DOI: 10.1007/s00526-004-0318-1

Mariano Giaquinta · Domenico Mucci

The relaxed Dirichlet energy of mappings into a manifold

Received: 6 November 2004 / Accepted: 15 November 2004 Published online: 22 December 2004 – © Springer-Verlag 2004

Abstract. Let \mathcal{Y} be a smooth 1-connected compact oriented manifold without boundary, such that its 2-homology group has no torsion. We characterize in any dimension n the weak $W^{1,2}(B^n, \mathcal{Y})$ lower semicontinuous envelope of the Dirichlet integral of Sobolev maps in $W^{1,2}(B^n, \mathcal{Y})$.

Let \mathcal{Y} be a smooth compact, connected, oriented Riemannian manifold of dimension $M \geq 2$, without boundary, and isometrically embedded in \mathbb{R}^N for some $N \geq 3$. We shall assume that \mathcal{Y} is 1-connected, i.e., $\pi_1(\mathcal{Y}) = 0$ and, moreover, that its integral 2-homology group $H_2(\mathcal{Y}) := H_2(\mathcal{Y}; \mathbb{Z})$ has no torsion, so that $H_2(\mathcal{Y}; X) = H_2(\mathcal{Y}) \otimes X$ for $X = \mathbb{R}, \mathbb{Q}$.

Let Ω be a smooth bounded domain in \mathbb{R}^n . Define

$$W^{1,2}(\Omega,\mathcal{Y}) := \{ u \in W^{1,2}(\Omega,\mathbb{R}^N) \mid u(x) \in \mathcal{Y} \quad \text{for a.e. } x \in \Omega \}$$

and for every $u \in W^{1,2}(\Omega, \mathcal{Y})$, and every Borel set $A \subset \Omega$, denote by

$$\mathbf{D}(u,A) := \frac{1}{2} \int_{A} |Du|^2 \, dx \,, \qquad \mathbf{D}(u) := \mathbf{D}(u,\Omega)$$

the Dirichlet integral of u on A. Also, let B^n be the unit ball in \mathbb{R}^n , let \widetilde{B}^n denote a bounded domain in \mathbb{R}^n such that $B^n \subset \widetilde{B}^n$, e.g. $\widetilde{B}^n := B^n(0,2)$, and let $\varphi : \widetilde{B}^n \to \mathcal{Y}$ be a given smooth $W^{1,2}$ function. Finally, for $X = C^1$ or $W^{1,2}$ we define

$$X_{\varphi}(\widetilde{B}^n,\mathcal{Y}) := \{ u \in X(\widetilde{B}^n,\mathcal{Y}) \mid u = \varphi \quad \text{on } \ \widetilde{B}^n \setminus \overline{B}^n \} \,.$$

In this paper we consider the *relaxed Dirichlet energy* w.r.t. the weak $W^{1,2}$ convergence, defined for every $u \in W^{1,2}(\Omega, \mathcal{Y})$ by

$$\begin{split} \widetilde{\mathbf{D}}(u) &:= \inf \{ \liminf_{k \to +\infty} \mathbf{D}(u_k) \mid \{u_k\} \subset C^1(\Omega, \mathcal{Y}) \,, \\ u_k \rightharpoonup u \quad \text{weakly in } W^{1,2}(\Omega, \mathbb{R}^N) \} \end{split}$$

M. Giaquinta: Scuola Normale Superiore, Piazza dei Cavalieri 7, 56100 Pisa, Italy (e-mail: giaquinta@sns.it)

D. Mucci: Dipartimento di Matematica dell'Università di Parma, Via D'Azeglio 85/A, 43100 Parma, Italy (e-mail: domenico.mucci@unipr.it)

and for every $u \in W^{1,2}_{\varphi}(\widetilde{B}^n, \mathcal{Y})$ by

$$\begin{split} \widetilde{\mathbf{D}}_{\varphi}(u) &:= \inf \{ \liminf_{k \to +\infty} \mathbf{D}(u_k) \mid \{u_k\} \subset C^1_{\varphi}(\widetilde{B}^n, \mathcal{Y}) \,, \\ u_k \rightharpoonup u \quad \text{weakly in } W^{1,2}(\widetilde{B}^n, \mathbb{R}^N) \} \end{split}$$

By Schoen-Uhlenbeck density theorem [13], if n = 2 we have $\mathbf{D}(u) = \mathbf{D}(u)$ and $\widetilde{\mathbf{D}}_{\varphi}(u) = \mathbf{D}_{\varphi}(u)$. Moreover, by the sequential weak density theorem of Pakzad-Rivière [12], $\widetilde{\mathbf{D}}(u) < +\infty$ and $\widetilde{\mathbf{D}}_{\varphi}(u) < +\infty$ if $n \ge 3$.

In this paper we characterize the relaxed Dirichlet energy of any $W^{1,2}$ map u in terms of the mass of the *minimal connections* between the *singularities* of u, see Theorems 1 and 2, extending this way the results of [3], for n = 3 and $\mathcal{Y} = S^2$, and [14] for $n \ge 3$ and $\mathcal{Y} = S^2$. Before stating our results, we recall some facts from [9], see also [8].

Singularities of Sobolev maps. Since $H_2(\mathcal{Y})$ is torsion-free, there are generators $[\gamma_1], \ldots, [\gamma_{\overline{s}}]$, i.e., integral cycles in $\mathcal{Z}_2(\mathcal{Y})$, such that

$$H_2(\mathcal{Y}) = \left\{ \sum_{s=1}^{\overline{s}} n_s \left[\gamma_s \right] \mid n_s \in \mathbb{Z} \right\}.$$
(1)

By the de Rham theorem the second real homology group is in duality with the second cohomology group $H^2_{dR}(\mathcal{Y})$, the duality being given by the natural pairing

$$< [\gamma], [\omega] > := \gamma(\omega) = \int_{\gamma} \omega, \qquad [\gamma]_{\mathbb{R}} \in H_2(\mathcal{Y}; \mathbb{R}), \quad [\omega] \in H^2_{dR}(\mathcal{Y}).$$

We will then denote by $[\omega^1], \ldots, [\omega^{\overline{s}}]$ a dual basis in $H^2_{dR}(\mathcal{Y})$ so that, δ_{sr} being the Kronecker symbols, $\gamma_s(\omega^r) = \delta_{sr}$. Also, we may and do assume that ω^s is the harmonic form in its cohomology class.

For every $u \in W^{1,2}_{\varphi}(\widetilde{B}^n, \mathcal{Y})$ it is well defined the current G_u carried by the graph of u, see [9]. Also, following [9], Vol. II, Sect. 5.4.2, for every $s = 1, \ldots, \overline{s}$ we define the (n-3)-current $\mathbb{P}_s(u) \in \mathcal{D}_{n-3}(\widetilde{B}^n)$ by

$$\mathbb{P}_s(u) := \partial \pi_{\#}(G_u \, \llcorner \, \widehat{\pi}^{\#} \omega^s) \,, \tag{2}$$

where $\pi : \mathbb{R}^n \times \mathbb{R}^N \to \mathbb{R}^n$ and $\hat{\pi} : \mathbb{R}^n \times \mathbb{R}^N \to \mathbb{R}^N$ denote the orthogonal projection onto the first and second factor, respectively. More explicitly, since $d\omega^s = 0$,

$$\mathbb{P}_s(u)(\phi) = \partial G_u(\pi^{\#}\phi \wedge \widehat{\pi}^{\#}\omega^s) = \int_{\widetilde{B}^n} d\phi \wedge u^{\#}\omega^s \qquad \forall \phi \in \mathcal{D}^{n-3}(\widetilde{B}^n).$$

Maps into the sphere. If $\mathcal{Y} = S^2$, the unit sphere in \mathbb{R}^3 , setting

$$\mathbb{P}(u)(\phi) := \frac{1}{4\pi} \partial G_u(\pi^{\#} \phi \wedge \widehat{\pi}^{\#} \omega_{S^2}) = \frac{1}{4\pi} \int_{\widetilde{B}^n} d\phi \wedge u^{\#} \omega_{S^2} \,, \quad \phi \in \mathcal{D}^{n-3}(\widetilde{B}^n) \,,$$
(3)

 ω_{S^2} being the volume 2-form on S^2 , it turns out that

$$\mathbb{P}(u) = \partial \mathbb{D}(u)$$

for some (n-2)-dimensional current $\mathbb{D}(u)$ with spt $\mathbb{D}(u) \subset \overline{B}^n$. More precisely, we let D(u) denote the smooth (n-2)-vector field dual to $u^{\#}\omega_{S^2}$, the so called *D*-field of Brezis, Coron and Lieb [4], which is defined by

$$< D(u)(x), \phi >:= u^{\#} \omega_{S^2} \wedge \phi \qquad \forall \phi \in \Lambda^{n-2}(\mathbb{R}^n) \,. \tag{4}$$

Then we have

$$\mathbb{D}(u)(\gamma) = \frac{1}{4\pi} \int_{\widetilde{B}^n} \langle \gamma, D(u) \rangle \, dx \,, \qquad \gamma \in \mathcal{D}^{n-2}(\widetilde{B}^n) \,.$$

In the particular case n = 3, we have

$$D(u) := (u \cdot u_{x_2} \times u_{x_3}, \, u \cdot u_{x_3} \times u_{x_1}, \, u \cdot u_{x_1} \times u_{x_2}),$$

so that

$$\mathbb{P}(u) = 0 \quad \Longleftrightarrow \quad \operatorname{div} D(u) = 0 \quad \text{ on } \widetilde{B}^3 \,.$$

In any dimension n, we have

$$\mathbb{P}(u) = 0 \iff \partial \mathbb{D}(u) = 0 \iff du^{\#}\omega_{S^2} = 0 \iff \partial G_u \sqcup \tilde{B}^n \times S^2 = 0.$$

Spherical cycles. We shall need the following

Definition 1. We say that an integral 2-cycle $C \in \mathbb{Z}_2(\mathcal{Y})$ is of spherical type if its homology class in $H_2(\mathcal{Y})$ contains a Lipschitz image of the 2-sphere S^2 . More precisely, if there exist $Z \in \mathbb{Z}_2(\mathcal{Y})$, $R \in \mathcal{R}_3(\mathcal{Y})$ and a Lipschitz function $\phi: S^2 \to \mathcal{Y}$ such that

$$C - Z = \partial R, \qquad \phi_{\#} \llbracket S^2 \rrbracket = Z.$$

Denoting then

$$H_2^{sph}(\mathcal{Y}) := \{ [\gamma] \in H_2(\mathcal{Y}) \mid \exists \phi \in \operatorname{Lip}(S^2, \mathcal{Y}) : \phi_{\#} \llbracket S^2 \rrbracket \in [\gamma] \} \,,$$

we also may and do choose the γ_s 's in (1) in such a way that $[\gamma_1], \ldots, [\gamma_{\tilde{s}}]$ generate the spherical homology classes in $H_2^{sph}(\mathcal{Y})$ for some $\tilde{s} \leq \bar{s}$.

Minimal connections. We will finally make use of the following

Definition 2. For every $n \geq 3$ and $\Gamma \in \mathcal{D}_{n-3}(\widetilde{B}^n)$ with spt $\Gamma \subset \overline{B}^n$, we denote by

$$m_i(\Gamma) := \inf \{ \mathbf{M}(L) \mid L \in \mathcal{R}_{n-2}(\overline{B}^n), \quad \operatorname{spt} L \subset \overline{B}^n, \quad \partial L = R \}$$

the integral mass of Γ . Moreover, in case $m_i(\Gamma) < +\infty$, we say that an i.m. rectifiable current $L \in \mathcal{R}_{n-2}(\widetilde{B}^n)$ is an integral minimal connection of Γ if spt $L \subset \overline{B}^n$, $\partial L = \Gamma$ and $\mathbf{M}(L) = m_i(\Gamma)$.

The previous definitions are motivated by the following proposition proved below.

Proposition 1. Let $u \in W^{1,2}_{\omega}(\widetilde{B}^n, \mathcal{Y})$. Then the following facts hold:

(i) P_s(u) = 0 for every s = š + 1,..., š;
 (ii) m_i(P_s(u)) < +∞ for every s = 1,..., š.

In particular $\pi_{\#}(\partial G_u \sqcup \widehat{\pi}^{\#} \omega^s)$ is an integral flat chain.

Main result. In this paper we will prove the following

Theorem 1. Let $n \geq 3$ and $u \in W^{1,2}_{\varphi}(\widetilde{B}^n, \mathcal{Y})$. Then

$$\widetilde{\mathbf{D}}_{\varphi}(u) = \mathbf{D}(u, \widetilde{B}^n) + \sum_{s=1}^{\widetilde{s}} M_s \cdot m_i(\mathbb{P}_s(u)), \qquad (5)$$

see Definition 2, where for every $s = 1, \ldots, \tilde{s}$

$$M_s := \min\{\mathbf{M}(C) \mid C \in \mathcal{Z}^2(\mathcal{Y}), \quad C \in [\gamma_s]\}$$
(6)

is the mass of the mass minimizing integral spherical 2-cycle in the homology class $[\gamma_s]$.

Remark 1. If n = 3, from the proof below it readily follows that Theorem 1 is an immediate consequence of the strong density results for the class $\operatorname{cart}_{\varphi}^{2,1}(\widetilde{B}^3 \times \mathcal{Y})$ in [10]. Moreover, in the particular case $\mathcal{Y} = S^2$, equation (5) reads as

$$\widetilde{\mathbf{D}}_{\varphi}(u) = \mathbf{D}(u, \widetilde{B}^n) + 4\pi \cdot m_i(\mathbb{P}(u)),$$

where $\mathbb{P}(u)$ is given by (3).

No boundary data.

In a similar way, if Ω is a smooth bounded domain in \mathbb{R}^n , we set

Definition 3. For every $n \geq 3$ and $\Gamma \in \mathcal{D}_{n-3}(\Omega)$ we denote by

$$m_{i,\Omega}(\Gamma) := \inf \{ \mathbf{M}(L) \mid L \in \mathcal{R}_{n-2}(\Omega), \quad \operatorname{spt}(\partial L - \Gamma) \subset \partial \Omega \}$$

the integral mass of Γ in Ω . Moreover, in case $m_{i,\Omega}(\Gamma) < +\infty$, we say that an i.m. rectifiable current $L \in \mathcal{R}_{n-2}(\Omega)$ is an integral minimal connection of Γ allowing connections to the boundary if $\operatorname{spt}(\partial L - R) \subset \partial \Omega$ and $\mathbf{M}(L) = m_{i,\Omega}(\Gamma)$.

Theorem 2. Let Ω be a smooth bounded domain in \mathbb{R}^n , where $n \geq 3$, and $u \in W^{1,2}(\Omega, \mathcal{Y})$. Then

$$\widetilde{\mathbf{D}}(u) = \mathbf{D}(u, \Omega) + \sum_{s=1}^{\widetilde{s}} M_s \cdot m_{i,\Omega}(\mathbb{P}_s(u))$$

where M_s is given by (6). In particular, if $\mathcal{Y} = S^2$ and $\mathbb{P}(u)$ is given by (3), we have

$$\mathbf{D}(u) = \mathbf{D}(u, \Omega) + 4\pi \cdot m_{i,\Omega}(\mathbb{P}(u)).$$

The rest of the paper is dedicated to the proof of Theorem 1. Theorem 2 is proved in a similar way. For the sake of brevity, we refer the reader to [9], [8] and [10] for the notation and details on the quoted results, if not otherwise stated.

Proof of Theorem 1. We first recall that the class of Cartesian current $\operatorname{cart}_{\varphi}^{2,1}(\widetilde{B}^n \times \mathcal{Y})$ is given by the currents $T \in \mathcal{D}_{n,2}(\widetilde{B}^n \times \mathcal{Y})$ which have no inner boundary,

$$\partial T = 0$$
 on $\mathcal{Z}^{n-1,2}(\tilde{B}^n \times \mathcal{Y})$,

and are of the type

$$T = G_{u_T} + \sum_{s=1}^{\tilde{s}} \mathbb{L}_s(T) \times \gamma_s \tag{7}$$

on $\mathcal{Z}^{n,2}(\widetilde{B}^n \times \mathcal{Y})$, compare [9] and [8]. Here $u_T \in W^{1,2}_{\varphi}(\widetilde{B}^n, \mathcal{Y})$ and $\mathbb{L}_s(T)$ is an i.m. rectifiable current in $\mathcal{R}_{n-2}(\widetilde{B}^n)$, with support spt $\mathbb{L}_s(T) \subset \overline{B}^n$, such that

$$\mathbb{P}_s(u_T) = -\partial \mathbb{L}_s(T) \qquad \forall s = 1, \dots, \widetilde{s}.$$
(8)

Since $\widetilde{\mathbf{D}}_{\varphi}(u) < +\infty$, by the closure-compactness of the class $\operatorname{cart}_{\varphi}^{2,1}(\widetilde{B}^n, \mathcal{Y})$, for every $\varepsilon > 0$ we find a smooth sequence $\{u_k\} \subset C_{\varphi}^1(\widetilde{B}^n, \mathcal{Y})$ such that $u_k \rightharpoonup u$ weakly in $W^{1,2}$, with energies $\mathbf{D}(u_k, \widetilde{B}^n) \leq \widetilde{\mathbf{D}}_{\varphi}(u) + \varepsilon$, such that the graphs G_{u_k} converge weakly in the sense of the currents in $\mathcal{D}_{n,2}(\widetilde{B}^n \times \mathcal{Y})$ to a current $T \in \operatorname{cart}_{\varphi}^{2,1}(\widetilde{B}^n \times \mathcal{Y})$ for which (7) holds with $u_T = u$, see [8]. This clearly yields Proposition 1. Also, the Dirichlet energy of T

$$\mathbf{D}(T) := \mathbf{D}(u_T, \widetilde{B}^n) + \sum_{s=1}^{\widetilde{s}} \mathbf{M}(\mathbb{L}_s(T)) \cdot \mathbf{M}(\gamma_s)$$

is defined in such a way that it is lower semicontinuous, i.e.

$$\mathbf{D}(T) \leq \liminf_{k \to +\infty} \mathbf{D}(G_{u_k}), \qquad \mathbf{D}(G_{u_k}) := \mathbf{D}(u_k, \widetilde{B}^n).$$

Taking into account Definition 2 and (8), we readily infer that inequality " \geq " holds true in (5).

To prove the opposite inequality, we first define a family $\{T_{\varepsilon}\}$ of minimizing currents in $\operatorname{cart}_{\varphi}^{2,1}$ which converge weakly and in energy to a current T_0 of the type in (7), where $u_{T_0} = u$ and $-\mathbb{L}_s(T_0)$ is an integral minimal connection of $\mathbb{P}_s(u)$. Secondly, since T_{ε} is a minimizer, by regularity theory and by arguments related to the ones of [14] [12] and [8], we infer that it can be approximated weakly by a sequence of smooth graphs with energies converging to the energy of T_{ε} . Finally, a diagonal argument yields the assertion.

Step 1: Definition of $\{T_{\varepsilon}\}$. Given $u \in W^{1,2}_{\varphi}(\widetilde{B}^n, \mathcal{Y})$ and $\varepsilon > 0$ we consider the minimum problem

$$\inf\left\{\mathbf{D}_{\varepsilon}(T) : T \in \operatorname{cart}_{\varphi}^{2,1}(\widetilde{B}^n \times \mathcal{Y})\right\},\tag{9}$$

where

$$\mathbf{D}_{\varepsilon}(T) := \mathbf{D}(T) + \frac{1}{\varepsilon} \int_{B^n} |u - u_T|^2 \, dx$$

and u_T is the function in $W^{1,2}_{\varphi}(\widetilde{B}^n, \mathcal{Y})$ for which the structure property (7) holds true. Clearly (9) has a solution $T_{\varepsilon} \in \operatorname{cart}^{2,1}_{\varphi}(\widetilde{B}^n \times \mathcal{Y})$ of the type

$$T_{\varepsilon} = G_{u_{\varepsilon}} + \sum_{s=1}^{\widetilde{s}} \mathbb{L}_s(T_{\varepsilon}) \times \gamma_s \,. \tag{10}$$

Possibly taking a sequence $\varepsilon_k \searrow 0$, we find that T_{ε} weakly converges to a current $T_0 \in \operatorname{cart}_{\varphi}^{2,1}(\widetilde{B}^n \times \mathcal{Y})$ which satisfies (7) with $u_{T_0} = u$, since $u_{\varepsilon} \to u$ in $L^2(\widetilde{B}^n, \mathbb{R}^N)$. Moreover, since

$$\mathbf{D}(T_{\varepsilon}) \leq \mathbf{D}_{\varepsilon}(T_{\varepsilon}) \leq \mathbf{D}_{\varepsilon}(T_{0}) = \mathbf{D}(T_{0}),$$

by the lower semicontinuity of the Dirichlet energy we have

$$\mathbf{D}(T_0) \leq \liminf_{\varepsilon \to 0^+} \mathbf{D}(T_{\varepsilon}) \leq \limsup_{\varepsilon \to 0^+} \mathbf{D}(T_{\varepsilon}) \leq \mathbf{D}(T_0) \,,$$

so that $\mathbf{D}(T_{\varepsilon}) \to \mathbf{D}(T_0)$. On the other side, if T is any Cartesian current in $\operatorname{cart}_{\omega}^{2,1}(\widetilde{B}^n \times \mathcal{Y})$ of the type in (7) and such that $u_T = u$, we clearly have

$$\mathbf{D}(T_{\varepsilon}) \leq \mathbf{D}_{\varepsilon}(T_{\varepsilon}) \leq \mathbf{D}_{\varepsilon}(T) = \mathbf{D}(T)$$

Letting $\varepsilon \to 0^+$ we obtain that $\mathbf{D}(T_0) \leq \mathbf{D}(T)$, which yields

$$\sum_{s=1}^{\widetilde{s}} \mathbf{M}(\mathbb{L}_s(T_0)) \cdot \mathbf{M}(\gamma_s) \le \sum_{s=1}^{\widetilde{s}} \mathbf{M}(\mathbb{L}_s(T)) \cdot \mathbf{M}(\gamma_s)$$

and hence

$$\mathbf{M}(\mathbb{L}_s(T_0)) \leq \mathbf{M}(\mathbb{L}_s(T)) \qquad \forall s = 1, \dots, \widetilde{s}.$$

Finally, since by (8)

$$-\partial \mathbb{L}_s(T_0) = \mathbb{P}_s(u) = -\partial \mathbb{L}_s(T) + \partial \mathbb{L}_s(T) + \partial \mathbb{L}_s(T) = -\partial \mathbb{L}_s(T) + \partial \mathbb{L}_s(T) = -\partial \mathbb{L}_s(T) + \partial \mathbb{L}_s(T) + \partial \mathbb{L}_s(T) = -\partial \mathbb{L}_s(T) + \partial \mathbb{L}_s(T) + \partial \mathbb{L}_s(T) + \partial \mathbb{L}_s(T) = -\partial \mathbb{L}_s(T) + \partial \mathbb{L}_s(T) + \partial \mathbb{L}_s(T) = -\partial \mathbb{L}_s(T) + \partial \mathbb{L}_s(T) + \partial \mathbb{L}_s(T) + \partial \mathbb{L}_s(T) + \partial \mathbb{L}_s(T) = -\partial \mathbb{L}_s(T) + \partial \mathbb{L}_s(T) + \partial$$

by the arbitrariness of T we infer that $-\mathbb{L}_s(T_0)$ is an integral minimal connection of $\mathbb{P}_s(u)$ for every s.

Step 2: Regularity of $\{T_{\varepsilon}\}$. Arguing similarly to when proving partial regularity results in [9, Vol. II, Sect. 4.2.9] or [8] to the minimum problem (9), since $\int_{B^n} |u - u_T|^2 dx$ is a lower order term, it follows that the Sobolev maps $u_{\varepsilon} \in W^{1,2}_{\varphi}(\widetilde{B}^n, \mathcal{Y})$ in (10) satisfy the condition

$$\mathcal{L}^n(\operatorname{sing} u_\varepsilon) = 0\,,$$

where sing v denotes the closure of the complement of the discontinuity points of a $W^{1,2}$ map v. We are therefore reduced to prove the following density result.

Proposition 2. Let $T \in \operatorname{cart}_{\varphi}^{2,1}(\widetilde{B}^n \times \mathcal{Y})$ be such that (7) holds on $\mathcal{D}^{n,2}(\widetilde{B}^n \times \mathcal{Y})$. Suppose that

$$\mathcal{L}^n(\operatorname{sing} u_T) = 0.$$
⁽¹¹⁾

Then, there exists a smooth sequence $\{u_k\} \subset C^1_{\varphi}(\widetilde{B}^n, \mathcal{Y})$ such that $G_{u_k} \rightharpoonup T$ weakly in $\mathcal{D}_{n,2}(\widetilde{B}^n \times \mathcal{Y})$, $u_k \rightharpoonup u_T$ weakly in $W^{1,2}(\widetilde{B}^n, \mathbb{R}^N)$ and finally $\mathbf{D}(u_k, \widetilde{B}^n) \to \mathbf{D}(T)$ as $k \to +\infty$.

In fact, by applying Proposition 2 to $T = T_{\varepsilon}$, and by means of a diagonal argument, we readily find a sequence $\{v_k\} \subset C^1_{\varphi}(\widetilde{B}^n, \mathcal{Y})$ such that $v_k \rightharpoonup u$ weakly in $W^{1,2}(\widetilde{B}^n, \mathbb{R}^N)$ and $\mathbf{D}(v_k, \widetilde{B}^n) \rightarrow \mathbf{D}(T_0)$, which yields inequality " \leq " in (5), taking into account the properties of T_0 from Step 1.

Step 3: Approximation of $\{T_{\varepsilon}\}$. It therefore remains to prove Proposition 2. We recall that this density result was already proved in [10] in the case of dimension n = 3 without assuming condition (11), and it is open in this generality, even in the case $\mathcal{Y} = S^2$, if $n \ge 4$. For our purposes, we recall the main steps of the proof from [10].

Let $R^{\infty}_{2,\varphi}(\widetilde{B}^n, \mathcal{Y})$ and $R^0_{2,\varphi}(\widetilde{B}^n, \mathcal{Y})$ denote the subsets of the Sobolev space $W^{1,2}_{\varphi}(\widetilde{B}^n, \mathcal{Y})$ given by all the maps u which are smooth, respectively continuous, except on a singular set $\Sigma(u)$ of the type

$$\Sigma(u) = \bigcup_{i=1}^{r} \Sigma_{i}, \qquad r \in \mathbb{N},$$
(12)

where Σ_i is a smooth (n-3)-dimensional subset of B^n with smooth boundary, if $n \ge 4$, and Σ_i is a point if n = 3. The starting point is the following density result of Bethuel [2].

Theorem 3. $R^{\infty}_{2,\varphi}(\widetilde{B}^n, \mathcal{Y})$ is strongly dense in $W^{1,2}_{\varphi}(\widetilde{B}^n, \mathcal{Y})$.

If $\{u_k\} \subset R^{\infty}_{2,\varphi}(\widetilde{B}^n, \mathcal{Y})$ is such that $u_k \to u_T$ in $W^{1,2}(\widetilde{B}^n, \mathbb{R}^N)$, where u_T is given by (7), it then follows that

$$\lim_{k \to +\infty} m_r (\mathbb{P}_s(u_T) - \mathbb{P}_s(u_k)) = 0$$

where m_r denotes the *real mass*

$$m_r(\Gamma) := \inf \{ \mathbf{M}(D) \mid D \in \mathcal{D}_{n-2}(\widetilde{B}^n), \quad \operatorname{spt} D \subset \overline{B}^n, \quad \partial D = R \}$$

By Federer's theorem [6], if Γ has dimension zero we have $m_r(\Gamma) = m_i(\Gamma)$ and hence, in case n = 3, see [9], Vol. II, Sect. 4.2.5 and Sect. 5.4.2, it follows that

$$\lim_{k \to +\infty} m_i(\mathbb{P}_s(u_T) - \mathbb{P}_s(u_k)) = 0 \qquad \forall s = 1, \dots, \widetilde{s}.$$
 (13)

As a consequence, if L_{u_k,u_T}^s denotes a 1-dimensional i.m. rectifiable current of least mass with support in \overline{B}^3 such that

$$\partial L^s_{u_k, u_T} = \mathbb{P}_s(u_T) - \mathbb{P}_s(u_k) \,,$$

then $\lim_{k\to+\infty} \mathbf{M}(L^s_{u_k,u_T}) = 0$ and hence, setting

$$T_k := G_{u_k} + \sum_{s=1}^{\widetilde{s}} (L_{u_k, u_T}^s + \mathbb{L}_s(T)) \times \gamma_s \,,$$

by (8) we infer that $\{T_k\} \subset \operatorname{cart}_{\varphi}^{2,1}(\widetilde{B}^3 \times \mathcal{Y})$, with $T_k \to T$ weakly in $\mathcal{D}_{3,2}(\widetilde{B}^3 \times \mathcal{Y})$ and $\mathbf{D}(T_k) \to \mathbf{D}(T)$ as $k \to +\infty$. Since $\mathbf{M}(\partial(L_{u_k,u_T}^s + \mathbb{L}_s(T))) < +\infty$ for every *s* and *k*, by applying Federer's strong polyhedral approximation theorem [5], we approximate *T* by a sequence of currents as in (7), where this time $u_T \in R_{2,\varphi}^{\infty}(\widetilde{B}^3, \mathcal{Y})$ and the $\mathbb{L}_s(T)$ are polyhedral chains. At the final step one reduces to approximate the dipoles $L \times \gamma_s$, where *L* is the current integration over a line segment, see [10].

To extend the density result to any dimension $n \ge 4$, the crucial point is to find an approximating sequence $\{u_k\} \subset R^{\infty}_{2,\varphi}(\widetilde{B}^n, \mathcal{Y})$ for which property (13) holds true. In fact, once we have proved that the minimal connection between the singularities of u_k and u_T is small as $k \to +\infty$, the rest of the proof follows similarly to the case n = 3. We refer to [11] for the details about the approximation of the dipoles $\Delta \times \gamma_s$, in the case $n \ge 4$ and Δ equal to the current integration over an (n-2)-simplex.

To obtain (13), we have to estimate the mass of the minimal connection between the singularities. To this aim, we recall the following result of Pakzad and Rivière [12].

Proposition 3. Let $u \in R^{\infty}_{2,\varphi}(\widetilde{B}^n, \mathcal{Y})$. Then for every $s = 1, \ldots, \widetilde{s}$ there exists an integral current $L_s \in \mathcal{R}_{n-2}(\widetilde{B}^n)$, with spt $L_s \subset \overline{B}^n$, such that

$$\partial L_s = \mathbb{P}_s(u)$$
 and $\mathbf{M}(L_s) \le C \int_{B^n} |Du|^2 dx$

for some absolute constant C > 0 independent of u.

In case $\mathcal{Y} = S^2$ this property goes back to [4] and is proved in [1] by means of the coarea formula. In [12] the result is given in terms of polyhedral chains with coefficients in the homotopy group $\pi_2(\mathcal{Y})$. However, since \mathcal{Y} is 1-connected, by the Hurewicz theorem $\pi_2(\mathcal{Y}) \approx H_2(\mathcal{Y}; \mathbb{R})$ and hence it can be re-stated in terms of currents in $\mathcal{D}_{n-2}(\tilde{B}^n; H_2(\mathcal{Y}; \mathbb{R}))$. Moreover, from the construction we obtain the following local version, see [14] for the case $\mathcal{Y} = S^2$.

Proposition 4. Let W be a relatively open subset of \overline{B}^n such that $\mathcal{L}^n(\partial W) = 0$. Let $u, v \in R^{\infty}_{2,\varphi}(\widetilde{B}^n, \mathcal{Y})$ be such that u = v a.e. on $\overline{B}^n \setminus W$. Then, for every $s = 1, \ldots, \tilde{s}$, there exists an i.m. rectifiable current $L_s \in \mathcal{R}_{n-2}(B^n)$ with $\operatorname{spt} L_s \subset \overline{W}$ such that

$$\partial L_s = \mathbb{P}_s(u) - \mathbb{P}_s(v)$$
 and $\mathbf{M}(L_s) \le C \left(\mathbf{D}(u, W) + \mathbf{D}(v, W) \right)$.

We postpone the proof of Proposition 4 and we first conclude the proof of (13), and hence of Proposition 2. Using the same argument as in [14], there exists a sequence of relatively open sets $W_k \subset \overline{B}^n$ such that $\mathcal{L}^n(\partial W_k) = 0$, $\mathcal{L}^n(W_k) < 1/k$ and

$$\operatorname{sing}(u_T) \subset \ldots \subset W_{k+1} \subset \overline{W}_{k+1} \subset W_k \subset \ldots \subset W_1$$

Setting $V_k := \overline{B}^n \setminus W_k$, then V_{k+2} is a neighborhood of $\overline{B}^n \setminus W_{k+1} = V_{k+1}$ and u is continuous on V_{k+2} . Therefore, applying a refined version of Bethuel's density result, Theorem 3, compare [14, Thm. 4], we find the existence of sequences $\{\widetilde{u}_k\} \subset R^0_{2,\varphi}(\widetilde{B}^n, \mathcal{Y})$ and $\{u_k\} \subset R^{\infty}_{2,\varphi}(\widetilde{B}^n, \mathcal{Y})$, both strongly converging to u_T in $W^{1,2}(\widetilde{B}^n, \mathbb{R}^N)$, such that for every k

$$\begin{aligned} \widetilde{u}_k &= u_T \quad \text{on } V_{k+1} \,, \qquad \int_{B^n} (|\widetilde{u}_k - u_T|^2 + |D\widetilde{u}_k - Du_T|^2) \, dx < \frac{1}{k} \\ & \operatorname{sing}(\widetilde{u}_k) = \operatorname{sing}(u_k) \,, \qquad \int_{B^n} (|\widetilde{u}_k - u_k|^2 + |D\widetilde{u}_k - Du_k|^2) \, dx < \frac{1}{k} \end{aligned}$$

and finally

$$\mathbb{P}_s(\widetilde{u}_k) = \mathbb{P}_s(u_k) \qquad \forall s = 1, \dots, \widetilde{s}$$

By applying Proposition 4 with $u = u_k$, $v = u_{k+1}$ and $W = W_{k+1}$, for every s we find $L_s^{(k)} \in \mathcal{R}_{n-2}(B^n)$ with spt $L_s^{(k)} \subset \overline{W}_{k+1}$ such that

$$\partial L_s^{(k)} = \mathbb{P}_s(u_k) - \mathbb{P}_s(u_{k+1})$$

and
$$\mathbf{M}(L_s^{(k)}) \le C\left(\mathbf{D}(u_k, W_{k+1}) + \mathbf{D}(u_{k+1}, W_{k+1})\right).$$

Since $\mathcal{L}^n(W_k) \to 0$, and both $\{\tilde{u}_k\}$ and $\{u_k\}$ strongly converge to u_T , possibly passing to a subsequence we may and will suppose $\mathbf{M}(L_s^{(k)}) \leq 2^{-k}$ for every k and s. Setting then

$$L_{u_k,u_T}^s := -\sum_{j=k}^{+\infty} L_s^{(j)},$$

since $\mathbb{P}_s(u_k) \rightharpoonup \mathbb{P}_s(u_T)$, we have

$$\partial L_{u_k,u_T}^s = \mathbb{P}_s(u_T) - \mathbb{P}_s(u_k)$$
 and $\lim_{k \to +\infty} \mathbf{M}(L_{u_k,u_T}^s) = 0$,

so that (13) holds true, as required.

Step 4: Proof of Proposition 4. We recall from [9], Vol. II, Sect. 5.4, see also [10], that if $u \in W^{1,2}_{\varphi}(\widetilde{B}^n, \mathcal{Y})$, then $\partial G_u(\omega)$ depends only on the cohomology class of $\omega \in \mathbb{Z}^{n-1,2}(\widetilde{B}^n \times \mathcal{Y})$. As a consequence ∂G_u induces a functional $(\partial G_u)_*$ on $\mathcal{H}^{n-1,2}(\widetilde{B}^n \times \mathcal{Y})$. Since $\mathcal{H}^{k,2}(\widetilde{B}^n \times \mathcal{Y}) \simeq \mathcal{D}^{k-2}(\widetilde{B}^n) \otimes H^2_{dR}(\mathcal{Y})$, the homology map $(\partial G_u)_*$ is uniquely represented as an element of $\mathcal{D}_{n-3}(\widetilde{B}^n; H_2(\mathcal{Y}; \mathbb{R}))$. More explicitly, if $\phi \in \mathcal{D}^{n-3}(\widetilde{B}^n)$, we have $[(\partial G_u)_*(\phi)] \in H_2(\mathcal{Y}; \mathbb{R})$ and for $s = 1, \ldots, \overline{s}$

$$< (\partial G_u)_{\star}(\phi), [\omega^s] > = \partial G_u(\pi^{\#}\phi \wedge \widehat{\pi}^{\#}\omega^s),$$

<,> denoting the de Rham duality between $H_2(\mathcal{Y};\mathbb{R})$ and $H^2_{dR}(\mathcal{Y})$. We now set

$$\mathbb{P}(u) := (\partial G_u)_{\star} \in \mathcal{D}_{n-3}(\widetilde{B}^n; H_2(\mathcal{Y}; \mathbb{R}))$$
(14)

and, for each $\omega \in [\omega] \in H^2_{dR}(\mathcal{Y})$, we define the current $\mathbb{P}(u;\omega) \in \mathcal{D}_{n-3}(\widetilde{B}^n)$ by $\mathbb{P}(u;\omega) := \partial \pi_{\#}(G_u \sqcup \widehat{\pi}^{\#}\omega)$, so that

$$\mathbb{P}(u;\omega)(\phi) = \partial G_u(\pi^{\#}\phi \wedge \widehat{\pi}^{\#}\omega) \qquad \forall \phi \in \mathcal{D}^{n-3}(\widetilde{B}^n) \,.$$

The following facts hold:

(i) for $s = 1, \ldots, \overline{s}$

$$\mathbb{P}(u;\omega^s)(\phi) = <\mathbb{P}(u)(\phi), [\omega^s] >$$

i.e., $\mathbb{P}(u; \omega^s)$ does not depend on the representative in the cohomology class $[\omega^s]$ and hence we have $\mathbb{P}_s(u) = \mathbb{P}(u; \omega^s)$, compare (2);

- (ii) $\partial \mathbb{P}(u) = 0$ and $\mathbb{P}(u) = \sum_{s=1}^{s} \mathbb{P}(u; \omega^s) \otimes [\gamma_s]$, hence it does not depend on the choice of $[\gamma_1], \ldots, [\gamma_s]$;
- (iii) if $\tilde{u} \in R^{\infty}_{2,\varphi}(\tilde{B}^n, \mathcal{Y})$, then $\mathbb{P}(\tilde{u})$ is an i.m. rectifiable (n-3)-current with values in $H_2^{sph}(\mathcal{Y}; \mathbb{Z})$ and is a finite combination

$$\mathbb{P}(\widetilde{u}) = \sum_{s=1}^{\widetilde{s}} R_s \otimes [\gamma_s]$$

where R_s is an i.m. rectifiable current in $\mathcal{R}_{n-3}(\widetilde{B}^n)$, with spt $R_s \subset \overline{B}^n$; in particular, in case n = 3 we have

$$R_s = \sum_i d_{i,s} \delta_{a_i} \,,$$

where $d_{i,s} \in \mathbb{Z}$ are integer coefficients and the δ_{a_i} 's are Dirac unit measures at points $a_i \in \overline{B}^3$;

(iv) since the boundary data φ has a smooth extension from \widetilde{B}^n into \mathcal{Y} , then each $\mathbb{P}_s(\widetilde{u})$ is the boundary of an i.m. rectifiable current.

If $u \in R_{2,\varphi}^{\infty}(\widetilde{B}^n, \mathcal{Y})$, its singular set $\Sigma(u)$, see (12), is contained in $B := \bigcup_{i=1}^{\mu} \sigma_i$, where the σ_i are non-overlapping (n-3)-dimensional polyhedra such that every (n-4)-face of B belongs to at least two σ_i and two different faces of B intersect only on their boundaries. The *topological singularity* of u is defined in [12] as the $\pi_2(\mathcal{Y})$ -polyhedral chain

$$\mathbf{S}_{u} := \sum_{i=1}^{\mu} [u, \sigma_{i}] \llbracket \sigma_{i} \rrbracket \in \mathcal{P}_{n-3}(\widetilde{B}^{n}; \pi_{2}(\mathcal{Y})).$$

The homotopic singularity $[u, \sigma_i]$ of u at σ_i is given, independently of the choice of $a \in \sigma_i$ and $\delta > 0$, by

$$[u,\sigma_i] := [u_{|\Sigma_{a,\delta}]}_{\pi_2(\mathcal{Y})},$$

i.e., by the homotopy class of the restriction of u to the (suitably oriented) 2-sphere $\Sigma_{a,\delta} := \partial(B^n_{\delta}(a) \cap N_a)$, where N_a is the 3-dimensional affine space orthogonal to σ_i at a and $B^n_{\delta}(a)$ is the n-ball of radius δ centered at a. Therefore, \mathbf{S}_u is a polyhedral (n-3)-dimensional chain in $\mathcal{P}_{n-3}(\widetilde{B}^n, \pi_2(\mathcal{Y}))$.

We now recall that the class of k-dimensional flat chains $\mathcal{F}_k(\widetilde{B}^n; \pi_2(\mathcal{Y}))$ is given by the completion w.r.t. the flat norm of the class of polyhedral k-chains in $\mathcal{P}_k(\widetilde{B}^n; \pi_2(\mathcal{Y}))$, compare [7], [15] and [12]. Now, since $\pi_2(\mathcal{Y}) \approx H_2(\mathcal{Y}; \mathbb{R})$, we readily infer that $\mathcal{F}_{n-3}(\widetilde{B}^n; \pi_2(\mathcal{Y}))$ coincides with the class of integral flat chains in $\mathcal{D}_{n-3}(\widetilde{B}^n; H_2(\mathcal{Y}; \mathbb{R}))$. Moreover, the masses of elements in $\mathcal{P}_{n-3}(\widetilde{B}^n; \pi_2(\mathcal{Y}))$ and $\mathcal{R}_{n-3}(\widetilde{B}^n; H_2(\mathcal{Y}))$ are defined in an equivalent way. Also, for every $u \in R_{2,\omega}^{\infty}(\widetilde{B}^n, \mathcal{Y})$ we have

$$\mathbb{P}_s(u) = \tau(\Sigma(u), \theta_s, \overrightarrow{\Sigma}(u)),$$

where $\overrightarrow{\Sigma}(u)$ is the (n-3)-vector orienting $\Sigma(u)$ and $\theta_s := [u_{\#} \llbracket \Sigma_{a,\delta} \rrbracket] \cdot \omega^s$, see [9, Vol. II, Sect. 5.4.2]. In particular, we infer that

$$\mathbf{S}_u \approx \mathbb{P}(u) \,, \tag{15}$$

compare (14).

Following [12], let \mathcal{Y}^l be the *l*-skeleton of some triangulation of \mathcal{Y} , for $l = 2, \ldots, M := \dim(\mathcal{Y})$. We have that \mathcal{Y}^2 is 1-connected and hence that $\pi_2(\mathcal{Y}^2)$ is finitely generated. We let g_1, \ldots, g_β be its generators. Also, the homomorphisms $\chi^{2,l} : \pi_2(\mathcal{Y}^2) \to \pi_2(\mathcal{Y}^l)$ induced by the injection maps $\mathcal{Y}^2 \to \mathcal{Y}^l$ are onto, whence $\pi_2(\mathcal{Y}^l)$ is finitely generated, too. Let $p_i : \mathcal{Y}^2 \to S^2$, $i = 1, \ldots, \beta$, be smooth maps such that

$$[p_i(C)]_{\pi_2(S^2)} = \alpha_i([C]_{\pi_2(\mathcal{Y}^2)})$$

for any 2-cycle $C \in \mathcal{Z}^2(\mathcal{Y}^2)$, where, for every $a \in \pi_2(\mathcal{Y}^2)$,

$$a = \sum_{i=1}^{\beta} \alpha_i(a) \, g_i$$

is its unique decomposition. Let now $\widetilde{u} \in R^{\infty}_{2,\varphi}(\widetilde{B}^n, \mathcal{Y}^2)$. If the boundary datum φ is constant, since $p_i \circ \widetilde{u} \in R^{\infty}_{2,\varphi}(\widetilde{B}^n, \mathcal{Y})$, by [1] we find existence of $\mathbf{T}_i \in \mathcal{P}_{n-2}(\widetilde{B}^n; \mathbb{Z})$ such that

$$\partial \mathbf{T}_i = \mathbf{S}_{p_i \circ \widetilde{u}}$$
 and $\mathbf{M}(\mathbf{T}_i) \le C_i \int_{\widetilde{B}^n} |D(p_i \circ \widetilde{u})|^2 dx$.

We now recall that if $u \in R^{\infty}_{2,\varphi}(\widetilde{B}^n, S^2)$, for any regular value $y \in S^2$ and every $x \in u^{-1}(y)$ the *D*-field D(u)(x), see (4), is a tangent (n-2)-vector to the level surface $u^{-1}(y)$. Setting then

$$T_y^u := \tau \left(u^{-1}(y), 1, \frac{D(u)}{|D(u)|} \right),$$

we infer that $T_y^u \in \mathcal{R}_{n-2}(\widetilde{B}^n)$, with $\sup_{\sim} T_y^u \subset \overline{B}^n$, and $\mathbb{P}(u) = \partial (T_y^u - T_y^{\varphi})$.

As a consequence, if $\tilde{u}, \tilde{v} \in R^{\infty}_{2,\varphi}(\tilde{B}^n, \tilde{\mathcal{Y}}^2)$ are such that $\tilde{u} = \tilde{v}$ a.e. on $\overline{B}^n \setminus W$, we infer that for a.e. $y \in S^2$

$$\mathbb{P}(p_i \circ \widetilde{u}) - \mathbb{P}(p_i \circ \widetilde{v}) = \partial(T_y^{p_i \circ \widetilde{u}} - T_y^{p_i \circ \widetilde{v}})$$
(16)

and therefore, by the coarea formula, compare [14] for the case $\mathcal{Y} = S^2$, since $\operatorname{spt}(T_y^{p_i \circ \widetilde{u}} - T_y^{p_i \circ \widetilde{v}}) \subset \overline{W}$, we find $y \in S^2$ such that (16) holds and

$$\mathbf{M}(T_y^{p_i \circ \widetilde{u}} - T_y^{p_i \circ \widetilde{v}}) \le \frac{1}{4\pi} \left(\mathbf{D}(p_i \circ \widetilde{u}, W) + \mathbf{D}(p_i \circ \widetilde{v}, W) \right).$$

Consequently, as in [12] we find the existence of a polyhedral chain $T \in \mathcal{P}_{n-3}(\widetilde{B}^n, \pi_2(\mathcal{Y}^2))$ such that

$$\partial T = \mathbf{S}_{\widetilde{u}} - \mathbf{S}_{\widetilde{v}}$$
 and $\mathbf{M}(T) \le C \left(\mathbf{D}(\widetilde{u}, W) + \mathbf{D}(\widetilde{v}, W) \right).$

Finally, arguing as in [12] we prove Proposition 4, taking into account (15). \Box

Acknowledgement. The second author thanks the Research Center Ennio De Giorgi of the Scuola Normale Superiore of Pisa for the hospitality during the preparation of this paper.

References

- Almgren, F.J., Browder, W., Lieb, E.H.: Co-area, liquid crystals, and minimal surfaces. In: Partial differential equations. Springer Lecture Notes in Math. 1306, 1–22 (1988)
- Bethuel, F.: The approximation problem for Sobolev maps between manifolds. Acta Math. 167, 153–206 (1992)
- Bethuel, F., Brezis, H., Coron, J.M.: Relaxed energies for harmonic maps. In: Berestycki, H., Coron, J.M., Ekeland, J. (eds.) Variational methods. Birkauser, Basel 1990
- Brezis, H., Coron, J.M., Lieb, E.H.: Harmonic maps with defects. Comm. Math. Phys. 107, 649–705 (1986)
- Federer, H.: Geometric measure theory (Grundleheren math. Wissen. 153). Springer, Berlin 1969
- Federer, H.: Real flat chains, cochains and variational problems. Indiana Univ. Math. J. 24, 351–407 (1974)
- Fleming, W.: Flat chains over a coefficient group. Trans. Amer. Math. Soc. 121, 160–186 (1966)
- Giaquinta, M., Modica, G.: On sequences of maps with equibounded energies. Calc. Var. 12, 213–222 (2001)
- Giaquinta, M., Modica, G., Souček, J.: Cartesian currents in the calculus of variations, vol. I, II. (Ergebnisse Math. Grenzgebiete (III Ser), 37, 38). Springer, Berlin 1998
- 10. Giaquinta, M., Mucci, D.: The Dirichlet energy of mappings from B^3 into a manifold: density results and gap phenomenon. Calc. Var. **20**, 367–397 (2004)
- 11. Giaquinta, M., Mucci, D.: On sequences of maps into a manifold with equibounded $W^{1/2}$ -energies. Preprint, Univ. Parma (2004)
- Pakzad, M.R., Rivière, T.: Weak density of smooth maps for the Dirichlet energy between manifolds. Geom. Funct. Anal. 13, 223–257 (2001)
- Schoen, R., Uhlenbeck, K.: Boundary regularity and the Dirichlet problem for harmonic maps. J. Diff. Geom. 18, 253–268 (1983)
- 14. Tarp, U.: On the minimizers of the relaxed energy functionals of mappings from higher dimensional balls into S^2 . Preprint (2004) (to appear on Calc. Var.)
- 15. White, B.: Rectifiability of flat chains. Ann. Math. (2) 150, 165–184 (1999)