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Abstract. We study the Dirichlet problem in a ball for the Hénon equation with critical
growth and we establish, under some conditions, the existence of a positive, non radial
solution. The solution is obtained as a minimizer of the quotient functional associated to
the problem restricted to appropriate subspaces of H1

0 invariant for the action of a subgroup
of O(N). Analysis of compactness properties of minimizing sequences and careful level
estimates are the main ingredients of the proof.
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1. Introduction

Let Ω be the unit ball in RN , with N ≥ 3. In a 1973 paper, M. Hénon introduced
the elliptic equation

−∆u = |x|αup−1 in Ω, (1)

where α > 0 and p > 2, in the context of spherically symmetric stellar clusters.
This equation is a good model for a series of problems of great mathematical

interest, especially in the domain of nonlinear analysis and variational methods. So
far the attention has been devoted to the Dirichlet problem for positive solutions,
namely 


−∆u = |x|αup−1 in Ω

u > 0 in Ω

u = 0 on ∂Ω,

(Pα)

for which existence, nonexistence, multiplicity and qualitative properties of so-
lutions, such as radial symmetry, have been dealt with in various papers under
different conditions on the parameters α and p.
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From the point of view of existence results for problem (Pα), the first observa-
tion that one can make is the fact that the exponent α affects the range of powers p
for which (Pα) may possess solutions. Indeed the presence of the term |x|α modi-
fies, so to speak, the global homogeneity of the equation and shifts up the threshold
between existence and nonexistence given by the application of the Pohozaev iden-
tity. The first to realize this was W.–M. Ni, who in 1982 proved the (existence part
of the) following result, where, as usual, 2∗ = 2N

N−2 is the critical exponent for the
Sobolev embedding H1

0 ↪→ Lp.

Theorem 1.1 (Ni, [10]) Problem (Pα) possesses a solution for all p ∈ (2, 2∗ +
2α

N−2 ). There are no solutions if p ≥ 2∗ + 2α
N−2 .

At first sight this result is rather surprising since it provides existence also for
critical and supercritical cases in a ball, while for α = 0 it is well known that that no
solutions can be present for p ≥ 2∗. The solutions found by Ni are radial and arise
via the application of the Mountain Pass Theorem in the space of radial functions.

The work [10] widened the range of exponents p for which problem (Pα) can
be studied with respect to the standard subcritical growth. In spite of this fact, all
the papers we are aware of that followed [10] concentrate on the subcritical cases
p < 2∗.

A possible reason for this is that the structure of the problem allows the presence
of very interesting symmetry breaking results. Indeed since the function r �→ rα

is increasing, the classical moving planes arguments of [6] cannot be applied to
force radial symmetry of the solutions. And indeed non radial solutions appear in
a natural way.

This was first proved in the elegant paper [12] by D. Smets, J. Su and M. Willem,
the reading of which is the main motivation of the present work. In order to describe
the main result of [12], let Qα : H1

0 (Ω) \ {0} → R be the functional

Qα(u) =

∫
Ω

|∇u|2 dx(∫
Ω

|x|α|u|p dx
)2/p

.

Critical points of Qα give rise, after scaling, to solutions of problem (Pα). In [12] the
authors study, among other things, the ground states of Qα, namely its minimizers,
for subcritical p. They obtain

Theorem 1.2 (Smets, Su, Willem, [12]) For every p ∈ (2, 2∗), there exists α∗ > 0
such that no minimizer of Qα is radial provided α > α∗.

In particular this result shows that (in the subcritical case) the solutions found
by Ni, which can be thought of as minimizers of Qα on the space of H1

0 (Ω) radial
functions, are not ground states for Qα over the whole H1

0 (Ω), at least for α large.
In [12] the authors also provide interesting information about the behavior of

α∗ as a function of p. They show that the threshold α∗ goes to zero when p tends
to 2∗, namely that for nearly critical problems (Pα), virtually no ground state is
radial, except if α is very very small. The reason why this occurs is clearly pointed
out in [13] as follows: for p close to 2∗ minimizers tend to “concentrate” about a
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point; in order to minimize Qα this point should be as close as possible to ∂Ω,
where the effect of the weight |x|α is minimal.

Further results on partial symmetry and asymptotic behavior of ground states
as p → 2∗ or as α → ∞ can be found in [13] and [5].

The results in the papers by Smets et al. cited above can in particular be seen
as multiplicity results, in the sense that for α large problem (Pα) has at least two
solutions: the radial one found by Ni (which survives when p ≥ 2∗) and the non
radial ground state found in [12], which disappears when p = 2∗.

In this paper we study the existence of non radial solutions to (Pα) when p = 2∗.
Clearly these solutions cannot arise as ground states of Qα, so that a different

variational procedure has to be applied. We will find them as critical points of Qα

restricted to appropriate subspaces of H1
0 (Ω) invariant under the action of some

subgroup of O(N). This approach has already been used for example in [8] and
[9] for problems on an annulus, and in [16] for a problem in RN .

Existence of a critical point is obtained through the two main ingredients that
one expects in problems with critical growth: analysis of compactness properties
for Palais–Smale sequences and careful level estimates to make sure to avoid levels
where compactness is lost.

The same estimates will allow us to say that we are working below the minimal
level of radial functions, thanks to a bound for such level obtained in [12].

Our main result is the following.

Theorem 1.3 Let N ≥ 4 and let Ω be the unit ball in RN . Then for every α > 0
large enough, the problem


−∆u = |x|αu2∗−1 in Ω

u > 0 in Ω

u = 0 on ∂Ω

(P ∗
α)

admits at least one non radial solution.

A further point of interest, specific of critical problems, that arises from the
previous Theorem can be observed recalling that for critical problems domains
with topology, such as domains with holes play an important role; in particular
celebreted papers such as [1] demonstrated how domains with topology often carry
solutions that cannot be present otherwise. Now in Theorem 1.3 to say that α is
large means that |x|α is very small in most of Ω. Roughly speaking, from the point
of view of existence results, the coefficient |x|α has an effect similar to the presence
of a “hole” in Ω, which is possibly the real reason why, aside from the technical
estimates, (P ∗

α) admits a solution.

The paper is structured as follows: Sect. 2 contains the analysis of the compact-
ness properties of Palais–Smale sequences for Qα; Sect. 3 is devoted to the level
estimates, in the spirit of [1], and the main results are proved in Sect. 4.

Notation. We denote by H1
0 (Ω) the usual Sobolev space, normed by (

∫
Ω

|∇u|2)1/2.
The space D1,2(RN ) is the closure of C∞

0 (RN ) for the norm (
∫
RN |∇u|2)1/2. We

denote by Br(x0) the open ball {x ∈ RN | |x − x0| < r}. The symbol [γ] stands
for the integer part of γ ∈ R.
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2. Compactness properties

From now on, for notational convenience, we set p = 2∗. This has to be kept in
mind throughout the paper.

In this section we analyze the compactness properties enjoyed by minimizing
sequences of the functional

Qα(u) =

∫
Ω

|∇u|2 dx(∫
Ω

|x|α|u|p dx
)2/p

restricted to appropriated subspaces of H1
0 (Ω) of symmetric functions.

To describe the symmetry that we are going to use we write RN = R2 ×
RN−2 � C × RN−2 and x = (z, y). For a given integer n let Gn be the group
Zn × O(N − 2); we consider the action of Gn on H1

0 (Ω) given by

g(u)(x) = g(u)(z, y) = u(ej 2πi
n z, Ry),

where j ∈ {0, . . . , n − 1} and R ∈ O(N − 2).
We denote by Hn the set of points in H1

0 (Ω) which are fixed by Gn, namely

Hn = {u ∈ H1
0 (Ω) | u(e

2πi
n z, Ry) = u(z, y) ∀R ∈ O(N − 2) }. (2)

In particular, functions in Hn are radial in y.
The functional Qα is invariant under the action of Gn (actually both the nu-

merator and the denominator are invariant), so that critical points of Qα restricted
to Hn are critical points of Qα. These, after scaling, give rise to weak solutions
of (P ∗

α), which, by standard elliptic theory, are in fact classical solutions. We are
going to study the lowest possible critical level of Qα on Hn; to this aim we set

Σn = inf
u∈Hn\{0}

Qα(u) = inf
u∈Hn\{0}

∫
Ω

|∇u|2 dx(∫
Ω

|x|α|u|p dx
)2/p

. (3)

Notice that since |x|α ≤ 1 in Ω, we have Σn ≥ S, the best Sobolev constant for
the embedding H1

0 ↪→ Lp, for all n.
The main result in this section is the following.

Proposition 2.1 Assume N ≥ 4. If

Σn < n
2
N S (4)

then Σn is achieved.

The proof of Proposition 2.1 will result from the analysis of Palais–Smale
sequences for Qα and will take the rest of this section. It consists of a combination
of arguments rather familiar when one deals with problems with critical growth.

We begin with a standard property.

Lemma 2.2 Let uk ∈ Hn be a minimizing sequence for problem (3) converging
weakly to u in H1

0 (Ω). If u 
≡ 0, then u is a minimum and the convergence holds
strongly in H1

0 (Ω).
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Proof. It uses arguments classical since [4] and we report it for completeness.
Notice first that u ∈ Hn since Hn is weakly closed in H1

0 (Ω). Next we have as
k → ∞, by weak convergence and the Brézis–Lieb Lemma ([3]),∫

Ω

|∇uk − ∇u|2 dx =
∫

Ω

|∇uk|2 dx −
∫

Ω

|∇u|2 dx + o(1)

and ∫
Ω

|x|α|uk − u|p dx =
∫

Ω

|x|α|uk|p dx −
∫

Ω

|x|α|u|p dx + o(1).

Therefore

Qα(u) =

∫
Ω

|∇uk|2 dx − ∫
Ω

|∇uk − ∇u|2 dx + o(1)(∫
Ω

|x|α|uk|p dx − ∫
Ω

|x|α|uk − u|p dx + o(1)
)2/p

. (5)

But the sequence uk is minimizing, so that
∫

Ω
|∇uk|2 dx =

Σn

(∫
Ω

|x|α|uk|p dx
)2/p + o(1), while

∫
Ω

|∇uk − ∇u|2 dx ≥
Σn

(∫
Ω

|x|α|uk − u|p dx
)2/p

, since uk − u ∈ Hn. Inserting these relations
into (5) we obtain

Qα(u) ≤ Σn

∫
Ω

|∇uk|2 dx − ∫
Ω

|∇uk − ∇u|2 dx + o(1)((∫
Ω

|∇uk|2 dx
)p/2 − (∫

Ω
|∇uk − ∇u|2 dx

)p/2 + o(1)
)2/p

.

(6)

Since
∫

Ω
|∇uk − ∇u|2 dx <

∫
Ω

|∇uk|2 dx for k large, it is easily seen that unless∫
Ω

|∇uk − ∇u|2 dx tends to zero, the right–hand–side of (6) will be strictly less
than Σn for k large, which would contradict the definition of Σn. Therefore it must
be uk → u strongly in H1

0 (Ω), which gives the desired conclusion. �
In the rest of this section we analyze what happens if a minimizing sequence

in Hn tends weakly to zero in H1
0 (Ω).

Let then uk ∈ Hn be a minimizing sequence for problem (3) such that uk ⇀ 0
in H1

0 (Ω). By Ekeland’s variational principle it is not restrictive to assume that the
gradient Q′

α(uk) tends to zero in Hn, and, since Qα is invariant under the action
of Gn, we see that Q′

α(uk) → 0 in H1
0 (Ω). By homogeneity we can normalize uk

to obtain a sequence (still denoted uk) such that as k → ∞,

Qα(uk) → Σn, Q′
α(uk) → 0 in H1

0 (Ω), uk ⇀ 0 in H1
0 (Ω),∫

Ω

|x|α|uk|p dx = ΣN/2
n .

Notice that in this way we also have
∫

Ω
|∇uk|2 dx = Σ

N/2
n + o(1).

Remark 2.3 In this paper we are dealing with minimizing sequences for Qα over
Hn; the form of Qα allows us to consider these sequences as made up of nonnegative
functions. We will use this fact tacitly throughout the paper.



306 E. Serra

At this point it is more convenient for the computations to pass to the direct
functional. An explicit computation of Q′

α(uk), together with the properties just
listed shows that uk is a Palais–Smale sequence for the functional f : H1

0 (Ω) → R
defined by

f(u) =
1
2

∫
Ω

|∇u|2 dx − 1
p

∫
Ω

|x|α|u|p dx

at level 1
N Σ

N/2
n .

In what follows, when we need to, we will consider the uk’s (and other functions
in H1

0 (Ω)) as functions in D1,2(RN ) by extending them to zero outside Ω. In this
case, of course, uk ⇀ 0 in D1,2(RN ).

As it is easy to imagine, the study of the behavior of uk uses some version of
the Concentration–Compactness Principle. To do this we first define rescalings of
functions in D1,2(RN ).

Definition 2.4 For any fixed λ > 0, q ∈ RN , the rescaling T = T (λ, q) is the
function

T : D1,2(RN ) → D1,2(RN ) defined by Tv(x) = λ− N−2
2 v(

x

λ
+ q).

Notice that if T = T (λ, q) then T−1 = T (1/λ, −λq), that is,

T−1v(x) = λ
N−2

2 v(λ(x − q)).

The following theorem is a version of by now standard Concentration–Compactness
type results (the form used here is taken from [14]).

Theorem 2.5 Assume that vk is a bounded sequence in D1,2(RN ). Then, up to a
subsequence, one of the following alternatives holds as k → ∞:

(i) vk → 0 strongly in L2∗
(RN ).

(ii) There is a sequence Tk of rescalings such that Tkvk ⇀ v weakly in L2∗
(RN )

and v 
≡ 0.

We apply this result to the Palais–Smale sequence uk, recalling that we have
set p = 2∗. Notice that alternative (i) cannot occur since for all k∫

RN

|uk|p dx =
∫

Ω

|uk|p dx ≥
∫

Ω

|x|α|uk|p dx = ΣN/2
n > 0.

Therefore there exists a sequence of rescalings Tk = T (λk, qk) such that (up to
subsequences)

Tkuk ⇀ u weakly in D1,2(RN ) and u 
≡ 0.

Since the support of each uk is in Ω it is easy to see that λk → ∞ as k → ∞ and
qk ∈ Ω for all k. Up to subsequences we can also assume that qk → q ∈ Ω.

We first identify the equation solved by u.
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Lemma 2.6 Let Tk = T (λk, qk) be the above sequence of rescalings satisfying
λk → ∞ and qk → q ∈ Ω. Let u 
≡ 0 be the weak D1,2(RN ) limit of Tkuk. Then
λkdist(qk, ∂Ω) → ∞, q 
= 0, and u satisfies

−∆u = |q|αup−1 in RN .

Proof. We first rule out the case λkdist(qk, ∂Ω) ≤ C for all k. Indeed, if this hap-
pens, after a rotation of coordinates one easily sees as for example in [15], Chapter
III, Lemma 3.3, that taken any ϕ ∈ C∞

0 (RN
+ ), where RN

+ = {x ∈ RN | x1 > 0},
the support of the function Tk

−1ϕ is contained in Ω for all large k. Set

φ(x) =

{ |x|α if x ∈ Ω

0 if x /∈ Ω

The fact thatuk is a Palais–Smale sequence forf implies that, settingy = λk(x−qk)
and φk(y) = φ( y

λk
+ qk),

o(1) = f ′(uk)Tk
−1ϕ =

∫
Ω

∇uk∇(Tk
−1ϕ) dx −

∫
Ω

|x|αuk
p−1Tk

−1ϕ dx

=
∫
RN

∇uk∇(Tk
−1ϕ) dx −

∫
RN

φ(x)uk
p−1Tk

−1ϕ dx

=
∫
RN

∇(Tkuk)∇ϕ dy −
∫
RN

φk(y)(Tkuk)p−1ϕ dy

=
∫
RN

∇u∇ϕ dy −
∫
RN

φ(q)up−1ϕ dy + o(1).

We have used the fact that Tkuk ⇀ u in D1,2(RN ) and φk(y) → φ(q) for all y.
Since this happens for all ϕ ∈ C∞

0 (RN
+ ), we see that u satisfies −∆u = |q|αup−1

on RN
+ and u = 0 on {x1 = 0}; this is impossible because u 
≡ 0. As a remark we

notice that in this case q ∈ ∂Ω, so that |q|α = 1.
Therefore we must have (up to subsequences) λkdist(qk, ∂Ω) → ∞. In this

case we can repeat the above argument, this time being allowed to take as a test
function any ϕ ∈ C∞

0 (RN ); the above computations lead us to say that u is a
nontrivial solution of −∆u = |q|αup−1 on RN , which also shows that q 
= 0. �
Remark 2.7 The function u is nothing else than a multiple of U , the unique radial
positive solution (modulo rescalings) of −∆U = Up−1 in RN . Precisely, u =
|q|α 2−N

4 U .

We now go on to compare uk to T−1
k u through the functional f ; since T−1

k u
is not supported in Ω we cut it off by means of the following procedure. Let
χ : R → [0, 1] be a fixed piecewise linear function such that

χ(t) =

{
1 if |t| ≤ 1

0 if |t| ≥ 2.

The fact that λkdist(qk, ∂Ω) → ∞ allows us to take a sequence λk ∈ R+ such
that λk → ∞, λk/λk → ∞ and λkdist(qk, ∂Ω) → ∞ as k → ∞.
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We then set χk(x) = χ(λk

λk
|x|); in this way the support of T−1

k χk is contained

in Ω for all k large enough and uk − T−1
k (χku) ∈ H1

0 (Ω).
For further use we also notice that χku → u strongly in D1,2(RN ), as one can

readily check or look up as above in [15].

In the next proposition we shall use the functional fq : D1,2(RN ) → R, defined
for q ∈ Ω by

fq(u) =
1
2

∫
RN

|∇u|2 dx − 1
p
|q|α

∫
RN

|u|p dx.

Lemma 2.8 Let Tkuk be the sequence constructed above. Then as k → ∞,

f(uk − T−1
k (χku)) = f(uk) − fq(u) + o(1). (7)

Proof. Set wk = uk −T−1
k (χku); then wk ∈ H1

0 (Ω) and, putting λk(x−qk) = y,
we have∫

Ω

|∇wk|2 dx =
∫
RN

|∇wk|2 dx =
∫
RN

|∇(Tkuk) − ∇(χku)|2 dy

=
∫
RN

|∇(Tkuk)|2 dy +
∫
RN

|∇(χku)|2 dy

−2
∫
RN

∇(Tkuk)∇(χku) dy

=
∫

Ω

|∇uk|2 dy −
∫
RN

|∇u|2 dy + o(1)

since χku → u strongly in D1,2(RN ) and (Tkuk) ⇀ u weakly in the same space.
This is how the integral of |∇wk|2 splits.

We turn to the second term in f . In the computations below we denote φk(y) =
φ( y

λk
+ qk).

Changing variables as in the first part we have∫
Ω

|x|α|wk|p dx =
∫
RN

φ(x)|wk|p dx =
∫
RN

φk(y)|Tkuk − χku|p dy.

Next we notice that as k → ∞∫
RN

φk(y)|Tkuk − χku|p dy =
∫
RN

φk(y)|Tkuk − u|p dy + o(1)

since χku → u strongly in D1,2(RN ). Therefore, by the Brézis–Lieb lemma∫
RN

φk(y)|Tkuk − χku|p dy =
∫
RN

φk(y)|Tkuk − u|p dy + o(1)

=
∫
RN

φk(y)|Tkuk|p dy −
∫
RN

φk(y)|u|p dy + o(1). (8)

Finally we observe that changing variables∫
RN

φk(y)|Tkuk|p dy =
∫
RN

φ(x)|uk|p dx =
∫

Ω

|x|α|uk|p dx,
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while∫
RN

φk(y)|u|p dy =
∫
RN

φ(q)|u|p dy + o(1) = |q|α
∫
RN

|u|p dy + o(1)

since φk(y) → φ(q).
Inserting these into (8) we find that∫
RN

φk(y)|Tkuk − χku|p dy =
∫

Ω

|x|α|uk|p dx − |q|α
∫
RN

|u|p dy + o(1)

which, combined with the splitting of the integral of |∇wk|2 yields

f(uk − T−1
k (χku)) = f(uk) − fq(u) + o(1),

as we wanted to prove. �

To complete the preliminary properties we need we state the analogue of the
previous lemma concerning the gradients.

Lemma 2.9 Let Tkuk be the sequence constructed above. Then as k → ∞,

f ′(uk − T−1
k (χku)) = f ′(uk) + o(1) in H1

0 (Ω). (9)

Proof. For the sake of simplicity we work assuming that uk − T−1
k (χku) is non-

negative; otherwise one replaces its (p−1)–th power by |uk −T−1
k (χku)|p−2(uk −

T−1
k (χku)).

If ϕ ∈ C∞
0 (Ω), then

f ′(uk − T−1
k (χku))ϕ =

∫
RN

∇(uk − T−1
k (χku))∇ϕ dx

−
∫
RN

φ(x)(uk − T−1
k (χku))p−1ϕ dx.

Plainly we have (recalling that χku → u strongly in D1,2(RN )),
∫
RN

∇(uk − T−1
k (χku))∇ϕ dx =

∫
RN

∇uk∇ϕ dx

−
∫
RN

∇u∇(Tkϕ) dy + o(1)||ϕ||, (10)

|| · || being the D1,2(RN ) norm.
For the second part we first notice that, still because χku → u strongly in

D1,2(RN ),
∫
RN

φ(x)(uk−T−1
k (χku))p−1ϕ dx=

∫
RN

φk(y)(Tkuk−u)p−1Tkϕ dy+o(1)||ϕ||,
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where we have set, as above, y = λk(x − qk) and φk(y) = φ(y/λk + qk). Now a
standard application of the Brézis–Lieb lemma shows that∫

RN

φk(y)(Tkuk − u)p−1Tkϕ dy =
∫
RN

φk(y)(Tkuk)p−1Tkϕ dy

−
∫
RN

φkup−1Tkϕ dy + o(1)||ϕ||,

so that returning to the variable x in the first integral and using φk → φ(q) = |q|α,
we obtain

φ(x)(uk − T−1
k (χku))p−1ϕ dx =

∫
RN

φ(x)uk
p−1ϕ dx

−|q|α
∫
RN

up−1Tkϕ dy + o(1)||ϕ||. (11)

Combining (10) and (11) we can write

f ′(uk − T−1
k (χku))ϕ = f ′(uk)ϕ + f ′

q(u)Tkϕ + o(1)||ϕ|| = f ′(uk)ϕ + o(1)||ϕ||

since u is a critical point of fq by Lemma 2.6. This holds for every ϕ ∈ C∞
0 (Ω)

and therefore it is equivalent to the statement we wanted to prove. �

Recalling that uk is a Palais–Smale sequence for f at level 1
N Σ

N/2
n , the two

above lemmas constitute the proof of the following proposition.

Proposition 2.10 The sequence uk − T−1
k (χku) satisfies

i) f(uk − T−1
k (χku)) = 1

N Σ
N/2
n − fq(u) + o(1),

ii) f ′(uk − T−1
k (χku)) = o(1) in H1

0 (Ω), namely, it is a Palais–Smale se-

quence for f at level 1
N Σ

N/2
n − fq(u).

We are now ready to describe the behavior of Palais–Smale sequences for f .

Proposition 2.11 Let uk be a Palais–Smale sequence for f at level 1
N Σ

N/2
n con-

verging weakly to zero in H1
0 (Ω).

Then there is a positive integer m (depending only on Σn) such that for every
j = 1, . . . , m there exist sequences λjk ∈ R+ and qjk ∈ Ω, with λjk → ∞
and qjk → qj ∈ Ω \ {0} as k → ∞, there exists a nontrivial critical point
uj ∈ D1,2(RN ) of fqj such that, setting Tjk = T (λjk, qjk), there results (up to
subsequences)

uk =
m∑

j=1

T−1
jk (uj) + o(1) in D1,2(RN ), (12)

f(uk) =
m∑

j=1

fqj
(uj) + o(1). (13)
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Proof. If uk is a Palais–Smale sequence as in the assumptions, we can apply to it
the arguments that start with Theorem 2.5 and are concluded in Proposition 2.10.
Explicitly, there exist a sequence of positive numbers λ1k → ∞, a sequence q1k of
points of Ω with q1k → q1 ∈ Ω \ {0} and a nontrivial critical point u1 of fq1 such
that, setting T1k = T (λ1k, q1k), the sequence

w1k := uk − T−1
1k (χ1ku1)

is a Palais–Smale sequence for f at level 1
N Σ

N/2
n − fq1(u1). Here χ1k is defined

according to the procedure that follows Remark 2.7.
We now iterate this scheme, still starting with the application of Theorem 2.5.

If w1k → 0 strongly in Lp(RN ), then the fact that it is a Palais–Smale sequence
implies that w1k → 0 strongly in D1,2(RN ). Since also χ1ku1 → u1 strongly in
D1,2(RN ) we can write

uk = T−1
1k (u1) + o(1) in D1,2(RN ),

and the proposition is proved with m = 1.
Otherwise w1k → 0 weakly in Lp(RN ) but not strongly. In this case, starting

with Theorem 2.5 we can work on w1k as we did for uk: we can find sequences
λ2k → ∞, q2k → q2 ∈ Ω \ {0}, a nontrivial critical point u2 of fq2 such that the
sequence

w2k := w1k − T−1
2k (χ2ku2)

is a Palais–Smale sequence for f at level 1
N Σ

N/2
n − fq1(u1) − fq2(u2). Here χ2k

and T2k are defined similarly as we did above. Once again, if w2k → 0 strongly in
Lp(RN ), then we see that

uk = T−1
1k (u1) + w1k = T−1

1k (u1) + T−1
2k (u2) + o(1) in D1,2(RN ),

and the proposition is proved with m = 2. If, on the contrary, w2k → 0 weakly in
Lp(RN ) but not strongly, we iterate the above argument; to check that the procedure
ends after a finite number of steps, notice that by Remark 2.7, for all j,

fqj
(uj) = fqj

(|qj |α
2−N

4 U) = |qj |α
2−N

2
1
N

SN/2 ≥ 1
N

SN/2,

by definition of U , so that after at most m := [Σn/S]N/2 steps the remainder will
be a Palais–Smale sequence at level zero, namely it will be o(1) in D1,2(RN ),
obtaining the requested representation for uk and f(uk). �
Remark 2.12 In the statement of the previous proposition we have obtained a rep-
resentation of uk as a function in D1,2(RN ). This is the simplest way to express
uk. A representation in H1

0 (Ω) can be deduced even more directly from the proof
of Proposition 2.11 if one does not suppress the cut–off functions χjk. Since we
are going to use this version of the representation of uk, we write it explicitly as

uk =
m∑

j=1

T−1
jk (χjkuj) + o(1)

=
m∑

j=1

λ
N−2

2
jk (χjkuj)(λjk(· − qjk)) + o(1) in H1

0 (Ω). (14)
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Remark 2.13 In the introduction we have mentioned the fact that the weight |x|α has
an effect similar to that of a “hole” in Ω. This effect is manifest in the structure of the
Palais–Smale sequences for f that, as Proposition 2.11 shows, cannot concentrate
in zero.

The analysis of the Palais–Smale sequences for f allows us to obtain the proof
of the main result of this section, Proposition 2.1. The conclusion is achieved by
taking into account the symmetry properties of uk; we borrow the argument from
[16], where it is applied to a different problem.

Proof of Proposition 2.1. Let uk ∈ Hn be a (bounded) minimizing sequence for
Qα over Hn. Then uk contains a subsequence (still denoted uk) such that uk ⇀ u
in H1

0 (Ω).
If u 
≡ 0, then by Lemma 2.2, u is a minimum point in Hn, and there is nothing

left to prove.
If, on the contrary, uk ⇀ 0 in H1

0 (Ω), then, as we did above, we can assume
without loss of generality that uk is a Palais–Smale sequence for the functional f at
level 1

N Σ
N/2
n , normalized in such a way that

∫
Ω

|x|α|uk|p = Σ
N/2
n . The behavior

of such sequences is described in Proposition 2.11. In particular,

f(uk)=
m∑

j=1

fqj (uj)+o(1)=
m∑

j=1

|qj |α
2−N

2
1
N

SN/2 + o(1) ≥ m
1
N

SN/2 + o(1).

(15)

Recall now that each uj is a multiple of the radial function U and that the cut–off
functions χjk are also radial. Furthermore, O(N − 2) is a continuous group for
N ≥ 4. These two remarks imply that for every j = 1, . . . , m, we must have
λjkdist(qjk,R2 × {0}) → 0 when k → ∞. Indeed, if this where not the case,
the representation (14) would be incompatible with the symmetry properties of uk.
Therefore in (14) we can replace each qjk with its projection on R2 × {0} so that
we can assume that (14) holds in the space Hn.

This means that m must be a multiple of n, say m = Kn, for some integer
K ≥ 1. But in this case, from (15),

1
N

ΣN/2
n = f(uk) + o(1) ≥ Kn

1
N

SN/2 + o(1) ≥ n
1
N

SN/2 + o(1),

namely Σn ≥ n
2
N S, contradicting the assumption. �

3. Asymptotic expansions

This is a technical section in which we establish the main estimates we will need
to prove that the assumption of Proposition 2.1, namely Σn < n

2
N S, is satisfied

for suitable values of n and α.
The strategy we adopt is rather simple and well known: we will explicitly

construct for each n a function u ∈ Hn such that, for n large, Qα(u) < n
2
N S; this

inequality will be proved in the next section. Presently we confine ourselves to the
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construction of u and we estimate carefully the numerator and the denominator of
Qα(u).

The idea we follow for the construction of u comes from the fact (already used
in [1] and [2], for example) that the superposition of solutions to problems at infinity
may “lower” the level of the functional. We will construct u as a Zn ×O(N − 2)–
symmetric superposition of suitably rescaled solutions of −∆U = Up−1 in RN ;
these functions will have to be projected onto H1

0 (Ω), and, in order to minimize
the effect of the weight |x|α, everything will have to take place as close as possible
to ∂Ω.

The computations that follow are heavily based on the estimates obtained by
Bahri and Coron in the celebrated paper [1], and especially in Proposition B5 of
that paper. Some estimates we will need are exactly the same as corresponding ones
in [1] and hence in these cases we will refer directly to computations carried out in
that paper.

The main difference between our framework and the one in [1] is that while
Bahri and Coron worked in a compact subdomain of Ω, we will be forced to work,
for the reason described above, closer and closer to the boundary of Ω. Therefore
some terms that were considered as constants in [1] will play a central role in our
setting and will have to be treated with special care.

We begin with the construction of u: we pick l ∈ (0, 1) and for every n ∈ N
we define n points xj in RN � C × RN−2 as

xj = ((1 − l)ej 2πi
n , 0), j = 0, . . . , n − 1.

Notice that the points xj are all in Ω. With the aid of these points we define for
λ > 0 the functions

Uλ,xi
(x) = T (λ, xi)−1U(x) = CN

λ
N−2

2

(1 + λ2|x − xi|2)
N−2

2

, (16)

where CN = (N(N − 2))(N−2)/4.
We recall that the functions Uλ,xi are the unique positive solutions, radial

about xi, of the equation −∆U = Up−1 in D1,2(RN ) and that
∫
RN |∇Uλ,xi |2 =∫

RN Up
λ,xi

= SN/2 for all λ and all xi, where S is the best constant in the embedding
H1

0 ↪→ Lp.
To avoid heavy notation from now on we will write simply Ui for Uλ,xi , and to

fix ideas we anticipate that we will let l → 0, n → ∞ and λ → ∞, with appropriate
relations between l, n and λ.

The functions Ui are not in H1
0 (Ω), so that we will use instead their projections

U i on H1
0 (Ω) defined by {

∆U i = ∆Ui in Ω

U i = 0 on ∂Ω.

If we set ϕi = Ui − U i, then ∆ϕi = 0 in Ω, ϕi = Ui on ∂Ω and ϕi > 0 in Ω by
the maximum principle.
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Finally we define

u(x) =
n−1∑
i=0

U i(x) =
n−1∑
i=0

(Ui(x) − ϕi(x)), (17)

and we observe that, due to the definition of the points xi, we have u ∈ Hn. Notice
that of course u depends on λ and on n and l through the choice of the points xi.

We now turn to the estimates, starting from
∫

Ω
|∇u|2. To this aim notice that by

definition of u and U i,

∫
Ω

|∇u|2 =
n−1∑
i,j=0

∫
Ω

∇U i∇U j = −
n−1∑
i,j=0

∫
Ω

∆UiU j =
n−1∑
i,j=0

∫
Ω

Ui
p−1(Uj − ϕj)

=
n−1∑
i=0

(∫
Ω

Ui
p −

∫
Ω

Ui
p−1ϕi

)
+

n−1∑
i,j=0
i�=j

(∫
Ω

Ui
p−1Uj −

∫
Ω

Ui
p−1ϕj

)
. (18)

We will treat the four integrals separately. In what follows, the letter C will denote
positive constants depending only on N . We will denote by O(a) quantities such
that |O(a)| ≤ C|a|.

We also set

dij = xj − xi, and d =
1
2

min
i �=j

|dij | =
1
2
|x1 − x0|,

and we assume that 2d ≤ l and that λd ≥ 1 for all λ under consideration.
Remark also that due to our definition of the points xi, we have

d = (1 − l) sin
π

n
∼ C

n

for all l small.
Finally, we denote by H : Ω × Ω → R the function

H(x, y) =
1

||x|y − x/|x||N−2 ,

that is, the regular part of the Green function of the laplacian on the unit ball Ω,
and by

G(x, y) =
1

|x − y|N−2 − H(x, y)

the Green function itself. Recall that H(x, ·) is harmonic in Ω for all x and equals
1/|x − ·|N−2 on ∂Ω.

We want to estimate Qα(u) in terms of G and H , in the spirit of the papers [1]
and [11]. The behavior of the numerator is given in the following proposition.
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Proposition 3.1 As λd → ∞ (that is, n/λ → 0) we have

∫
Ω

|∇u|2 dx = nSN/2 − CNc0

λN−2

{n−1∑
i=0

H(xi, xi) −
n−1∑
i,j=0
i�=j

G(xi, xj)
}

+nNO

(
1

λN−1

)
+ n2O

(
1

(λl)N

)
,

where CN is the constant introduced in (16) and c0 =
∫
RN Up−1 dx.

The proof of Proposition 3.1 consists in the evaluation of
∫

Ω
|∇u|2 dx in terms

of the quantities in (18), which we treat in separate lemmas.

Lemma 3.2
∫

Ω

Ui
p dx = SN/2 + O

(
1

(λl)N

)
.

Proof. Writing

SN/2 ≥
∫

Ω

Ui
p ≥

∫
Bl(xi)

Ui
p =

∫
RN

Ui
p −

∫
RN \Bl(xi)

Ui
p

= SN/2 −
∫
RN \Bl(xi)

Ui
p,

scaling y = λ(x − xi) and passing to spherical coordinates we have∫
RN \Bl(xi)

Ui
p ≤ C

∫ ∞

λl

rN−1

(1 + r2)N
dr ≤ C

(λl)N
,

which yields the desired expression. �
We turn to the second term in (18).

Lemma 3.3
∫

Ω

Ui
p−1ϕi dx =

CNc0

λN−2 H(xi, xi) + O

(
1

(λl)N

)
.

Proof. If we set

Γ (x) = ϕi(x) − CNλ
2−N

2 H(xi, x),

it is not difficult to check using harmonicity of H and ϕi (see also [1]) that for all
x ∈ Ω,

Γ (x) = O

(
1

λ
N+2

2 lN

)
.

Therefore if we split the term to be estimated as

∫
Ω

Ui
p−1ϕi =

CN

λ
N−2

2

[(∫
Bl/2(xi)

+
∫

Ω\Bl/2(xi)

)
Ui

p−1(x)H(xi, x) dx

]

+
∫

Ω

Ui
p−1(x)Γ (x), (19)
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then for the last integral we have

∣∣∫
Ω

Ui
p−1(x)Γ (x) dx

∣∣ ≤ O

(
1

λ
N+2

2 lN

)∫
RN

Ui
p−1

≤ O

(
1

λ
N+2

2 lN

)
C

λ
N−2

2

= O

(
1

(λl)N

)
, (20)

as one readily checks by scaling y = λ(x − xi).
Concerning the integral over Ω \ Bl/2(xi) we first notice that by harmonicity,

H(xi, x) ≤ max
Ω

H(xi, ·) = max
∂Ω

H(xi, ·) ≤ 1
lN−2 .

Therefore
CN

λ
N−2

2

∫
Ω\Bl/2(xi)

Ui
p−1(x)H(xi, x) ≤ CN

λ
N−2

2 lN−2

∫
Ω\Bl/2(xi)

Ui
p−1

= O

(
1

(λl)N

)
, (21)

as one again checks via the usual scaling.
The first integral in the right–hand–side of (19) is the one that gives the relevant

contribution. To evaluate it we first expand H(xi, ·) up to the third order near xi as
in [1], writing

H(xi, x) = H(xi, xi) + H1 + H2 + H3 + R,

where Hj denotes the j–th order term (e.g. H1 = ∇H(xi, xi)(x−xi)). We notice
that the integrals containing Hj are all zero (j = 1, 3 by symmetry and j = 2
by harmonicity). Up to here we have followed exactly the computations in [1];
however we need a slightly sharper estimate of the remainder R with respect to the
one in [1] on account of the fact that we will have to let xi tend to ∂Ω, namely
l → 0.

Now since |R| ≤ supBl/2(xi) ||∇4H(xi, ·)|||x − xi|4, using the explicit form
of H it is not difficult to check that

sup
Bl/2(xi)

||∇4H(xi, ·)|| ≤ C

lN+2

so that ∣∣∫
Bl/2(xi)

Ui
p−1R dx

∣∣ ≤ C

lN+2

∫
Bl/2(xi)

Ui
p−1|x − xi|4 dx.

Computing via scaling and spherical coordinates∫
Bl/2(xi)

Ui
p−1|x − xi|4 dx =

1

λ
N+6

2

∫
Bl/2(0)

Ui
p−1(y)|y|4 dy

=
C

λ
N+6

2

∫ λl/2

0

rN+3

(1 + r2)
N+2

2

dr

≤ C

λ
N+6

2

(λl)2 = C
l2

λ
N+2

2

,
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we can finally say that

∣∣∫
Bl/2(xi)

Ui
p−1(x)R

∣∣ ≤ C

λ
N+2

2 lN
.

To complete the proof we just have to notice that by the usual scaling arguments,

CN

λ
N−2

2

∫
Bl/2(xi)

Ui
p−1(x)H(xi, x) =

CN

λ
N−2

2

(
H(xi, xi)

∫
Bl/2(xi)

Ui
p−1

+
∫

Bl/2(xi)
Ui

p−1(x)R
)

=
CNc0

λN−2 H(xi, xi) + O

(
1

(λl)N

)
. (22)

Adding (20), (21) and (22) we obtain the desired expression. �
This concludes the analysis of the first two terms in (18). We now pass to the

terms which mix i and j.

Lemma 3.4
∫

Ω

Ui
p−1Uj dx =

CNc0

(λ|dij |)N−2 +O

(
1

(λ|dij |)N−1

)
+O

(
1

(λl)N

)
.

Proof. Writing∫
Ω

Ui
p−1Uj dx =

∫
RN

Ui
p−1Uj dx −

∫
RN \Ω

Ui
p−1Uj dx, (23)

with the same type of calculation as in Lemma 3.2 we immediately see that∫
RN \Ω

Ui
p−1Uj dx ≤

∫
RN \Ω

(
Ui

p + Uj
p
)
dx ≤ C

(λl)N
.

The integral over RN in (23) has been estimated in [1], page 279–280, formula
(B31); the only difference is that the indices i and j in [1] are permuted. Since
the computations are rather involved and no changes are necessary, except for the
normalization constant in the definition of U , we don’t repeat them here and we
just give the result in our notation:∫

RN

Ui
p−1Uj dx =

CNc0

(λ|dij |)N−2 + O

(
1

(λ|dij |)N−1

)
. (24)

This, together with the previous estimate, proves the lemma. �
We conclude this set of estimates with the last term in (18).

Lemma 3.5
∫

Ω

Ui
p−1ϕj dx =

CNc0

λN−2 H(xi, xj) + O

(
1

(λl)N

)
.

Proof. The computations are similar to the ones in the proof of Lemma 3.3, and
we don’t repeat them; the same approach can be found in [1]. �
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We are now ready obtain Proposition 3.1.

Proof of Proposition 3.1. We collect the estimates of the terms in (18) provided by
the preceding lemmas.

By Lemmas 3.2 and 3.3 we have

n−1∑
i=0

(∫
Ω

Ui
p dx−

∫
Ω

Ui
p−1ϕi dx

)
=nSN/2−CNc0

λN−2

n−1∑
i=0

H(xi, xi)+nO

(
1

(λl)N

)
,

(25)

while by Lemma 3.5 there results

n−1∑
i,j=0
i�=j

∫
Ω

Ui
p−1ϕj dx =

CNc0

λN−2

n−1∑
i,j=0
i�=j

H(xi, xj) + n2O

(
1

(λl)N

)
. (26)

The remaining term requires some care (estimating |dij | ≥ d ∼ C/n yields an
error of the order nN+1O(λ1−N ), which is not small enough for our purposes).
Therefore we proceed as follows, using the symmetries of the points xj :

n−1∑
i,j=0
i�=j

1
|dij |N−1 = n

n−1∑
j=1

1
|xj − x0|N−1 = n

n−1∑
j=1

1
(2 − 2l)N−1 sinN−1(πj/n)

∼ 2n

(2 − 2l)N−1

[(n−1)/2]∑
j=1

C

(j/n)N−1 ∼ CnN , (27)

since the series of j1−N is convergent. Recall also that l will be taken small, so that
we can always assume l ≤ 1/2.

With this last estimate we obtain from Lemma 3.4

n−1∑
i,j=0
i�=j

∫
Ω

Ui
p−1Uj dx=

CNc0

λN−2

n−1∑
i,j=0
i�=j

1
|xi−xj |N−2 +nNO

(
1

λN−1

)
+n2O

(
1

(λl)N

)
.

(28)

Adding (25), (26) and (28) as required and recalling the definition of G we obtain
the estimate of Proposition 3.1. �

Having completed the estimate of the numerator of Qα we now go on to estimate
the denominator, namely

∫
Ω

|x|αup. Also in this case we will split the computations
in a series of lemmas.

Recall that we denote d = 1
2 mini �=j |xi −xj | and that we are assuming 2d ≤ l.

We now set Bi = Bd(xi) for i = 0, . . . , n − 1. Then the Bi’s are pairwise disjoint
and they are all contained in the annulus Ω \ B1−2l(0).

Hence,

∫
Ω

|x|αup dx ≥ (1 − 2l)α

∫
Ω\B1−2l(0)

up dx ≥ (1 − 2l)α
n−1∑
i=0

∫
Bi

up dx.
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We first use the elementary convexity inequality (a + b)p ≥ ap + pap−1b which
holds for p ≥ 1, a ≥ 0, a + b ≥ 0 to write (for x ∈ Bi),

up =
(n−1∑

i=0

U i

)p

=
(

Ui +
n−1∑
j=0
j �=i

(Uj − ϕj) − ϕi

)p

≥ Ui
p + pUi

p−1
(n−1∑

j=0
j �=i

(Uj − ϕj) − ϕi

)
.

We obtain therefore

n−1∑
i=0

∫
Bi

up dx ≥
n−1∑
i=0

(∫
Bi

Ui
p − p

∫
Bi

Ui
p−1ϕi

)

+p

n−1∑
i,j=0
i�=j

(∫
Bi

Ui
p−1Uj −

∫
Bi

Ui
p−1ϕj

)
(29)

and, as above, we estimate the four integrals separately. The result we are aiming
at is stated in the following proposition, which parallels Proposition 3.1.

Proposition 3.6 As λd → ∞ (that is, n/λ → 0) we have∫
Ω

|x|αup dx

≥ (1 − 2l)α

[
nSN/2 − p

CNc0

λN−2

{n−1∑
i=0

H(xi, xi) −
n−1∑
i,j=0
i�=j

G(xi, xj)
}

+nNO

(
1

λN−1

)
+ n2O

(
1

(λl)N

)]
,

where CN is the constant introduced in (16) and c0 =
∫
RN Up−1 dx.

We begin with the first integral in the right–hand–side of (29).

Lemma 3.7
∫

Bi

Ui
p dx = SN/2 + O

(
1

(λd)N

)
.

Proof. The proof makes use of the same estimate as the one in the proof of Lemma
3.2, with l replaced by d this time. �

Lemma 3.8
∫

Bi

Ui
p−1ϕi dx ≤ CNc0

λN−2 H(xi, xi) + O

(
1

(λl)N

)
.

Proof. We work as in Lemma 3.3, with some further simplifications. Again we set

Γ (x) = ϕi(x) − CNλ
2−N

2 H(xi, x),
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but this time we notice that by harmonicity

max
Ω

Γ = max
∂Ω

Γ < max
x∈∂Ω

CN

λ
N−2

2

(
1

|x − xi|N−2 − 1
|x − xi|N−2

)
= 0.

Therefore we can write∫
Bi

Ui
p−1ϕi =

CN

λ
N−2

2

∫
Bi

Ui
p−1H(xi, x) +

∫
Bi

Ui
p−1Γ

≤ CN

λ
N−2

2

∫
Bi

Ui
p−1H(xi, x).

Since d ≤ l/2, the last term can be estimated as in (22), namely,

CN

λ
N−2

2

∫
Bi

Ui
p−1H(xi, x) ≤ CN

λ
N−2

2

∫
Bl/2(xi)

Ui
p−1H(xi, x)

=
CNc0

λN−2 H(xi, xi) + O

(
1

(λl)N

)
,

which gives the required expression. �

This concludes the analysis of the first part of (29); we now pass to the mixed
terms.

Lemma 3.9∫
Bi

Ui
p−1Uj dx ≥ CNc0

(λ|dij |)N−2 + O

(
1

(λ|dij |)N−1

)
+ O

(
1

λNd2|dij |N−2

)
.

Proof. Though the integral to be estimated is very similar to the one in Lemma 3.4,
we cannot proceed exactly as in that proof because we would get an error of order
O((λd)−N ), which is too large for our aims.

We first write∫
Bi

Ui
p−1Uj dx =

∫
RN

Ui
p−1Uj dx −

∫
RN \Bi

Ui
p−1Uj dx (30)

and notice that the first integral in the right–hand–side has already been estimated
in (24).

The treatment of the second integral is rather involved. To avoid unnecessary
complications we will make great use of formulas already established in [1] to get
estimate (24); in particular, after scaling y = λ(x−xi), the integral over RN is split
in three parts in [1] following the decompositionRN = B1∪B2∪(RN \(B1∪B2)),
where (in our notation),

B1 = Bλ|dij |/4(λdij) and B2 = Bλ|dij |/4(0).
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In our case we can use this procedure if we write (scaling as above)∫
RN \Bi

Ui
p−1Uj dx ≤

∫
RN \Bd/2(xi)

Ui
p−1Uj dx

= Cp
N

∫
RN \Bλd/2(0)

1

(1+|y|2)N+2
2

1

(1+|y−λdij |2)N−2
2

dy

=: Cp
N

∫
RN \Bλd/2(0)

A(y) dy

and if we use the decomposition RN \ Bλd/2(0) = B1 ∪ (B2 \ Bλd/2) ∪ (RN \
(B1 ∪ B2)). Notice that d/2 ≤ |dij |/4 by definition.

In this way we have to evaluate three integrals, with the same integrand A(y)
as in [1]. Now ∫

RN \(B1∪B2))
A(y) dy = O

(
1

λ|dij |)N

)
(31)

and ∫
B1

A(y) dy = O

(
1

λ|dij |)N

)
, (32)

these being formulas (B29) and (B30) in [1], respectively.
Finally we deal with the integral over B := B2 \ Bλd/2. To this aim we make

use of the argument in [1] (which we don’t repeat) that reduces it to∫
B

A(y) dy ≤ 1
(λ|dij |)N−2

∫
B

1

(1 + |y|2)N+2
2

dy

+
C

(λ|dij |)N

∫
B

|y|2
(1 + |y|2)N+2

2

dy, (33)

see (B25) in [1].
Now with elementary computations we have for the first integral∫

B

1

(1 + |y|2)N+2
2

dy ≤
∫
RN \Bλd/2(0)

1

(1 + |y|2)N+2
2

dy = O

(
1

(λd)2

)
,

while for the second one we obtain∫
B

|y|2
(1 + |y|2)N+2

2

dy ≤
∫

B2

|y|2
(1 + |y|2)N+2

2

dy = O
(
log(λ|dij |)

)
.

Inserting these in (33) we can say that∫
B

A(y) dy ≤ O

(
1

λNd2|dij |N−2

)
+ O

(
1

(λ|dij |)N−1

)
.

Taking also into account (24), (31) and (32), the decomposition (30) yields the
desired estimate. �
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The following lemma completes the set of estimates needed to treat the denom-
inator of Qα.

Lemma 3.10
∫

Bi

Ui
p−1ϕj dx ≤ CNc0

λN−2 H(xi, xj) + O

(
1

(λl)N

)
.

Proof. The computations can be adapted from the ones in the proof of Lemma 3.8.
�

We are now ready obtain Proposition 3.6.

Proof of Proposition 3.6. We add the terms in (29) using their estimates provided
by the preceding lemmas.

By Lemmas 3.7 and 3.8, and recalling that l > d ∼ C/n,

n−1∑
i=0

(∫
Bi

Ui
p − p

∫
Bi

Ui
p−1ϕi

)

≥ nSN/2 − p
CNc0

λN−2

n−1∑
i=0

H(xi, xi) + nN+1O

(
1

λN

)
(34)

The remainders generated by Lemma 3.9 can be dealt with as in (27); notice that the
argument works also for the sum of |dij |2−N , the series of j2−N being convergent
since N ≥ 4. We obtain

n−1∑
i,j=0
i�=j

1
|dij |N−1 ∼ CnN and

n−1∑
i,j=0
i�=j

1
|dij |N−2 ∼ CnN−1. (35)

Therefore

p
n−1∑
i,j=0
i�=j

∫
Bi

Ui
p−1Uj dx

≥ p
CNc0

λN−2

n−1∑
i,j=0
i�=j

1
|xi − xj |N−2 + nNO

(
1

λN−1

)
+ nN+1O

(
1

λN

)

= p
CNc0

λN−2

n−1∑
i,j=0
i�=j

1
|xi − xj |N−2 + nNO

(
1

λN−1

)
, (36)

since n/λ → 0.
Finally, from Lemma 3.10,

p
n−1∑
i,j=0
i�=j

∫
Bi

Ui
p−1ϕj dx ≤ p

CNc0

λN−2

n−1∑
i,j=0
i�=j

H(xi, xj) + n2O

(
1

(λl)N

)
. (37)

Adding (34), (36) and (37) (all multiplied by (1 − 2l)α) and recalling the
definition of G, we obtain the required estimate. �



Non radial solutions for the critical Hénon equation 323

4. The main result

This last section is devoted to the proof of the main result. This task is simplified
by the fact that we have already established most of technical bounds.

We begin with the main level estimate; in its statement recall that the space Hn

has been defined in (2).

Proposition 4.1 Let N ≥ 4. For every α > 0, there exists nα > 0 such that for
every integer n ≥ nα,

inf
Hn

Qα < n
2
N S.

Proof. The function u constructed in the preceding section depends on n, l and
λ, and for each n it belongs to Hn. We show that for appropriate choices of these
parameters, there results Qα(u) < n

2
N S. This will be accomplished by matching

the estimates of Propositions 3.1 and 3.6.
For simplicity we set

A :=
n−1∑
i=0

H(xi, xi) −
n−1∑
i,j=0
i�=j

G(xi, xj)

and we begin with an estimate of A, noticing that we can write it as

A =
n−1∑
i,j=0

H(xi, xj) −
n−1∑
i,j=0
i�=j

1
|xi − xj |N−2 .

By definition of H , and since
∣∣xi − xj/|xj |2

∣∣ ≥ l for all i, j, we see that

n−1∑
i,j=0

H(xi, xj) =
n−1∑
i,j=0
i�=j

1

|xj |N−2
∣∣xi − xj/|xj |2

∣∣N−2 ≤ C1
n2

lN−2 .

Moreover, as in (35),

n−1∑
i,j=0
i�=j

1
|xi − xj |N−2 ∼ C2n

N−1,

so that we obtain the bound

A ≤ C1
n2

lN−2 − C2n
N−1.

If we put for simplicity b := CNc0, and we notice that (1 − 2l)2α/p ≥ (1 − 3αl),
for all N ≥ 4, all α > 0 and all l small enough, we see that from Proposition 3.6(∫

Ω

|x|αup dx

)2/p

≥ (1 − 3αl)n2/p

[
SN/2− pb

nλN−2 A+nN−1O

(
1

λN−1

)
+nO

(
1

(λl)N

)]2/p

.
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Later we will see that all the quantities depending on n in the square brackets tend
to zero as λ/n → ∞; therefore expanding about SN/2 we obtain for our main
estimate

Qα(u) ≤
nSN/2− b

λN−2 A+nNO
( 1

λN−1

)
+n2O

( 1
(λl)N

)
(1 − 3αl)n2/p

[
S

N−2
2 − 2 b

nSλN−2 A + nN−1O
( 1

λN−1

)
+nO

( 1
(λl)N

)] ,

and we must check that for suitable values of the parameters, the right–hand–side
is strictly less than n2/NS. A trivial computation shows that this amounts to prove
that

R:=3αlSN/2+(1−6αl)
b

nλN−2 A+3αl

(
nN−1O

(
1

λN−1

)
+nO

(
1

(λl)N

))
<0.

In order to do this we choose
l = n−9/20.

Notice that this choice is compatible with our assumption 2d ≤ l and also that
λl → ∞ as λ/n → ∞.

Next we take n so large that

A ≤ −C2

2
nN−1;

this is possible because

A ≤ C1
n2

lN−2 − C2n
N−1 = C1n

2+9(N−2)/20 − C2n
N−1

and 2 + 9(N − 2)/20 < N − 1 for all N ≥ 4, as one immediately checks.
Furthermore, noticing that 9/20 < N−1

N , we see that

n

(λl)N
=

n1+9N/20

λN
≤ nN

λN
≤ nN−1

λN−1 ,

since n/λ → 0. Therefore the second big O is unnecessary in the expression of R.
We are thus led to

R ≤ 3SN/2 α

n9/20 − (1 − 6
α

n9/20 )
bC2

2
nN−2

λN−2 + 3
α

n9/20 O

(
nN−1

λN−1

)
.

Finally we choose λ = n1+ε, with ε > 0 and small; it is immediate to check that
this is compatible with the assumptions. We obtain

R ≤ 3SN/2 α

n9/20 − (1 − 6
α

n9/20 )
bC2

2
1

nε(N−2) + 3
α

n9/20 O

(
1

nε(N−1)

)
. (38)

Since α is fixed, this quantity will be negative for n large (depending on α) if
we take ε small enough (essentially ε < 9/(20(N − 2))), the leading term being
negative. Now R < 0 means that Qα(u) < n

2
N S, as we wanted to prove. �
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We are now ready for the main result of the paper.

Theorem 4.2 Let N ≥ 4 and let Ω be the unit ball in RN . Then for every α > 0
large enough, the problem


−∆u = |x|αu2∗−1 in Ω

u > 0 in Ω

u = 0 on ∂Ω

(P ∗
α)

admits at least one non radial solution.

Proof. For every α > 0, Problem (P ∗
α) has a solution in some Hn. Indeed, given

α > 0, let n ∈ N be larger than the number nα provided by Proposition 4.1 and
consider the space Hn; setting Σn = infHn Qα, by the same proposition there
results

Σn < n
2
N S.

By Proposition 2.1, Σn is achieved by a function u ∈ Hn, which can be assumed
nonnegative; by invariance u is a critical point of Qα on H1

0 (Ω) which, after scal-
ing, (weakly) satisfies the equation and the boundary condition in (P ∗

α). Standard
regularity theory shows that u is a classical solution. Moreover u is positive in Ω
by usual maximum principle arguments.

We have to show that, at least for α large, u is not radial. To this aim we use a
bound for the level of radial functions obtained in [12]. In Theorem 5 of that paper
the authors proved a bound that for our purposes we can write as

inf
v∈H1

0(Ω)\{0}
v radial

Qα(v) ≥ Cα
2N−2

N as α → ∞,

where the constant C depends only on N . We now show that the level Σn of the
solution we find is strictly below this threshold for α large.

To this aim we must evaluate how large nα of Proposition 4.1 has to be in terms
of α. If we choose n of the order of α5/2, we see that (38) essentially becomes

R ≤ 3SN/2

α1/8 − (1 − 6
α1/8 )

bC2

2
1

α5ε(N−2)/2 +
3

α1/8 O

(
1

α5ε(N−1)/2

)
.

Therefore R will be negative for all α big enough when ε is sufficiently small, so
that we find a solution to (P ∗

α) in the corresponding Hn.
To achieve this we have taken n ∼ α5/2; therefore we find a solution at level

Σn < n2/NS ≤ C ′α5/N ≤ Cα
2N−2

N ≤ inf
v∈H1

0(Ω)\{0}
v radial

Qα(v)

for all α large enough since 5 < 2N − 2 for all N ≥ 4. Therefore our solution
cannot be radial, and this completes the proof. �
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Remark 4.3 In wiew of the result by Ni ([10]), Theorem 1.1 in the Introduction, we
see that the preceding theorem can be interpreted as a multiplicity result: Problem
(P ∗

α) admits (for large α) at least two positive solutions, the radial one found by Ni
and the non radial one given by Theorem 4.2.
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