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Abstract We study the asymptotic behavior of a family of functional describing
the formation of topologically induced boundary vortices in thin magnetic films.
We obtain convergence results for sequences of minimizers and some classes of
stationary points, and relate the limiting behavior to a finite dimensional problem,
the renormalized energy associated to the vortices.
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1 Introduction

In this article we analyze the behavior as ε → 0 of the functionals

Eε(u) = 1

2

∫
�

|∇u|2 + 1

2ε

∫
∂�

sin2(u − g)dH 1, (1.1)

where � is a simply connected domain in R
2, and g : ∂� → R a function such

that eig : ∂� → S1 is a map of degree D �= 0. We show convergence results
for sequences of minimizers and stationary points of not too high energy. The
limit functions are harmonic functions with boundary singularities. For certain
cases, in particular for minimizers, we give an asymptotic expansion for the en-
ergy, showing that the singular part of the energy depends only on the number of
such singularities, while their interaction energy is described by a renormalized
energy occurring as the first nonsingular term in the expansion, similar to results
obtained by Bethuel-Brezis-Hélein for the Ginzburg-Landau energy.

M. Kurzke (B)
Institute for Mathematics and its Applications, University of Minnesota. 400 Lind Hall, 207
Church Street SE, Minneapolis, MN 55455, USA
E-mail: kurzke@ima.umn.edu



2 M. Kurzke

The motivation to study the functionals (1.1) comes from micromagnetism.
Kohn and Slastikov [6] were able to show that it arises as a thin-film limit of the
micromagnetic energy functional given by

E(m) = w2
∫

�h

|∇m|2 +
∫

R3
|∇U |2, (1.2)

where �h = � × (0, h) is a Lipschitz domain in R
3, m : �h → S2, and U

is related to m via the static Maxwell equation �U = div(mχ�h ). The number
w is a material parameter, called the exchange length. We have neglected crystal
anisotropy here, which amounts to considering so-called soft magnetic films, and
have not included the interaction with an external magnetic field.

Depending on the relation between the length scales w, h and � = diam �,
many scaling limits of (1.2) can be considered, see [4] for an overview. We will
set � = 1 by choice of units (so h really denotes the aspect ratio), and concentrate
on thin films, i.e. h → 0. One of the first results in this direction is due to Gioia
and James [5], who studied the case where h → 0 while w stays constant. The
resulting limiting theory predicts the limit magnetization to be constant. However,
w is usually also small, and so it is useful to have theories that treat w as another
small parameter.

Kohn and Slastikov [6] studied the regimes w2

h| log h| → ∞ and w2

h| log h| → α ∈
(0, ∞) and could show �-convergence of appropriate rescalings of the micromag-
netic energy to limiting reduced energy functionals. In the first case, the limit
energy is finite only on constant in-plane magnetizations m ≡ m ∈ S1, and given
by

1

2π

∫
∂�

(m · ν)2dH 1,

where ν denotes the outer normal to ∂�. In the second case, the magnetization is
still forced to be in-plane and unit length, but need not be constant. The energy is
given by

E α(m) = α

∫
�

|∇m|2 + 1

2π

∫
∂�

(m · ν)2. (1.3)

In the borderline case where w2

h is constant, Moser [10, 11] was able to show
a convergence result for minimizers of (1.2) and could show the formation of
boundary vortices.

We investigate the behavior as α → 0 (i.e. w2

h| log h| → 0) of 1
α
E α which can

be seen as connecting the results of Kohn and Slastikov to that of Moser. The
functionals (1.1) correspond to those of (1.3) after the substitutions m = eiu and
ν = ieig .

Let us explain a bit how these functionals are similar to the Ginzburg-Landau
functional of [1]. With m0 = τ being a continuous unit tangent field to ∂�, we
are (after recaling and renaming variables) considering the variational problem for
m : � → R

2: Minimize

1

2

∫
�

|∇m|2 + 1

2ε

∫
∂�

(1 − (m · m0)
2)dH 1
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Fig. 1 A boundary vortex

subject to |m| = 1 in � as ε → 0. This problem has an interior constraint and a
boundary penalty.

Bethuel, Brezis and Hélein [1] studied the behavior as ε → 0 of

1

2

∫
�

|∇m|2 + 1

4ε2

∫
�

(
1 − |m|2)2

subject to m = m0 on ∂�, so this problem has a boundary constraint and an
interior penalty.

Common to both problems is that, as long as m0 has nonzero topological de-
gree, there is no map in H1(�, R

2) that satisfies the constraint and makes the
penalty term zero. This is due to the fact that a continuous map v : ∂� → S1 can
be extended to a continuous map v : � → S1 if and only if deg(v) = 0. Although
H1 maps need not be continuous, the argument still carries through to show
that there is not even an extension of finite H1 energy. Both problems are thus
forced to develop singularities as ε → 0, and the minimum energy will become
unbounded.

We call the singularities of both problems vortices, since minimizers con-
verge as ε → 0 to maps that have the form z−ai|z−ai | near the singularities ai . In
the Ginzburg-Landau case, these vortices are interior and each carries a topo-
logical degree of 1; in our case, the singularities lie on the boundary, and we
only see one half of the vortex. Each “boundary vortex” corresponds to a transi-
tion from m0 to −m0 or vice versa, and can be viewed as carrying 1

2 topological
charge. More detailed analysis (see Proposition 6.2) actually shows that the min-
imizers for small ε look like a standard vortex z

|z| placed at distance ε outside
the domain, see Fig. 1, where the domain is above the line and m0 is its tangent.
Since both our functional and the simplified Ginzburg-Landau functional exhibit
formation of singularities due to the same topological reason, it is perhaps not
too surprising that there are similarities in both the methods used and the results
obtained.

Our main results in this paper are Theorem 4.2, where we prove subconver-
gence of minimizers and isolation of vortices, Theorem 5.4 where we obtain sub-
convergence for stationary points satisfying a natural logarithmic energy bound,
and finally Theorem 8.6 where we give an asymptotic expansion of the energy
along a converging sequence with isolated vortices. The energy is given by a sin-
gular part depending only on the number of the vortices, and an O(1) part that
depends on the position of the vortices and can be calculated via the solution of a
linear boundary value problem.

Our approach to convergence theorems for minimizers follows the ideas of
Bethuel-Brezis-Hélein [1] and Struwe [13]. There are also similarities to the ap-
proach of Moser [11] who combined interior and boundary vortices, but without
calculating a renormalized energy. A different view of (1.1) was pursued in [7],
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where the functional was reduced to a nonlocal one on the boundary, and a �-
convergence theorem for the natural scaling was proved. In [7], we could treat
an arbitrary continuous periodic potential � with �−1(0) = πZ. In the present
paper, we rely on �(t) = sin2 t because we use the uniqueness result of Toland
[15]. However, after submission of this article, we learnt that X. Cabré and J. Solà-
Morales [3] have recently studied the half-space solutions corresponding to a large
class of potentials and proved a quite general uniqueness theorem. Independently
from our work, X. Cabré and N. Cónsul have also derived a renormalized energy
for a class of related problems, see [2].

2 Conventions and basic results

We will use the expression “a sequence ε → 0” meaning any sequence ε j → 0
that will then be regarded as fixed, and subsequences will be taken from this fixed
sequence.

We will use B+
R (z0) with z0 = (x0, y0) to denote the half-ball {z ∈ R

2 :
|z − z0| < R, y > y0}, and abbreviate B+

R = B+
R (0). The symbol �R will usually

denote the flat part of ∂ B+
R .

We usually omit to explicitly mention the measure when writing integrals,
unless there is possibility of confusion. Integrals over 2-dimensional sets like B+

R ,
� etc. are thus implicitly meant to be w.r.t. 2-dimensional Lebesgue measure,
while integrals over 1-dimensional sets such as �R , ∂� or ∂ B R ∩ � are w.r.t.
1-dimensional Hausdorff measure H 1.

For the convenience of the reader, we collect some results on existence and
regularity results for minimizers and stationary point of (1.1) whose proofs are
relatively straightforward.

Proposition 2.1 For all ε > 0, the functional Eε attains its minimum.

Proposition 2.2 Stationary points of Eε satisfy the equation

∫
�

∇u · ∇ϕ + 1

2ε

∫
∂�

sin(2(u − g))ϕ = 0 (2.1)

for all ϕ ∈ H1(�). Any solution u of (2.1) is of class H2(�), and is a strong
solution of the equations

�u = 0 in � (2.2)

∂u

∂ν
= − 1

2ε
sin 2(u − g) on ∂�. (2.3)

If in addition ∂� ∈ Ck+1 and g ∈ Ck (i.e. eig ∈ Ck), then u ∈ Hk+1(�). In
particular, if ∂� and g are C∞, then u ∈ C∞(�). If ∂� and g are real analytic,
then also u is real analytic up to the boundary.

Proof The Hk regularity can be proved by a difference quotient argument. The
claim about the analyticity follows from [9]. 	
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3 Localization of vortices

In this section we show that for sequences (uε) of stationary points of Eε that
satisfy an energy bound

Eε(uε) ≤ M log
1

ε
, (3.1)

the approximate vortex set Sε := {z ∈ ∂� : sin2(u(x) − g(x)) ≥ 1
4 } can be

covered by a bounded number of ε-balls.
In order to see that the assumption (3.1) is reasonable, we show that it holds

true for minimizers:

Proposition 3.1 There is a constant C1 = C1(�, g) such that any sequence of
minimizers (uε) of Eε satisfies

Eε(uε) ≤ π D log
1

ε
+ C1. (3.2)

Proof It suffices to construct one sequence of functions (vε) satisfying this bound.
To this end, choose 2D distinct points a1, . . . , a2D ∈ ∂� and let 0 < R <
1
2 mini �= j |ai − a j |. We construct the comparison function vε separately inside
BR(ai ) ∩ � and in the rest of the domain. Setting ai = 0 without loss of gen-
erality, we can assume R to be so small that � ∩ BR = {reiϑ : ϑ1(r) < ϑ <
ϑ2(r), 0 < r < R} with |ϑ ′

j | ≤ c and so |ϑ2(r) − ϑ1(r) − π | ≤ cr . With

h1(r) = g(eiϑ1(r)) + kπ and h2(r) = g(eiϑ2(r)) + (k − 1)π , k ∈ Z, we define vε

in � ∩ (BR \ Bε) as

vε(reiϑ) = h2(r) − h1(r)

ϑ2(r) − ϑ1(r)
(ϑ − ϑ1(r)) + h1(r).

Note that this function satisfies sin2(vε − g) = 0 on BR ∩ ∂�. Expressing the
Dirichlet integral in polar coordinates, it is then easy to see that the part corre-
sponding to the radial derivative is bounded independently of ε. The tangential
derivative yields the term

1

2

∫ R

ε

∫ ϑ2

ϑ1

1

r2

(
h2 − h1

ϑ2 − ϑ1

)2

rdrdϑ = 1

2

∫ R

ε

(h2 − h1)
2

r(ϑ2 − ϑ1)
dr ≤ 1

2

∫ R

ε

(π + cr)2

π − cr
dr,

and this can be estimated by π
2 log R

ε
+ C . Inside Bε ∩ �, we will have to vio-

late the condition sin2(vε − g) = 0 in order to obtain a function with bounded
Dirichlet energy. By scaling, it is easy to see that a continuation of vε with uni-
formly bounded Dirichlet integral exists, and since H 1(∂� ∩ Bε) ≤ cε, this
shows Eε(vε; BR ∩ �) ≤ π

2 log R
ε

+ c. Choosing the constants k = ki near each
ai appropriately and using a harmonic continuation of vε|∂ B R(ai ) and g + kiπ to
� \ ∪BR(ai ), we finally can combine everything to a comparison function satis-
fying (3.2). 	


As in the proofs for corresponding results in Ginzburg-Landau vortices [1],
[13], a central point in obtaining estimates is a Rellich-Pohoz̆aev identity. We state
it in the following form:
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Lemma 3.2 Assume that � ⊂ R
2 is a Lipschitz domain, u ∈ H2(�) is harmonic,

and w ∈ C1(�, C) is holomorphic inside �. Then
∫

∂�

∂u

∂ν
(w · ∇u) = 1

2

∫
∂�

(w · ν)|∇u|2, (3.3)

where ν denotes the outer normal to ∂�.

Proof For any u ∈ H2(�), it is easy to prove by direct calculation and using the
Cauchy-Riemann equations for w that

∇u · ∇(w · ∇u) = 1

2
div(w|∇u|2).

Integrating by parts
∫
�

�u(w · ∇u) = 0 and using the last identity, (3.3) now
follows easily from the Gauß-Green theorem. 	

We note the following important consequence of (3.3):

Lemma 3.3 Let � be a strongly star-shaped Lipschitz domain, i.e. assume there
exists a p ∈ � and k > 0 such that (z − p) · ν ≥ k|z − p| for all z ∈ ∂�. Assume
u ∈ H2(�) is harmonic. Then there exist constants 0 < c < C depending only on
k such that

c
∫

∂�

∣∣∣∣∂u

∂τ

∣∣∣∣
2

≤
∫

∂�

∣∣∣∣∂u

∂ν

∣∣∣∣
2

≤ C
∫

∂�

∣∣∣∣∂u

∂τ

∣∣∣∣
2

, (3.4)

where ∂u
∂τ

denotes the tangential derivative.

Proof With p being a star point as above that we assume to be 0 without loss of
generality, we use the Rellich-Pohoz̆aev identity (3.3) with w(z) = z. This shows

∫
∂�

∂u

∂ν
z · ∇u = 1

2

∫
∂�

(z · ν)|∇u|2.

From the decomposition ∇u = ∂u
∂ν

ν + ∂u
∂τ

τ we obtain

∫
∂�

∣∣∣∣∂u

∂ν

∣∣∣∣
2

z · ν + ∂u

∂ν

∂u

∂τ
z · τ = 1

2

∫
∂�

(∣∣∣∣∂u

∂τ

∣∣∣∣
2

+
∣∣∣∣∂u

∂ν

∣∣∣∣
2
)

z · ν

from which it follows that

∫
∂�

∣∣∣∣∂u

∂ν

∣∣∣∣
2

z · ν =
∫

∂�

∣∣∣∣∂u

∂τ

∣∣∣∣
2

z · ν − 2
∫

∂�

∣∣∣∣∂u

∂ν

∂u

∂τ

∣∣∣∣ z · τ,

and now we can use the lower bound z · ν ≥ k|z|, |τ | = 1 and the inequality
2AB ≤ αA2 + α−1 B2 to finish the proof. 	


In the following we will derive estimates relating the penalty term and the
following radial derivative of the energy:
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Definition 3.4 For z0 ∈ ∂�, ε > 0 and u ∈ H2(�) define for all ρ > 0

A(ρ) = Au,ε,z0(ρ) = ρ

∫
∂ Bρ(z0)∩�

|∇u|2dH 1 + ρ

ε

∫
∂ Bρ(z0)∩∂�

sin2(u −g)dH 0.

(3.5)

Proposition 3.5 There exist ε0 > 0 and C2 > 0 depending only on � and g such
that for all ε < ε0, ρ < ε3/4, any stationary point u of Eε, and any z0 ∈ ∂�, the
following inequality holds:

1

2ε

∫
�ρ(z0)

sin2(u − g) ≤ Au,ε,z0(ρ) + C2
√

ε, (3.6)

where �ρ(z0) = ∂� ∩ Bρ(z0).

Proof We choose ε0 so small that for all ρ < ε
3/4
0 and all z0 ∈ ∂�, ωρ(z0) =

�∩ Bρ(z0) is strongly star-shaped in the sense of Lemma 3.3 with respect to some
pρ ∈ ωρ(z0), with a k > 0 that can be chosen uniformly in ρ and z0. In addition,
we assume by using ∂� ∈ C2 and choosing ε0 sufficiently small that there exists
a vector field Z ∈ C1(�, R

2) with the property that for |z − z0| < ε
3/4
0 , there hold

Z ·ν = 0 on ∂� and the inequalities |Z−z| ≤ C |z−z0|2 and |∇Z−id | ≤ C |z−z0|.
Setting z0 = 0 for convenience, we multiply �u = 0 with z · ∇u and obtain by
integration by parts over ωρ the relation∫

ωρ

∇u · ∇(z · ∇u) =
∫

∂ωρ

∂u

∂ν
z · ∇u.

We use (3.3) and split z = Z + (z − Z) on �ρ . This yields

1

2

∫
∂ωρ

(z · ν)|∇u|2 = ρ

∫
∂ Bρ∩�

∣∣∣∣∂u

∂ν

∣∣∣∣
2

+
∫

�ρ

∂u

∂ν
Z · ∇u +

∫
�ρ

∂u

∂ν
(z − Z) · ∇u.

Noting that Z · ∇u = (Z · τ) ∂u
∂τ

, where τ is a tangent field to ∂�, we can integrate
the term involving Z by parts and obtain using (2.3)∫

�ρ

∂u

∂ν
Z · ∇u = − 1

2ε

∫
�ρ

sin 2(u − g)
∂u

∂τ
(Z · τ)

= − 1

2ε

∫
∂�∩∂ Bρ

sin2(u − g)(Z · τ)dH 0

+ 1

2ε

∫
�ρ

sin2(u − g)
∂

∂τ
(Z · τ) − 1

2ε

∫
�ρ

sin 2(u − g)
∂g

∂τ
(Z · τ).

Combining this with the results above shows

1

2ε

∫
�ρ

sin2(u − g)
∂

∂τ
(Z · τ) = 1

2ε

∫
∂�∩∂ Bρ

sin2(u − g)Z · τdH 0

+ 1

2ε

∫
�ρ

sin 2(u − g)Z · τg′ + 1

2

∫
∂ωρ

z · ν|∇u|2

+
∫

∂ωρ

∂u

∂ν
(Z − z) · ∇u − ρ

∫
∂ Bρ∩�

∣∣∣∣∂u

∂ν

∣∣∣∣
2

.
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Dropping the final term due to its sign, using the assumptions on Z , a C1 bound
on g, and |z · ν| ≤ Cρ2 on �ρ , we obtain that

(1 − Cρ)
1

2ε

∫
�ρ

sin2(u − g) ≤ 1 + Cρ

2

ρ

ε

∫
∂�∩∂ Bρ

sin2(u − g)dH 0

+ 1

ε
c(g)ρ2 + (

Cρ2 + ρ

2

) ∫
∂ Bρ∩�

|∇u|2 + Cρ2
∫

�ρ

|∇u|2.

By the star-shapedness of ωρ and Lemma 3.3 we have the estimate

∫
�ρ

|∇u|2 ≤ C

(∫
�ρ

∣∣∣∣∂u

∂ν

∣∣∣∣
2

+
∫

∂ Bρ∩�

|∇u|2
)

and by (2.3), we can estimate

∫
�ρ

∣∣∣∣∂u

∂ν

∣∣∣∣
2

= 1

4ε2

∫
�ρ

4 sin2(u − g) cos2(u − g) ≤ 2

ε

(
1

2ε

∫
�ρ

sin2(u − g)

)
.

Combining terms, we obtain
(

1 − Cρ − Cρ2

ε

)
1

2ε

∫
�ρ

sin2(u − g) ≤ 1 + Cρ

2

ρ

ε

∫
∂�∩∂ Bρ

sin2(u − g)dH 0

+
(

Cρ2 + ρ

2

) ∫
∂ Bρ∩�

|∇u|2 + Cρ2

ε
,

and from this we can deduce the claim for ε < ρ < ε3/4 and ε < ε0 sufficiently
small. 	

This leads to the following criterion for vortex-free parts of the boundary:

Proposition 3.6 There are constants γ > 0 and C3 > 0 depending on � and g
such that for every z0 ∈ ∂�, ε < ε0 (with ε0 from Proposition 3.5), ρ < ε3/4, and
every stationary point u of Eε satisfying Au,ε,z0(ρ) < γ , there holds

sup
�ρ/2(z0)

sin2(u − g) <
1

4
(3.7)

and
1

2ε

∫
�ρ(z0)

sin2(u − g) ≤ C3. (3.8)

Proof By Lemma 3.3, we can estimate

∫
�ρ

∣∣∣∣∂u

∂τ

∣∣∣∣
2

≤ C
∫

∂ωρ

∣∣∣∣∂u

∂ν

∣∣∣∣
2

≤ C
∫

∂ Bρ∩�

|∇u|2 + C
∫

�ρ

∣∣∣∣∂u

∂ν

∣∣∣∣
2

. (3.9)
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From (3.6), the definition of A in (3.5) and A(ρ) < γ , we thus can estimate, using
(2.3) as in the last proof and Sobolev embedding in one dimension

[u]2
C0,1/2(�ρ)

≤ C
∫

�ρ

∣∣∣∣∂u

∂τ

∣∣∣∣
2

≤ C

(
1

ρ
A(ρ) + 1

ε2

∫
�ρ

sin2(u − g)

)

≤ C

ε

(
2γ + C2

√
ε0

)
.

Assume now that sin2(u(z) − g(z)) ≥ 1
4 for some z ∈ �ρ/2. Then by the last

equation and the differentiability of g, there holds sin2(u(z′) − g(z′)) ≥ 1
8 at least

for |z − z′| ≤ ε
C(γ+√

ε0)
, where the latter term is ≥ ε

2 if we choose ε0 and γ

sufficiently small. We estimate
∫
�ρ

sin2(u − g) from below:

1

2ε

∫
�ρ

sin2(u − g) ≥ 1

2ε

1

8

ε

2
≥ 1

32
.

On the other hand, we have by Proposition 3.5 the upper bound γ + C2
√

ε0, and
now choosing γ and ε0 sufficiently small leads to a contradiction. 	

Lemma 3.7 Let (uε) be a sequence of stationary points of Eε satisfying the log-
arithmic energy bound Eε(uε) ≤ M log 1

ε
. Then for any z0 ∈ ∂�, the function

A(ρ) = Auε,ε,z0(ρ) defined as in (3.5) satisfies

inf
ε6/7≤ρ≤ε5/6

A(ρ) ≤ 84

log 1
ε

Eε(uε;� ∩ Bε5/6(z0)) ≤ 84M (3.10)

and
inf

5ε5/6≤ρ≤5ε4/5
A(ρ) ≤ 60M. (3.11)

Proof The first claim follows from the calculation

M log
1

ε
≥ Eε(uε; �∩Bε5/6)≥ 1

2

∫ ε5/6

ε6/7

A(ρ)

ρ
dρ ≥ 1

2
(inf A) log

ε5/6

ε6/7
= inf A

84
log

1

ε
.

The inequality (3.11) follows in a similar manner. 	

As in Ginzburg-Landau theory (see e.g. the lecture notes of Rivière [12]) sets

that carry a small amount of energy do not contain vortices:

Lemma 3.8 (η-compactness) There exist constants η0, ε0 > 0 such that for any
ε < ε0 and ρ < ε3/4, and every stationary point u of Eε satisfying for some
z0 ∈ ∂� the inequality

Eε(u; Bρ(z0) ∩ �) ≤ η0 log
ρ

ε
,

there holds sin2(u − g) < 1
4 on Bρ/2(z0) ∩ ∂�.
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Proof By virtually the same argument as above, we obtain around any z ∈
Bρ/2(z0) ∩ ∂� that

η0 log
ρ

ε
≥ 1

2

∫ ε3/4/2

ε/2

A(r)

r
dr ≥ 1

8
(inf A) log

1

ε
,

hence

inf
ε/2<σ<ε3/4/2

A(σ ) ≤ 8
log ρ

ε

log 1
ε

< 8η0.

We can now choose η0 sufficiently small so that Proposition 3.6 implies the
claim. 	

Proposition 3.9 There is a constant N = N (g, �, M) such that for any sequence
of stationary points uε satisfying the energy bound Eε(uε) ≤ M log 1

ε
, the approx-

imate vortex set Sε can be covered by at most N balls of radius ε, such that the
ε/5 balls around the same centers are disjoint.

Proof For z ∈ Sε, we choose by virtue of Proposition 3.6 and Lemma 3.7 a radius
ρ ∈ [ε6/7, ε5/6] such that

84

log 1
ε

Eε(uε; � ∩ Bε4/5(z)) ≥ Auε,ε,z(ρ) ≥ γ. (3.12)

Choose by Vitali’s 5r covering lemma z j = zε
j ∈ Sε, j ∈ Jε, such that Sε ⊂

∪ j∈Jε B5ε4/5(z j ), and such that the Bε4/5(z j ) are disjoint. Then (3.12) shows that

|Jε| ≤ 84M

γ
. (3.13)

We now choose radii ρ j ∈ [5ε5/6, 5ε4/5] such that Auε,ε,z j (ρ j ) ≤ 60M . Using
Proposition 3.6 we obtain

1

2ε

∫
∂�∩Bρ j (z j )

sin2(uε − g) ≤ C,

and now by the same argument as in the proof of Proposition 3.6, we see

[uε]C0,1/2(∂�∩Bρ j (z j ))
≤ C√

ε
, (3.14)

and this again implies

1

2ε

∫
∂�∩Bε/5(z j )

sin2(uε − g) ≥ c > 0. (3.15)

Using once more the 5r lemma, we can choose zk = zε
k , k ∈ Kε such that Bε/5(zk)

are disjoint and Bε(zk) cover Sε. By (3.13) and (3.15) we now have

c|Kε| ≤
∑

k∈Kε

1

ε

∫
∂�∩Bε/5(z j )

sin2(uε − g) ≤
∑
j∈Jε

1

ε

∫
∂�∩Bρ j (z j )

≤ 84C M

γ
,

which implies the claim. 	
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For comparison arguments we shall need the following lower bound for the
energy on half-annuli:

Proposition 3.10 Let 0 < ρ < R ≤ R0, R0 sufficiently small, z0 ∈ ∂�, w.l.o.g.
z0 = 0. Assume DR,ρ = (BR \ Bρ) ∩ � = {reiϑ : ϑ1(r) < ϑ < ϑ2(r), ρ < r <
R} with |ϑ2(r) − ϑ1(r) − π | ≤ Cr. Assume also that for j = 1, 2 there holds
(u − g)(reiϑ j (r)) ∈ (k jπ − δ, k jπ + δ) for some k j ∈ Z and δ ∈ (0, π

2 ). Then
there is a constant depending on R0 (which in turn depends on �) and g so that
for any such function u, its energy is bounded below as

Eε(u; DR,ρ) ≥ π

2
(k2 − k1)

2 log
R

ρ
− C(k2 − k1)

2
(

R + ε

ρ

)
. (3.16)

Proof We will use the abbreviations u j (r) = u(reiϑ j (r)) and g j = g(reiϑ j (r)) for
the functions on the two boundary components. We also assume w.l.o.g. k1 = k
and k2 = 0. Using polar coordinates, disregarding the radial derivative and by use
of Hölder’s inequality, we calculate

∫
DR,ρ

|∇u|2 ≥
∫ R

ρ

1

r

∫ ϑ2

ϑ1

∣∣∣∣ ∂u

∂ϑ

∣∣∣∣
2

dϑdr

≥
∫ R

ρ

1

ϑ2 − ϑ1

(∫ ϑ2

ϑ1

∣∣∣∣ ∂u

∂ϑ

∣∣∣∣
)2

≥
∫ R

ρ

(u1 − u2)
2

r(π + cr)
dr.

We rewrite u1 − u2 = kπ − (u1 − g1 − kπ) − (u2 − g2) − (g1 − g2). Using the
lower bound sin2(t − kiπ) ≥ σ t2 valid for |t | < δ with some σ = σ(δ), we can
thus estimate

Eε(u; DR,ρ)≥ 1

2

∫ R

ρ

1

r(π + cr)
(kπ−(g1−g2)−((u1−g1 − kπ)−(u2 − g2)))

2

+ σ

ε

(
(u1 − g1 − kπ)2 + (u2 − g2)

2)2
dr.

On the last term, we use the inequality a2 +b2 ≥ 1
2 (a+b)2 with a = u1 −g1 −kπ

and b = u2 − g2. Then we use the inequality α(A − B)2 + β B2 ≥ 1
1
α
+ 1

β

A2

that can be obtained by optimizing over B on A = (kπ − (g1 − g2) and B =
(u1 − g1 − kπ) + (u2 − g2). This yields using also a C1 bound on g

Eε(u; DR,ρ) ≥ 1

2

∫ R

ρ

(kπ − cr)2

r(π + cr) + 4ε
σ

dr.

After subtraction of k2π
2r , the integral of the difference can then be estimated by

−C |k|(R − ρ) − Ck2ε

(
1

ρ
− 1

R

)

which implies the claim. 	




12 M. Kurzke

4 Convergence results by comparison arguments

In this section, we assume uε to be stationary points of Eε satsfying an upper
bound

Eε(uε) ≤ π D log
1

ε
+ C0 (4.1)

for some constant C0, where D is the degree of eig . This bound holds true for
minimizers by Proposition 3.1. We will use the following notation. By Proposition
3.9, there exist aε

j ∈ ∂�, 1 ≤ j ≤ Nε ≤ N such that the approximate vortex set
Sε satisfies Sε ⊂ ∪1≤ j≤Nε Bε(aε

j ). Passing to a subsequence of ε → 0, we can

assume that Nε = N0 is constant and aε
j → a0

j as ε → 0. Note that the a0
j need

not be distinct. We define for 0 < σ < 1
2 mina0

j �=a0
j ′

dist(a0
j , a0

j ′) the sets �ε
σ =

� \ ∪ j Bσ (aε
j ) and �0

σ = � \ ∪ j Bσ (a0
j ). With this setup (and this subsequence)

we have the following bounds:

Proposition 4.1 There is a constant C = C(g, �, C0) such that Eε(uε;�ε
σ ) ≤

π D log 1
σ

+ C.

Proof We follow closely the proof of Proposition 3.3 in [13]. We write x j for
aε

j and set N = {1, . . . , N0}. Let Rσ
ε denote the set of radii in [ε, σ ] such that

∂ B R(x j )∩ Bε(x�) = ∅ for j �= � and such that there exists for R ∈ Rσ
ε a NR ⊂ N

with the properties that (BR(x j )) j∈NR is disjoint, NR ⊂ NR′ for R′ ≤ R and
∪ j∈N Bε(x j ) ⊂ ∪ j∈NR BR(x j ). It is possible to show that Rσ

ε = ∪M
m=1[αm, βm],

where for R = αm , there exists � /∈ NR with Bε(x�) \ ∪ j∈NR BR(x j ) �= ∅, and for
R = βm , there exist j �= � ∈ NR with ∂ B R(x j ) ∩ BR(x�) �= ∅. Then NR = Nm

is constant for R ∈ [αm, βm] and Nm+1
� Nm so M ≤ N0. In addition, there

exists a constant K = K (N0) such that α1 ≤ K ε, βM ≥ σ
K and αm+1 ≤ Kβm ,

since never more than N balls can touch.
On the half-annuli Dβm ,αm (x j ) for j ∈ Nm , we apply Proposition 3.10 with a

jump height κm, j that satisfies �m� j∈Nm κ
2
m, j ≥ ∣∣�m� j∈Nm κm, j

∣∣ = 2D. This
leads to the estimate

Eε

(
uε; �ε

σ

) ≤ Eε(u; �) −
M∑

m=1

∑
j∈Nm

Eε(u; Dβm ,αm (x j )

≤ π D log
1

ε
+ C0 −

∑
m

∑
j

π

2
κ

2
m, j

(
log

βm

αm
− C

)

≤ π D log
1

ε
+ C − π D

∑
m

(log βm − log αm)

≤ π D log
1

σ
+ C. 	


Theorem 4.2 Let (uε) be a sequence of critical points satisfying the energy bound
Eε(uε) ≤ π D log 1

ε
+ C0. Then there is a subsequence and N = 2D points
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a1, . . . , aN ∈ ∂� such that

∫
�′

|∇uε|2 ≤ M(�′) < ∞ (4.2)

for all open �′ with �′ ⊂ � \ {a1, . . . , aN }. Additionally, there hold the bounds

∫
�

|∇uε|p ≤ C(p) (4.3)

uniformly in ε for all 1 ≤ p < 2. In particular, after adding a suitable zε ∈ 2πZ,
a subsequence of (uε) converges weakly in H1

loc and W 1,p, p < 2, to a harmonic
function u∗. The limit has the properties that (u∗ − g) is piecewise constant on
∂� \ {a1, . . . , aN }, with values in πZ, and jumps by −π at the points a j .

Proof We use the setup described at the beginning of this section. In particular, we
use the points a0

j as defined there. Note that for ε < ε0(σ ), there holds �0
σ ⊂ �ε

σ/2
and so by Proposition 4.1,

∫
�0

σ

|∇uε|2 ≤ 2Eε

(
uε;�ε

σ/2

) ≤ 2π D log
2

σ
+ C, (4.4)

which proves (4.2). To obtain the L p bounds (4.3), fix a σ > 0 and 1 ≤ p < 2.
Then by Hölder’s inequality and Proposition 4.1

∫
�

|∇uε|p ≤
∫

�ε
σ

|∇uε|p +
∞∑

�=1

∫
�ε

2−�σ
\�ε

2−�+1σ

|∇uε|p

≤ C +
∞∑

�=1

∣∣�ε
2−�σ

\ �ε
2−�+1σ

∣∣1−p/2

(∫
�ε

2−�σ

|∇uε|2
)p/2

≤ C + c
∞∑

�=1

2−(1−p/2)�

(
2π D log

1

2�σ
+ C

)p/2

≤ C,

since the sum converges by the root test. From this L p gradient bound, we obtain
the weak compactness up to translation by Poincaré’s inequality. The weak limit
u∗ is harmonic since

∫
�

∇u∗ ·∇ϕ = limε→0
∫
�

∇uε ·∇ϕ = 0 for all ϕ ∈ C∞
c (�).

That the boundary values satisfy u∗ − g ∈ πZ with possible jumps at the ai

follows from
∫
∂�

sin2(uε − g) → 0 and (uε − g) being close to πZ outside the
approximate vortex set Sε.

We still have to prove that N = 2D and that there is a jump by −π at each
of the points a j . To see this, we note that we can localize parts of the proof of
Proposition 4.1 around aε

j to obtain

Eε

(
uε;� ∩ Bη

(
aε

j

)) ≥ π

2

∑
m

κ
2
m, j log

1

ε
− C(η)
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The jump of u∗ at a0
j is −πd j , where d j = ∑

m κm, j so
∑

m κ
2
m, j ≥ |d j |. The

upper bound on the energy now implies

∑
j

|d j | ≤ 2D + C(η)

log 1
ε

.

Letting ε → 0 we obtain � j |d j | ≤ 2D = � j d j , which proves d j ≥ 0. Since by
the lower bound argument, the energy around those a0

j with d j > 0 already suf-
fices to make up for the singular part of the energy, we can use the η-compactness
lemma 3.8 to see that d j = 0 is impossible.

To finish the proof, we need to show d j = 1. To this end, we compare the
energy of uε to that of u∗. Letting ε → 0 in (4.4) and using the weak lower
semicontinuity of the Dirichlet integral, we have

∫
�0

σ

|∇u∗|2 ≤ 2π D log
1

σ
+ C.

On the other hand, Proposition 7.1 shows that for σ sufficiently small,
∫

�0
σ

|∇u∗|2 ≥ π
∑

j

d2
j log

1

σ
− C.

Combining these estimates shows � j (d2
j − d j ) ≤ 0. Since d j �= 0, it follows that

d j = 1 for all j . 	


5 Convergence results by PDE arguments

The W 1,p convergence results of the previous section also hold for general sta-
tionary points where upper and lower energy bounds do not match as those for
minimizers do. Away from the vortices, there also holds convergence in higher
norms.

Proposition 5.1 There is a constant C > 0 such that for every sequence of sta-
tionary points uε satisfying the energy bound Eε(uε) ≤ M log 1

ε
, there holds

lim sup
ε→0

osc
�

uε ≤ C

In particular, by adding a suitable sequence zε ∈ 2πZ, the uε themselves can be
assumed to be uniformly bounded in L∞.

Proof From Proposition 3.9 we know that there exist a bounded number of points
aε

i ∈ ∂� such that | sin(uε − g)| < 1
2 outside ∪i Bε(aε

i ), so the oscillation there
is bounded. Inside Bε(aε

i ) ∩ ∂�, the oscillation is bounded since there we have
[uε]C0,1/2 ≤ C√

ε
as follows from the proof of Proposition 3.9. By the maximum

principle, the bounds extend to �. 	
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Proposition 5.2 Let u = uε be a stationary point of Eε and let z0 ∈ ∂�, w.l.o.g.
z0 = 0. Let R > 0 be such that BR ∩ Sε = ∅, where Sε is the approximate vortex
set. Let G ∈ H1(BR) be a function with G|∂�∩BR(z) = g, and let k ∈ Z such that
|u − g − kπ | ≤ arcsin 1

2 . Then for any ϑ < 1 there holds

∫
Bϑ R∩�

|∇u|2 + 1

ε

∫
∂�∩Bϑ R

(u − g − kπ)2 ≤ C (5.1)

Proof We test the equation (2.1) with η2(u − G − kπ). This yields

0 =
∫

�

η2|∇u|2 + 1

2ε

∫
∂�

η2 sin 2(u − g − kπ)(u − g − kπ)

+ 2
∫

�

η(u − G − kπ)∇u · ∇η +
∫

�

η2∇u · ∇G.

By the monotonicity sin 2(u − g − kπ)(u − g − kπ) ≥ c(u − g − kπ)2 that holds
true by choice of k since Sε ∩ BR = ∅ and by aid of Young’s inequality, we obtain

∫
�

η2|∇u|2 + c

ε

∫
∂�

|u − g − kπ |2 ≤ C
∫

�

|∇η|2(u − G − kπ)2 + η2|∇G|2.

Choosing a standard cut-off function η satisfying η = 1 on Bϑ R and η = 0 outside
BR with |∇η| ≤ C

R(1−ϑ)
, we obtain the result. 	


Proposition 5.3 Let uε be stationary points of Eε satisfying Eε(uε) ≤ M log 1
ε
.

Assume (by aid of Proposition 3.9) that the approximate vortex set Sε is covered
by

⋃N
j=1 Bε(aε

j ). Then for any σ > 0, the energy of uε on �ε
σ = � \ ⋃

j Bσ (aε
j )

can be estimated as

Eε

(
uε;�ε

σ

) ≤ C log
1

σ
. (5.2)

Proof This follows from Proposition 5.2 since the part of �ε
σ near the bound-

ary can always be covered by a logarithmical number of balls, see Fig. 2. In the
remaining sector, classical interior gradient bounds for harmonic functions also
show logarithmic bounds. If many vortices are close together, we can combine the
bounds obtained near each vortex similar to the argument in the proof of Proposi-
tion 4.1. 	

Theorem 5.4 There is for 1 ≤ p < 2 a constant C = C(g, p, M,�) such that
for every sequence uε of stationary points of Eε satisfying Eε(uε) ≤ M log 1

ε
,

there holds ∫
�

|∇uε|p ≤ C. (5.3)

Proof This follows exactly as in the proof of Theorem 4.2 from the estimate
(5.2). 	
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Fig. 2 Construction for the proof of Proposition 5.3: The set B+
σ0

\ B+
σ is covered by the cir-

cular sector Sσ
ϑ0

and some squares Qi in geometrical progression that can thus be covered by
C(ϑ0) log σ0

σ
half-balls not touching B+

ε .

Remark 5.5 Theorem 5.4 can fail without the assumption Eε(uε) ≤ M log 1
ε

that
provides an a priori bound on the number of vortices. Counterexamples (with � =
B1(0) and g = 0) can be constructed by conformally mapping the periodic half-
space solutions given by Toland [15] to the unit disk, see [8, Sect. 5.5] for some
more explicit calculations. This is in contrast to Ginzburg-Landau theory, where
the logarithmic a priori bound always holds in the case of a starshaped domain [1,
Theorem X.1].

To obtain bounds in higher norms, we will flatten the boundary and use a harmonic
extension of the forcing function g. By changing variables we obtain

Proposition 5.6 Let z0 ∈ ∂�, w.l.o.g z0 = 0 and ∂� has horizontal tangent at 0.
Then for ρ > 0 sufficiently small, the part of � near z0 can be written as a graph of

a C1 function γ over its tangent plane, so � : B+
ρ → �, �(x, y) = (x, y +γ (x))

is a diffeomorphism of B+
ρ onto a (closed) relative neighborhood of z0 in �.

Let uε be a stationary point of Eε and G a harmonic extension of g to �(B+
ρ )

with bounded Dirichlet integral. Then the function wε = (uε − G) ◦ � solves the
PDE ∫

B+
ρ

ai j∂iwε∂ jϕ +
∫

�ρ

(
1

2ε
sin 2wε + h

)
bϕ = 0 (5.4)

for all ϕ ∈ H1(B+
ρ ) that vanish near ∂ Bρ , where (ai j ) = (

1 −γ ′
−γ ′ 1+γ ′2 ), b =√

1 + γ ′2 and h = ∂G
∂ν

◦ �−1.

Proposition 5.7 Let w = wε be a solution of (5.4) and R > 0 such that sin2 w <
1
4 on �R. Then for ϑ < 1

∫
B+

ϑ R

|∇2w|2 + 1

ε

∫
�ϑ R

∣∣∣∣∂w

∂τ

∣∣∣∣
2

≤ C(ϑ, R). (5.5)

Proof For ease of presentation, assume ∂� is already flat, and g = 0. Then ai j =
δi j , b = 1, h = 0. We differentiate (5.4) and test with η2∂1w, where η denotes
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the usual cut-off function that is 0 outside B+
R , 1 inside B+

ϑ R , and satisfies |∇η| ≤
C

R(1−ϑ)
. This shows

∫
B+

R

∇∂1w∇(η2∂1w) + 1

2ε

∫
�R

∂1(sin 2w)η2∂1w = 0 (5.6)

We now use ∂1(sin 2w) = 2 cos(2w)∂1w and 2 cos(2w) = 2(1 − 2 sin2 w) ≥ 1 to
obtain by Young’s inequality for any α∫

B+
R

η2|∇∂1w|2 + 1

ε

∫
�R

η2|∂1w|2 ≤ α

∫
B+

R

η2|∇∂1w|2 + 1

α

∫
B+

R

|∇η|2|∇w|2

(5.7)
Using the result of Proposition 5.2 and choosing α < 1, we obtain the claimed
bound for ∂1∇w. We can extend this to the full second gradient since ∂22w =
−∂11w and hence |∂1∇w| = |∂2∇w|. 	

Proposition 5.8 Let uε be stationary points of Eε satisfying Eε(uε) ≤ M log 1

ε
.

Assume the approximate vortex set Sε is covered by Bε(aε
j ), with aε

j → a0
j as

ε → 0. Then on �σ = � \ ⋃
Bσ (a0

j ) there holds the estimate

lim sup
ε→0

∫
�σ

|∇2uε|2 ≤ C(σ ) (5.8)

as well as

lim sup
ε→0

1

ε

∫
∂�∩∂�σ

sin2(uε − g) = 0. (5.9)

Proof The first claim follows from (5.5) and a covering argument. For the second,
we observe that the H2 bound implies weak H2 convergence uε → u∗ and thus
also ∂uε

∂ν
→ ∂u∗

∂ν
in L2. Now we have (with � = ∂� ∩ ∂�σ )

1

ε

∫
�

sin2(uε − g) ≤ C

ε

∫
�

sin2(uε − g) cos2(uε − g) = Cε

∫
�

∣∣∣∣∂uε

∂ν

∣∣∣∣
2

,

which tends to 0 by the convergence of ∂uε

∂ν
. 	


6 The half-space solutions

Blow-up of the solutions of (2.2)–(2.3) at scale ε will lead to a half-space problem.
The resulting equation is the Peierls-Nabarro equation known from the theory of
crystal dislocations, and its solutions have been classified by Toland [15]. We will
use the following essential uniqueness result:

Theorem 6.1 (Toland [15]) Let u be a bounded solution of

�u = 0 in R
2+ (6.1)

∂u

∂ν
= −1

2
sin 2u on R. (6.2)
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Then either u is periodic or constant, or there exist n ∈ Z, a ∈ R, and a sign such
that

u(x, y) = ± arctan
x + a

y + 1
+ πn + π

2
(6.3)

Proposition 6.2 Assume uε are stationary points of Eε satisfying Eε(uε) ≤
M log 1

ε
, let z0 ∈ ∂� and define wε := (uε − G) ◦ � as above. Then the func-

tions Vε(z) = wε(εz) converge weakly in H1
loc(R

2+) to a nonperiodic solution of
(6.1)–(6.2).

Proof As in the proof of Proposition 5.3, the energy of wε satisfies a logarithmic
energy bound ≤ C log ρ

ε
, giving a local bound for the Dirichlet energy of Vε in

B+
R .

It follows that Vε ⇀ V in H1(BR) for every R. Since Vε satisfies the PDE
∫

B+
ρ/ε

aε
i j∂i Vε∂ jϕ +

∫
�ρ/ε

(
1

2
sin 2Vε + hε

)
bεϕ = 0 (6.4)

for all ϕ ∈ H1(B+
ρ/ε) vanishing near ∂ Bρ/ε, where aε

i j (z) = ai j (εz), bε(z) =
bε(εz) and hε(z) = ε( ∂G

∂ν
◦ �)(εz). Letting ε → 0, we have aε

i j → δi j , bε → 1,

and hε → 0 uniformly in every B+
R . Passing to the limit in (6.4) we thus obtain

that V satisfies the weak form of (6.1)– (6.2). The limit cannot be periodic since
this and the strong convergence Vε → V in L2

loc(R) would otherwise contradict
Proposition 3.9 for ε sufficiently small. 	

Corollary 6.3 If (uε) are stationary points of Eε with Eε(uε) ≤ M log 1

ε
, then

the approximate vortex set Sε can be covered (for a subsequence) by disjoint balls
Bσε(aε

j ) for some aε
j ∈ ∂� and some σ > 0. If (uε) have been minimizers or local

minimizers (i.e. with respect to variations of small support) then aε
j converge to

distinct points a0
j as ε → 0.

Proof It follows via (3.15) from (3.14) and the fact that the only possible L2
loc(R)

limits of the blowup of Proposition 6.2 around a point are constant or the Toland
solution that for ε small enough, around every interval in Sε ⊂ ∂� we need to
have a jump of ±π . Two such intervals need to be an asymptotic distance bigger
than K ε apart since otherwise the ε-scale blowup would converge to a solution
that shifts twice by π , at a distance K . Such a solution does not exist by Theorem
6.1. Hence, σε-balls will be eventually disjoint. They have to cover for some σ by
Proposition 3.9.

The second part follows as in the proof of Theorem 4.2. 	


7 The renormalized energy

In this section we calculate the energy of the possible limit functions, and obtain
a singular term plus a renormalized energy W that depends on the position of the
singularities. Furthermore, we calculate the gradient of this energy.
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Proposition 7.1 (Energy expansion for limit functions) Let �a = (ai ) with i =
1, . . . , N be a collection of distinct points in ∂�, di ∈ Z with �i di = 2D, and let
u∗ be a harmonic function such that u∗ −g ∈ πZ on ∂� and u∗ jumps by −diπ at
the points ai . Then the Dirichlet energy of u∗ in the domain �ρ = �\∪N

i=1 Bρ(ai )
has the following asymptotic expansion as ρ → 0:

1

2

∫
�ρ

|∇u∗|2 = π

2

N∑
i=1

d2
i log

1

ρ
+ W + O(ρ log ρ), (7.1)

where W is the renormalized energy corresponding to (ai , di ) that can be calcu-
lated by the expression

W = −π
∑

1≤i< j≤N

di d j log |ai − a j | + 1

2

∫
∂�

V g′ − π

2

N∑
j=1

d j R(a j ). (7.2)

Here V denotes a solution of the inhomogeneous Neumann problem

�V = 0 in � (7.3)

∂V

∂ν
= g′ − π

N∑
j=1

d jδa j on ∂�, (7.4)

and R is a harmonic function, continuous on � and given by

R(z) = V (z) −
N∑

j=1

d j log |z − a j |. (7.5)

Proof Similar to the corresponding proof for interior vortices (where the lifting of
eiu to u can be done only locally) in [1, Chapter I], this follows by observing that
V and u∗ are harmonic conjugates, hence have the same energy. The energy of V
is then calculated using (7.5). 	

Proposition 7.2 The gradient of W at a point �a = (ai ) (with fixed �d = (di )) is
given by

∇�a W (�a) = ( fi (ai )), (7.6)

where fi (z) = ∂
∂ν

(u∗(z) − di arg(z − ai )).

Proof We follow the calculations in [1, pp. 87–89]. Fix all but one of the points
(ai ), say a j . Now let �b(z) denote for b ∈ ∂� the solution (normalized to have
mean 0 on ∂�) of

��b = 0 in � (7.7)

∂�b

∂ν
= g′ − π

∑
k �= j

dkδak − πd jδb on ∂�. (7.8)
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We also set L(z) = ∑
k �= j dk log |z − ak | and �b = �b − L . Both �b and L are

harmonic in �, and the normal derivatives are given by

∂

∂ν
L = −π

∑
k �= j

dkδak + h

for some bounded function h, and

∂

∂ν
�b = g′ − h − πd jδb.

We also set Rb(z) = �b(z) − d j log |z − b|. Rb is C1 on �. Finally, for b �= b′ we
define another harmonic function ζ by

ζ(z) = Rb′(z) − Rb(z) + d j log
|z − b′|
|z − b| = �b′(z) − �b(z) = �b′(z) − �b(z).

The normal derivative of ζ is then

∂ζ

∂ν
= −πd j (δb′ − δb).

Now we use Green’s identity on �b and �b′ for b �= b′, from which we obtain∫
∂�

(�b′ ∂
∂ν

�b − �b
∂
∂ν

�b′) = 0. Hence
∫

∂�

(� ′
b −�b)(g

′ − h) = πd j (�b′(b)−�b(b
′)) = πd j (Rb′(b)− Rb(b

′)). (7.9)

From using Green’s identity on the harmonic functions L and ζ we obtain

−πd j (L(b′) − L(b)) =
∫

∂�

(�b′ − �b)h − π
∑
k �= j

dk(Rb′(ak) − Rb(ak))

− πd j

∑
k �= j

dk log
|ak − b′|
|ak − b| .

Expanding out L , the logarithmic terms cancel, and so∫
∂�

(�b′ − �b)h = π
∑
k �= j

dk(Rb′(ak) − Rb(ak)).

By (7.9) and the definition of �, this shows

π
∑
k �= j

dk(Rb′(ak)− Rb(ak))+πd j (Rb′(b)− Rb(b
′)) =

∫
∂�

(�b′ −�b)g
′. (7.10)

Differentiating (7.10) with respect to b ∈ ∂� and setting b′ = b, we see (with
∂b Rb, ∂z Rb denoting tangential differentiation with respect to the subscript and
the argument, respectively)

−π
∑
k �= j

dk∂b Rb(ak) + πd j (∂z Rb(b) − ∂b Rb(b)) +
∫

∂�

∂b�bg′ = 0. (7.11)
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Now W is given by

W = − π
∑
k �= j

dkd j log |b − ak | − π

2

∑
k �= j

∑
� �= j,k

dkd� log |ak − a�|

+ 1

2

∫
∂�

�bg′ − π

2

∑
k �= j

dk Rb(ak) − π

2
d j Rb(b).

Differentiating tangentially with respect to b, we obtain

∂bW = −π
∑
k �= j

dkd j
(b − ak) · τ

|b − ak |2 + 1

2

∫
∂�

∂b�bg′

− π

2

∑
k �= j

dk∂b Rb(ak) − π

2
d j (∂z Rb(b) + ∂b Rb(b)).

Using (7.11), we can simplify this to

∂bW = −π
∑
k �= j

dkd j
(b − ak) · τ

|b − ak |2 − πd j∂z Rb(b).

On the other hand, the tangential derivative of the function

S j (z) = �b(z) − d j log |z − b| = Rb(z) +
∑
k �= j

dk log |z − ak |

at b is given by

∂

∂τ
S j (b) =

∑
k �= j

dk
(b − ak) · τ

|b − ak |2 + ∂z Rb(b),

so ∂bW = −π ∂
∂τ

S j (b). Since the u∗ corresponding to �a and �b are conjugate
harmonic (and so are arg and log),

∂

∂ν
(u∗ − d j arg(z − b)) = − ∂

∂τ
S j ,

so summing up, the derivative of W with respect to changing b = a j is given by

∂

∂a j
W (a) = π

∂

∂ν
(u∗(z) − d j arg(z − a j )). (7.12)
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8 Energy expansion for isolated vortices

In this section we consider stationary points of Eε such that Sε can be covered by
balls Bσε(aε

j ) with aε
j → a0

j that are distinct, such that the jump d j near these
points is ±1 (this is true for minimizers by Corollary 6.3), and obtain that there is
an asymptotic expansion of the energy in terms of the renormalized energy of the
last section.

To this end, let us assume wε to be a solution of (5.4) around some point z0

that satisfies | sin 2wε| < 1
4 on �R0 \�σε and supB+

R
|wε| ≤ C . Assume in addition

that |w(±x, 0) − k±π | < 1
4 for x ∈ (σε, R0), with k± ∈ Z and |k+ − k−| = 1.

These assumptions are valid for minimizers by Corollary 6.3.
Let wε be the solution of

�wε = 0 in R
2+

∂wε

∂ν
= − 1

2ε
sin 2wε on R = ∂R

2+

that satisfies wε(x, 0) → k± as x → ±∞ and wε(0, 0) = k−+k+
2 . Without loss of

generality, we assume k+ = k− + 1. By Toland’s uniqueness result Theorem 6.1,
wε is given by

wε(z) = k− + W0

( z

ε

)
(8.1)

where W0 is the base solution

W0(z) = π

2
+ arctan

x

y + 1
. (8.2)

Proposition 8.1 For R <
R0
2 , there holds

∫
B+

R

|∇wε − ∇wε|2 + 1

ε

∫
�R

|wε − wε|2 ≤ C. (8.3)

Proof The function wε is a solution of
∫

B+
R

δi j∂iwε∂ jϕ + 1

2ε

∫
�R

sin 2wεϕ = 0 for all ϕ ∈ C∞
0

(
B+

R

)
. (8.4)

With the notation used already in Proposition 5.6 and setting g j = (ai j −δi j )∂iwε

and H = bh + (b − 1) 1
2ε

sin 2wε, we can rewrite (8.4) as

∫
B+

R

ai j∂iwε∂ jϕ + 1

2ε

∫
�R

sin 2wεbϕ =
∫

B+
R

g j∂ jϕ +
∫

�R

Hϕ, (8.5)

where H and g j satisfy by the definition of ai j and the explicit form of wε the
estimates |g j | ≤ Cr 1√

r2+ε2
≤ C and |H | ≤ C + C r

2ε
(1 ∧ ε

r ) ≤ C . Subtracting
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(8.5) from (5.4) and testing with η2(wε − wε) leads using ellipticity and Young’s
inequality for any δ > 0 to the estimate

c
∫

B+
R

η2|∇wε − ∇wε|2 + 1

2ε

∫
�R

η2(sin 2wε − sin 2wε)(wε − wε)

≤ C
∫

B+
R

|∇η|2(wε − wε)
2 + C

∫
B+

R

η2(g2
1 + g2

2

) + Cε

δ

∫
�R

η2 H2

+ δ

ε

∫
�R

η2(wε − wε)
2.

On �R \�σε, we have by assumption that (sin 2wε −sin 2wε)(wε −wε) ≥ c|wε −
wε|2 and so we can choose δ > 0 small enough and use η ≤ 1 and the bounds on
g j and H to obtain

c
∫

B+
R

η2|∇wε − ∇wε|2 + c

ε

∫
�R

η2|wε − wε|2 ≤ C
∫

B+
R

|∇η|2(wε − wε)
2

+ C R2 + C Rε + 1

2ε

∫
�σε

|(sin 2wε − sin 2wε)(wε − wε)| + |wε − wε|2.
(8.6)

Choosing for η a smooth function that is equal to 1 on B+
R/2, equal to 0 outside B+

R

and satisfying |∇η| ≤ C
R , the right hand side is seen to be bounded by a constant

depending on R. 	

Proposition 8.2 For all ε > 0 there exists aε ∈ R such that for all C1 > 0 there
holds

1

2ε

∫
�C1ε

|wε(x, 0) − wε(x − aεε, 0)|2 → 0 as ε → 0. (8.7)

The shifts aε are uniformly bounded: |aε| ≤ C0.

Proof Rescaling by ε, we obtain the functions Wε(z) = wε(εz) and W ε(z) =
wε(εz) = W (z). If the assertion were false, then there exists a subsequence ε → 0
and a δ > 0 such that

1

2

∫
�C1

|Wε(x) − W (x − a)|2 ≥ δ > 0 (8.8)

for all a with |a| ≤ C0. Repeating up to rescaling the proof of Proposition 6.2,
we obtain that Wε ⇀ W∗ in H1(B+

R ) for all R > 0, for some W∗ ∈ H1
loc(R

2+).
W∗ must be a solution of the half-space problem, and by Rellich-Kondrachov
embedding on the boundary, we obtain

∫
�R

|W∗ − W |2 = lim
ε→0

∫
�R

|Wε − W |2 ≤
∫

R

|Wε − W |2 ≤ C
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by (8.3), in particular the difference W∗ − W is in L2(R). From Toland’s theorem
6.1 we obtain that W∗ can only be a translation of W , i.e. W∗(z) = W (z − a).
From ∫

R

|W∗ − W |2 ≤ C

and the explicit form of the solution we deduce that |a| ≤ C0 for some C0. The
convergence Wε ⇀ W∗ also implies

∫
�C1

|Wε − W∗|2 → 0

as ε → 0, contradicting (8.8). 	

Proposition 8.3 If we redefine wε by choosing the shifts aε as in Proposition 8.2,
then the energies of wε and wε are asymptotically close:

lim sup
ρ→0

lim sup
ε→0

∫
B+

ρ

|∇wε − ∇wε|2 = 0 (8.9)

and

lim sup
ρ→0

lim sup
ε→0

1

ε

∫
�ρ

|wε − wε|2 = 0 (8.10)

Proof Let R ≤ R0
4 . Then by a suitable Poincaré inequality

∫
B+

R \B+
R/2

|wε −wε|2 ≤ C R2
∫

B+
R \B+

R/2

|∇wε −∇wε|2 + C R
∫

�R\�R/2

(wε −wε)
2.

(8.11)
This and (8.6) show together with Proposition 8.2 that
∫

B+
R/2

|∇wε −∇wε|2 ≤ C
∫

B+
R \B+

R/2

|∇wε −∇wε|2 +C
ε

R
+C R2 +ω(ε), (8.12)

where ω(ε) → 0 as ε → 0. Adding the integral over B+
R/2 to both sides (“filling

the hole”) leads with ϑ = C
C+1 < 1 to

∫
B+

R/2

|∇wε − ∇wε|2 ≤ ϑ

∫
B+

R

|∇wε − ∇wε|2 + C
ε

R
+ C R2 + ω(ε), (8.13)

from which we conclude the first claim: By (8.3) the limit is finite, and if it is not
zero then letting ε → 0 and R → 0 in (8.13) leads to a contradiction. The second
follows from the first, (8.6) and Proposition 8.2. 	

Proposition 8.4 There holds

lim sup
ρ→0

lim sup
ε→0

∣∣∣∣∣
∫

B+
ρ

ai j∂iwε∂ jwε −
∫

B+
ρ

|∇wε|2
∣∣∣∣∣ = 0 (8.14)
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Proof We have
∫

B+
ρ

ai j∂iwε∂ jwε =
∫

B+
ρ

ai j∂iwε∂ jwε + 2
∫

B+
ρ

ai j∂iwε∂ j (wε − wε)

+
∫

B+
ρ

ai j∂i (wε − wε)∂ j (wε − wε). (8.15)

The last term tends to 0 by Proposition 8.3. For the other terms, we have
∣∣∣∣∣
∫

B+
ρ

ai j∂iwε∂ jwε −
∫

B+
ρ

|∇wε|2|
∣∣∣∣∣ ≤

∫
B+

ρ

Cr
1

r2
≤ Cρ

and ∣∣∣∣∣
∫

B+
ρ

ai j∂iwε∂ j (wε − wε)

∣∣∣∣∣ ≤
∫

B+
ρ

Cr
1

r
|∇wε − ∇wε|,

which goes to 0 by Hölder’s inequality and (8.9). For the final term, we use the
harmonicity of wε and integrate by parts. This shows

∫
B+

ρ

∇wε · ∇(wε − wε) =
∫

�ρ

∂wε

∂ν
(wε − wε) +

∫
∂ Bρ∩R

2+

∂wε

∂ν
(wε − wε)

The integral over ∂ Bρ ∩ R
2+ can be estimated since the integrand is bounded by

Cε

ρ2 , which tends to 0 under the convergence considered. The other is via Hölder’s

inequality bounded by (C
ε

∫
�R

|wε − wε|2)1/2, which tends to 0 by (8.10). 	

Proposition 8.5 The energy of wε on B+

ρ satisfies

lim
ε→0

(
1

2

∫
B+

ρ

|∇wε|2 + 1

2ε

∫
�ρ

sin2 wε − π

2

(
log

ρ

ε
+ 1 − log 2

))
= 0. (8.16)

Proof This follows from an explicit calculation. 	

Theorem 8.6 Assume that uε are stationary points of Eε with Eε(uε) ≤ M log 1

ε

and uε → u∗ in H1
loc∩W 1,p(�), where u∗ is the harmonic function corresponding

to (ai , di ) as in Proposition 7.1. Assume furthermore that the vortices are isolated,
i.e. the centers of the balls covering the approximate vortex set Sε converge to
distinct points. Then as ε → 0, there holds

Eε(uε) = π D log
1

ε
+ W (ai , di ) + π D(1 − log 2) + ω(ε), (8.17)

where D = 1
2

∑
d2

i , W is the renormalized energy of Proposition 7.1, and
ω(ε) → 0 as ε → 0.

The configuration (ai ) is a stationary point for W with fixed di , and (locally)
minimizing if uε has been (locally, i.e. w.r.t. variations of small support) minimiz-
ing.
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Proof By Proposition 5.8, we have uε → u∗ in H1(�ρ), and in particular for any
ρ > 0

lim
ε→0

Eε(uε;�ρ) = 1

2

∫
�ρ

|∇u∗|2.

Inside ωρ = Bρ(a j ) ∩ �, we use again a harmonic extension G of g. With vε =
uε − G there holds∫

ωρ

|∇uε|2 =
∫

ωρ

|∇vε|2 + 2
∫

∂ωρ

vε

∂G

∂ν
+

∫
ωρ

|∇G|2 =
∫

ωρ

|∇uε|2 + O(ρ).

In the limit limρ→0 limε→0, we can thus work with vε instead of uε. From
Proposition 8.4 we already know that the energy of vε on �(B+

ρ ) is close to that
of wε on B+

ρ . The symmetric difference �ρ := �(B+
ρ )�(Bρ ∩ �) does not play

a role here since

lim sup
ρ→0

lim sup
ε→0

∫
�ρ

|∇vε|2

≤ C lim sup
ρ→0

lim sup
ε→0

∫
�−1(�ρ)

|∇wε|2

= C lim sup
ρ→0

lim sup
ε→0

∫
�−1(�ρ)

|∇wε|2 = 0

by (8.14) and the explicit form of wε. Similarly, there also holds (using (8.10))

lim sup
ρ→0

lim sup
ε→0

1

ε

∫
∂�ρ∩∂�

sin2(uε − g) = 0.

Since

lim sup
ρ→0

lim sup
ε→0

1

ε

∣∣∣∣∣
∫

�ρ

sin2 wεb −
∫

�ρ

sin2 wε

∣∣∣∣∣ = 0

as can again be deduced form (8.10) and

lim
ρ→0

sup
|t |<ρ

b = 1,

the energy of uε in Bρ ∩� is thus asymptotically that of wε in B+
ρ . We thus obtain

the claim from Proposition 7.1 and Proposition 8.5.
To show that (a j ) is a stationary point of the renormalized energy, we use

Proposition 7.2 so we need to show that ∂
∂ν

(u∗ − d jϑ) is zero at a j , where ϑ =
arg(z − a j ). To this end, we calculate using harmonicity of uε and u∗ and setting
h = u∗ − d jϑ

∫
∂�∩Bρ

∂uε

∂ν
= −

∫
∂ Bρ∩�

∂uε

∂ν

ε→0−−→ −
∫

∂ Bρ∩�

∂u∗
∂ν

=
∫

∂�∩Bρ

∂u∗
∂ν

=
∫

∂�∩Bρ

∂h

∂ν
± ∂ϑ

∂ν
.
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Using the PDE, we have
∫

∂�∩Bρ

∂uε

∂ν
= 1

2ε

∫
∂�∩Bρ

sin 2(uε − g) = 1

2ε

∫
�−1(∂�∩Bρ)

sin 2wεb.

Using estimates from above, we can again replace �−1(∂� ∩ Bρ) by �ρ up to an
error that is O(ρ2). Similarly, we can estimate

lim sup
ε→0

∣∣∣∣∣
1

2ε

∫
�ρ

sin 2wεb −
∫

�ρ

sin 2wε

∣∣∣∣∣

≤ lim sup
ε→0

(∫
�ρ

sin2 2wε

)1/2 (∫
�ρ

(b − 1)2

)1/2

+ C lim sup
ε→0

1

2ε

∫
�ρ

(sin 2wε − sin 2wε)

= O(ρ3/2) + 0

by (8.10) and |b(s) − 1| ≤ Cs. Since
∫
∂�∩Bρ

∂ϑ
∂ν

= O(ρ2) we obtain that, as

ρ → 0, we also have 1
ρ

∫
∂�∩Bρ

∂h
∂ν

→ 0, hence ∂h
∂ν

= 0 at a j .
To show that (a j ) is (locally) minimizing if we started with (local) minimizers,

we can construct for any (a′
j ) a test function vε similar to that of Proposition 3.1

by interpolating linearly in the radial variable between G + wε ◦ �−1 inside Bρ

and u∗ in �2ρ . It is not hard to show that resulting function vε then has an energy
whose O(1) part is given up to a constant by W (a′

j , d j ), and by minimality we
obtain W (a j , d j ) ≤ W (a′

j , d j ). 	
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