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Abstract. Let Y be a smooth 1-connected compact oriented manifold without boundary,
such that its 2-homology group has no torsion. We characterize in any dimension n the weak
W 1,2(Bn, Y) lower semicontinuous envelope of the Dirichlet integral of Sobolev maps in
W 1,2(Bn, Y).

Let Y be a smooth compact, connected, oriented Riemannian manifold of di-
mension M ≥ 2, without boundary, and isometrically embedded in RN for some
N ≥ 3. We shall assume that Y is 1-connected, i.e., π1(Y) = 0 and, moreover,
that its integral 2-homology group H2(Y) := H2(Y; Z) has no torsion, so that
H2(Y; X) = H2(Y) ⊗ X for X = R, Q.

Let Ω be a smooth bounded domain in Rn. Define

W 1,2(Ω, Y) := {u ∈ W 1,2(Ω, RN ) | u(x) ∈ Y for a.e. x ∈ Ω}
and for every u ∈ W 1,2(Ω, Y), and every Borel set A ⊂ Ω, denote by

D(u, A) :=
1
2

∫
A

|Du|2 dx , D(u) := D(u, Ω)

the Dirichlet integral of u on A. Also, let Bn be the unit ball in Rn, let B̃n

denote a bounded domain in Rn such that Bn ⊂⊂ B̃n, e.g. B̃n := Bn(0, 2), and
let ϕ : B̃n → Y be a given smooth W 1,2 function. Finally, for X = C1 or W 1,2

we define

Xϕ(B̃n,Y) := {u ∈ X(B̃n,Y) | u = ϕ on B̃n \ B
n} .

In this paper we consider the relaxed Dirichlet energy w.r.t. the weak W 1,2

convergence, defined for every u ∈ W 1,2(Ω, Y) by

D̃(u) := inf{lim inf
k→+∞

D(uk) | {uk} ⊂ C1(Ω, Y) ,

uk ⇀ u weakly in W 1,2(Ω, RN )}
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and for every u ∈ W 1,2
ϕ (B̃n,Y) by

D̃ϕ(u) := inf{lim inf
k→+∞

D(uk) | {uk} ⊂ C1
ϕ(B̃n,Y) ,

uk ⇀ u weakly in W 1,2(B̃n, RN )} .

By Schoen-Uhlenbeck density theorem [13], if n = 2 we have D̃(u) = D(u) and
D̃ϕ(u) = Dϕ(u). Moreover, by the sequential weak density theorem of Pakzad-
Rivière [12], D̃(u) < +∞ and D̃ϕ(u) < +∞ if n ≥ 3.

In this paper we characterize the relaxed Dirichlet energy of any W 1,2 map u
in terms of the mass of the minimal connections between the singularities of u, see
Theorems 1 and 2, extending this way the results of [3], for n = 3 and Y = S2,
and [14] for n ≥ 3 and Y = S2. Before stating our results, we recall some facts
from [9], see also [8].

Singularities of Sobolev maps. Since H2(Y) is torsion-free, there are generators
[γ1], . . . , [γs], i.e., integral cycles in Z2(Y), such that

H2(Y) =

{
s∑

s=1

ns [γs] | ns ∈ Z

}
. (1)

By the de Rham theorem the second real homology group is in duality with the
second cohomology group H2

dR(Y), the duality being given by the natural pairing

< [γ], [ω] >:= γ(ω) =
∫

γ

ω , [γ]R ∈ H2(Y; R) , [ω] ∈ H2
dR(Y) .

We will then denote by [ω1], . . . , [ωs] a dual basis in H2
dR(Y) so that, δsr being

the Kronecker symbols, γs(ωr) = δsr. Also, we may and do assume that ωs is the
harmonic form in its cohomology class.

For every u ∈ W 1,2
ϕ (B̃n,Y) it is well defined the current Gu carried by the

graph of u, see [9]. Also, following [9], Vol. II, Sect. 5.4.2, for every s = 1, . . . , s
we define the (n − 3)-current Ps(u) ∈ Dn−3(B̃n) by

Ps(u) := ∂π#(Gu π̂#ωs) , (2)

where π : Rn × RN → Rn and π̂ : Rn × RN → RN denote the orthogo-
nal projection onto the first and second factor, respectively. More explicitly, since
dωs = 0,

Ps(u)(φ) = ∂Gu(π#φ ∧ π̂#ωs) =
∫

B̃n

dφ ∧ u#ωs ∀φ ∈ Dn−3(B̃n) .

Maps into the sphere. If Y = S2, the unit sphere in R3, setting

P(u)(φ):=
1
4π

∂Gu(π#φ ∧ π̂#ωS2)=
1
4π

∫
B̃n

dφ ∧ u#ωS2 , φ ∈ Dn−3(B̃n) ,

(3)
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ωS2 being the volume 2-form on S2, it turns out that

P(u) = ∂ D(u)

for some (n−2)-dimensional current D(u) with spt D(u) ⊂ B
n

. More precisely,
we let D(u) denote the smooth (n − 2)-vector field dual to u#ωS2 , the so called
D-field of Brezis, Coron and Lieb [4], which is defined by

< D(u)(x), φ >:= u#ωS2 ∧ φ ∀φ ∈ Λn−2(Rn) . (4)

Then we have

D(u)(γ) =
1
4π

∫
B̃n

< γ, D(u) > dx , γ ∈ Dn−2(B̃n) .

In the particular case n = 3, we have

D(u) := (u · ux2 × ux3 , u · ux3 × ux1 , u · ux1 × ux2) ,

so that
P(u) = 0 ⇐⇒ divD(u) = 0 on B̃3 .

In any dimension n, we have

P(u) = 0 ⇐⇒ ∂ D(u) = 0 ⇐⇒ du#ωS2 = 0 ⇐⇒ ∂Gu B̃n × S2 = 0 .

Spherical cycles. We shall need the following

Definition 1. We say that an integral 2-cycle C ∈ Z2(Y) is of spherical type
if its homology class in H2(Y) contains a Lipschitz image of the 2-sphere S2.
More precisely, if there exist Z ∈ Z2(Y), R ∈ R3(Y) and a Lipschitz function
φ : S2 → Y such that

C − Z = ∂R , φ#[[ S2 ]] = Z .

Denoting then

Hsph
2 (Y) := {[γ] ∈ H2(Y) | ∃φ ∈ Lip(S2,Y) : φ#[[ S2 ]] ∈ [γ]} ,

we also may and do choose the γs’s in (1) in such a way that [γ1], . . . , [γs̃] generate
the spherical homology classes in Hsph

2 (Y) for some s̃ ≤ s.

Minimal connections. We will finally make use of the following

Definition 2. For every n ≥ 3 and Γ ∈ Dn−3(B̃n) with spt Γ ⊂ B
n

, we denote
by

mi(Γ ) := inf{M(L) | L ∈ Rn−2(B̃n) , spt L ⊂ B
n

, ∂L = R}
the integral mass of Γ . Moreover, in case mi(Γ ) < +∞, we say that an i.m.
rectifiable current L ∈ Rn−2(B̃n) is an integral minimal connection of Γ if
spt L ⊂ B

n
, ∂L = Γ and M(L) = mi(Γ ).
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The previous definitions are motivated by the following proposition proved
below.

Proposition 1. Let u ∈ W 1,2
ϕ (B̃n,Y). Then the following facts hold:

(i) Ps(u) = 0 for every s = s̃ + 1, . . . , s;
(ii) mi(Ps(u)) < +∞ for every s = 1, . . . , s̃.

In particular π#(∂Gu π̂#ωs) is an integral flat chain.

Main result. In this paper we will prove the following

Theorem 1. Let n ≥ 3 and u ∈ W 1,2
ϕ (B̃n,Y). Then

D̃ϕ(u) = D(u, B̃n) +
s̃∑

s=1

Ms · mi(Ps(u)) , (5)

see Definition 2, where for every s = 1, . . . , s̃

Ms := min{M(C) | C ∈ Z2(Y) , C ∈ [γs]} (6)

is the mass of the mass minimizing integral spherical 2-cycle in the homology
class [γs].

Remark 1. If n = 3, from the proof below it readily follows that Theorem 1 is an
immediate consequence of the strong density results for the class cart2,1

ϕ (B̃3 ×Y)
in [10]. Moreover, in the particular case Y = S2, equation (5) reads as

D̃ϕ(u) = D(u, B̃n) + 4π · mi(P(u)) ,

where P(u) is given by (3).

No boundary data.
In a similar way, if Ω is a smooth bounded domain in Rn, we set

Definition 3. For every n ≥ 3 and Γ ∈ Dn−3(Ω) we denote by

mi,Ω(Γ ) := inf{M(L) | L ∈ Rn−2(Ω) , spt(∂L − Γ ) ⊂ ∂Ω}
the integral mass of Γ in Ω. Moreover, in case mi,Ω(Γ ) < +∞, we say that an i.m.
rectifiable current L ∈ Rn−2(Ω) is an integral minimal connection of Γ allowing
connections to the boundary if spt(∂L − R) ⊂ ∂Ω and M(L) = mi,Ω(Γ ).

Theorem 2. Let Ω be a smooth bounded domain in Rn, where n ≥ 3, and
u ∈ W 1,2(Ω, Y). Then

D̃(u) = D(u, Ω) +
s̃∑

s=1

Ms · mi,Ω(Ps(u)) ,

where Ms is given by (6). In particular, if Y = S2 and P(u) is given by (3), we
have

D̃(u) = D(u, Ω) + 4π · mi,Ω(P(u)) .
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The rest of the paper is dedicated to the proof of Theorem 1. Theorem 2 is
proved in a similar way. For the sake of brevity, we refer the reader to [9], [8] and
[10] for the notation and details on the quoted results, if not otherwise stated.

Proof of Theorem 1. We first recall that the class of Cartesian current cart2,1
ϕ (B̃n×

Y) is given by the currents T ∈ Dn,2(B̃n × Y) which have no inner boundary,

∂T = 0 on Zn−1,2(B̃n × Y) ,

and are of the type

T = GuT
+

s̃∑
s=1

Ls(T ) × γs (7)

on Zn,2(B̃n × Y), compare [9] and [8]. Here uT ∈ W 1,2
ϕ (B̃n,Y) and Ls(T ) is

an i.m. rectifiable current in Rn−2(B̃n), with support spt Ls(T ) ⊂ B
n

, such that

Ps(uT ) = −∂ Ls(T ) ∀ s = 1, . . . , s̃ . (8)

Since D̃ϕ(u) < +∞, by the closure-compactness of the class cart2,1
ϕ (B̃n,Y),

for every ε > 0 we find a smooth sequence {uk} ⊂ C1
ϕ(B̃n,Y) such that uk ⇀ u

weakly in W 1,2, with energies D(uk, B̃n) ≤ D̃ϕ(u) + ε, such that the graphs
Guk

converge weakly in the sense of the currents in Dn,2(B̃n × Y) to a current
T ∈ cart2,1

ϕ (B̃n ×Y) for which (7) holds with uT = u, see [8]. This clearly yields
Proposition 1. Also, the Dirichlet energy of T

D(T ) := D(uT , B̃n) +
s̃∑

s=1

M(Ls(T )) · M(γs)

is defined in such a way that it is lower semicontinuous, i.e.

D(T ) ≤ lim inf
k→+∞

D(Guk
) , D(Guk

) := D(uk, B̃n) .

Taking into account Definition 2 and (8), we readily infer that inequality “≥” holds
true in (5).

To prove the opposite inequality, we first define a family {Tε} of minimizing
currents in cart2,1

ϕ which converge weakly and in energy to a current T0 of the
type in (7), where uT0 = u and − Ls(T0) is an integral minimal connection of
Ps(u). Secondly, since Tε is a minimizer, by regularity theory and by arguments
related to the ones of [14] [12] and [8], we infer that it can be approximated weakly
by a sequence of smooth graphs with energies converging to the energy of Tε.
Finally, a diagonal argument yields the assertion.

Step 1: Definition of {Tε}. Given u ∈ W 1,2
ϕ (B̃n,Y) and ε > 0 we consider the

minimum problem

inf
{

Dε(T ) : T ∈ cart2,1
ϕ (B̃n × Y)

}
, (9)
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where

Dε(T ) := D(T ) +
1
ε

∫
Bn

|u − uT |2 dx

and uT is the function in W 1,2
ϕ (B̃n,Y) for which the structure property (7) holds

true. Clearly (9) has a solution Tε ∈ cart2,1
ϕ (B̃n × Y) of the type

Tε = Guε +
s̃∑

s=1

Ls(Tε) × γs . (10)

Possibly taking a sequence εk ↘ 0, we find that Tε weakly converges to a
current T0 ∈ cart2,1

ϕ (B̃n × Y) which satisfies (7) with uT0 = u, since uε → u

in L2(B̃n, RN ). Moreover, since

D(Tε) ≤ Dε(Tε) ≤ Dε(T0) = D(T0) ,

by the lower semicontinuity of the Dirichlet energy we have

D(T0) ≤ lim inf
ε→0+

D(Tε) ≤ lim sup
ε→0+

D(Tε) ≤ D(T0) ,

so that D(Tε) → D(T0). On the other side, if T is any Cartesian current in
cart2,1

ϕ (B̃n × Y) of the type in (7) and such that uT = u, we clearly have

D(Tε) ≤ Dε(Tε) ≤ Dε(T ) = D(T ) .

Letting ε → 0+ we obtain that D(T0) ≤ D(T ), which yields

s̃∑
s=1

M(Ls(T0)) · M(γs) ≤
s̃∑

s=1

M(Ls(T )) · M(γs)

and hence
M(Ls(T0)) ≤ M(Ls(T )) ∀ s = 1, . . . , s̃ .

Finally, since by (8)

−∂ Ls(T0) = Ps(u) = −∂ Ls(T ) ,

by the arbitrariness of T we infer that − Ls(T0) is an integral minimal connection
of Ps(u) for every s.

Step 2: Regularity of {Tε}. Arguing similarly to when proving partial regularity
results in [9, Vol. II, Sect. 4.2.9] or [8] to the minimum problem (9), since

∫
Bn |u−

uT |2 dx is a lower order term, it follows that the Sobolev maps uε ∈ W 1,2
ϕ (B̃n,Y)

in (10) satisfy the condition

Ln(sing uε) = 0 ,

where sing v denotes the closure of the complement of the discontinuity points of
a W 1,2 map v. We are therefore reduced to prove the following density result.
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Proposition 2. Let T ∈ cart2,1
ϕ (B̃n×Y) be such that (7) holds on Dn,2(B̃n×Y).

Suppose that

Ln(sing uT ) = 0 . (11)

Then, there exists a smooth sequence {uk} ⊂ C1
ϕ(B̃n,Y) such that Guk

⇀

T weakly in Dn,2(B̃n × Y), uk ⇀ uT weakly in W 1,2(B̃n, RN ) and finally
D(uk, B̃n) → D(T ) as k → +∞.

In fact, by applying Proposition 2 to T = Tε, and by means of a diagonal
argument, we readily find a sequence {vk} ⊂ C1

ϕ(B̃n,Y) such that vk ⇀ u

weakly in W 1,2(B̃n, RN ) and D(vk, B̃n) → D(T0), which yields inequality
"≤" in (5), taking into account the properties of T0 from Step 1.

Step 3: Approximation of {Tε}. It therefore remains to prove Proposition 2. We
recall that this density result was already proved in [10] in the case of dimension
n = 3 without assuming condition (11), and it is open in this generality, even in
the case Y = S2, if n ≥ 4. For our purposes, we recall the main steps of the proof
from [10].

Let R∞
2,ϕ(B̃n,Y) and R0

2,ϕ(B̃n,Y) denote the subsets of the Sobolev space

W 1,2
ϕ (B̃n,Y) given by all the maps u which are smooth, respectively continuous,

except on a singular set Σ(u) of the type

Σ(u) =
r⋃

i=1

Σi , r ∈ N , (12)

where Σi is a smooth (n − 3)-dimensional subset of Bn with smooth boundary,
if n ≥ 4, and Σi is a point if n = 3. The starting point is the following density
result of Bethuel [2].

Theorem 3. R∞
2,ϕ(B̃n,Y) is strongly dense in W 1,2

ϕ (B̃n,Y).

If {uk} ⊂ R∞
2,ϕ(B̃n,Y) is such that uk → uT in W 1,2(B̃n, RN ), where uT

is given by (7), it then follows that

lim
k→+∞

mr(Ps(uT ) − Ps(uk)) = 0 ,

where mr denotes the real mass

mr(Γ ) := inf{M(D) | D ∈ Dn−2(B̃n) , spt D ⊂ B
n

, ∂D = R} .

By Federer’s theorem [6], if Γ has dimension zero we have mr(Γ ) = mi(Γ ) and
hence, in case n = 3, see [9], Vol. II, Sect. 4.2.5 and Sect. 5.4.2, it follows that

lim
k→+∞

mi(Ps(uT ) − Ps(uk)) = 0 ∀ s = 1, . . . , s̃ . (13)

As a consequence, if Ls
uk,uT

denotes a 1-dimensional i.m. rectifiable current of

least mass with support in B
3

such that

∂Ls
uk,uT

= Ps(uT ) − Ps(uk) ,
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then limk→+∞ M(Ls
uk,uT

) = 0 and hence, setting

Tk := Guk
+

s̃∑
s=1

(Ls
uk,uT

+ Ls(T )) × γs ,

by (8) we infer that {Tk} ⊂ cart2,1
ϕ (B̃3 ×Y), with Tk ⇀ T weakly in D3,2(B̃3 ×

Y) and D(Tk) → D(T ) as k → +∞. Since M(∂(Ls
uk,uT

+ Ls(T ))) < +∞
for every s and k, by applying Federer’s strong polyhedral approximation theorem
[5], we approximate T by a sequence of currents as in (7), where this time uT ∈
R∞

2,ϕ(B̃3,Y) and the Ls(T ) are polyhedral chains. At the final step one reduces
to approximate the dipoles L × γs, where L is the current integration over a line
segment, see [10].

To extend the density result to any dimension n ≥ 4, the crucial point is to
find an approximating sequence {uk} ⊂ R∞

2,ϕ(B̃n,Y) for which property (13)
holds true. In fact, once we have proved that the minimal connection between the
singularities of uk and uT is small as k → +∞, the rest of the proof follows
similarly to the case n = 3. We refer to [11] for the details about the approximation
of the dipoles ∆ × γs, in the case n ≥ 4 and ∆ equal to the current integration
over an (n − 2)-simplex.

To obtain (13), we have to estimate the mass of the minimal connection be-
tween the singularities. To this aim, we recall the following result of Pakzad and
Rivière [12].

Proposition 3. Let u ∈ R∞
2,ϕ(B̃n,Y). Then for every s = 1, . . . , s̃ there exists

an integral current Ls ∈ Rn−2(B̃n), with spt Ls ⊂ B
n

, such that

∂Ls = Ps(u) and M(Ls) ≤ C

∫
Bn

|Du|2 dx

for some absolute constant C > 0 independent of u.

In case Y = S2 this property goes back to [4] and is proved in [1] by means
of the coarea formula. In [12] the result is given in terms of polyhedral chains with
coefficients in the homotopy group π2(Y). However, since Y is 1-connected, by
the Hurewicz theorem π2(Y) ≈ H2(Y; R) and hence it can be re-stated in terms
of currents in Dn−2(B̃n; H2(Y; R)). Moreover, from the construction we obtain
the following local version, see [14] for the case Y = S2.

Proposition 4. Let W be a relatively open subset of B
n

such that Ln(∂W ) = 0.
Let u, v ∈ R∞

2,ϕ(B̃n,Y) be such that u = v a.e. on B
n \ W . Then, for every s =

1, . . . , s̃, there exists an i.m. rectifiable current Ls ∈ Rn−2(Bn) with spt Ls ⊂ W
such that

∂Ls = Ps(u) − Ps(v) and M(Ls) ≤ C
(
D(u, W ) + D(v, W )

)
.
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We postpone the proof of Proposition 4 and we first conclude the proof of (13),
and hence of Proposition 2. Using the same argument as in [14], there exists a
sequence of relatively open sets Wk ⊂ B

n
such that Ln(∂Wk) = 0, Ln(Wk) <

1/k and

sing(uT ) ⊂ . . . ⊂ Wk+1 ⊂ W k+1 ⊂ Wk ⊂ . . . ⊂ W1 .

Setting Vk := B
n \ Wk, then Vk+2 is a neighborhood of B

n \ Wk+1 = Vk+1
and u is continuous on Vk+2. Therefore, applying a refined version of Bethuel’s
density result, Theorem 3, compare [14, Thm. 4], we find the existence of sequences
{ũk} ⊂ R0

2,ϕ(B̃n,Y) and {uk} ⊂ R∞
2,ϕ(B̃n,Y), both strongly converging to uT

in W 1,2(B̃n, RN ), such that for every k

ũk = uT on Vk+1 ,

∫
Bn

(|ũk − uT |2 + |Dũk − DuT |2) dx <
1
k

,

sing(ũk) = sing(uk) ,

∫
Bn

(|ũk − uk|2 + |Dũk − Duk|2) dx <
1
k

and finally
Ps(ũk) = Ps(uk) ∀ s = 1, . . . , s̃ .

By applying Proposition 4 with u = uk, v = uk+1 and W = Wk+1, for every
s we find L

(k)
s ∈ Rn−2(Bn) with spt L

(k)
s ⊂ W k+1 such that

∂L
(k)
s = Ps(uk) − Ps(uk+1)

and M(L(k)
s ) ≤ C

(
D(uk, Wk+1) + D(uk+1, Wk+1)

)
.

Since Ln(Wk) → 0, and both {ũk} and {uk} strongly converge to uT , possibly
passing to a subsequence we may and will suppose M(L(k)

s ) ≤ 2−k for every k
and s. Setting then

Ls
uk,uT

:= −
+∞∑
j=k

L(j)
s ,

since Ps(uk) ⇀ Ps(uT ), we have

∂Ls
uk,uT

= Ps(uT ) − Ps(uk) and lim
k→+∞

M(Ls
uk,uT

) = 0 ,

so that (13) holds true, as required.

Step 4: Proof of Proposition 4. We recall from [9], Vol. II, Sect. 5.4, see also [10],
that if u ∈ W 1,2

ϕ (B̃n,Y), then ∂Gu(ω) depends only on the cohomology class of

ω ∈ Zn−1,2(B̃n × Y). As a consequence ∂Gu induces a functional (∂Gu)� on
Hn−1,2(B̃n × Y). Since Hk,2(B̃n × Y) � Dk−2(B̃n) ⊗ H2

dR(Y), the homology
map (∂Gu)� is uniquely represented as an element of Dn−3(B̃n; H2(Y; R)).
More explicitly, if φ ∈ Dn−3(B̃n), we have [(∂Gu)�(φ)] ∈ H2(Y; R) and for
s = 1, . . . , s

< (∂Gu)�(φ), [ωs] >= ∂Gu(π#φ ∧ π̂#ωs) ,



164 M. Giaquinta, D. Mucci

<, > denoting the de Rham duality between H2(Y; R) and H2
dR(Y). We now set

P(u) := (∂Gu)� ∈ Dn−3(B̃n; H2(Y; R)) (14)

and, for each ω ∈ [ω] ∈ H2
dR(Y), we define the current P(u; ω) ∈ Dn−3(B̃n) by

P(u; ω) := ∂π#(Gu π̂#ω), so that

P(u; ω)(φ) = ∂Gu(π#φ ∧ π̂#ω) ∀φ ∈ Dn−3(B̃n) .

The following facts hold:

(i) for s = 1, . . . , s

P(u; ωs)(φ) =< P(u)(φ), [ωs] > ,

i.e., P(u; ωs) does not depend on the representative in the cohomology class
[ωs] and hence we have Ps(u) = P(u; ωs), compare (2);

(ii) ∂ P(u) = 0 and P(u) =
s∑

s=1

P(u; ωs) ⊗ [γs], hence it does not depend on the

choice of [γ1], . . . , [γs];
(iii) if ũ ∈ R∞

2,ϕ(B̃n,Y), then P(ũ) is an i.m. rectifiable (n − 3)-current with

values in Hsph
2 (Y; Z) and is a finite combination

P(ũ) =
s̃∑

s=1

Rs ⊗ [γs]

where Rs is an i.m. rectifiable current in Rn−3(B̃n), with spt Rs ⊂ B
n

; in
particular, in case n = 3 we have

Rs =
∑

i

di,sδai
,

where di,s ∈ Z are integer coefficients and the δai’s are Dirac unit measures

at points ai ∈ B
3
;

(iv) since the boundary data ϕ has a smooth extension from B̃n into Y , then each
Ps(ũ) is the boundary of an i.m. rectifiable current.

If u ∈ R∞
2,ϕ(B̃n,Y), its singular set Σ(u), see (12), is contained in B :=⋃µ

i=1 σi, where the σi are non-overlapping (n − 3)-dimensional polyhedra such
that every (n − 4)-face of B belongs to at least two σi and two different faces of
B intersect only on their boundaries. The topological singularity of u is defined in
[12] as the π2(Y)-polyhedral chain

Su :=
µ∑

i=1

[u, σi] [[σi ]] ∈ Pn−3(B̃n; π2(Y)) .

The homotopic singularity [u, σi] of u at σi is given, independently of the choice
of a ∈ σi and δ > 0, by

[u, σi] := [u|Σa,δ
]π2(Y) ,
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i.e., by the homotopy class of the restriction of u to the (suitably oriented) 2-sphere
Σa,δ := ∂(Bn

δ (a) ∩ Na), where Na is the 3-dimensional affine space orthogonal
to σi at a and Bn

δ (a) is the n-ball of radius δ centered at a. Therefore, Su is a
polyhedral (n − 3)-dimensional chain in Pn−3(B̃n, π2(Y)).

We now recall that the class of k-dimensional flat chains Fk(B̃n; π2(Y)) is
given by the completion w.r.t. the flat norm of the class of polyhedral k-chains in
Pk(B̃n; π2(Y)), compare [7], [15] and [12]. Now, since π2(Y) ≈ H2(Y; R), we
readily infer that Fn−3(B̃n; π2(Y)) coincides with the class of integral flat chains
in Dn−3(B̃n; H2(Y; R)). Moreover, the masses of elements in Pn−3(B̃n; π2(Y))
and Rn−3(B̃n; H2(Y)) are defined in an equivalent way. Also, for every u ∈
R∞

2,ϕ(B̃n,Y) we have

Ps(u) = τ(Σ(u), θs,
−→
Σ (u)) ,

where
−→
Σ (u) is the (n − 3)-vector orienting Σ(u) and θs := [u#[[ Σa,δ ]]] · ωs,

see [9, Vol. II, Sect. 5.4.2]. In particular, we infer that

Su ≈ P(u) , (15)

compare (14).
Following [12], let Y l be the l-skeleton of some triangulation of Y , for l =

2, . . . , M := dim(Y). We have that Y2 is 1-connected and hence that π2(Y2) is
finitely generated. We let g1, . . . , gβ be its generators. Also, the homomorphisms
χ2,l : π2(Y2) → π2(Y l) induced by the injection maps Y2 ↪→ Y l are onto,
whence π2(Y l) is finitely generated, too. Let pi : Y2 → S2, i = 1, . . . , β, be
smooth maps such that

[pi(C)]π2(S2) = αi([C]π2(Y2))

for any 2-cycle C ∈ Z2(Y2), where, for every a ∈ π2(Y2),

a =
β∑

i=1

αi(a) gi

is its unique decomposition. Let now ũ ∈ R∞
2,ϕ(B̃n,Y2). If the boundary datum

ϕ is constant, since pi ◦ ũ ∈ R∞
2,ϕ(B̃n,Y), by [1] we find existence of Ti ∈

Pn−2(B̃n; Z) such that

∂Ti = Spi◦ũ and M(Ti) ≤ Ci

∫
B̃n

|D(pi ◦ ũ)|2 dx .

We now recall that if u ∈ R∞
2,ϕ(B̃n, S2), for any regular value y ∈ S2 and every

x ∈ u−1(y) the D-field D(u)(x), see (4), is a tangent (n − 2)-vector to the level
surface u−1(y). Setting then

Tu
y := τ

(
u−1(y), 1,

D(u)
|D(u)|

)
,
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we infer that Tu
y ∈ Rn−2(B̃n), with spt Tu

y ⊂ B
n

, and P(u) = ∂(Tu
y − Tϕ

y ).
As a consequence, if ũ, ṽ ∈ R∞

2,ϕ(B̃n,Y2) are such that ũ = ṽ a.e. on B
n\W ,

we infer that for a.e. y ∈ S2

P(pi ◦ ũ) − P(pi ◦ ṽ) = ∂(T pi◦ũ
y − T pi◦ṽ

y ) (16)

and therefore, by the coarea formula, compare [14] for the case Y = S2, since
spt(T pi◦ũ

y − T pi◦ṽ
y ) ⊂ W , we find y ∈ S2 such that (16) holds and

M(T pi◦ũ
y − T pi◦ṽ

y ) ≤ 1
4π

(
D(pi ◦ ũ, W ) + D(pi ◦ ṽ, W )

)
.

Consequently, as in [12] we find the existence of a polyhedral chain T ∈
Pn−3(B̃n, π2(Y2)) such that

∂T = Sũ − Sṽ and M(T ) ≤ C
(
D(ũ, W ) + D(ṽ, W )

)
.

Finally, arguing as in [12] we prove Proposition 4, taking into account (15). ��
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