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Abstract. We consider the curvature-driven motion of an interface on a bounded domain
that contacts with the boundary at the right angle and has triple junctions with prescribed
angles. We derive a linearized system at a stationary interface, and obtain a characteristic
function whose zeros correspond to the eigenvalues of the linearized operator. From the
characteristic function, it is shown that the unstable dimension is not relevant to the topology
of the stationary interface but depends mainly on the curvature of the boundary.

1. Introduction

In various nonlinear phenomena such as annealing pure metal (Mullins [12]) and
segregation between biological species (Ei et al. [4]), we can observe that the
medium is separated into subregions by interfaces with triple junctions. In some
situation, these interfaces evolve in time depending on their curvatures with pre-
scribed angles at triple junctions.

In this paper, we consider the curvature-driven motion of curves in a two-
dimensional bounded domain under the situation where the curves form a network
with triple junctions. Our purpose is to study an eigenvalue problem derived by
formal linearization of a model equation around stationary interfaces of the motion.
Though a part of the results also holds for more general networks, we restrict
ourselves to networks that are topologically equivalent to binary trees (see Fig. 1).
Here by binary trees, we mean connected graphs without any cycles in which every
vertex has either one edge or three edges (see [1] for the terminologies ).

This situation can be formulated mathematically as follows. LetΩ be a bounded
domain in R

2 with smooth boundary ∂Ω, and consider a network of curves with
triple junctions in Ω. We assume that the network Γ = Γ (t) consists of n curves
denoted by γi = γi(t), i = 1, 2, . . . , n, and contacts with ∂Ω at endpoints (see Fig.
1). We often regard Γ as the set of the curves {γi}, and denote by B the subset of
Γ that consists of curves touching ∂Ω. We denote by V = {xl} the set of triple
junctions. Each curve γi is driven to the center of curvature at the normal speed Vi
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Fig. 1 An interface Γ with triple junctions. The set B is {γi|i = 1, 2, . . . , 6}

that is equal to the curvature of γi at each point. At each triple junction xl, three
curves meet with prescribed angles, and each γi ∈ B contacts with ∂Ω at the right
angle.

At first we express every curve γi(t) by using a position vector pi(s, t), where
s is an arclength parameter measured from one end of γi. Later we will use another
expression. Assuming that pi is sufficiently smooth, the motion of Γ (t) is described
as follows:

(M1) The normal velocity Vi = ∂pi

∂t · Ni satisfies Vi = κi, where Ni is the unit
normal vector to γi pointing the left of the unit tangent vector ∂pi

∂s , and κi

represents the signed curvature of γi given by κi = ∂2pi

∂s2 ·Ni.
(M2) If three curves γi, γj , γk meet at a triple junction xl(t), then the contact

angles among them satisfy Young’s law, that is, for some positive constants
σi, σj and σk, it holds

sin θl,i

σi
=

sin θl,j

σj
=

sin θl,k

σk
, (0<θl,i, θl,j , θl,k<π, θl,i+θl,j+θl,k=2π)

where θl,i is the contact angle between γj and γk, and so on.
(M3) If γi(t) contacts with ∂Ω, then the tangent vectors of γi(t) and ∂Ω at the

point of contact are orthogonal to each other.

We note that each curve of a stationary interface is a line segment. Although it
is not clear whether or not there exists a stationary interface for a given domain,
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we can always construct a domain that admits the existence of a given set of line
segments satisfyingYoung’s law as a stationary interface. In this paper, assuming the
existence of stationary interfaces, we study their linearized stability. Suppose that
perturbations to a stationary interface are represented as graphs on the line segments
of the stationary interface. Then we obtain a system of linear elliptic equations by
formal linearization in the same manner as in our preceding paper [10]. We denote
by L the resulting linear operator, and byNU the number of positive eigenvalues of
L. Our goal is to determine the unstable dimension NU. (More precise description
of L and NU will be given in the next section.)

The unstable dimension can be interpreted as follows from a variational view-
point. Let Li(t) denote the length of γi, and define an energy functional by

E[Γ ] :=
∑
γi∈Γ

σiLi.

Then the energy E[Γ (t)] is decreasing in t, because

d

dt
E[Γ (t)] = −

∑
γi∈Γ

σi

∫ Li

0
Viκids = −

∑
γi∈Γ

σi

∫ Li

0
κ2

i ds ≤ 0.

In particular, this implies that any stationary interface corresponds to a critical
point of this energy functional. The second variation of E[Γ ] at a stationary inter-
face is associated with the linearized operator L, and the unstable dimension NU
corresponds to the Morse index.

In order to determine the unstable dimension NU, we encounter the following
difficulties:

(i) Direct computations are extremely complicated. In fact, the computation is
complicated enough even for a stationary interface with only one triple junction
(see [10]).

(ii) There are infinitely many kinds of topologically different networks. Moreover,
there are topologically different networks with the same number of triple junc-
tions (see Fig. 2).

Thus, in a general setting, we need a systematic approach to determineNU. Specif-
ically, in order to overcome the above difficulties, we will construct characteristic
functions for eigenvalues inductively and combine them with variational methods.

Now we are in a position to state our main result.

Theorem 1.1 Let Γ = {γi} be a stationary interface that is homeomorphic to a
binary tree. Define a characteristic index D by

D =
∑
γi∈Γ

σiLi ×
∏

γi∈B

hi +
∑

γi∈B


σi

∏
γj∈B\{γi}

hj


 ,

where hi denotes the curvature of ∂Ω at the point of contact with γi ∈ B. (Note
that hi is taken to be nonpositive if Ω is convex.)
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Fig. 2a,b. Interfaces with four triple junctions; they are topologically different

(i) The unstable dimension NU is given by

NU =



m− 1 for (−1)mD ≤ 0,

m for (−1)mD > 0,

where m = #{hi < 0}.
(ii) The stationary interface is degenerate (i.e., there exists a zero eigenvalue) if

and only if D = 0.



Stability of stationary interfaces of binary-tree type 379

We say that a stationary interface is linearly stable if there is no nonnegative
eigenvalue, and is linearly unstable if there is at least one positive eigenvalue. As
a direct consequence of Theorem 1.1, we have the following result.

Corollary 1.1

(i) If all of hi are positive, then any stationary interface is linearly stable.
(ii) If at least two of hi are negative, then any stationary interface is linearly

unstable.

Here are some remarks about this result. First, for an interface with one triple
junction, the characteristic index is given by

D = (σ1L1 + σ2L2 + σ3L3)h1h2h3 + (σ1h2h3 + σ2h1h3 + σ3h1h2),(1)

which was obtained in our previous paper [10]. For an interface with two triple
junctions as in Fig. 3, the curve γ3 does not contact with the boundary. In this case,
the characteristic index is written as

D = (σ1L1 + σ2L2 + σ3L3 + σ4L4 + σ5L5)h1h2h4h5

+(σ1h2h4h5 + σ2h1h4h5 + σ4h1h2h5 + σ5h1h2h4).

Thus, D is symmetric with respect to γ1, γ2, γ4, γ5, but γ3 is different from others.
For an interface with four triple junctions, there are two possible configurations that
are topologically different (see Fig. 2). It is interesting to note that the characteristic
indices for these two interfaces are the same. In fact, the characteristic index which
we will construct later is independent of such topological difference.

This paper is organized as follows. In Sect. 2, we formulate the linearized oper-
ator. The procedure is similar to that in our former study [10]. Section 3 introduces a
variational formulation for eigenvalues. Section 4 deals with characteristic indices.
In Sect. 5 we give a proof of Theorem 1.1.

In the following sections, Γ is supposed to be a stationary interface that is
topologically equivalent to a binary tree.

2. Linearization

In this section we derive a system of linearized equations that approximates the
motion of interfaces near a stationary interface. We consider perturbations that can
be represented as graphs of functions on Γ , and describe the motion of nearby in-
terfaces by using some nonlinear partial differential equations with moving bound-
aries.

Suppose that γi, γj , γk meet at a triple junction xl ∈ V . We take xl as the origin
of ξ-η coordinate system. For γi, the ξ-axis is taken along γi, and the η-axis is taken
by rotating the ξ-axis by π/2 radian counter-clockwise. In this coordinate system
we consider a perturbation which can be represented as a graph of η = wi(ξ). The
functionwi is defined on some interval of ξwith moving boundaries.Approximating
the time evolution ofwi, we obtain a linear operator L at γi. Notice that the resulting
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Fig. 3 A stationary interface with two triple junctions

equation is defined on the fixed domain [0, Li]. We take coordinate systems for γj

and γk in the same way, and describe perturbations by using some functionswj(t, ξ)
and wk(t, ξ). The boundary conditions and matching conditions on the interface
can be transformed into boundary conditions onwi(t, ξ),wj(t, ξ) andwk(t, ξ). For
details of this procedure, we refer to our previous paper [10].

For γi ∈ B we chose a coordinate system in which ξ = Li corresponds to the
point of contact with ∂Ω. As for γi ∈ Γ \ B, both endpoints are triple junctions.
Hence there are two ways of introducing the coordinate system on γi. We will
choose one of these coordinate systems according to situations in order to make
the presentation simple. We remark that if we take the other end of γi as the origin,
we will obtain the function η = w̃i(ξ) = −wi(Li − ξ) for the same perturbation.

Now let us describe the linear operator L more concretely. Put u =
(u1, u2, . . . , un), where ui is defined on γi. Then L is written as

L[u] =
∂2u

∂ξ2
.(2)

The associated boundary conditions are given as follows.

1. For γi ∈ B,

∂ui

∂ξ
(Li) + hiui(Li) = 0.(3)

2. If γi, γj , γk meet at xl ∈ V ,

σiui(0) + σjuj(0) + σkuk(0) = 0,(4)

∂ui

∂ξ
(0) =

∂uj

∂ξ
(0) =

∂uk

∂ξ
(0).(5)
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We set

H :=
⊕
γi∈Γ

L2(0, Li),

and treat L as an operator from H to H with a domain of definition

D(L) =
{

u ∈
⊕
γi∈Γ

H2(0, Li) | u satisfies conditions (3)–(5)
}
.

The inner product (·, ·)H of H is given by

(u,v)H :=
∑
γi∈Γ

{
σi

∫ Li

0
uividξ

}
.

3. Variational methods

The operator L introduced in Sect. 2 naturally leads to a bilinear form.

Definition 3.1 A bilinear form J : V × V → R is defined by

J(u,v) :=
∑

γi∈B

hiui(Li)vi(Li) +
∑
γi∈Γ

σi

∫ Li

0
∂ξui(ξ)∂ξvi(ξ)dξ,

where

V := {u ∈
⊕
γi∈Γ

H1(0, Li) | u satisfies the condition (4)}.

The inner product (·, ·)V is given by

(u,v)V :=
∑
γi∈Γ

{
σi

∫ Li

0
(uivi + ∂ξui ∂ξvi)dξ

}
.

In addition we introduce a functional I : V \ {0} → R defined by

I(u) :=
J(u,u)
(u,u)H

.

We can characterize the eigenvalues of L in terms of I . Here we describe some
useful properties of L, J and I . Discussions similar to [10] yield the following
result:

Proposition 3.1 There exist positive numbers c and d such that

‖u‖2
V ≤ c(u,u)H + dJ(u,u) for all u ∈ V .
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From this we deduce that the operator L is self-adjoint.
Let H be the family of all finite dimensional subspaces of H . Denote by λj the

jth eigenvalue of L. Then we haveλj ≥ λj+1. The eigenvaluesλj are characterized
by the sup-inf principle:

−λj = sup
K∈H

dimK≤j−1

inf
v∈K⊥\{0}

I(v),(6)

where

K⊥ := {u ∈ V | (u,v)H = 0 for all v ∈ K}.

For the proof, see Sect. 1, Chapter 13 of [13].
If we take {hi} as parameters, each eigenvalue is a continuous and monotone

decreasing function of hi. See Theorems 6 and 9 in Chapter 6 of [3].

Proposition 3.2 Put m = #{hi < 0 | γi ∈ B}. Then NU ≥ m− 1.

Proof. We can assume B = {γ1, γ2, . . . , γk} by renumbering the elements of Γ if
necessary. Suppose that h1, h2, . . . , hm (m ≥ 2) are negative. SinceΓ is of binary-
tree type, for each i = 1, 2, . . . ,m− 1, there is a unique path on Γ which connects
γi and γm. More precisely, for each i = 1, 2, . . . ,m− 1, there is a unique subset,
say Γ i, of Γ such that Γ i is homeomorphic to a line segment and γi, γm ∈ Γ i.
Then we can choose a function ϕi on Γ such that

(i) ϕi is constant and nonzero on each γi,
(ii) ϕi is equal to zero on Γ \ Γ i, and
(iii) ϕi satisfies (4).

Now, for any v ∈ M := Span[ϕ1, ϕ2, . . . , ϕm−1], we have I(v) < 0. More-
over,

sup
v∈M
v �=0

I(v) = sup
‖v‖H=1

v∈M

I(v) < 0,

because {v ∈ M | ‖v‖H = 1} is compact.
When m ≥ 3, for any ψ1, ψ2, . . . , ψm−2 ∈ H , we can choose ϕ ∈ M , ϕ �= 0

such that (ϕ,ψi)H = 0 (i = 1, 2, . . . ,m−2). Therefore from the sup-inf principle,
we obtain λm−1 > 0. The casem = 2 is similar and the casem = 1 is trivial. ��

Remark 3.1. Proposition 3.2 holds also for stationary interfaces that are not neces-
sarily of binary-tree type. The proof is the same except that the path connecting γi

and γm may not be unique.
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4. Characteristic functions

In this section we define a characteristic function whose zeros correspond to the
eigenvalues of L. WhenΓ has only one triple junction, such a characteristic function
was obtained in Sect. 4 of [10]. We first sketch the outline briefly.

Let Γ be a stationary interface which consists of three line segments γi, i =
1, 2, 3.We denote the eigenfunctions ofL associated with an eigenvalueλ = µ2 �= 0
by (U1(ξ), U2(ξ), U3(ξ)). Then, by (2), we have

d2

dξ2
Ui(ξ) = µ2Ui(ξ), 0 < ξ < Li (i = 1, 2, 3)

and hence we can express Ui(ξ) as

Ui(ξ) = ai sinh(µξ) + bi cosh(µξ) (i = 1, 2, 3)

with some constants ai, bi. By (3)∼(5), we have


aiϕ(µ;hi, Li) + biψ(µ;hi, Li) = 0 (i = 1, 2, 3),

a1 = a2 = a3,

σ1b1 + σ2b2 + σ3b3 = 0,

(7)

where ϕ and ψ are defined by

ϕ(µ;h, L) := h sinh(µL) + µ cosh(µL),

ψ(µ;h, L) := h cosh(µL) + µ sinh(µL).

We regard (7) as a system of linear homogeneous equations for unknowns ai, bi
(i = 1, 2, 3). Then the determinant of the coefficient matrix is computed as

F (µ) = σ1ϕ(µ;h1, L1)ψ(µ;h2, L2)ψ(µ;h3, L3)

+σ2ψ(µ;h1, L1)ϕ(µ;h2, L2)ψ(µ;h3, L3)

+σ3ψ(µ;h1, L1)ψ(µ;h2, L2)ϕ(µ;h3, L3),

(8)

and the system of linear equations has a nontrivial solution (and hence λ = µ2 is a
non-zero eigenvalue of L) if and only if F (µ) = 0. Thus, F (µ) with λ = µ2 is a
characteristic function for the stationary interface with one triple junction.

For a stationary interface with two or more triple junctions, it is extremely
complicated to compute a characteristic function directly in the same way as in the
case of one triple junction. Our idea to overcome this difficulty is to decompose
the stationary interface into two stationary interfaces with less triple junctions, and
define a characteristic function inductively.

Let Γ be a stationary interface with two or more triple junctions. We divide
the interface Γ into two parts Γα and Γ β by considering a virtual boundary which
separates the domain into two subdomains (see Fig. 4). More precisely, we first
choose γk ∈ Γ \ B arbitrarily. Since each eigenfunction is analytic on γk ∈ Γ
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and has at most finite number of zeros on γk, we can take a point ξ = ξ0 such that
any eigenfunction does not vanish at ξ = ξ0. We divide the domain Ω by a smooth
curveC which intersects γk orthogonally at ξ = ξ0 and does not intersect the other
γi (�= γk). By this, we assume that γk is divided into two parts γα

k (0 < ξ < ξ0) and
γβ

k (ξ0 < ξ < Lk). We regard Γα and Γ β as stationary interfaces on the domains
Ωα and Ωβ , respectively. If the curvature of C at the point of contact with Γα is
+h, then the curvature of C at the point of contact with Γ β is given by −h.

Γα Γβ

Fig. 4 The interface divided into two parts. The dotted line stands for the virtual boundary

Assuming that characteristic functions, say Fα and F β , are obtained for Γα

and Γ β , respectively, we define a characteristic function F for Γ by using Fα and
F β .

Proposition 4.1 For any stationary interface Γ , there exists a complex-valued
characteristic function F = F (µ) of a complex variable µ with parameters σi,
Li, (γi ∈ Γ ) and hi (γi ∈ B) satisfying the following properties:

(i) For µ �= 0, F (µ) = 0 if and only if λ = µ2 is an eigenvalue of L.
(ii) F (µ) is analytic in µ, σi, Li, and hi. Further, F (µ) is real-valued if µ is

restricted to real numbers.
(iii) F (µ) is odd with respect to µ. In particular, F (0) = 0 for any σi, Li, hi.
(iv) Any zero of F (µ) lies on the real axis or imaginary axis, and it depends on σi,

Li, hi continuously.
(v) F (µ) → +∞ as µ → +∞.
(vi) For each γi ∈ B, F is written as F = P (µ)hi + Q(µ), where P and Q are

independent of hi.

Proof. We prove this by induction. First, if Γ has only one triple junction, the
assertion follows immediately from the explicit formula (8).
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Next, letΓ be a stationary interface with two or more triple junctions. We divide
Γ into two parts Γα and Γ β as above by introducing a virtual boundary C which
intersects γk orthogonally. Suppose that the assertion is true for Γα and Γ β , and
denote by Fα and F β the characteristic functions for Γα and Γ β , respectively,
satisfying the properties (i)∼(vi). By (vi), we can write them as

Fα(µ) = Pα(µ)h+Qα(µ),

F β(µ) = −P β(µ)h+Qβ(µ),
(9)

where Pα, Qα, P β , Qβ are independent of h. From Fα(µ) = 0 and F β(µ) = 0,
we can eliminate h to define a function Fα+β(µ) by

Fα+β(µ) :=
Pα(µ)Qβ(µ) +Qα(µ)P β(µ)

σkµ
for µ �= 0(10)

and Fα+β(0) = 0.
We will show that this function satisfies the desired properties. First, letλ0 = µ2

0
(�= 0) be any nonzero eigenvalue of L and denote the corresponding eigenfunc-
tion by (Ui)γi∈Γ . Setting h = −∂ξUi(ξ0)/Ui(ξ0), we can regard (Ui)γi∈Γ α and
(Ui)γi∈Γ β as eigenfunctions forΓα andΓ β , respectively, associated with the eigen-
value λ0. We note that λ0 is a real number and that µ0 is a real or purely imaginary
number such that 


Pα(µ0)h+Qα(µ0) = 0,

−P β(µ0)h+Qβ(µ0) = 0.
(11)

Hence, if λ0 is an eigenvalue, we obtain Fα+β(µ0) = 0.
Conversely, we show that if Fα+β(µ0) = 0 for some µ0 �= 0, then λ0 = µ0

2

is an eigenvalue of L for Γ . If

Fα+β(µ0) = Pα(µ0)Qβ(µ0) +Qα(µ0)P β(µ0) = 0,

there exists a real number h such that (11) holds. Then λ0 = µ2
0 is an eigenvalue

for both Γα and Γ β with such h. Let (Ui)γi∈Γ α and (Ui)γi∈Γ β denote associated

eigenfunctions for the eigenvalue λ0 = µ2
0. In particular, let Uα

k and Uβ
k denote

eigenfunctions on γk. Since these functions must be given by linear combinations
of two hyperbolic functions, we can extend the domain of definition to (0, Lk) (or
γk). On γk, these eigenfunctions satisfy the same equation

d2

dξ2
Uk(ξ) = λ0Uk(ξ), 0 < ξ < Lk

and boundary conditions

∂ξU
α
k (ξ0) + hUα

k (ξ0) = 0,

∂ξU
β
k (ξ0) + hUβ

k (ξ0) = 0.
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These equalities imply that Uα
k and Uβ

k are not linearly independent on γk so that

C1U
α
k (ξ) ≡ C2U

α
k (ξ), 0 < ξ < Lk

for some (C1, C2) �= (0, 0). Then (C1Ui)γi∈Γ α ∪ (C2Ui)γi∈Γ β become an eigen-
function of L for Γ . Thus we have shown that F (µ) = Fα+β(µ) with λ = µ2 is a
characteristic function for Γ .

From the definition (10) we see thatF (µ) is a polynomial ofσi,µ,hi, sinh(ajµ)
and cosh(ajµ), where aj are some positive constants. Looking at the leading order
term we obtain the property (v). The other properties are easily shown. The proof
is now complete by induction. ��
Proposition 4.2 Let F be the characteristic function constructed as above. Then
the derivative of F (µ) at µ = 0 is given by

D :=
dF

dµ

∣∣∣∣
µ=0

=
∑
γi∈Γ

σiLi ×
∏

γi∈B

hi +
∑

γi∈B


σi

∏
γj∈B\{γi}

hj


 .

Proof. We prove this by induction. First, for a stationary interface with one triple
junction, D is computed directly from (8) as (1).

Next, letΓ be a stationary interface with two or more triple junctions. We divide
Γ into two parts Γα and Γ β as above, and define Bα and Bβ by

Bα := B ∩ Γα, Bβ := B ∩ Γ β .

Note that Bα and Bβ do not contain γα
k or γβ

k . Suppose that the assertion is true
for Γα and Γ β . Then, by (9), we have

d

dµ
Fα(0) = Pα

µ (0)h+Qα
µ(0)

with

Pα
µ (0)=


σkξ0+

∑
γi∈Γ α\{γα

k }
σiLi




∏
γi∈Bα

hi+
∑

γi∈Bα


σi

∏
γj∈Bα\{γi}

hj


 ,

Qα
µ(0) = σk

∏
γi∈Bα

hi.

Here the subscript µ means differentiation with respect to µ. Similarly, we have

d

dµ
F β(0) = −P β

µ (0)h+Qβ
µ(0)

with

P β
µ (0)=


σk(Lk−ξ0)+

∑
γi∈Γ β\{γβ

k }
σiLi




∏
γi∈Bβ

hi+
∑

γi∈Bβ


σi

∏
γj∈Bβ\{γi}

hj


,

Qβ
µ(0) = σk

∏
γi∈Bβ

hi.
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Noting that Pα(0) = Qα(0) = P β(0) = Qβ(0) = 0, we obtain

dFα+β

dµ

∣∣∣∣
µ=0

=
1
σk

{
Pα

µ (0)Qβ
µ(0) +Qα

µ(0)P β
µ (0)

}

=


σkξ0 +

∑
γi∈Γ α\{γα

k }
σiLi




∏
γi∈Bα

hi

∏
γi∈Bβ

hi

+
∑

γi∈Bα


σi

∏
γj∈Bα\{γi}

hj




∏
γi∈Bβ

hi

+


σk(Lk − ξ0) +

∑
γi∈Γ β\{γβ

k }
σiLi




∏
γi∈Bα

hi

∏
γi∈Bβ

hi

+
∑

γi∈Bβ


σi

∏
γj∈Bβ\{γi}

hj




∏
γi∈Bα

hi

=


σkLk +

∑
γi∈Γ\{γk}

σiLi




∏
γi∈B

hi +
∑

γi∈B


σi

∏
γj∈B\{γi}

hj




=
∑
γi∈Γ

σiLi ×
∏

γi∈B

hi +
∑

γi∈B


σi

∏
γj∈B\{γi}

hj


 .

Thus the assertion is true for Γ . The proof is completed by induction. ��

5. Proof of Theorem 1.1

We prepare the following lemma on the nondegeneracy of zero eigenvalues.

Lemma 5.1 If at most one of hi (γi ∈ B) is zero, then any zero eigenvalue is
simple.

Proof. Assume that there exists a zero eigenvalue, and denote an associated eigen-
function by (Ui)γi∈Γ . Then each Ui is a linear combination of 1 and s:

Ui = ai + bis.

Take an edge γj ∈ Γ . If we fix the value of bj , the other bk (γk ∈ Γ \ {γj}) are
determined uniquely from (5). Then, for every γi ∈ B with hi �= 0, the value of ai

is given by (3) . Hence other ai (γi ∈ Γ \ B) are determined by (4) successively.
As for γi ∈ B with hi = 0, even if it exists, ai is obtained by (4) because the
other ak (γk ∈ Γ, k �= i) has been already determined. Therefore the degree of
freedom of zero eigenfunctions is at most one. This implies the simplicity of the
zero eigenvalue. ��
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Now let us complete the proof of Theorem 1.1.

Proof of Theorem 1.1. We note first that we can deform Ω without changing the
shape of a given stationary interface. Hence we may regard hi (γi ∈ B) as variable
parameters. Without loss of generality, we put B = {γ1, . . . , γk}, and write D as
D(h1, h2, . . . , hk).

Take an edge γi ∈ B. Let hj (γj ∈ B \ {γi}) be nonzero and fixed, and let
hi vary on R. Then D changes its sign at some value of hi, because D is a linear
function of hi. When hi decreases and the sign of D changes, zero points of F
transfer from the imaginary axis to the real axis. At this moment, by Lemma 5.1,
exactly one negative eigenvalue becomes positive so that NU increases by one.

Bearing the above observation in mind, we count the number of positive eigen-
values as follows. Assume first that h1, h2, . . . , hk > 0. Then (6) implies NU = 0.
Next, we decrease the values of h1, h2, . . . , hm one by one to negative values. By
this procedure, the indexD can change its sign at mostm times and henceNU ≤ m.
On the other hand, Proposition 3.2 shows NU ≥ m − 1. Hence NU = m − 1 or
m. Since D > 0 if h1, h2, . . . , hk > 0, NU is even if D > 0 and is odd if D < 0.
Thus (i) is proved.

Finally, let us consider the existence of zero eigenvalues. If at most one of
hi (γi ∈ B) is zero, then Lemma 5.1 and the above argument imply that a zero
eigenvalue appears if and only ifD = 0. Suppose that hj = hk = 0 (j �= k). Then
we haveD = 0 by Proposition 4.2. Since Γ is of binary-tree type, there is a unique
path on Γ which connects γj and γk. Then we can take a function (Ui)γi∈Γ such
that

(i) Ui is a nonzero constant if γi is on the path,
(ii) Ui is identically equal to zero if γi is not on the path, and
(iii) (Ui)γi∈Γ satisfies (3)∼(5).

Then (Ui)γi∈Γ becomes an eigenfunction associated with the zero eigenvalue. Thus
the proof is complete. ��
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