequently 6 — F (6, s) is continuous on (—1/2, 1/2).
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Now, we know that 8 — H (0, s)F (0, s) is continuous on (—1/2, 1/2) and
differentiable on (—1/2, 1/2) \ {0}. Furthermore from (3.2), we have, for any s €
S IN(EL O, ..., 0,

n—>3 o+n—. 1
|H(,5)F©,5)] <3210 3c,l.—ﬁ. (3.4)
(1-s7) 2
BH n=3 a+n—3 1
‘ﬁ(e,s)lr(e,s) <327 10" 0 ————. (3.5)
(1-s7)2

0(s3-1)

J1-62+6252

This map is indefinitely differentiable on (—1/2, 1/2) xS"~!. Let B, be a positive
real number so that, V(0, s) € (—1/2,1/2) x st

Consider themap 1 : (0, 5) — (0, s) = (1-02+025H)1/2—p51)" 3.

0
|MQM§Bn)£Wﬁ)S&'

Considering a, b € (0,1/2) with a < b we have, for any 6 € (a, b), for any
s € S\ {(£1,0,...,0)},

oF o
’H(Q, s)ﬁ(H, )| < (Ba+3(0n —3).4"*a%(1 —s1)2

+ Bal 430 (1= s2) 7). (3.6)
ﬁ ands — (1 — slz)% are integrable on " !, we de-
(1=s]) 2
duce that 6 — G () is continuous on (—1/2, 1/2) and continuously differentiable
on (—1/2,1/2)\ {0}. o

Since the maps s

Lemma 3.2 The map 6 — G (0) is differentiable at 0 and % (0) =0.

Proof Since for any s € S"71\{(£1,0,...,0)}, 6 — F(8,s) is continuous on
(—1/2,1/2) from (A) we have,

oH oH !
3—9(9, $)F(0,s) P %(0, $)F0,s) = —=2(n — 1)S1/0 p"tdp

_ 2(n—=Ds
 on-2+4a
From (1.5) and Lebesgue Theorem we have,
oH —on— 1
/ ——(0.5)F(©, 5)ds — —2=Dst o
gn—1 a0 0—0 Jgn-1 n — 2+«

Moreover, it is clear that,

/ H(@®,s)n@,s)ds — 0.
8}171 6—0
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Let J (m, n) be the integral,
1
T(m. n) :/VS:’Z(”%) (,/1 —sfr—sl)m(t2+ 1 dt.

Notice that J (m, n) converges as 6 goes to 0 if and only if m + 2n < —1.
Consider the change of variables p = 16,/1 — s12 if 0 > 0.If & < 0, then we set

p=—10,/1— sf and conclusion will be the same. Hence, we assume that 8 > 0.
Then,

BO.5) e
/ g1(p,0,8)dp = —(n—3)s1(1 — sf) T gn—3tey (n —4, %) )
0s1

BO.s) Lia
[ im0 o250
Os1

First case: o« > 4 — n.
J(n—4,%5)and J(n — 3,5 — 1) goto +00 as § — 0. Furthermore, we have,

1

—L
J <n — 4, %) ,(\), (1 _ 512)% "2(“%) At gy

5

A/ 1—512

o 1 1 2 —12—0‘
5)371—3—}-0{0”‘34‘“(1 _Sl)

J(n — 4,

Since #"t%~3 may be equal to zero at zero, we write,

J(n _3, % - 1) = /\1/1_ (,/1 — 2 - sl>n_3(t2 05 tar
, le )
1

-3
o
@+12 .

We have
S S
J(n ~3,2- 1)~(1 —s%)%/ 2d) ssa gy
2 0 1

Then, if « # 4 — n,

o 1 1 o Lze
J(n—3,§—1)3n_4+a9”_4+a(1_s1) il
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and note thatif o =4—n, J(n—3,%—1)~o—(1 —s%)? In(0%(1—s?)). Hence,
by (A) we have,
B©.s) atl
H@, s)/ 21(0,0,8)dp = —H (@O, s)(n — 3)s1(1 — slz) T gn3tey
Os1

(n=3)n—-1)
X —> ——Zy,
6—0 n—34+a«

and

B(0.5) wil
H@®,s) €20, 0,8)dp = H®,s)a(1 —s7) 2 0" — 0.
0s1 0—0

Observe that \/llwi‘z < 92(11—_“2) — 1. Indeed, s1292 <1-0%2+ 925f. It follows
2 T 3

from (1.1) that

n—4
22 n—

=)

N‘
S

(p—0s)"* <

Recall that p = 16,/1 — slz. Since « > 4 — n , we have, for any s € sn-1 \
{(:tl’ 07 ey 0)}9

B(0.5)
H(@®,s) g1(p, 0, s)dp

n— atl
<20,(1—3)2"7 (1 — s3)"7 gn—3+e

S S
2(1-52 n—4+a
></V9(1 Dy
0

< Cu(n=3)2"T (1-5)“T g3

n—4+a
1 . 1 ’
X
02(1—s?)  \6%(1—s?)

<Cn—327 (1-52) 75 1-02(1 - 5?)

<Con—32T(1-s3) 7T

Since s — (1 — slz)%+4 is integrable on S" !, by Lebesgue Theorem we have,

B0,5) — N -1
/ H@®,s) g1(p,0,s)dpds — — wslds =0.
gn—1 051 6—0 Sn—1 n—3 + o
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Moreover, we have, for any s € sn-1 \{(£1,0,...,0)},sincea +n—5 >0,

e axl
<20, [a2"T (1 —s7)7 gr3te

JRS S
X/ 2(ie3) o
< Cplal2'T 1—s) T gn—3ta

n=3+a
/ l Sl 1 z
(t2 + 1)

92(1 —slz)

BO.5)
H (0, s)/ 82(p, 0, s)dp
Os

— —n+4
<C,lal2 22%(1 —s2)

Then, by Lebesgue Theorem,
B(®.s)
H@,s) g2(p, 0, s)dpds — 0.
gn—1 05, 6—0

Second case:3 —n <o <4 —n.
For the same reasons that when o« > 4 — n, we have,

pE.5) (n—3)(n—1)
H(O, L0, 8)dp — ——————
©.s) ) 81(p, 0. s)dp ~— —3ta

Furthermore,as4 —n > o >3 —n, Vs € S”_l\{(—l,O,...,O), (1,0,...,0)},

ICRY)

atl 3
H(@,s) g1(p,0,s)dp| <2C, (n—3)2 7 (1—s) 2 gnTita

1 g
X/ 02(1—:12) 2
<C,(n—3)2"7 (1—32) ton—3+a

B —
xf O

9;&‘]

_ Caln— 32" (1 - 52) T gnite
n—3+«a
n=3+a
1 2
|—— 1
(92(1—s2) )
_ Caln — 3T —sf)%"

n—3+a«a
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Then, by Lebesgue Theorem,

BO,5) 31
H®,s) ¢1(p, 0, 5)dpds —> — =3a=D . —o.
sn—1 01 6—0 -1 n—3+«

Moreover, J (n — 3, % — 1) is finite when & — 0 then, as @ > 3 — n, Furthermore,

B©,s)
H(0,s) 22(p, 0, s)dpds — 0.
0s1 6—0
B(0,s) sl
H(0,s) 22(p. 0, 8)dp| < 2C,|al2"T (1 —s2)"7 gnite
0s1

1 g
X/ 2(-3) 2
< Cylal2T (l—s) T gn—3+a

Ui )

(> + 1) 02(1 —s7)

n—1 2 —n+4 +00 1

Then, by Lebesgue Theorem,

B(8,s)
f H(9,s)/ 22(p, 0, s)dpds —> 0.
§n—1 s 6—0

Finally, we have

dGg
—5 ©® -—0.
6—0

By Lemma 3.1 we deduce that G is differentiable at O and %~ dG 57 0) =0. O
Lemma 3.3 The map 6 — G (0) is two times diﬁ"erentlable on (—1/2,1/2)\{0}.

Proof We know that the map 6 — %(Q,S)F (0,s) is differentiable on
(=1/2,1/2)\{0}. The maps 6 — n(0,s), 0 — gi(p.0,s), 0 — g2(p.0,s)
are differentiable on (—1/2, 1/2)\{0}. We have,

2
2 1)1 02 1027 — (s — 1)-2Liz)
(s —1) + 0257 — 0(s] )\/m
1— 602462}
(1= 62+ 0252 — 05;)"
N (n—3)0(s7 — 1) 0(s? — 1)
Ji—02 4022 \ J1-02 1023

n—4
x(Y1—02 4623 —0s1) .

an
—0,s) =
89( 5)

— 5]




The minimality of the map ”f—” for weighted energy 485

ad o
S5 (0.6.5) = (1= 3)(n = 45T (0 — 650" (p? +6°(1 - )

—an =351 (1 = sD)0(p — 0s1)" (2 + 02(1 — s7)) 2.

%("* 0,5) = —a(n —3)si(1 = 57)0(p — 05)"*(p* +6>(1 = s7)) ¢!
+a(e—2)(1 - s%)zez(p —0s)" 3 (p? + 92(1 _ 512))%72
ta(l—sP)(p —0s)" (0% + 0%(1 - 7).

We set,

g11(p,0,5) = (0 = 3)(n — HsT(p — 05" (0? +67(1 - 51)) 2,

21200, 0,5) = =2a(n = 351 (1 = s1)6 (o — 65"~ (> +67(1 = s)) 1",

21(0.0.5) = a(a — 2)(1 —53)%0%(p — 051" (0> +6%(1 — 53)) T2,

820, 0,5) = a(1 = 53) (0 — 05" 3 (p* +02(1 = 57)) ",

Leta, b € (0, 1/2) witha < b. We have, Vs € "1\ {(£1,0,...,0)},

0g1 -5 o
55 (P2 0,9)] = (1 =30 = Ha"2a*(1 = 57)
+lal(n — 34" (1 = 57) 2. 3.7)
982 9.5 < N 34%2(] — §2\3
%(p9 7S) _|Ol(C(— )l a ( —Sl)
+ |a|4"73a°‘71(1 — slz)%
+lal(n — 3)a" a1 (1 — 57)7. (3.8)

Then, for any i € {1, 2}, the maps 6 +— foz gi(p, 0, s)dp is differentiable on
(0,1/2), and

z

d cogi
— i(p,0,s)dp = —(p,0,s)dp.
20 Jo gi(p,0,s)dp /0 29 (p,0,s)dp

Furthermore, for any i € {l1,2}, 6 — %(p, 0,s) is continuous on
(—1/2, 1/2)\{0}, then, 6 f07 %(p, 6, s)dp, is continuous on (—1/2, 1/2)\{0}.
Hence, for any i € {1, 2} and for any € > 0, we have V#, k two sufficiently small,

/Hhagi( 0 +k, 5)d /Zag"( 0.5)d
A ) s § - A , 0,8
G p=] g o

=<

/Zagi( 0-+k. 5)d
A A 5 , S
T o

z 8gi Z+h3gl’
- oA 70’ d - ,9 k, d S .
/0 Y (p,0,s) p‘+/z 29 (p,0+k,s)dp|<e
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This proves that for any i € {1, 2}, (z,60) — fZ e (p, 0, s)dp is continuous on
[—1,3]x(—1/2, 1/2)\{0}. Moreover, for any i € {1 2} the map p — gi(p, 0, s) is
continuous on [—1, 3] forany 6 € (—1/2, 1/2)\{0}. Then, z > foz gi(p,0,s)dp
is differentiable on [—1, 3] forany 6 € (—1/2, 1/2)\{0} and 5 d fo gi(p,0,s)dp =
gi(z,0,5).

Since (z, 0) — g;(z, 0) is continuous on [—1, 3] x (—1/2, 1/2)\{0} we finally

deduce that for any i € {1,2}, 0 fﬁ(" ) 6:(p, 8, s)dp is differentiable on
(—1/2,1/2)\{0} and,

2
9 [BOS 0(s* — 1
0 i map = D
i=1 %Y Josi 1 — 6246257

x( —(n=3)s1(y/1 — 62+ 0257 — 6’s1)n*4
n-3
+ad(1-s)(y1-02+6%7 —0s1) )

BO.9) g2g,
+ 0,5)d
Z /9 o —=(p.0,5)dp.

S1

We deduce that 6 +— 3F is differentiable in (—1/2, 1/2)\ {0}. Moreover, we see
that the map,

0> A0, s) = (9(s12——1)<_ (n — 3)s1(,/1 — 02 4922 — esl)H

1— 6%+ 0237
+ad(1—s7) ({1 - 62+ 627 — esl)H)

is indefinitely differentiable on (—1/2,1/2) x S" 1. Then, by
(1.1, (1.2), (1.8), (1.7), (1.3) and (A), for any a,b € (0,1/2), a < b
there exists constants K1 ,.ap.a> K2.n.ab.a» K3.n.ab.« 0 that, for any |6| € (a, b),
forany s € "1\ {(£1,0,...,0)},

82

3-n
5 <K1naba(1_51) +K2naba(1_512) 2 + K3 naba-

szw

We deduce by Lebesgue Theorem that the map 6 — E () is two times differen-
tiable on (—1/2, 1/2)\{0} and,

d*G 92HF
s = [ s o

de? 062

Lemma3.4 [f5—n >« >4 —n, the map 6 — G(0) is two times differentiable
at 0.
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Proof Suppose that @ € (4 —n,5 — n). As in Lemma 3.5, we can see that,

92H 1(2n—3)st —(n—2)
—0,)F@,s)ds — — ds
-1 062 6—0 Jsn-12 n—24+«a
_ —n2+4n—3|sn71|
S 2n(n—2+a) ’
/ of @,s)n@,s)d 0
— —>
g1 06 P SIMEE )45 T
oH B®.5) 2(n=3)(n—1)
/ —(0,s) gi1(p,0,5)dp —> e 1]
sn—1 00 s 0—0 §n—1 n—3 + o
_ 2(n —3)(n — 1) &)
nn—3+a) ’
oH B(®.s)
— (0, ,0,8)d 0,
/S”_] 39( s)/esl 82(p,0,s) P
d —(n—1)?
f H(@,s)—"(e,s)ds—>/ (n—1)(s? — 1) ds = — =D g,
-1 00 0—>0 Jgn—1
and
/ H@®,s)A0,s)ds — 0.
sn—1 0—0
Asin Lemma 3.5, weset p = ,/1 — s%@t if & > 0. Hence,

BE.5) i
/ 211(p. 0. 5)dp = (n—3)(n—4)s>(1 — s7) 9”_4+“J<n _s, %)
Os1

B©s) I+a
/ g12(101 evs)dp:_za(n_3)5'1(1—s%) 2 9”_4+aj(n_4’%_1)
Os1

B©Os) Lia
/ g21(p,0,5)dp = a(a —2)(1 — sf) 2 9”—4+“J(n _3, % _ 2)
Os1

B(Os) Lt
f $22(0,0,8)dp = a(l —s7) 2 9”—4+‘¥J<n _3, % _ 1)
0

$1

Since o € (4 —n, 5 —n), the integrals J (n — 5, %) and J(n —3, % — 1) are infinite
and we have,

—l-a l—a
1— 2 Te—n—a+4 1— 2 T@—n—a-i-él
s(n-s.2)~ L200) (=3, %) )

0 n—4+« E n—44+a«
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And the integrals J (n — 4, 5 — 1) and J (n — 3, § — 2) are finite. Then,

/W’S) 0.0, 5)d (n —3)(n —4)si
’ ’ ﬁ -
0 §11Lp. 0.8 '0990 n—44«o

, U, _ .
0 82240, 5 8 p@o—)()l/l—4+0l

S1

S1

B@,s) B@,s)
f g12(p, 0, s)dp — 0, / g21(p,0,s)dp —> 0
0 00 00

S1 051

Moreover, we can see that, for any i, j € {1, 2}, for any (6,s) € (—1/2,1/2) x
SO, ... 0)),

5—n a+1

B(Os) il
H(9,s)/9 ij(0,0,8)dp < Cpo(1 —57) 7 + Dua(l —s7) 2.
51

where C, o and D, , are two constants independent of 6. By Lebesgue Theorem
we deduce that,

92F —(n—1)2
He. 9 w0 sds — “0 D g,
sn—1 062 0—0 n

n=-3)yn-H+amn-1) . _,
+(n—1 Y [S"71.

By Lemmas 1.1-1.3,0 — G(0) € Cl((—1/2, 1/2), R) and is two times differen-
tiable on (—1/2, 1/2)\ {0}. Furthermore, when o € (4 — n,5 — n), as the limit

of ‘227(5(9) exists as & — 0, we have 0 +— G(0) is two times differentiable on

(—=1/2,1/2). O
Proof of ii) Assume that @ € (4 — n, 5 — n), by Lemma 1.1-1.4, we have,

G®) = G(O) + - &G 0) + 0(6%)

= - 0 .

2 do?

Furthermore we have,

d’G  —n?44n—3 2= —1)
d@z(o)_2n(n—2—|—oc)|S I+ nn—3+a) ST
—(n—-10% =3 =Htamn =1
T - P "1,

We have, for any n > 6.

n—=—3Yn—-44+aoan-—1) —41 —2(n—4) <0.

Then,

n=3n—-4)+an—1) d*G
—> —o00, and —(0) — —o0.
nn—4+a) ar>-4-n d?6 ar>-~4—n
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Hence, there is «g such that, for any ¢ € (4 — n,ap), G(B) < G(0) for 6
sufficiently small, that is,

G(0) = Ezya(uy) = f || Vug|*dx < G(0) = / ||\ Vuo | dx. O
B” B”
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