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Abstract. We prove local Lipschitz continuity of the solution to the state equation in two
kinds of shape optimization problems with constraint on the volume: the minimal shaping for
the Dirichlet energy, with no sign condition on the state function, and the minimal shaping
for the first eigenvalue of the Laplacian. This is a main first step for proving regularity of the
optimal shapes themselves.

Mathematics Subject Classification (2000): 49Q10, 35R35, 49K20, 35J20

1 Introduction

Our goal is to prove Lipschitz continuity results for the solution of the state equation
in two kinds of shape optimization problems with constraint on the volume: one
is the minimal shaping for the Dirichlet energy, without any sign condition for
the state function, the other one the minimal shaping for the first eigenvalue of
the Laplacian. This is a main first step in proving regularity of the optimal shapes
themselves.

The first shape functional considered here is the following (we refer for instance
to [19,8,9] for details on the origin of the corresponding minimization question).
Let D be a fixed open subset of R

d, d ≥ 2 (non necessarily bounded) and let
f ∈ L2(D). To each open subset Ω of R

d with finite measure, we associate the
“Dirichlet energy” J(uΩ) where J is the functional defined on H1

0 (Ω) by

J(v) :=
1
2

∫
D

|∇v|2 dx−
∫

D

fv dx, (1)

and uΩ is the solution of the Dirichlet problem

uΩ ∈ H1
0 (Ω), −∆uΩ = f in Ω. (2)
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As usual, we denote by H1
0 (Ω) the closure for the H1-norm of the space C∞

0 (D)
of the infinitely differentiable functions with compact support in D (‖v‖2

H1 =∫
D
v2 + |∇v|2). We will denote by |E| the Lebesgue measure of any measurable

subset E of R
d and, for v ∈ H1

0 (Ω), we set Ωv = [v �= 0] = {x ∈ D; v(x) �= 0}.
Given m ∈ (0, |D|), we introduce Om = {Ω open, Ω ⊂ D, |Ω| = m}. We
are interested in the solutions of the following shape optimization problem with
measure constraint:

Ω∗ ∈ Om, J(uΩ∗) = min{J(uΩ); Ω ∈ Om}. (3)

This problem does not always have a solutionΩ∗ in Om. However, the infimum
is always reached in the family of quasi-open subsets of D (see the beginning of
Sect. 2). In general, we cannot say more about the regularity of the optimal quasi-
open setΩ∗: as shown in [15], it may indeed not be open. However, if f is bounded,
or at least in some Lq for q large enough, we expect uΩ∗ to be at least continuous.
Then, if moreover its support fills in Ω∗ (that is in the “saturated” case where
[uΩ∗ �= 0] = Ω∗), then Ω∗ is at least open.

Actually, our main goal is to establish Lipschitz continuity properties for the
optimal function uΩ∗ . Here is a main result of this paper.

Theorem 1.1. Assume f ∈ L∞(D) ∩ L2(D). Then any solution u ∈ H1
0 (D) of

|Ωu| ≤ m, ∀Ω ∈ Om, J(u) ≤ J(uΩ), (4)

is locally Lipschitz continuous on D.

As indicated in the beginning of Sect. 2, the problem (4) has always a solution.
If moreover |Ωu| = m, then the open set Ωu is a solution of the minimization
problem (3). In any case, we have

Corollary 1.2. Under assumptions of Theorem 1.1, the problem (3) has at least a
solution and any solution is such that uΩ∗ is locally Lipschitz continuous.

Recall that, for an open subsetΩ ofD, the solution uΩ of the Dirichlet problem
is also characterized by the minimization property

uΩ ∈ H1
0 (Ω), J(uΩ) = min{J(v), v ∈ H1

0 (Ω)}.
As a consequence, since Ω1 ⊂ Ω2 ⇒ H1

0 (Ω1) ⊂ H1
0 (Ω2), then Ω → J(uΩ) is

nonincreasing with respect to the inclusion. Therefore, the solution u of (4) satisfies
also

|Ωu| ≤ m, J(u) ≤ J(uΩ), ∀Ω open with Ω ⊂ D and |Ω| ≤ m,

and even (see Lemma 2.1)

|Ωu| ≤ m, J(u) ≤ J(v), ∀ v ∈ H1
0 (D) with |Ωv| ≤ m. (5)

Actually, we will rather work with this new variational formulation of our prob-
lem which does not involve subsets ofD but only functions ofH1

0 (D). The needed
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details for the equivalence with the previous ones will be given at the beginning of
Sect. 2.

Even if the formulation (5) widens the family of “test” functions v that may be
used to study the local properties of u, one still needs to widen it more, since we
will have to use “perturbations” v for which |Ωv|′′ is larger than m. A first step in
the proof will precisely be to prove that u satisfies a unilateral penalized version of
(5) (see Theorem 2.4) which says exactly how (5) should be corrected for functions
v ∈ H1

0 (D) such that |Ωv| > m, namely

∀v ∈ H1
0 (D), J(u) ≤ J(v) + λ

(|Ωv| −m
)+
,

for some λ ≥ 0. But, this problem is now very close to those studied in the pio-
neering papers [2,3] by W. Alt, L. Caffarelli and A. Friedman, where main tools
have been developed to prove regularity of free boundaries and, as a first step, to
prove Lipschitz continuity of the corresponding state function. Our problem here is
different by the presence of the nonhomogeneity f and by the fact that, for instance,
a “saturation hypothesis is needed” to expect regularity of the boundary (see [4]).
Moreover, even with this natural hypothesis, cusps may occur at the boundary here
as soon as the dimension is equal to 2, while the boundary is proved to be regular
in the two-dimensional problems considered in [2,3]. To be more precise, we have
to emphasize the main difference between the case when u ≥ 0 and the case when
u has positive and negative values. It is well known that positivity helps a lot for
regularity in these problems. Besides [2] where positivity plays a main role, we
may refer to [1] and [14] where tools of [2] are used to get regularity for penal-
ized problems of type (7) or constrained problems of type (5) with positivity. Our
approach here is similar, although slightly different since it is mainly based, even
in the positive case, on the estimate of Lemma 3.9 rather than on estimates of type
(29).

In the general case, without sign for u, the main extra tool is the celebrated
monotonicity lemma, introduced for the first time in [3], and extended to the non-
homogeneous case in [6] (see Lemma 3.12 here).

Let us mention that the Lipschitz continuity of the solution u of (5) was al-
ready proved in dimension 2 by M. Crouzeix in [7] (using a very two-dimensional
approach). It was also proved in any dimension for solutions of (5) obtained as
limits of penalized solutions, first in [15] for the positive case (for general elliptic
operators), then in [3] for the case without sign (as a particular case of a more
general family of penalized problems, see Theorem 5.1 in [6] coupled with the
approximation described in [15]). Our approach here is different and valid for all
solutions.

It turns out that this approach also works to prove the local Lipschitz continuity
of the optimal eigenfunction, in the minimal shaping, with measure and inclusion
constraints, for the first eigenvalue of the Laplacian operator with zero Dirichlet
boundary conditions (see Theorem 4.1). Here too, the constrained problem may
be proved to be equivalent to a penalized version to which the above tools may
be applied. This extends the results in [16] where the case of limits of penalized
solutions was considered.
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Finally we refer to [4] where the study of the regularity of the boundary is made
assuming local Lipschitz continuity and nonnegativity of the state function.

2 Equivalence with the penalized version

Let us first give an existence result for our main problem (5) and indicate its rela-
tionship with the other problems mentioned in the introduction.

Lemma 2.1. Assume f ∈ L2(D). Then

– the problem (5) has at least one solution u;
– the problems (4) and (5) are equivalent;
– if a solution u of (5) is continuous, and if |Ωu| = m, then Ωu is a solution of

(3);
– if a solution u of (5) satisfies |Ωu| < m, then there exists Ω∗ containing Ωu

and solution of (3);
– the infimum in (3) is always reached by a quasi-open set Ω∗.

Remark 2.2. According to the equivalence between (4) and (5), Theorem 1.1 will
directly follow from Theorem 3.1 claiming that the solution of (5) is locally Lips-
chitz continuous. Corollary 1.2 follows from Theorem 1.1 and Lemma 2.1.

Proof of Lemma 2.1. Let vn be a minimizing sequence in the problem (5). To
prove the existence of u solution of (5), it is sufficient to prove that vn is bounded
in H1(D). Indeed, up to a subsequence, we can then assume that vn converges
weakly in H1(D) and a.e. to some function u ∈ H1

0 (D). At the limit

|Ωu| ≤ lim inf |Ωvn | ≤ m; lim
∫

D

fvn =
∫

D

fu;
∫

D

|∇u|2 ≤ lim inf
∫

D

|∇vn|2.

Using that J(vn) is bounded from above and that − ∫
D
fvn ≥

−‖f‖L2(D)‖v‖L2(D), the H1-bound on vn is a direct consequence of the
following Poincaré inequality

∀ v ∈ H1
0 (D)

∫
D

v2 ≤ C(d)|Ωv|2/d

∫
D

|∇v|2. (6)

This inequality may be deduced from the same (obvious) inequality for radial
functions using radial symmetrization (see e.g. [7]).

A solution of (5) is obviously solution of (4). According to the remarks in the
introduction (in particular (5)), a solution of (4) is solution of (5). To reach (5), we
use that J(v) = limJ(vn) where vn is regular and |Ωvn | ≤ |Ωv| : for instance, if
v ≥ 0, we choose vn = [(v−1/n)+]∗ρεn

where ρεn
is a regularizing sequence and

εn converges to zero fast enough; in general, we use the decomposition v = v+−v−.
The 3rd point of the lemma is obvious. If now, |Ωu| < m, then, as in [15], we

consider the open sets ωη = ∪x∈Ωu{y ∈ D; |y − x| < η}. Then, we may choose
η∗ > 0 such that |ωη∗ | = m. Since ∀v ∈ H1

0 (ωη∗), J(u) ≤ J(v), then u = uωη∗ .
Therefore, Ω∗ = ωη∗ has the required properties for the 4th point of the lemma.

Finally, if u is a solution of (5),
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– either |Ωu| = m and (see remark below)
u = uΩu , J(uΩu) = J(u) = inf{J(uΩ);Ω ∈ Om} and Ωu is a quasi-open
reaching the infimum in (3);

– either, |Ωu| < m and, by the previous point, the minimum is reached in (3).

Remark 2.3. Recall that a quasi-open set is a set of the form [w > a] where w ∈
H1(D) and a ∈ R. We refer, for instance, to [17] or [18] for the definitions of
H1

0 (Ω) and of uΩ when Ω is only a quasi-open set. Note that the existence of
an optimal quasi-open set may be also deduced from the general existence result
proved in [5] for nondecreasing functionals.

We now may state the first result of this section.

Theorem 2.4. Let u be a solution of (5). Then, there exists λ > 0 such that

∀v ∈ H1
0 (D), J(u) ≤ J(v) + λ

(|Ωv| −m
)+
. (7)

Proof: The method is the following (see e.g. [11,21] for the same approach): We
introduce Jλ(v) = J(v) + λ

(|Ωv| −m
)+

and we consider the problem

uλ ∈ H1
0 (D), and ∀v ∈ H1

0 (D), Jλ(uλ) ≤ Jλ(v). (8)

We will show that the solution of this problem satisfies |Ωuλ
| ≤ m for λ large

enough, so that we have,

J(uλ) = Jλ(uλ) ≤ Jλ(u) = J(u).

But, by the definition of u, we also have J(u) ≤ J(uλ). Therefore, J(u) = J(uλ)
so that, by (8), u satisfies (7).

Note first that the problem (8) has a solution uλ, at least for λ greater than
some λ∗ = λ∗(d, f). Indeed, if x2 =

∫
D

|∇v|2, y = |Ωv|, using (6), if λ ≥ λ∗ =
2C(d)

∫
D
f2, we have

Jλ(v) ≥ 1
2
x2 −

√
λ∗/2x y1/d + λ∗(y −m)+ ≥ 1

4
x2 + λ∗[y − y2/d/2 −m].

This proves that Jλ(v) is bounded from below since d ≥ 2 (note it is the case as
soon as λ > 0 when d ≥ 3; see also the remark below if d = 1). The existence of
uλ easily follows. Moreover, since Jλ(0) = 0 ≥ Jλ(uλ), it follows from the above
inequality that |Ωuλ

| is bounded from above by a constant depending on λ∗,m so
that we may write, for future reference, that∫

Ωuλ

|f | ≤ |Ωuλ
|1/2‖f‖L2(D) ≤ K = K(d,m, f). (9)

Assume that |Ωuλ
| > m. Then, for t > 0 small enough, the function ut =

(uλ − t)+ − (uλ + t)− also satisfies |Ωut | > m. Therefore, we may write

J(uλ) + λ
(|Ωuλ

| −m
) ≤ J(ut) + λ

(|Ωut | −m
)
.
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It follows (using also (9)) that∫
[0<|uλ|<t]

|∇uλ|2 + 2λ
∣∣[0 < |uλ| < t]

∣∣ ≤ 2 t
∫

Ωuλ

|f | ≤ 2 tK.

Using the coarea formula (see e.g. [10,13]), we may rewrite this as∫ t

0
ds

∫
[|uλ|=s]

[
|∇uλ| +

2λ
|∇uλ|

]
dHd−1 ≤ 2 tK, (10)

where Hd−1 denotes the (d − 1)-Hausdorff measure. But the function x → x +
2λx−1 is bounded from below on (0,∞) by 2

√
2λ. It follows that

√
2λ

∫ t

0

∫
[|uλ|=s]

dHd−1 ≤ tK.

Next, we plug the isoperimetric inequality∫
[|uλ|=s]

dHd−1 ≥ C(d)|[|uλ| > s]| d−1
d .

Dividing by t and letting t decrease to zero, we finally obtain

C(d)
√

2λm
d−1

d ≤ K.

Thus “|Ωut | > m” is impossible when λ > max{λ∗, λ0} where
C(d)

√
2λ0m

d−1
d = K.

Remark 2.5. Throughout this paper, we assume d ≥ 2. Actually, if d = 1, the
solution u of (5) exists and is at least continuous by embedding of H1 in C1/2.
Moreover, we easily check that, on the open set ω = [u �= 0], we have −u′′ = f .
On any maximal subinterval I of ω, since u ∈ H1

0 (I), there exists ξ ∈ I such that
u′(ξ) = 0. It follows that for x ∈ I , u′2(x) = −2

∫ x

ξ
u′f ≤ 2‖u′‖L∞(I)‖f‖L1(I).

Therefore, ‖u′‖L∞(ω) ≤ 2‖f‖L1(ω).

Remark 2.6. This proof of Theorem 2.4 is very general and carries over to general
nonlinear elliptic variational problems inW 1,p

0 (D) associated with v → ∫
D
G(v)−

f v where, for p > 1, and some k > 0,

∀ v ∈ W 1,p
0 (D), G(v) ≥ k |∇v|p.

In this case, the inequality (10) is to be replaced by∫ t

0
ds

∫
[|uλ|=s]

[
k|∇uλ|p−1 +

λ

|∇uλ|
]
dHd−1 ≤ tK.

Then we use that the function x → kxp−1 + λx−1 is bounded from below by
C(p, k)λ1− 1

p .
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Remark 2.7. Note that a “local” version of this equivalence with a penalized prob-
lem has been proved in [4]: roughly speaking, if J(u) ≤ J(v) for all v ∈ H1

0 (D)
such thatm−η ≤ |Ωv| ≤ m, then (7) holds for |Ωv| close tom. Moreover, a more
precise estimate is proved for the v’s such that |Ωv| ≤ m.

Remark 2.8. This approach also works with several constraints (see e.g. [21]). We
prove it here for the first eigenvalue of the Laplacian operator with volume,L2-norm
and inclusion constraints.

Theorem 2.9. Assume D is bounded. Let m ∈ (0, |D|) and let u ∈ H1
0 (D) be a

solution of

λm =
∫

D

|∇u|2 = min
{∫

D

|∇v|2; v ∈ H1
0 (D),

∫
D

v2 = 1, |Ωv| ≤ m

}
. (11)

Then, there exists λ > 0 such that

∀v ∈ H1
0 (D),

∫
D

|∇u|2 ≤
∫

D

|∇v|2 + λm

[
1 −

∫
D

v2
]+

+ λ[|Ωv| −m]+.(12)

Remark 2.10. The existence of u solution of (11) is obvious. Moreover, u ≥ 0 up
to changing u into −u in some connected components of D. Indeed, first we may
always change u into −u so that |Ωu+ | > 0. Next, either |Ωu+ | = |Ωu| (in which
case u > 0 on Ωu) or 0 < |Ωu+ | < |Ωu| ≤ m. Then denote

w+ = u+/‖u+‖L2 , w− = u−/‖u−‖L2 .

By (11), we have∫
D

|∇u|2 ≤
∫

D

|∇w+|2,
∫

D

|∇u|2 ≤
∫

D

|∇w−|2,

and these inequalities are actually equalities, otherwise∫
D

|∇u|2 =
[∫

D

(u+)2 +
∫

D

(u−)2
] ∫

D

|∇u|2 <
∫

D

|∇u+|2 + |∇u−|2,

which is false. Now, since
∫

D
|∇u|2 =

∫
D

|∇w+|2 = λm and |Ωw+ | < m, then,
for all small ballB ⊂ Dwith measure less thanm−|Ωw+ |, and for allϕ ∈ H1

0 (B),
we have

∀t > 0,
∫

D

|∇w+|2 ≤
∫

D

|∇(w+ + tϕ)|2/
∫

D

(w+ + tϕ)2.

Differentiating with respect to t at t = 0 implies −∆w+ = λm w+ ≥ 0 on D. It
follows that, on each component ofD, eitherw+ ≡ 0, orw+ > 0. This proves that
u ≥ 0 on D up to changing u into −u on some of the components.

It follows also from this analysis that, if D is connected, then |Ωu| = |Ωu+ | =
m. If D is not connected, it may happen that |Ωu| < m; but, in this case, u is
strictly positive on some of the components of D and identically equal to zero on
the others. As an example of this situation, we may take D := D1 ∪ D2 where
D1, D2 are disjoint disks in R

2 of radiusR1, R2 withR1 > R2 andm = πR2
1+ε <

π(R2
1 +R2

2). Then, u coincides with the first eigenfunction ofD1 and is identically
0 on D2.
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Remark 2.11. We easily check thatΩ∗ = Ωu is solution of the shape optimization
problem

λ1(Ω∗) = min{λ1(Ω);Ω quasi− open ⊂ D, |Ω| ≤ m}, (13)

where λ1(Ω) denotes the first eigenvalue of the Laplacian operator −∆ in

H1
0 (Ω) = {v ∈ H1

0 (D); v = 0 quasi− everywhere on D \Ω},
so that

λ1(Ω) = min
{∫

Ω

|∇v|2; v ∈ H1
0 (Ω),

∫
Ω

v2 = 1
}
. (14)

Indeed, by the definitions (11) and (14), since |Ωu| ≤ m and
∫
u2 = 1, we have

λm =
∫

D
|∇u|2 ≤ λ1(Ωu) and the equality holds since u ∈ H1

0 (Ωu). Now, ifΩ is
a quasi-open set with |Ω| ≤ m, by (11) again, λm ≤ λ1(Ω). Thus, Ωu is solution
of (13).

By Remark 2.10, if D is connected, then |Ωu| = m. If D is not connected, it
may happen that |Ωu| < m, as shown by an example. In this case, any quasi-open
setΩ∗ such thatΩu ⊂ Ω∗ ⊂ D, |Ω∗| = m, is also solution of (13). Note that such
an Ω∗ may be as irregular as a quasi-open set may be: for instance, in the example
given in Remark 2.10, let ω be any quasi-open subset of D2 with |ω| = m− πR2

1;
then Ω∗ := ω ∪D1 is a solution of (13).

Remark 2.12. Conversely, it is immediate to check that, if Ω∗ is solution of (13)
and if u∗ ∈ H1

0 (Ω∗) is such that λ1(Ω∗) =
∫

Ω∗ |∇u∗|2, ∫
Ω∗ u

∗2 = 1, then u∗ is
solution of (11).

Proof of Theorem 2.9. Note first that, by definition of λm, for all v ∈ H1
0 (D) with

|Ωv| ≤ m, we have
∫

D
|∇v|2 − λm

∫
D
v2 ≥ 0 or also∫

D

|∇u|2 ≤
∫

D

|∇v|2 + λm

[
1 −

∫
D

v2
]
. (15)

Next the proof is similar to the proof of Theorem 2.4. Denote by Jλ(v) the right-
hand side of (12) and let uλ minimize Jλ overH1

0 (D) (its existence is obvious). Up
to replacinguλ by |uλ|, one may assumeuλ ≥ 0. It is sufficient to prove |Ωuλ

| ≤ m
since then

Jλ(uλ) ≤ Jλ(u) =
∫

D

|∇u|2 ≤ Jλ(uλ),

the last inequality coming from (15). Assume |Ωuλ
| > m and introduce ut =

(uλ − t)+ as in the proof of Theorem 2.4. Then Jλ(uλ) ≤ Jλ(ut) leads to∫
[0<uλ<t]

|∇uλ|2 + λ
∣∣[0 < uλ < t]

∣∣ ≤ λm

∣∣∣∣
∫

D

u2
λ − (ut)2

∣∣∣∣
≤ λm

∫
[0<uλ<t]

u2
λ + 2 t λm

∫
D

uλ.
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But
∫

D
uλ ≤ |D|1/2[

∫
D
u2

λ]1/2, and using that Jλ(uλ) ≤ Jλ

(
uλ/[

∫
D
u2

λ]1/2
)

if∫
D
u2

λ ≥ 1, we check that actually
∫

D
u2

λ ≤ 1. Finally, we obtain via the coarea
formula ∫ t

0
ds

∫
[|uλ|=s]

[
|∇uλ| +

λ− λms
2

|∇uλ|
]
dHd−1 ≤ 2 t λm|D|1/2.

But the function x → x+(λ−λms
2)x−1 is bounded from below by 2

√
λ− s2λm

and also by
√

2λ as soon as s2 ≤ t2 ≤ λ/2λm. Then, using the isoperimetric
inequality and letting t tend to zero as in the proof of Theorem 2.4, we obtain

C(d)
√
λm

d−1
d ≤ 2λm |D|1/2,

and this finishes the proof of the proposition.

3 Lipschitz continuity

Theorem 3.1. Let u be a solution of (5) with f ∈ L1(D)∩L∞(D). For δ > 0, set
Dδ = {ξ ∈ D; d(ξ, ∂D) ≥ δ}. Then u is Lipschitz continuous on Dδ . If moreover,
u ≥ 0 on Dδ and f ∈ L1(D) ∩ Lq(D) with q > d only, then the same conclusion
holds.

Remark 3.2. Note that if D = R
d, then Dδ = R

d. In this case, Theorem 3.1 says
that u is globally Lipschitz on R

d.

Remark 3.3. The monotonicity lemma, which is required for the proof in the case
the sign of u is not constant, is proved in the case when the nonhomogeneity f is
bounded (see [6]), but not for f ∈ Lq, q > d (and seems not to be true, at least in
the usual versions). This explains the assumption f ∈ L∞ in the general case.

Let us first collect some main properties of the solution u of our problem

Lemma 3.4. Under the assumptions of Theorem 3.1, the solution u satisfies the
following properties:
For all balls B ⊂ D, and for v solution of

−∆v = f in B, v − u ∈ H1
0 (B),

one has ∫
B

|∇(u− v)|2 ≤ 2λ |[u = 0] ∩B|, (16)

with λ as in Theorem 2.4. For all ϕ ∈ C∞
0 (D)

| < ∆u+ f, ϕ > | ≤
√

2λ
{∫

|∇ϕ|2
}1/2 {|Ωϕ|}1/2

. (17)

∆u+ + fχ[u>0] = µ1 ≥ 0, ∆u− − fχ[u<0] = µ2 ≥ 0, (18)

µ1([u �= 0]) = µ2([u �= 0]) = 0. (19)

u ∈ L∞(D). (20)
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Proof of Lemma 3.4. For (16), we apply Theorem 2.4 with v equal to u outside B
and defined as in the lemma on B. This gives∫

B

1
2
|∇u|2 − f u ≤

∫
B

1
2
|∇v|2 − f v + λ

(|Ωv ∩B| − |Ωu ∩B|)+
. (21)

Using that
(|Ωv ∩B| − |Ωu ∩B|)+ ≤ |B ∩ [u = 0]| yields (16).

For (17), we apply Theorem 2.4 with v = u+ tϕ, t > 0: this gives

< ∆u+ f, ϕ >≤ t

2

∫
|∇ϕ|2 +

λ

t
|Ωϕ|.

Minimizing over t > 0 and changing ϕ into −ϕ yields (17).
The proof of the last two points may be found in [4]. We recall here the main

ingredients. We define pn : R → R by

∀r ≤ 0, pn(r) = 0; ∀r ∈ [0, 1/n], pn(r) = nr; ∀r ≥ 1/n, pn(r) = 1,

and qn(r) =
∫ r

0 pn(s) ds. Let ψ ∈ C∞
0 (D). We apply the definition of u in (5)

with v = u+ tψpn(u) (note that |Ωv| ≤ |Ωu|). Dividing by t and letting t tend to
0 give

0 =
∫

D

pn(u)∇ψ∇u+ ψp′
n(u)|∇u|2 − fψpn(u),

that is
n|∇u|2χ[0<u<1/n] −∆(qn(u)) − fpn(u) = 0 in D,

in the sense of distributions. As n tends to ∞, pn(u) converges a.e. to χ[u>0] and
qn(u) converges tou+ inL2(D). This proves that the sequence of nonnegative func-
tions µn

1 = n|∇u|2χ[0<u<1/n] converges in the sense of measures to a nonnegative
measure µ1 = ∆(u+) + fχ[u>0]. Moreover, for all η > 0 and n large enough
µn

1 ([u > η] ∩ [u < 0]) = 0. The property (19) follows for µ1 (see Remark 3.5
below). The proof is the same for µ2.

For the last point, we use that −∆|u| ≤ |f | on D. We can find an open set
ω such that Ωu ⊂ ω ⊂ D with |ω| ≤ 2|Ωu| = 2m. Then, we can use classical
L∞-estimates (see for instance [12], Theorem 8.16), to deduce that

‖u‖L∞(D) = ‖u‖L∞(ω) ≤ C(d,m)‖f‖Lr(ω),

for some r ∈ (d/2, q). Then we use ‖f‖Lr(ω) ≤ C(m, q)‖f‖Lq(D).

Remark 3.5. Sinceµ1, µ2 are measures which do not charge the sets ofH1-capacity
zero, it makes sense to say that they do not charge the set [u �= 0] since it is defined
up to a set of capacity zero. Actually, we will use the point (19) only after showing
that u is continuous. Therefore, we could have stated and proved (19) only in this
simpler case where u is continuous and where only open sets are involved. In
particular, we used

∀η > 0, µ1([u > η] ∩ [u < 0]) ≤ lim inf
n→+∞ µn

1 ([u > η] ∩ [u < 0]),

which is valid since µn
1 converges to µ1 in the sense of measures. This remains true

in the quasi-continuous case, but one needs to use the framework of quasi-open
sets, see e.g. [17,18].
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The proof of Theorem 3.1 will require the following two general lemmas. They
are more or less classical (see e.g. [12,14]). We recall the main ingredients in the

Appendix. We use the notation
∫
−

∂B(x0,r)
U to denote the average ofU over ∂B(x0, r).

Lemma 3.6. LetB(x0, r0) ⊂ D andU ∈ C2(B(x0, r0)). Then, for all r ∈ (0, r0)

∫
−

∂B(x0,r)
U − U(x0) = (dωd)−1

∫ r

0
s1−d

[∫
B(x0,s)

∆U

]
ds. (22)

This remains valid for allU ∈ H1(B(x0, r0)) such that∆U is a measure, satisfying

∫ r

0
s1−d

[∫
B(x0,s)

d(|∆U |)
]
ds < +∞, (23)

and U is then pointwise defined by

U(x0) = lim
ρ→0

∫
−

∂B(x0,ρ)
U.

The estimate (23) is satisfied if, moreover, U ∈ L∞(B(x0, r0)) and there exists
g ∈ Lq(B(x0, r0) with q > d/2 such that ∆U+ ≥ −g,∆U− ≥ −g.

Lemma 3.7. Let B(x0, r0) ⊂ D, r0 ≤ 1, F ∈ Lq(B(x0, r0)), q > d. Then, there
exists C = C(‖F‖Lq(B(x0,r0)), d) such that, for r ∈ (0, r0)

– if ∆U = F on B(x0, r0), then

‖∇U‖L∞(B(x0,r/2)) ≤ C[1 + r−1‖U‖L∞(B(x0,r)], (24)

– if ∆U ≥ F and U ≥ 0 on B(x0, r0), then

‖U‖L∞(B(x0,2r/3) ≤ C

[
r +

∫
−

∂B(x0,r)
U

]
. (25)

Now, the proof of the Theorem will rely on the two following properties of the
solution u of (5).

Lemma 3.8. Under the assumptions of Theorem 3.1, the function u is continuous
on D.

Lemma 3.9. Under the assumptions of Theorem 3.1, there exists C such that if
x0 ∈ Dδ/2 and u(x0) = 0, then

∀ r ∈ (0, δ/16), |∆|u||(B̄(x0, r)) ≤ Crd−1.
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Proof of Theorem 3.1. We denote by C any constant depending only on
‖F‖Lq(D), ‖u‖L∞(D), d, δ. We may assume δ ≤ 1.

By Lemma 3.8,u is continuous onD. Letω = [u �= 0]. Then, by (16),−∆u = f
on the open set ω. For x ∈ ω ∩Dδ , let Xx ∈ ∂ω be such that dx = d(x, D̄ \ ω) =
|x−Xx|.

If dx ≥ δ/48, then −∆u = f on B(x, δ/48) ⊂ D and, by (24), |∇u(x)| ≤ C.
If dx < δ/48, then u(Xx) = 0, Xx ∈ Dδ/2, 3dx ≤ δ/16. By (24) applied on

B(x, dx) ⊂ ω ⊂ D with U = u, F = −f , we have

|∇u(x)| ≤ C[1 + d−1
x ‖u‖L∞(B(x,dx))] ≤ C[1 + d−1

x ‖u‖L∞(B(Xx,2dx))].

By (25) applied on B(Xx, 3dx) ⊂ D with U = |u|, F = −|f |,

‖u‖L∞(B(Xx,2dx)) ≤ C

[
dx +

∫
−

∂B(Xx,3dx)
|u|

]
.

But, by (22) and Lemma 3.9 applied on B(Xx, 3dx),∫
−

∂B(Xx,3dx)
|u| ≤ Cdx.

We deduce from all these inequalities that ∇u(x) is bounded byC on ω\Dδ . Since
∇u = 0 a.e. on D \ ω, this completes the proof of the theorem.

Proof of Lemma 3.8. Let xn converge to x∞ ∈ D. Set δn = |x∞ − xn|. If, for
some n, |B(x∞, δn) ∩ [u = 0]| = 0, then, by (16), −∆u = f on B(x∞, δn) and,
in particular u is continuous at x∞.

Assume now that for all n, |B(x∞, δn) ∩ [u = 0]| �= 0. Consider the function
un(ξ) = u(x∞ + δnξ). Since it is uniformly bounded, up to a subsequence, we
may assume that un converges to some function u∞, at least ∗-weakly in L∞(Rd).
We will prove that u∞ = 0 and that the convergence holds uniformly onB1. It will
follow that u is continuous at x∞ (and u(x∞) = 0: note that, by Lemma 3.6 and
(18) in Proposition 3.4), we may assume that u is everywhere defined).

For all R ≥ 1, let us introduce the solution vR of

−∆vR = f on B(x∞, δnR), vR − u ∈ H1
0 (B(x∞, δnR)),

and set vn(ξ) = vR(x∞ + δnξ). By (16), we have∫
BR

|∇(un − vn)|2 ≤ C(λ,R) δ2n, −∆vn = δ2nf(x∞ + δnξ). (26)

In particular, vn−un tends to 0 inH1(BR). Since vn is bounded and∆vn converges
to 0 in Lq, it converges uniformly on compact subsets of BR. The limit, which is
necessarily equal to u∞, is a harmonic function on BR, that is on R

d since R is
arbitrary. As it is also globally bounded, it is a constant. Moreover, the convergence
of un holds in H1

loc(BR).
Let us prove that

u∞ ≡ 0. (27)
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Then, thanks to the inequality

−∆(|un|)(ξ) ≤ δ2n|f(x∞ + δnξ)|,
where the right-hand side tends to zero in Lq, the convergence will hold uniformly
on B1.

Assume u∞ > 0. Then, u−
n tends to 0 in H1

loc and, thanks to the in-
equality −∆u−

n ≤ δ2nf , the convergence holds uniformly on balls. Let yn =
x∞+δnξn, ξn ∈ B1 be such that u(yn) = 0 (it does exist since |B(x∞, δn)∩[u =
0]| �= 0). We denote Bs = B(yn, s). We use (17) with

ϕ ∈ C∞
0 (B2s), 0 ≤ ϕ ≤ 1, ϕ ≡ 1 on Bs, ‖∇ϕ‖L∞(B2s) ≤ C/s.

Then, by (17),(18) and f ∈ Lq, | < µ1 − µ2, ϕ > | ≤ C sd−1. We deduce

µ1(Bs) ≤< µ1, ϕ >=< µ1 − µ2, ϕ > + < µ2, ϕ >≤ Csd−1 + µ2(B2s),

and also, using again f ∈ Lq, (18) and s ≤ 1,

∆u+(Bs) ≤ ∆u−(B2s) + Csd−1.

We multiply by s1−d and integrate from 0 to δn to obtain, by using (22)∫
−

∂Bδn

u+ ≤ C

∫
−

∂B2δn

u− + C δn or

∫
−

∂B1

u+
n (ξn + ξ) ≤

∫
−

∂B2

u−
n (ξn + ξ) + C δn.

Since the right-hand side tends to 0, so does the left-hand side. But, up to a sub-
sequence, we may assume that ξn → ξ∞ ∈ B1 and un(ξn + ·) converges to

u∞(ξ∞ + ·) ≡ u∞ in H1 so that
∫
−

∂B1

u+
n (ξn + ·) → u∞. We deduce (27).

Remark 3.10. In order to apply the “monotonicity lemma” 3.12, we need to know
first that u is continuous. To prove it, we could have used classical results (see
e.g. [20]) stating even the Cα-regularity for functions u satisfying a weakened
version of (16), namely: For all balls B ⊂ D, and for v solution of −∆v =
fχΩu in B, v − u ∈ H1

0 (B), then,∫
B

|∇(u− v)|2 ≤ C|B|.

Here, we chose to give an independent proof based on a preliminary easy proof of
the continuity.

Remark 3.11. In the case when u does not change sign, we do not need the “mono-
tonicity lemma”. Thererefore, we could avoid proving first that u is continuous.
However, we still use “slightly” the continuity of u at the end of the proof of
Theorem 3.1 when we claim that u = 0 a.e. (and therefore ∇u = 0 a.e.) out-
side ω. Actually, if we define ω as being instead the union of the balls B where
|B ∩ [u = 0]| = 0, then everything else remains valid. Therefore, it only remains
to prove that

u = 0 a.e. outside this new ω. (28)
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For this, we can instead use the method in [2] based on a clever bound from below for∫
B

|∇(u− v)|2, which, in our nonhomogeneous case, has the following extension:
LetBr be a ball of radius r ∈ (0, r0) in R

d,U ∈ H1(Br), U ≥ 0 andF ∈ Lq(Br0)
with q > d. Let V be the solution of

V − U ∈ H1
0 (Br), −∆V = F in Br.

Then, there exists C1 = C1(d), C2 = C2(d, ‖F‖Lq(Br0 )) such that, ∀r ∈ (0, r0)∫
Br

|∇(V − U)|2 ≥ C1
{[1
r

∫
−

∂Br

U − C2 r
1− d

q
]+}2|[U = 0] ∩Br|. (29)

This result may be found in [2] forF ≡ 0. It is also given in [14] for boundedF . For
the general case, using the change of function ur(x) = r(

d
q −2)u(rx), we reduce

the proof of the lemma to the case r = r0 = 1. We then introduce the solution of
W ∈ H1

0 (B1), −∆W = F in B1 and we adapt the proof of [2]. The main point
is that ∇W is uniformly bounded since q > d.

Now, to prove (28), let x0 ∈ D \ ω, that is such that,

∀r > 0, |B(x0, r) ∩ [u = 0]| > 0. (30)

Assume by contradiction that u(x0) = limρ→0

∫
−

∂B(x0,ρ)
u > 0. Then,

lim
ρ→0

1
r

∫
−

∂B(x0,ρ)
u > 0 = +∞.

Applying (29) withU = u, (16) and (30), we get a contradiction and (28) is proved.

Remark. A localized version of the same proof would directly show that u is locally
Lipschitz continuous on each region where it does not change sign.

Proof of Lemma 3.9 in the case 0 ≤ u. We apply (17) for a test function ϕ with
support in B(x0, 2r) and

ϕ ≡ 1 on B(x0, r), ‖∇ϕ‖∞ ≤ Cr−1, 0 ≤ ϕ ≤ 1.

Since ∆u+ fχΩu ≥ 0 and f ∈ Lq(D), the estimate of Lemma 3.9 follows. (Note
that here we did not assume u(x0) = 0).

Proof of Lemma 3.9 for any sign and f bounded. here, we apply the ad hoc
“monotonicity Lemma” of [3] in its non homogeneous version given in [6].

Lemma 3.12. [3,6] Let U ∈ H1(Br0), continuous on B̄r0 with U(0) = 0 and
such that, for some a ≥ 0,

∆U+ ≥ −a, ∆U− ≥ −a on Br0 .

Set

Φ(r) =
(

1
r2

∫
Br

|∇U+|2
|x|d−2

) (
1
r2

∫
Br

|∇U−|2
|x|d−2

)
.
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Then, if a = 0, r → Φ(r) is nondecreasing on (0, r0). In all cases, there exists C
such that

∀r ∈ (0, r0/2), Φ(r) ≤ C

[
1 +

∫
Br0

U2

]
.

Since f ∈ L∞, u(x0) = 0 and u is continuous, we may apply Lemma 3.12
to U = u(x0 + ·) on B(0, δ/2) (by assumption B(x0, δ/2) ⊂ D). Thus Φ(r) is
uniformly bounded for r ∈ (0, δ/4) by C(δ) and if Br = B(x0, r)

r−2d

(∫
Br

|∇u+|2
) (∫

Br

|∇u−|2
)

≤ Φ(r) ≤ C(δ). (31)

For each r, we introduce vr = vr
+ − vr

−, w
r = wr

+ − wr
− where vr

+, v
r
−, w

r
+, w

r
−

are the solutions of

−∆vr
+ = f+, −∆vr

− = f− on Br, vr
+ − u+, vr

− − u− ∈ H1
0 (Br),

−∆wr
+ = f+, −∆wr

− = f− on Br, wr
+, w

r
− ∈ H1

0 (Br).

Since, for i = +,−, vr
i −wr

i is harmonic on Br and equal to ui on ∂Br, we have∫
Br

|∇(vr
i − wr

i )|2 ≤
∫

Br

|∇ui|2,

and also (using that vr
i − wr

i is harmonic and ui − vr
i + wr

i = 0 on ∂Br)∫
Br

|∇(ui − vr
i + wr

i )|2 =
∫

Br

∇(ui − vr
i + wr

i )∇ui ≤ 2
∫

Br

|∇ui|2.

Therefore, from (31), we deduce(
r−d

∫
Br

|∇(u+ − vr
+ + wr

+)|2
) (

r−d

∫
Br

|∇(u+ − vr
− + wr

−)|2
)

≤ C(δ).(32)

On the other hand∫
Br

|∇(u− vr + wr)|2 ≤ C

∫
Br

|∇(vr − u)|2 + |∇wr|2,

and these last two integrals are bounded byCrd, the first thanks to (16), the second
since f ∈ Lq, q > d (we have ‖∇w‖L∞(Br) ≤ Cr1− d

q ≤ C). It follows that each
of the parentheses in (32) is bounded independently of r small. We deduce (using
also that r−d

∫
Br |∇wr

i |2, i = +,−, are bounded)∫
Br

|∇(u+ − vr
+)|2 +

∫
Br

|∇(u− − vr
−)|2 ≤ Crd. (33)

By the definition of vr
+, v

r
− and (18–19), we have

∆(u+ − vr
+) = µ1 + f+(1 − χu>0) ≥ µ1, ∆(u− − vr

−) ≥ µ2.
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Therefore, integrating by parts in (33) and using also (19), we deduce

∫
Br

vr
+dµ1 +

∫
Br

vr
−dµ2 ≤ Crd. (34)

But, for instance, by the formula (22) applied withU = u+ −vr
+ (so that∆U ≥ µ1

and U ≤ 0), we may write for all z ∈ Br/4 (so that B(z, 3r/4) ⊂ B(x0, r))

vr
+(z) ≥

∫
−

∂B(z,3r/4)
U − U(z) ≥ C(d)

∫ 3r/4

0
s1−d

∫
B(z,s)

dµ1. (35)

But (35), integrated with respect to µ1 for z ∈ Br/4, together with (34) leads to

Crd ≥ C

∫
Br/4

dµ1(z)
∫ 3r/4

0
ds s1−d

∫
B(z,s)

dµ1 ≥ Cr2−d

[∫
Br/4

dµ1

]2

,

where we used Br/4 ⊂ B(z, r/2) and

∫ 3r/4

0
ds s1−d µ1(B(z, s)) ≥ (3r/4)1−d

∫ 3r/4

r/2
ds µ1(B(z, s))

≥ Cr2−dµ1(Br/4).

We do the same for µ2. Lemma 3.9 follows by using also (18).

4 Lipschitz continuity for the eigenvalue problem

Theorem 4.1. Letu be a solution of the constrained eigenvalue problem (11). Then
u is Lipschitz continuous on Dδ . It follows that the shape minimization problem
(13) has a solution Ω∗ with |Ω∗| = m and which is at least an open subset of D
whose corresponding eigenfunction is locally Lipschitz continuous.

The proof of this theorem will be a consequence of the following properties of
u.

Lemma 4.2. Under the assumptions of Theorem 4.1, the solutionu of (11) satisfies:

u ≥ 0, ∆u+ λmu ≥ 0, u ∈ L∞(D). (36)

There exists C ≥ 0 such that, for all ball B(x0, r) such that B(x0, 2r) ⊂ D,

|∆u|(B(x0, r)
) ≤ C rd−1. (37)

Finally, u is continuous on D and −∆u = λmu on the open set [u �= 0].
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Proof of Theorem 4.1. The proof of the Lipschitz continuity is the same as the
proof of Theorem 3.1 where f is to be replaced by λmu. We use Lemma 4.2 for
the necessary properties.

For the last part, note that Ωu is open since u is continuous. If |Ωu| = m, then
Ω∗ = Ωu is an open solution of (13) (recall that it is the case if D is connected).
If |Ωu| < m, as proved in Remark 2.10, u is either strictly positive or zero on
each component of D. But there exists R > 0 such that Ω∗ := Ωu ∪B(0, R) ∩D
satisfies |Ω∗| = m. By monotonicity,λ1(Ω∗) ≤ λ1(Ωu) = λm and, by minimality,
equality holds. Moreover, u is also an eigenfunction for Ω∗. This completes the
proof of the theorem.

Proof of Lemma 4.2. By Remark 2.10, we already know that u ≥ 0. Then, we use
the inequality (12) with v = u − tψpn(u) where t > 0, ψ ∈ C∞

0 (D), ψ ≥ 0 and
pn is defined as in the proof of Lemma 3.4. Note that |Ωv| ≤ m and

∫
D
v2 ≤ 1 for

t > 0 small. Differentiating at t = 0, we obtain

−n|∇u|2χ[0<u<1/n] +∆(qn(u)) + λmu pn(u) ≥ 0 in D.

As in the proof of Lemma 4.2, we prove that n|∇u|2χ[0<u<1/n] converges to a
nonnegative measure µ1, and at the limit ∆u+ λmu ≥ µ1.

In particular −∆u ≤ λmu. Since u ≥ 0, this implies

‖u‖Ld/(d−2k) ≤ C‖u‖Lk if 1 < k < d/2; ‖u‖∞ ≤ C‖u‖Lk if k > d/2.

By a finite bootstrap over k, starting at k = 2, we obtain u ∈ L∞.
Next, we apply (12) to v = u+ tϕ with ϕ ≥ 0 and we are led to

2 < ∆u+ λmu, ϕ >≤
∫

D

[2λmuϕ+ t|∇ϕ|2] +
λ

t
|Ωϕ|.

We choose ϕ ∈ C∞
0 (B(x0, 2r)) such that

0 ≤ ϕ ≤ 1, ϕ ≡ 1 on B(x0, r), ‖∇ϕ‖L∞ ≤ C/r.

Minimizing over t > 0 as in the proof of Lemma 4.2 and using that u ∈ L∞ and
∆u+ λmu ≥ 0, we deduce the estimate (37).

Now, let us prove that

|B(x0, r) ∩ [u = 0]| = 0 ⇒ −∆u = λmu in B(x0, r). (38)

Let v = u outside B(x0, r) and equal on B(x0, r) to the solution of

−∆v = λmu, v − u ∈ H1
0 (B(x0, r)).

Since u > 0 a.e. on B = B(x0, r), then |Ωv| ≤ |Ωu| = m. Therefore, by (15),∫
B

|∇u|2 − |∇v|2 + λm(v2 − u2) ≤ 0,

or also ∫
B

|∇(u− v)|2 + λm(u− v)2 ≤ 0,

so that u = v, which proves (38).
Finally, for the continuity of u, we argue like in the proof of Lemma 3.8: the

only changes are the following
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– The datum f is to be replaced by λmu.
– The inequality (26) is obtained via (12) applied to v = vR, solution on
B(x∞, Rδn) of −∆vR = λmvR, and v = u outside, which gives∫

B(x∞,Rδn)
|∇u|2 − |∇vR|2 ≤ λ(Rδn)d,

or ∫
B(x∞,Rδn)

|∇(u− vR)|2 ≤ λ(Rδn)d + 2λm

∫
B(x∞,Rδn)

u(vR − u).

Then, we rewrite this last inequality in terms of un, vn and we use the fact that
‖vn‖L∞(BR) is bounded (in terms of ‖un‖L∞(BR)) to deduce (26).

– And there is no need to involve u−
n since u ≥ 0.

5 Appendix

We recall here the main ingredients in the proof of the more or less classical Lem-
mas 3.6 and 3.7.

Proof of Lemma 3.6. The relation∫
−

∂B(x0,r)
U −

∫
−

∂B(x0,ρ)
U = (dωd)−1

∫ r

ρ

ds s1−d

∫
B(x0,s)

d(∆U), (39)

may be obtained for regular U by integrating from ρ to r the identity

d

ds

∫
−

∂B1

U(x0 + sξ) =
∫
−

∂B1

∇U(x0 + sξ) · ξ = (dωd)−1s1−d

∫
B(x0,s)

∆U.

For more general functions U ∈ (L∞ ∩H1)(B(x0, r0)), such that ∆U is a finite
measure on B(x0, r0), we use an approximation by mollifiers Up = U ∗ ρp to
obtain (39).

If the estimate (23) is satisfied, then limρ→0

∫
−

∂B(x0,ρ)
U exists and we can pass

to the limit as ρ tends to zero in (39).
Now, for g ∈ Lq(B(x0, r0)) with q > d/2,

∫
B(x0,s) |g| ≤ C(d)sd(1− 1

q ) so that

[s → g̃(s) = s1−d
∫

B(x0,s) |g|] ∈ L1(0, s0). If U ∈ L∞ ∩ H1 with ∆U finite

measure and ∆U+ + g ≥ 0 on B(x0, r0), then, using (39)∫ r

ρ

ds s1−d

∫
B(x0,s)

d(|∆U+|) ≤
∫ r

ρ

ds

[
g̃(s) + s1−d

∫
B(x0,s)
d(∆U+ + g)

]

≤ 2‖U‖∞ + 2
∫ r

ρ

g̃.

The same is true for U− so that (23) follows.

Proof of Lemma 3.7. Recall that for the solution of

W ∈ H1
0 (B1), −∆W = G on B1,
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since q > d, we have with C = C(d, q)

‖W‖C1(B1) ≤ C‖G‖Lq(B1) ≤ Cr2− d
q ‖F‖Lq(B(x0,r0)) ≤ Cr. (40)

We apply this to the rescaled functions

∀ ξ ∈ B1, V (ξ) = U(x0 + rξ), G(ξ) = r2F (x0 + rξ).

For (24), we notice that ∆(V −W ) = 0 on B1 so that

‖∇(W − V )‖L∞(B1/2) ≤ C(d)‖V ‖L∞(∂B1).

Together with (40), this inequality gives

‖∇V ‖L∞(B1/2) ≤ C[r + ‖V ‖L∞(B1)].

Going back to U gives (24) by change of variable. For (25), we first notice that
−∆(V − W ) ≤ 0, so that (V − W )(x) ≤ ∫

∂B1
Px(z)V (z) dσ(z) where Px(·)

denotes the Poisson kernel at x. Using (40) again and V ≥ 0, we deduce that

‖V ‖L∞(B2/3) ≤ C[r +
∫
−

∂B1

V (z) dσ(z)].

The relation (25) follows by change of variable.
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