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Abstract. We consider a class of equations of the form
—2Au+V(z)u = f(u), uwe H'(RY).

By variational methods, we show the existence of families of positive solutions concentrating
around local minima of the potential V' (), as ¢ — 0. We do not require uniqueness of the
ground state solutions of the associated autonomous problems nor the monotonicity of the

function £ — % We deal with asymptotically linear as well as superlinear nonlinearities.
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1. Introduction

In this paper we study the existence of positive solutions of the equation
—2Au+V(z)u= f(u), uwe H (RN). (1.1)

We assume f € C'(R,R) and that V(z) is locally Holder continuous and
bounded below away from 0, that is, there exists V;; > 0 such that

V(z)>Vy>0 forallz € RV, (1.2)
A basic motivation to study (1.1) stems from the nonlinear Schrédinger equation

2

m%f - _%M + W (@)D — g(|B]). (13)
We are interested in standing wave solutions, namely solutions of the form ®(x, t)
= w(z)e~ "% and it is easily observed that a @(z,t) of this form satisfies (1.3)
if and only if u(z) is a solution of (1.1) with V(z) = W(x) — E, &2 = % and
f(u) = g(u)u.
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An interesting class of solutions of (1.1), sometimes called semi-classical
states, are families of solutions u. () which concentrate and develop a spike shape
around one, or more, special points in RN, while vanishing elsewhere as ¢ — 0.

The existence of single and multiple spike solutions was first studied by Floer
and Weinstein [FW]. In the one dimensional case and for f(u) = u? they construct
a single spike solution concentrating around any given non-degenerate critical point
of the potential V' (z). Oh [O1], [O2] extended this result in higher dimension and
for f(u) = |uP~'u (1 < p < {E2). He also constructs multiple spike solutions.
The arguments in [FW], [O1], [O2] are based on a Lyapunov-Schmidt reduction
and rely on the uniqueness and non-degeneracy of the ground state solutions of the
autonomous problems:

—Av+V(zo)v = f(v) in HY(RY) (2o € RY). (1.4)

We remark that if we introduce a rescaled (around zo € R¥) function v(y) =
u(ey + xp), (1.1) becomes —Av + V(xo + ey)v = f(v) and (1.4) appears as a
limitas ¢ — 0.

Subsequently reduction methods were also found suitable to find solutions of
(1.1) concentrating around possibly degenerate critical points of V' (z), when the
ground state solutions of the limit problems (1.4) are unique and non-degenerate.
In [ABC] Ambrosetti, Badiale and Cingolani consider concentration phenomena at
isolated local minima and maxima with polynomial degeneracy and in [YYL] Li
deals with C''-stable critical points of V. See also Grossi [Gr] and Pistoia [P] for
related results. Finally we mention the work of Kang and Wei [KW], in which they
establish the existence of positive solutions with any prescribed number of spikes
clustering around a given local maximum point of V' (x). We also refer to del Pino,
Felmer and Tanaka [DFT] and Nakashima and Tanaka [NT] for related results in
the one dimensional setting.

We remark that the uniqueness and non-degeneracy of the ground state solu-
tions of (1.4) are, in general, rather difficult to prove. They are known, by means
of ODE analysis, only for a rather restricted class of nonlinearities f(¢) (including
fl&=¢Ptea<p< %)) so far. To attack the existence of positive solutions
of (1.1) without assumptions on uniqueness and non-degeneracy, the variational
approach, initiated by Rabinowitz [R], is proved to be successful. In [R] he proves,
by a mountain pass argument, the existence of positive solutions of (1.1), fore > 0
small, whenever lim inf ||, V(x) > inf,cg~ V(). The assumptions on f (&)
are roughly (f0)—(f4) as given below but no uniqueness nor non-degeneracy condi-
tions on the ground state solutions of (1.4) are required. Later Wang [W] showed
that these solutions concentrate at global minimum points of V'(x).

In 1996, del Pino and Felmer [DF1] by introducing a penalization approach, so
called local mountain pass, managed to handle the case of a, possibly degenerate,
local minimum of V'(x). More precisely, they assume that an open bounded set
A C RV satisfies

inf V(z) < min V(x)

zEA €A
and they show the existence of a single spike solution concentrating around min-
imizer of V' (x) in A. Very recently they extended their result to the existence of
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multiple spike solutions in a, possibly degenerate, saddle point setting [DF3]. In
[DF3] stronger conditions than in [DF1] are required but no assumptions on the
uniqueness or the non-degeneracy of solutions of (1.4) are made. As results in
between [DF1] and [DF3] we mention [DF2], [Gu].

In the present paper we focus on the existence of solutions of (1.1) concentrating
in a given set of local minima of V' (x). We introduce new techniques which permit
to extend the result of del Pino and Felmer [DF1] to a wider class on nonlinearities
f(¢) € CY(R,R). In [DF1] the assumptions on f (&) are the following:

(f0) f(¢) € C'(R,R).

(1) f(&) = o(&) as & ~ 0.
(f2) For some s € (1, 8+2) if N > 3 and for some s € (1,00) if N = 1, 2

» N—2
f©)
é‘s
(f3) There exists p > 2 such that
0 < uF(€) < f(E)¢ forall € >0,

where F(€) = [* f(7) dr.
(f4) The function £ — %; (0,00) — R is nondecreasing.

—0 as& — oo.

Under (f0)—(f3), the functional I, (u) corresponding to (1.1)

I.(u) = 1/ 2\Vul|? + V(x)u? do — / F(u)dx
2 Jr~ RN
has a mountain pass geometry.

In the proofs of [DF1] the assumptions (f3) and (f4) play important roles. (f3)
is called the global Ambrosetti-Rabinowitz’s condition. It ensures the boundedness
of Palais-Smale sequences for I.. We also remark that (f3) implies that f(&) is
superlinear, namely that @ — o0 as & — oo. The condition (f4) guarantees the
following properties for I..; for any u # 0, the real function defined on (0, 00) — R
by t — I.(tu), takes a unique local (hence global) maximum. This enables to make
use of the Nehari manifold M = {u € H*(R™) \ {0}; I’(u)u = 0} and to show
that a mountain pass critical point for I.(u) is a least energy solution of (1.1).

We will show that the result of [DF1] holds without the assumption (f4). We also
introduce a new condition (f5) which can replace (f3) to ensure the boundedness
of Cerami sequences and enables to consider asymptotically linear problems. Our
main result is the following:

Theorem 1.1. Suppose N > 2 and assume that f(§) satisfies (f0)—(f2) and either
(f3) or

(f5) (i) There exists a € (0, 00| such that
f()

—* = a as&— 0.

£
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(ii) There exists a constant D > 1 such that

ﬁ(s) < Dﬁ(t) Sforall0 < s <t, (1.5)

where F(€) = 5 f(€)§ — F(€).
Let A C RY be a bounded open set satisfying

jIégV(ac) < Inin V(zx) (1.6)
and, in case a < o in (f5),
aljglV(x) < a. (1.7)

Then there exists an eg > 0 such that for any € € (0, o}, (1.1) has a solution u.(x)
satisfying

1° wue(x) has unique local maximum (hence global maximum) in RN arz. € A
2° V(xe) — infreqn V(x).
3° There exist constants C1, Cy > 0 such that

ue(z) < Cpexp (_0237—6965|> forz e RV,

In Sect. 2, we will see that (f4) implies (f5) with D = 1. Thus as a special case
of Theorem 1.1 we have

Theorem 1.2. Assume that f(§) satisfies (f0)—(f2) and either (f3) or (f4). Then the
conclusion of Theorem 1.1 holds.

Remark 1.3. In[DF1] del Pino and Felmer showed the existence of a solution u. ()
satisfying 1°-3° in the statement of Theorem 1.1 under the conditions (f0)—(f2) and
both (f3) and (f4). Thus our theorem generalizes their result. In Sect. 2 we give some
examples of nonlinearities that our result now permit to consider.

Concerning the removal of (f4) one of the keys of our proof is to use our recent
work [JT2] on autonomous nonlinear scalar field equations in R, where we show
that under the same conditions which guarantee the existence of a least energy
solution (see [BL], [BGK]) these solutions have a mountain pass characterization.
Without assuming (f4) such property do not hold for I.(u), and in particular our
solutions u. (x) may not be least energy solutions. However, to prove Theorem 1.1
we just use the mountain pass characterization on the limit equations (1.4).

To get Theorem 1.1 without assuming (f3) we have to overcome the problems
of proving the boundedness of Palais-Smale sequences (or at least of Cerami se-
quences). For this we take advantage of some techniques introduced by Jeanjean [J]
and further extended in Jeanjean and Tanaka [JT1]. Our condition (f5) do not force
f(€) to be superlinear and we manage to handle cases where it is asymptotically
linear.

The proof of Theorem 1.1 consists of several steps. In Sect. 2, influenced by
the work of del Pino and Felmer [DF1], we introduce a modified functional for any
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€ > 0 and show it has a mountain pass geometry. Next, in Sect. 3, we study the
boundedness of Cerami sequences for the modified functionals. We give two types
of boundedness results; one when € > 0 is fixed, the other one to obtain uniform
boundedness when € goes to 0. In Sect. 4, we study the behavior of bounded
Cerami sequences. We develop a parameter-dependent concentration-compactness
type argument, which may be regarded as a generalization of Proposition 2.2 of
Gui [Gu], and we believe that it could be useful in other situations. In Sect. 5, we
study the limit equations (1.4). Finally in Sect. 6, we end the proof of Theorem 1.1,
showing that the critical points of the modified functionals satisfy, after a rescaling,
the original problem (1.1).

2. Setting the modified problems

In this section we give some preliminaries for the proof of Theorem 1.1. Since we
seek positive solutions, we can assume that f(£) = 0 for all £ < 0.
First we summarize some basic properties of f(£).

Lemma 2.1. Assume (f0)—(f2). Then
(i) Forany d > 0 there exists Cs > 0 such that

F©] < 8lél + Cslel* forall€ € R @.1)
(ii) If (f3) is satisfied, f(£) > 0 forall £ > 0.

muyﬁwmmm@¢ﬂazaﬁkyzaﬁ(¥9
(iv) If f(€) satisfies (f4), then (f5) holds with D = 1.

)20ﬁmﬂ£20

Proof. (1), (ii) are trivial. To show (iii) we set s = 0 in (1.5). We get

~

F(t)>0 forallt>0. (2.2)
Thus
d (F(t)\ 2F(t)
— | =< = > 0. 2.
dt < 12 ) p =0 (@3)
(2.3) implies under (f1) that
w > lim M =0 forallt> 0. 2.4)
t2 t—0 t2

Finally combining (2.2) and (2.4), we have 1 f(t)t = F(t) + F(t) > 0 for all
t>0.
(iv) For 0 < s < t we have

Lt - £(s)s) - (F(t) - F(s)

22/0 @TdT— Osﬂs)rdT—/: f(T)TdT

F(t) - F(s)

S

/St(@@>7d7+/os<@f)>7drzo.

Thus (f5) with D = 1 follows. O
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Here are some examples of nonlinearities which satisfies our conditions.

Example 2.2. (i) (&) = log(1 + &) satisfies (f0)—(f2), (f5) witha = 0o, D =1
but not (£3).

(i) f(&) = % (k > 0) satisfies (f0)—(f2), (f5) with a = %, D=1

(iii) For an example sati\sfying (f0)—(f2), (f5) with D > 1, we claim that we can
re-construct f(£) from F(£). Indeed under (f1), (f5) it holds:

F(&) = 0(€%) at¢ = 0. (2.5)

F(&) > 0forall € > 0. (2.6)
. . F(s

(1.5) holds if and only if  supg_,, ﬁ((t; < 00. 2.7)

(Here we regard F(s) = 0if F(t) = 0).

Now for a given function FI(¢) € C(]0,00),R) satisfying (2.5)~(2.7), we set
F(¢) = 2¢2 fof @ dr. We can easily check that £ F”(£)¢ — F(£) equals to the
given F(€). Thus for a given F/(¢) € C([0, 00), R) satisfying (2.5)~(2.7), we can
re-construct f (). For example for a function satisfying (2.5), (2.6), f'(£) > 0 near
£ =0and 0 < liminfe ﬁ(f) < limsupg_, ﬁ(ﬁ) < 00, we can find f(&)
which satisfies (f0)—(f2), (f5).

2.1. Modification of the nonlinearity f(§)

To find a solution u. (x) concentrating in a given set A, we modify the nonlinearity

f(&). Here we follow an approach inspired by del Pino and Felmer [DF1].

Let f(€) be a function satisfying (f0)~(f2) and Vo < a = lime_,o0 £& €

(0, 00]. We choose a small number v € (0, %) and we set

min{ f(§), v€} for & > 0,
f(g)_{() for £ < 0.

By (f1) we can see that there exists a small r, > 0 such that

F(&) = f(&) forlgl <.

Moreover there holds

f(&) =vE forlarge £ > 0,
f(€) =0 forg<O0.
For technical reasons, we choose v in the following way:
1° Under (f3), we choose v > 0 so that
v 1 1
— < == —. 2.8
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2° Under (f5), we choose v € (O “2) so that v is a regular value of £ — f(f)

(;) = 0and limg_, % =a>Vy>u,if

v is a regular value of %, we can see that

(0,00) — R. Since lim¢_,o

ky = #{€ € (0,00); f(§) = v€} < 0. (2.9)

Next, let A C RY be a bounded open set satisfying (1.6). We may assume that the
boundary 9/ is smooth. We choose an open subset A’ C /A with a smooth boundary
A’ and a function x(z) € C>°(RY,R) such that

inf V(z)> inf V(z),

zeA\A €A
. V) — it
VO gV = Ve,

x(z)=1 forz e A,
x(z) € (0,1) forxz e A\ A,
x(xz) =0 forx € RV \ A.

In what follows we assume, without loss of generality, that

0eA and V(0)= 11615‘/(95)

Finally we define
9(z,8) = x(2) (&) + (1 = x(2)) £(&) for (z,6) e RV xR (2.10)

and we write F'(§) = fogi( dr, G(z,€) = fo = x(z)F(§) + (1 -
x(@))E(§).

From now on we try to find a solution of the following problem:
—2Au+V(z)u = g(z,u) inRY. (2.11)

We will find a solution u.(x) of (2.11) via a mountain pass argument and besides
other properties we will show that the mountain pass solution u.(x) satisfies for
small ¢ > 0

luc(x)] <7, forze RN\ A

that is, u. (x) also solves the original problem (1.1).
We give some fundamental properties of f(§).

Lemma 2.3. (i) f(§) =0, F(§) =0 forall§ <0.

(ii) f(€) < vE F(€) < F(€) for & > 0.

(i) f(§) < f(§) for§ > 0.

(iv) If f(§) satisfies either (f3) or (f5), then it holds that f(£) > 0 for all £ € R.

(v) If f(&) satisfies (f5), then f(&) also satisfies (f5). In particular, E({) > 0 for
all € > 0.
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Proof. (i)—(iv) are trivial from the definition of f(£). For (v), we recall that v is
taken so that (2.9) holds. First we consider the case

f(&) = f(§) inls,t]. (2.12)
Then

B() = 51— [ f7)dr = 5100 = F©) + F) - F(3)
— F(t) 4 F(s) — F(s).

Since f (&) satisfies (f5) and F'(s) — F(s) > 0, we have

Next if

f(€) =vE ins,t], (2.13)

we have

Thus in the general case, we can find a sequence s = ap < a1 < az < -+ <
an_1 < o, = tsuchthat f(a;) =ve; (j=1,2,--- ,n— 1) and in each interval
[a], ajyi)s (2 12) or (2.13) holds. We use the above fact repeatedly and obtain
F(s) < DF(on) < D*F(ap) < -+ < D" F(an, 1) < D"E(t). By 29), nis
bounded by k, and we get Fi(s) < Dk"ﬁ(t) for all 0 < s < t. Replacing D with
D¥v_ this is the desired result. O

Corollary 2.4. (i) g(x,€) < f(€), G(z,&) < F(€) forall (z,€) € RY x R.
(i) g(x,&) = f(&) i€l < v
(iii) For any § > 0 there exists Cs > 0 such that
lg(z, )| < 6l¢| + Cs[¢]* forall (z,6) € RN x R.
(iv) If f(&) satisfies (f5)—(ii), then g(x, §) also satisfies
G(z,s) < DM G(x,t) for0<s<t,

where G(z,€) = 19(2,6)¢ — G(z,€), D > 1is given in (f5)~(ii) and k,, is
given in (2.9).

Proof. By the definition of g(z, £) in (2.10), (i)—(iv) follow easily from Lemma 2.3.
O
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2.2. The modified functional
Introducing the re-scaled function v(y) = u(ey) we can rewrite (2.11) as
—Av +V(ey)v = g(ey,v) inRN. (2.14)

We shall mainly deal with (2.14) instead of (2.11).
The functional corresponding to (2.14) is

1
L) =3 [ Vvt - [ Gy

We consider J. (v) on the following function space:

H. = {v € H'RN); /RN V(ey)v?dy < oo}

equipped with norm

ol = [ IVo + Vo)t dy,
RN

We shall make use the following notation:
[ulloo = esssup u(z)],  [ull; :/ u["dy  forr € [1,00),
zeRN RN

||UH?—I1(RN) :/ |V'U‘2+V0'U2dy.
RN

Here Vj > 0 is the constant appearing in (1.2) and thus ||-|| ;71 (g~ is equivalent to
the standard H'(R)-norm. Since

vl g1 vy < lvlla., (2.15)

we have H. C H'(R") and H. can be embedded into L"(R") (2 < r < 28
for N > 3,2 < r < oo for N = 2) continuously, i.e., there exists C/. > 0 such
that

[v]lr < CLlloll g @y forall v. (2.16)

Proposition 2.5. J.(v) € C'(H.,R) and it has a Mountain Pass Geometry that
is uniform with respect to ¢ in the following sense:

1° J.(0) = 0.

2° There are constants py > 0 and 5y > 0 independent of £ € (0, 1] such that

Je(v) > 6o for all ||v|| g1 gy = po,
Je(v) >0 forall 0 < |lv||g1@myy < po-

3° There is a vo(x) € C°(RYN) and g9 > 0 such that J.(vo) < 0 forall € €
(0750}
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Proof. Since J.(v) = 3|lvll}. — g~ Gley,v)dy, it is clear that J.(v) €
C'(H_.,R). 1° is also trivial. To show 2°, using (2.1), (2.15), (2.16), we compute

Jew) = 3 oll% - / XEWF@) + (1 - x(ey) Ew) dy

> 2ol - /F
s+1

> ”vHHlRN) ||UH2 CV0/2HU|5+1
ZZIIUHHuRN) Cvo2Cs 1ol gy -

Thus we can find constants pg, §g > 0 such that the statement 2° holds.
To show 3°, we choose vy € C5°(RY) such that

1
5/ |Vo|? + V(0)vd dy — / F(vg)dy < 0.
RN RN

Recall that V(0) < lim,_, @ Then the existence of such vy € C§°(RY ) fol-
lows from Proposition 5.2, where it is proved that v — & [ v [Vvo|* +V(0)vd dy
— [~ F(vo) dy has a mountain pass geometry. Since we are assuming 0 € /1’ we
observe that

1
Je(vo) — 7/ |Vg|2 + V(0)vi dy — F(vg)dy <0 ase — 0.
2 RN RN

Thus we get 3° for sufficiently small € > 0. a

By Proposition 2.5, we can define the mountain pass value. For € € (0,¢0] we
set

be = inf max J.(y(t)), (2.17)
velx t€[0,1]
I'. = {v € C([0,1], He); 7(0) = 0, Je(~(1)) < 0} (2.18)

In what follows, we will show that for € small, b, is a critical value of .J.(v) and
the corresponding critical point has — after re-scaling — exactly one peak in A.

By the above Proposition 2.5, we have the following a priori bound for the
mountain pass value b..

Corollary 2.6. There are constants my, ma > 0 such that for € € (0, o]
m1 < b. < ma. (2.19)

Proof. Since ¥([0,1]) N {v € He; ||v||g1@m~y = po} # 0 for any v € I, by
Proposition 2.5, we have

max_ J.(vy(t)) > inf Jo(v) > do.
te(0,1] loll 1 (r N y=p0
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On the other hand, taking a path y(t) = tvg, where vy € C§°(RY) is given in
Proposition 2.5, we have

b. < sup max J:(y0(t)) = mo.
e€(0,e0] t€l0,1]

Thus we get (2.19) with m; = dy and m4 given in the above formula. O

In the following sections, we will discuss the boundedness of Cerami
sequences corresponding to b.. We will also discuss “uniform boundedness” with
respect to € € (0, gg.

3. Boundedness of Cerami sequences

From Proposition 2.5 and Ekeland’s principle, for any € € (0, €] there exists a
Cerami sequence (v;)72; C H. at level b.:

JE(’UJ') — bE,
A+ o) 1wl — 0 as j — oo

We will show under the assumptions (f3) or (f5) that (Uj)]‘?‘;l is bounded in H.
and has a convergent subsequence. Thus J.(v) has a critical point v, satisfying
Jl(ve) = 0and J.(v:) = b.. Also we show that (v.) is bounded in the sense that

lim sup ||ve|| g, < oo. 3.1
e—0

This type of boundedness is important in our argument. More precisely we show:

Proposition 3.1. Assume that f () satisfies (f0)—(f2) and either (f3) or (f5). Then
there exists €1 € (0, €o] such that for any € € (0, e1] and for any sequence (v;) C
H_ satisfying
Jo(v;) = ¢ >0, (3.2)
A+ llolla )W)l e — 0 asj— oo (3.3)

for some ¢ > 0, we have

(i) ||vjll . is bounded as j — .
(ii) There exist a subsequence j;, and vo € H such that vj, — vg strongly in H..

Proposition 3.2. Assume that f(§) satisfies (f0)—(f2) and either (f3) or (f5). Sup-
pose that a sequence (v:)cc(o,z,] Satisfies

ve € He,
Je(ve) € [my,ma] foralle € (0,e1], (3.4)
(L + Nlvell )T (ve) |z = 0 ase —0 (3.5)

for ma > mq > 0. Then (3.1) holds.
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Since the proofs of Propositions 3.1 (i) and 3.2 have many similar points, we
mainly deal with Proposition 3.2. First we prove it under (f0)—(f2) and (f3). In what
follows we write x.(y) = x(cy).

Proof of Proposition 3.2 under condition (f3). This is quite standard. Let (v.)
satisfy (3.4) and (3.5). From (3.4) we have

slecll = [ (0= XEE@) + X P dy < ma (O
RN

From (3.5) it follows that |J.(ve)ve| < [|JZ(ve)| mz ||ve|lm. < 1 for small e, ie.,

lod, = [ (0= X xenfe ] <10 @

Thus computing (3.6) — %(3.7) and using (f3), we get

11 ) 1 1
o= < 1- Fv.) — — d -
<2 M) ”vsHHE > /RN( X(Ey)) <(U€) uf(”s)”s) Y+ mo + "
Recalling that £ f(§) > 0 for all &, it leads to

11 ) / 1
—— — ] [|ve < 1—x(ey))E(ve) dy + ma + —.
(2 u) [0 |2, RN( X(ey))E(ve) dy + mo p

By Lemma 2.3 (ii), we have F/(¢) < 1v[¢|? for all £ € R. Thus

1 v
=3B dy < 5ol < gl

Therefore
11 ) v ) 1
27 [ve |7, < TVOH%HHE +ma + m
By our choice (2.8) of v, we can see that ||v.|| g, is bounded as & — 0. O
For the proof of Proposition 3.2 under (f5), we use ideas from [J] and [JT1].

Proof of Proposition 3.2 under condition (f5). Following the argument in [J] and
[JT1], we argue indirectly and assume that lim sup,_, ||ve||m. = oo. We take a
subsequence £; — 0 such that ||v. || H., — 0o. For simplicity of notation, we write
just € instead of ¢;.

We set w, = ”'U:iITHE Clearly |lwe| g1 ryy < |lwella. = 1 and since x. is
uniformly bounded in C"! there exists C; > 0 independent of € > 0 such that

[ Xcwe || g1 rvy < Ch (3.8)

Also, since ||J.(ve)|| g+ — 0 we have
i(ve) 0(1)

v
A 5)w5—|—(1—xg) W + .
Ve Ve ||'U5||H€

—Awe + V(ey)we = xe (3.9)
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Multiplying (3.9) by w.~(y) = max{—w.(y),0} and integrating over R”, it
follows that

Jw:"||}. =0 ase— 0. (3.10)

Now we observe that one of the following 2 cases must take place:

Case 1: limsup sup / Ixe(y)we|* dy > 0.
e—=0 2eRN JBy(2)

Case 2: lim sup / Ixe (y)we|? dy = 0.
=0 ecRN JB(2)

Here we use the notation:
Bi(y)={z€R; |z —y| <1} forye RN,

We will show neither Case 1 nor Case 2 takes place and this will provide the desired
contradiction.

Step 1: Case 1 cannot take place under (f5) with a = co.
Arguing indirectly, we assume that Case 1 occurs. Then, taking a subsequence if
necessary, we can find a sequence (y.) C RY,d > 0 and 2y € A such that

/ Ixewe|? dy — d > 0, (3.11)
Bi(ye)
ey = xg € A. (3.12)

In fact, since Case 1 occurs, the existence of (y.) with (3.11) is clear. Also, it must
be Bi(y.) Nsupp xe # 0, that is, ey € N.(4) = {z € RY; dist (z,4) < e}
Thus we may assume €y. — ¢ € A. Extracting a subsequence again, there holds

we(y +yo) — wo(y) weakly in HY(RYN). (3.13)
Then we have
(Xews)(y +ye) = x(ey + ey )we(y +ye) — x(zo)wo(y) weakly in H'(RN).

By (3.10) and (3.11), we can see x(xo) # 0 and wo(y) > 0 (£ 0). In particular,
we can find a set X C R such that

meas K > 0, (3.14)
we(y +ye) = wo(y) >0 fory € K. (3.15)

On the other hand, multiplying (3.9) by w. and integrating over R", it follows that

1= / ng(ve)wﬁ +(1— ><€)i(U€)w52 dy + o(1)
RN

Ve Ve

and thus

hmsup/ ng(vs)w€2dy <1. (3.16)
RN v,

e—0 €
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We can rewrite (3.16) in the following way.

Jfoe(y +ye))

2
we(y +ye)"dy < 1.
vely +yo) VW)

lim sup / x(ey + eye)
RN

e—0

By (3.14) and (3.15), we have v.(y + y-) = oo ase — 0 for y € K. Therefore by

Fatou’s lemma and since lim¢_, % = a = oo we have

/RN x(ey + 6%)%%@ +ye)* dy

f(ve(y +ye))

we(y + y.)? dy — oo.
Ug(y + yE) E(y yE) y

> / x(ey + eye)
K

This is a contradiction to (3.16). O

Step 2: Case 1 cannot take place under (f5) with a < co.
As in Step 1, we extract a subsequence and we assume that (3.11), (3.12), (3.13)
hold with x(zg) # 0 and wg(y) > 0 (£ 0). We shall prove that wq(y) satisfies

—Awg 4+ V(z0)wo = (x(z0)a + (1 — x(z0))v)wo in RN, (3.17)

Since the operator —A has no eigenvalues in H!(R!), this gives us the desired
contradiction. To prove (3.17), it suffices to show that

Vw:(y +ye)Vo(y) + Viey + eye )wep dy

RN
— VwoVe + V(zg)wop dy, (3.18)
RN
/ gley + eye, ve(y + ye)) wo dy
RN Us(y + ye)
 (x(ao)a+ (1= x(eo)) | unpdy G.19)
R

for any ¢ € C§° (RY). (3.18) is a direct consequence of (3.13). To prove (3.19)
we take R > 1 such that supp ¢ C Br(0). Then w. — wy strongly in L?(Br(0))
and thus after extracting a sequence there exists h(y) € L?(Br(0)) such that
|we (y)| < h(y) a.e.in Br(0) (see [Br], Theorem IV 9). Next since a < 0o, we can
find a C' > 0 such that |g(z, £)/£| < C forall £ > 0. Thus

g(ey + eye, v (y + y2))

. — we| < Cllgllso|we(y)] < Cllglloch(y) € L' (Br(0)).

(3.20)

‘We have also

g(ey + eye,v-(y + <))
UE(y + ye)

we — (x(zo)a+ (1 — x(x0))v)wo(y) a.e.in Br(0).
(3.21)
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In fact, if wo(y) = 0, (3.21) clearly holds. If wy(y) # 0, we have v.(y + y.) — 0
and (3.21) holds again. Combining (3.20) and (3.21), we get (3.19) by Lebesgue’s
theorem. a

Finally we show Case 2 cannot take place.

Step 3: Case 2 cannot take place.

Again we argue indirectly and assume Case 2 takes place. First we claim that
lIxewe||s+1 — 0. 1In fact (x.w,) is a bounded sequence in H*(R™) by (3.8). Thus
the following lemma implies || x-we|[s+1 — 0.

Lemma 3.3 ([L]). Suppose (u;) C H(RY) satisfies for some constant C > 0
|ujll prmvy < C forallj and  sup / luj|* dy — 0.
2€RN JBy(z)
Then ||u;||, — 0 forr € (2, 22) when N > 3 and r € (2,00) when N = 1,2.

’ N—-2

Following [J], for L > 1 we compute

J. (Lv ) 50 [ xeF@ugdy- [ (xR dy

lvellar. RN
By Lemma 2.3 (ii), we have [ v (1 — x<)E(Lwe) dy < [g~ %\ws\z dy < 112
Thus

L 1
J. (v) > -2 —/ X F(Lw,.) dy. (3.22)
[[vell m. 4 RN

On the other hand, by (2.1) and our previous claim we have

/ | XeF(Lwe)dy < SL? w3 + Cs L* T xewe st llwe |3
R

512
< anenzs +o(1). (3.23)
0

Remarking that & > 0 is arbitrary in (3.23), we obtain, combining (3.22) and (3.23),
L 1
lim inf J, (ve) > -2
e—0 ||U5 || H. 4

Since ||ve ||, — oo, W € (0,1) for sufficiently small ¢ > 0 and it follows

that
Jo(tve) > J. L > 1
max v — ~ L=
tefo1] T T el ) T 4

We recall that J.(v.) < mg is independent of € and we choose L > 0 so large that
ma < L% Thus there exists t. € (0,1) such that J. (t-v.) = max;e(o1) J (tv:)
and since L is arbitrary,

Je(teve) = 00 ase — 0. (3.24)



302 L. Jeanjean, K. Tanaka

Now since J.(t.ve)(t-v:) = 0 we can write

1
Je(teve) = Je(teve) — §Jé(t€v5 )(teve) / Gl(ey, teve) dy

< DM RNG(sy,vady—Dk (Je(ve) — J(vave)

< D"y 4 0o(1). (3.25)

Here we use Corollary 2.4 (iv) and (3.5). Since (3.24) and (3.25) are incompatible,
Case 2 cannot occur. a

Step 4: Conclusion

ase — 0. O

Proof of Proposition 3.1. The proof of (i) in Proposition 3.1 can be done essentially
in a similar way. However, since we fix e > 0 in Proposition 3.1, we need to modify
the following points in Steps 1, 2.

In Step 1 for a given sequence (v;) we find (y;) C R such that
fBl(yj) Ixew;|?dy — d > 0. Such (y;) satisfies ey; € N.(A) and we may as-
sume €y; — xo € No(A), where x satisfies x(ey + o) # 01in B1(0).

In Step 2, instead of (3.17) we get

—Awg + V(ey + xo)wo = (x(ey + zo)a + (1 — x(ey + x0))v)wo  in RY
(3.26)

with wy € H*(R™) and wy > 0 (# 0). We remark that the maximum principle
implies wo(y) > 0 for all y € RY. Setting 1 (z) = wo((z — x0)/€), (3.26) gives

—2 A + V(z)w = (x(z)a+ (1 — x(z))v)d. (3.27)

We claim that this is impossible for sufficiently small ¢ > 0. To show this we
use an argument given to us by Stuart [Stu] and already used in [JT1]. We take
¢ > 0 small such that x(z) = 1 and V(z) < a in B(0). Let Ay > 0 be the first
eigenvalue of —A in B;(0) under Dirichlet boundary condition and let ¢4 (y) > 0
be a corresponding positive eigenfunction. Then multiplying (3.27) by 1 (y), we
obtain

/ —e? Ay + (V () — a)ipy dy = 0.
B (0)

Since

/ — Ay dy = / —Ap10 dy —|—/ 8501 ds < / A1 dy,
Be(0) Be(0) dBy(0) ON By (0)

where n is the outer unit normal on 9B,(0). We finally get

/ (V(2) — a+ e\ )iy dy > 0.
B,(0)
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But this is impossible since V(x) — a + 21 < 0 in By(0) for small ¢ > 0 and
Wy > 0in By(0).

To prove (ii) of Proposition 3.1 we fix ¢ € (0,¢1] and (v;) satisfying (3.2)-
(3.3). By (i) (v;) is bounded in H.. After extracting a subsequence if necessary, we
may assume that v; — vg weakly in H. To show that this convergence is actually
strong we follow del Pino and Felmer [DF1] who observe that it suffices to show
that for any given § > 0 there exists R > 0 such that

lim sup / [Vo;|* + V(ey)v; dy < 6. (3.28)
j—oo Jly|>R

Let nr € C°(RY,R) be a cut-off function such that n(y) = 0 for |y| < R/2,
nr(y) = 1for ly| > R, nr(y) € [0,1] forall y € RN, |[Vnr(y)| < C/R for all
y € RY for a suitable constant C' > 0.

Since J.(v;)(nrv;) = o(1), we have for sufficiently large R > 0

/ (v, + V(&y)U?)UR +v;Vu;Vnpdy = / Sfvj)vinrdy + o(1)
RN RN
< V/ v1*nr dy + o(1).
RN

Therefore %fly\ZR [Vu,|? 4+ V(ey)vidy < Elvjll2IVvjll2 4 o(1) and (3.28)
clearly follows. a

From Propositions 3.1 and 3.2, we directly obtain
Corollary 3.4. There exists e1 € (0, | such that for any € € (0, e1] there exists
a critical point v. € H, of J.(v) satisfying J.(v.) = be, where b, € [my, ma] is
defined in (2.17)—(2.18). Moreover there exists a constant M > 0 independent of
e € (0,e1] such that ||ve||g. < M forall e € (0,1].

In the next section we will study the behavior of v. as ¢ — 0.

4. Concentration-compactness type argument for J.(v)

In this section we study the behavior as ¢ — 0 of the critical points (v.) obtained
in Corollary 3.4. More generally we study the behavior of functions (v, ) satisfying

ve € He, .1)
Je(ve) = c € R, (4.2)
(L4 Jvellz )| T (ve) |z — 0, 4.3)
[vellr, < m, (4.4)

where the constants ¢, m are independent of €. We give a concentration-
compactness type result depending on a parameter. For a standard setting of
concentration-compactness principle, we refer to Lions [L] and Struwe [Str].
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To state our result, we need some definitions. For z, € RY, let by, H 1 (RN )
— R be given by

1
Dy, (v) = 3 / Vo2 + V(20)v* dy — G(z0,v) dy.
RN RN
For zo € RN and u, v € H*(R") we write

(U, V), = VuVo + V(ey)uv dy,

RN
(U, Vg, = VuVo + V(zo)uwdy, |v|2, = / |Vol? + V (z0)v? dy.

RN RN

We choose a function ¥(y) € C§°(RY,R) such that ¢(y) = 1 fory € A,
P(y) € 10,1] for all y € RY. We also define v (y) = 1(cy). Finally we set
1
H(z,) = =5 V()& + x(@)F(&) + (1 = x(2)) E(9),
2 ={x € RY; sup H(z,£&) > 0}.
£>0

Remark 4.1. (i) 2 C Aand0 € {z € A'; V(x) =infcs V(z)} C 2.
(i) If (f3) or (f5) with @ = oo holds, 2 = A.
Now we can state the main result of this section.

Proposition 4.2. Assume that f(§) satisfies (f0)~(f2) and that (v. )¢ (0,¢,] Satisfies
(4.1)—(4.4). Then there exists a subsequence ¢; — 0, £ € N U {0}, sequences
(y§7) CRM, 2k e 2, wh e HYRN)\ {0} (k=1,2,--- ,£) such that

lyE, —yE| = coas j — oo fork £ K. 4.5)
sjyfj —aF e Nasj— oo (4.6)
wh £ 0and &', (W) = 0. 4.7
4
Ve, — e, (Z Wk (y — yi)) — 0asj— oo. (4.8)
k=1 . Hsj
¢
T, (ve)) = Y i (WF). (4.9)

k=1

Remark 4.3. (i) When £ = 0 in the statement of Proposition 4.2, it means that
llve, HHEJ. — 0and Jg, (ve;) — 0.

(ii) A closely related result to Proposition 4.2 is obtained in Proposition 2.2 of Gui
[Gu]. We remark that in [Gu] it is assumed, besides other conditions,

0< fe(€) < ar+aP™!

for some a;, a; > 0 and p € (1, ¥+2), so Proposition 4.2 may be regarded as a

© N—2
generalization.
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Before proving Proposition 4.2, we remark that the functional &, (v) corre-
sponds to the limit problem:

—Av+ V(zo)v = g(x,v) inRYN. (4.10)

A typical feature of the limit problem is its xz-independence, that is, (4.10) is an
autonomous equation. The following lemma is important in the proof of Proposi-
tion 4.2.

Lemma 4.4. Assume that (&) satisfies (f0)—(f2). Then

(i) Dy, (v) has non-zero critical points if and only if xy € §2.
(ii) There exists a constant §, > 0 independent of xo € RY such that |v | 2o > 01
for any non-zero critical point v(y) of Py, (v).

Although the proof of Lemma 4.4 is not complicated, we postpone it to Sect. 5.

Remark 4.5. Since we don’t assume any growth condition on V' (z), in general
w ¢ H, for a critical point w(y) of @,,(v) and € > 0. This motivates the in-
troduction of a cut-off function ). (y) in (4.8) of Proposition 4.2. We remark that
sup ¥ (ey)V (ey) < oo and 1. has the following properties:

(i) Forany w € H'(RY), .w € H. and there is a constant C' > 0 independent
of ¢ such that

[Yew| g, < Cllw|gigryy forallw e H'(RY). (4.11)

(ii) For any w € H'(R") and for any sequence (z.) C R" satisfying ez. — x¢
for some xg € A we have

e () w(y — 22)||7.

= [ V00t = )P + Voot - =) dy
= [ IV Gey+ ez u)P + Viey +exc)wley+ ez ulw)? dy

— IVwl® + V(zo)w?dy = |w]2, as &—0.
RN

Proof of Proposition 4.2. The proof of Proposition 4.2 consists of several steps. For
simplicity of notation, we write € instead of ;. We take subsequences repeatedly
and we also write just €.

Step 1: Extracting a subsequence if necessary, we can assume that v. — vg weakly
in H'(RY) with vo(y) a critical point of ®(v).

First we remark that ||vc|| 71 (g~vy < m follows from (4.4) and (2.15). Thus (v.)
is bounded in H'(R”) and we may assume that v. — vy € H!(RY) weakly in
H'(RY).Inastandard way we can see that vy (y) is a critical point of ¢ (v). Indeed
forany p(y) € C5°(RY), wehave J.(v.)p — 0,i.e., [gn VU Vo+V(ey)vep—
g(ey,ve)pdy — 0. Thus [ x VooV + V(0)voe — g(0,v0)¢ dy = 0. That is,
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@) (vo)ip = 0 for all ¢ € C3°(R™). Since C5°(RY) is dense in H'(RV), we
have @((vg) = 0. ©
If vo(y) # 0, we set y! = 0 and w! = vy.

Step 2: Suppose there exist n € N U {0}, (y*) ¢ RV, 2% € 2, w* € HY(RV)
(k = 1,2,--- ,n) such that (4.5), (4.6), (4.7) of Proposition 4.2 hold for £ =
1,2,--- ,nand

ve(y + y¥) = WF(y) weakly in HY(RN) fork =1,2,--- ,n. (4.12)

Assume moreover that

n 2
sup / v —wEZwk(y—yf) dy — 0. (4.13)
yERN JBi(y) k=1
Then
n
e Y WFy—yk)| —o. (4.14)
k=1

€

We set (- (y) = ve(y) — ¥e(y) 22:1 wk(y - yf) Using (4.11), we have

el < el +||¢ezw y =y <m+C YNl )
k=1 k=1

Thus (. is bounded in H!(RY) by (2.15). It follows from (4.13) and Lemma 3.3
that ||(.||s+1 — 0 as € — 0. Now we compute

n

”CE”%{E:@)&*wszwk(y*yf)agﬁ UeaCs Z y ys Cs>HE

k=1 k=1
(4.15)
We claim that forallk =1, ---,n
(e (y = yb), Chm. = (W (= 9E), ¥ele)or +o(1). (4.16)
In fact,
(Wew®(y = yE), G — (W™ (Y = yE), eCe)on
= [t BTG - VTt - )G dy
+ [ Vlew e = VEh)itey + o) ()l + 55 dy
=(I)+ (II).
Since |Vie|loo — 0 as e — 0, we get (I) — 0 from the boundedness of

[¢ell 772 (mav)- We remark that (V(ey + ey?) — V(2%))p(ey + eyk) is bounded
in L>°(R"). By (4.12) and (4.5), we have

C(y+yF) =0 weakly in H'(RY) and strongly in L? (RN).  (4.17)
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Thus (II) — 0 and we get (4.16).
Combining (4.15) and (4.16), we have

n

ICNF, = (ver Ch . = YWy = yE)s $ele)ar +0(1)

k=1

)G+ /R gy, ve)Ce dy

- Z ( "y —y)) (elo) + /RN g(a*, W (y — y))pele dy) +o(1)

_ _ - k ki ok
—/RN g(ey,v:)(e dy kz—l‘/RN g(@", w"(y — y2))PeCe dy + o(1)

n

= (II1) =Y (IV) + o(1).

k=1

By Corollary 2.4 (iii), [(I11)] < llvell2licclla + Csllve|3 1[G los1. Since

l¢llsx1 — 0 and ||vel|2, ||¢-||2 are bounded, we can see that (I11) — 0. For
(IV), we have

(V)= [ atah o )sten+ )ity + 45 do
Recalling (4.17), we get (IV)) — 0. Thus we have proved that ||(.||z. — 0. That

is (4.14). O

Next we consider the case where the conclusion (4.14) does not hold. In this
case we can find a sequence z. satisfying (4.18) below.

Step 3: Suppose there existn € NU{0}, (y*) c RV, 2% € 2,w* € HY(RY)\{0}
(k=1,2,---,n) such that (4.5), (4.6), (4.7), (4.12) hold. Assume moreover that
there exists z. € R such that

[
Bl(ZE)

for some ¢ > 0. Then there exists 2%+ € 2 and w**1(y) € H'(RM) \ {0} such
that

n 2
—wSZwk(y—yf) dy —c>0 (4.18)

|z —yF| = 00 forallk =1,2,--- ,n, (4.19)
eze = 2"t e 0, (4.20)
ve(y + z.) = W (y) £0  weakly in H'(RY), (4.21)

L (WFT) = 0. (4.22)

It is standard to check that z. satisfies (4.19) and that there exists w**! €
HY(RM) \ {0} satisfying (4.21). Let us prove (4.20). First we show that
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limsup,_,q |eze|] < oo. We argue indirectly and assume |ez.| — oo. For any
¢ € CE°(RYN) with ¢ > 0, we have J.(v.)(¢(y — z¢)ve) — 0. That is,

- Ve (y + 2e)V(e)ve(y + 22)) + V(ey + e2:)ve(y + 2)*¢(y) dy

- /RN g(ey + eze, vy + 22))ve(y + 22)0(y) dy — 0. (4.23)

We observe that g(ey + ez, v-(y + 22)) = f(ve(y + z:)) on supp ¢ for small &

under the assumption |ez.| — co. Also since

Ve (y + 2) (V) (y) ve (y + 2¢) dy — / Vwkt (Vi) wh ! dy,
RN -

lminf [ |Voe(y + z) 2o dy > / Vw120 dy,
e—0 RN RN

we deduce from (4.23) that

/ Vh P Yok (V)b 1 (b 1) 20— (" )b+ o dy < 0.
RN -
4.24)

We choose ¢(y) € CS°(RY) satistying ¢(y) > 0, $(0) = 1 and set p(y) =
&(y/R) in (4.24). Taking a limit as R — oo, in (4.24) we get

/ |vwk+1|2 + ‘/O(wk—o—l)? _ f(wk+1)wk+l dy <0.
RN

By Lemma 2.3 (i)—(ii), this implies that w**! = 0, which contradicts with (4.21).
Thus limsup, _, |e2.| < oo and we may assume that ez, — %+ € RV, At this
point we can get (4.22) in a standard way and since w**! is a non-trivial critical
point of @11 (v), we deduce that z¥+1 € 2 by Lemma 4.4 (i). O

Step 4: Conclusion

We follow a recursive procedure. If the weak limit v (y) of v. (y) provided by Step
1 is not 0, we set y = 0, z* = 0, w!(y) = vo(y). Then if |jv. — Y.w||m. — 0
(or ||ve||g. — 0 in case vy = 0), we are done. Otherwise, by Step 2, we can see
that (4.13) does not take place, and that there exists a sequence (z.) satisfying the
assumption (4.18) of Step 3. Applying Step 3, we can find 2% and w?(y) (or 2! and
w!(y) in case vy = 0) satisfying (4.18)—(4.22). We set yg = z. (or ys1 = 2. in case
vo = 0). If |22 — Ye(w (y) + w?(y — y2))||m. — O, we are done. Otherwise, we
use Steps 2, 3 and we continue this procedure. Now we need to prove that it stops
after a finite number of steps.

First we prove that under the assumptions (4.5)—(4.7) and (4.12)

2

lim
e—0

Ve — Pe Zwk(y - yf)
k=1

_ % 2 k2
= lim |lve| 7, ,;Iw T C )

He
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In fact,
|ve — ¢EZw v =y = llvellfr, — 2 (v, ¢ew(y — vE) m.
k=1
+) (Wb (y — ), v (y — ) m (4.26)
k.’
and we have

(oot (y — ) . = / Vor(y + 5V ($(ey + evb ) ()
RN

+V (ey + eyF)v(ey + eyF)v-(y + yF)w* () dy

— / . [VWF|? + V(2")(WF)2 dy = | ]2, 4.27)
R
In a similar way, we have
, , 0 ifk #£K,
(e (y —y&), e (y — v Nm. — , (4.28)
|w¥ |2, ifk=F.

Thus (4.25) follows from (4.26)—(4.28).

Now from (4.25) it follows that >, |w" |2, < hmgﬁo [|ve||3;. and using
Lemma 4.4 (ii), (4. 4) we deduce §1n < lim._q [|ve]| # < m?2. Thus the procedure
to find (y*), =¥, w¥ ends after a finite number of steps. Therefore we can find
{ e NU {O} ( kY, oF, w* (k = 1,2,--- ,£) such that (4.5)~(4.8) hold. (4.9)
follows in a standard way from (4.5)— (4 8) This ends the proof of Proposition 4.2.

O

5. The functionals &, (v)

In this section we study the limit functionals @, (v) for zg € RY. Since @, (v) is
autonomous, we can deal with @, (v) in a space of radially symmetric functions
and we have the following existence result. It is due to Berestycki and Lions [BL]
for N > 3 and Berestycki, Gallouét and Kavian [BGK] for N = 2.

Proposition 5.1 ([BL], [BGK]). Assume that h(§) satisfies

(h0) h(&) € C(R,R) is continuous and odd.
(h1) —oo < liminfe_,o @ < limsupéﬁo @ < O0for N > 3, lim¢_,q @ S
(—o0, O)forN =2
h
(h2) When N > 3, (6)

= 0, when N = 2, for any o > Q there exists
|€]—o0

Co > 0 such that |h(§)| < Caea‘5‘2f0r all €.

Then the problem
~Au=h(u) inRY, wu(z)e H'(RY) (5.1

has a non-zero solution if and only if the following condition is satisfied.
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(h3) There exists & > 0 such that H(&y) > 0, where H(§) = f(f h(T)dr

Moreover under (h0)—(h3), (5.1) has a least energy solution u(z) which satisfies
u(x) > 0 and is radially symmetric in R".

Here by a least energy solution we mean a solution w(z) which satisfies I(w)
= m, where

= inf{I(u); u € H*(RN)\ {0} is a solution of (5.1)}, (5.2)
I(u) = /RN §|Vu|2 — H(u) dy.

It is also shown that m > 0.
In our recent work [JT2], we have revisited (5.1) and enlighten a mountain pass
characterization of least energy solutions.

Proposition 5.2 ([JT2]). Assume that (h0)~(h3) hold. Then I (u) has a mountain
pass geometry and there holds that b = m, where m is defined in (5.2) and b is the
mountain pass value for I (u);

b= inf T(~y(t
Inf max (v(1)),

I'={~(t) € C([0,1], H'(RY)); 7(0) = 0,1(7(1)) < 0}.

Moreover for any least energy solution w(x) of (5.1) there exists a pathy(t) € I’
such that

I(y(t)) <m=1I(w) forallte [0,1], (5.3)
w € ~([0,1]). (5.4)

Remark 5.3. Both Propositions 5.1 and 5.2 are stated for odd nonlinearities h(£).
Since we just consider positive solutions, extending the nonlinearity f(£) to an odd
function on R, we can apply Propositions 5.1 and 5.2 to our setting (See [JT1] for
more details).

Now we give a proof of Lemma 4.4.

Proof of Lemma 4.4. We apply Proposition 5.1 with H({) = H(xo,§) =
f%V(zg)@ + G(x0, ). We can see that (h3) holds if and only if xg € 2. Thus (i)
of Lemma 4.4 follows. Now assume that v(y) is a non-zero critical point of @, (v).
Then we have &/, (v)v = 0, ie.,

/ [Vol? + V(xo)0? dy — / 9(@o,v)vdy = 0.
RN RN

By Corollary 2.4 (i), we have [|v]|%1 (gny — [g~ f(v)vdy < 0 and, using (2.1), it
follows that for any arbitrary § > 0

[l @y < 0llvl3 + Csllvllifr < o IIUIIHl ry T CoCl vl 5 gy
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Thus 3 ||v||2 (my) < C(;C;HH@H?L;l(RN) and there exists 4; > 0 such that

||U||H1(RN) > 4y for any non-zero critical point v and zy € RY. Since
lvlzo = vl 1wy, we get (). 0

For x € R we set
least energy level of @, (v) if z € (2,
m(x) =
00 ifz e RV \ 0.

By Proposition 5.2, m(x) is equal to the mountain pass value for @, (v) if € (2.
We have the following

Proposition 5.4. m(xg) = inf,cgyv m(z) if and only if xg € A and V(xy) =
inf,ca V(). In particular, m(0) = inf cgn m(x).

Proof. Suppose that xo € A satisfies V(z¢) = inf e V(). By our choice of A’
and x, we have g € A" and x(zp) = 1. We also have xg € {2 by Remark 4.1.
Using V' (z) > V(xo) in A, G(x,€&) < F (&) forall (z, &), we have for any = € {2,

1 1
2.(0) = 5 IVolE+ V@Il = [ Gla.o)dy

1 1
> SIV0l + 3 Vealolg - [ Py
2 2 v
=&,,(v) forallv e H'(RN).

(We remark that this inequality is strict if V(z) > V(z¢) and v # 0.) Thus
m(zo) < m(z) forall z € RN,

Next suppose that 2’ € A satisfies V' (2") > V(o). We take a path v € I" such
that (5.3)—(5.4) are satisfied for I(v) = &, (v). Then

< D, P = .
m(zo) < Jmax 2o (V(1)) < max &, (v(t)) = m(z")

Therefore Proposition 5.4 holds. O
We end this section establishing the continuity of m(z).

Proposition 5.5. The function m(z) : RN — (—oo,00] is continuous in the
following sense:

m(xj) = m(zo) ifz; — xo € 12,

m(z;) — oo ifr; — xo € RV \ 2.
Proof. We make use of Propositions 5.1 and 5.2. First we deal with the case xo € {2
and suppose (z;) C 2 satisfies x; — xo € (2. The upper semi-continuity
limsup;_, ., m(z;) < m(zo) is a consequence of the mountain pass character-

ization of m(z). To show the lower semi-continuity liminf;_, ., m(x;) > m(xo),
it suffices to show that for least energy solutions u;(y) of @, (v) one has

() [Jujl| g (ry is bounded as j — oo.
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(i) After extracting a subsequence, u; has a non-zero weak limit 1 (y) and
liminf; o0 @, (u5) > Poy (uo).

Indeed it is then easily seen that the weak limit u¢(y) is a non-zero critical point of
@4, (v) and thus we have liminf;_, o m(z;) = liminf; o @4, (u;) > Py, (uo)
> m(xg). The proof of (i)—(ii) consists of several steps. First we remark that we
may assume u;(y) to be radially symmetric with respect to 0. We also recall that
u;(z) satisfies the Pohozaev identity:

N -2
STVl =N [ ) dn 6:5)

Step 1: There exist mg, m; > 0 independent of j such that mg < m(z;) < my
forall j € N.
The existence of the uniform upper bound m1 follows from the upper semi-

continuity. For my, we observe that @, (v) > || Vo3 + 1 Vo||11||2 fRN v) dy.
Thus choosing m to be the mountain pass value of v — || Vvl + V0Hv||2
fRN v) dy, we get the conclusion of Step 1.

Step 2: ||Vuj||§ € [Nmg, Nmq].
Using the Pohozaev identity (5.5), we have

1 1
miey) = IV I8 = [ Has ) dy = 1915

Thus the conclusion of Step 2 follows from Step 1.

Step 3: Boundedness of ||u;||2.
We argue indirectly and assume that ||u;||2 — co. We set t; = I ”N/2 — 0 and
uj

@;(y) = u;(y/t;). Then we have
lallz =1 and [[Va)3 =t} Va3 (5.6)

We claim that ii; — 0 weakly in H'(RY). In fact, suppose that @i; — o after
extracting a subsequence. Since u(y) is a critical point of @, (v), we have

—t3 Aty + V(x;)i; = g(x;,0;) in RY. (5.7
Thus, passing to the limit as j — oo, we obtain V(z¢)to(y) = g(zo, Uo(y)) in
RM. Since @ip € H'(R")and 0 € R is anisolated solution of V (z¢)¢ = g(o, £),

this shows that iy (y) = 0. Now we recall the following lemma.

Lemma 5.6 ([BL]). Suppose N > 2. Then there exists a constant Cry > 0 such
that for any radially symmetric function u(y) € H*(RY)

N—
[u(@)| < Cnlfullm @n)lel =72 forall || = 1.
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Applying Lemma 5.6 to @;(y), we get |4;(y)| < C’|y|_¥ for |y| > 1 and
we can fix R > 1 such that

TR 1
9@ GW) | Ly oo e Nand Jy| > R. (5.8)
;(y) 2

Multiplying (5.7) by 4; and integrating over RY, we get

(veep - 20 i) 0y

2o~ (12
eIval3 + [ o

ly|>R

< —/ V()3 (y) — g(x;, 05 (y)) it (y) dy. (5.9)
ly|<R

Since i; — 0 weakly in H'(R”), and thus strongly in L**1(]y| < R), we can
see [, 1> r (V(xj) - w) 5 (y) dy — 0. Using (5.8), we get

a5 (y)
%51 z2(jy)>Rr) — O, that is, ||@;||2 — 0. But this contradicts (5.6). Thus the proof

of Step 3 is completed.

Step 4: After extracting a subsequence, u; has a non-zero weak limit ug(y) # 0.
We remark that the boundedness of ||u;|| 71 (g~ follows from Steps 2-3. Here we
argue indirectly as in Step 3. We assume that u; — 0 weakly in H LRYN) and
strongly in L1 (R™). Using Lemma 5.6, we can find a R > 1 such that

9(x5,u5y)) < }VO forall j € N and |y| > R.
u;(y) 2

Arguing as in (5.9), it follows from &}, (u;)u; = 0 that

Va2 < /| V@)~ e ) dy 0 asj o
Y=

This is in contradiction with Step 2.

Step 5: liminf;_, o @y, (uj) > Py, (uo).

Since we are working in a space of radially symmetric functions, we can see from
(fD)—(f2) that [~ G(zj,u;) dy = [~ G(x0,u0) dy as j — oo, (See Theorem
A.Iof [BL]). Thus we have the desired result from the lower semi-continuity of the
L?-norm.

Finally we deal with the case x¢ & (2.

Step 6: Suppose x¢ ¢ {2 and x; — x¢. Then m(x;) — oco.

In fact, if m(z;) # oo, we can find a subsequence — still denoted by =; —
such that m(z;) stays bounded as j — oo. Then by the arguments of Steps 1-5,
we can find a non-zero critical point of @, (v). However it is a contradiction to
Lemma 4.4 (i).
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6. End of the proof of Theorem 1.1

In this section we conclude the proof of Theorem 1.1. First we study the behavior
of b. ase — 0.

Proposition 6.1. Let (b.).c(o,c,] be the mountain pass value of J.(v) defined in
(2.17)—~(2.18). Then b. — m(0) = inf ,cg~y m(x) ase — 0.

Proof. By Proposition 5.2 there exists a path v € C([0, 1], H(R")) such that

’7(0) = 07 ¢0(7(1)) < 07 QO(’Y(t)) < m<0) forallt € [Oa 1]a
Do(v(t)) = m(0).

max. 2((1)) = m(0)
Let o(y) € C(RYN) be such that ¢(0) = 1 and ¢ > 0. Setting vr(t)(y) =
o(y/R)v(t)(y), we have vr(t) € C([0,1], He), 7r(0) = 0 and o(yr(1)) < 0
for sufficiently large R > 1. Then, in particular, vz (t) € . Also for any fixed
R > 0, J.(vr(t)) — Po(yr(t)) as € — 0 uniformly in ¢ € [0, 1]. Thus for
sufficiently large R > 1

be < max J.(ygr(t)) » max Po(yr(t)) ase — 0.

te[0,1] te[0,1]

Since maxy¢(o,1] Po(Vr(t)) — m(0) as R — oo, we have lim sup, 5 b < m(0).

Next we show lim inf._,o b. > m(0). Let v, € H, be a critical point of J.(v)
associated to b.. Applying Proposition 4.2, we can find ¢, — 0, £ € N U {0},
(y?j), xF, Wk (k= 1,2, -, 0) satisfying (4.5)—(4.9). If we assume that £ = 0, then
(4.9) implies that b.; = J., (v.;) — 0 in contradiction with (2.19). Thus £ > 1 and
again from (4.9) it follows that

J—00

4 l
liminfbe, =Y @0 (wh) > > m(a*) > tm(0) > m(0).
k=1 k=1

This ends the proof of Proposition 6.1 a
As a consequence of Proposition 6.1 we have:

Proposition 6.2. For any ¢ € (0,e1] let (v.) denote a critical point of J.(v)
corresponding to b.. Then for any sequence €; — 0 there exist a subsequence —
still denoted by €; — and Ye s 21, wl such that

Ejle; — zl. (6.1)
x! € A satisfies V(x') = infpeq V(). (6.2)
w(y) is a least energy solution of ¥/, (v) = 0. (6.3)
e, = e, (4 = e,)|| . — 0. (6.4)
Je, (ve,;) = m(z") = m(0). (6.5)

Proof. Arguing as in the proof of Proposition reftheorem:6.1 it follows that £ = 1
in Proposition 4.2. Hence we have (6.1)—(6.5). O
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Now we are ready to give the proof of Theorem 1.1.

Proof of Theorem 1.1. We divide the proof of Theorem 1.1 into several steps. In
what follows, v.(y) € H. denotes a critical point corresponding to b.. We shall
prove that this is a desired solution when £ > 0 is small enough. For this it suffices
to show that for any sequence ¢; — 0O there exists a subsequence — still denoted
by €; — such that for large j, v, takes a unique local maximum at z., € A/e;
with V(e;Z.,) — infzc4 V() and decreases sufficiently fast away from Z. .

Let €; — 0 be an arbitrary fixed sequence. Applying Proposition 6.2 we can
assume that there exists (ygj ), z', w! such that (6.1)—(6.5) hold. Moreover, by the
maximum principle, v.(y) > 0 for all y € RY.

Step 1: If asequence (zc,) C R" satisfies liminf; o0 [55 (. [ve,]*dy > 0, then

limsup; . [2c; — y¢,| < co. In particular we have lim;_, . [g;z¢, — x| = 0.
Conversely if (z;) satisfies 2., — y.,;| — oo, we have fBl(z ) |ve, |2 dy — 0.
This clearly follows from (6.1), (6.4). ’ O

Step 2: Sup_ ¢z a7) e, |ve; (2)| =0 asj — oo.
It follows from Step 1 that sup_ ¢ 7\ 4y /e, [, (=) [V=;1* dy — 0 as j — oco. Italso
follows from the boundedness of (v, ) in H*(R") that

lve, l=+1(By(s)) — 0 uniformly in z € (A\ A')/e;. (6.6)

We remark that V (¢;y), x(£;y) stay bounded uniformly in (A\ A’)/e; as j — oo.
Thus since v, (y) is a solution of —Av + V(e;y)v = g(e;y,v) in By(z). By
standard regularity arguments we have v.,(y) € C(Bi(z)), and (6.6) implies
e, | Lo By (2)) — O as j — oo uniformly in z € (A\ A)/e;. O
Step 3: For the constant 7, > 0 given in Sect. 2.1, there holds v.,(y) < r, in
RY\ (A'/e)).

By Step 2, sup, ¢ 1\ 1) e, |ve, (y)| < % for small g;. Since

ve; = (v, (y) —70)4 ‘RN\(A//Ej)E H_ it follows from J. (v, )vz, = 0 that

/ (0, = 1) V() (v, =) s — (0, ) (0, =1 )4 dy = O,
RN\ (A"/e;)
By Lemma 2.3 (ii),
/ 9 (0, = 102+ (Vo =)o, (e, — 1) dy < 0.
RN\ (A" /¢g5)

Thus (ve, — )+ = 0in RV \ (A'/e;). That is, Step 3 holds. O
By Step 3 we see that v, (y) is a solution of the rescaled original problem:
~Av+V(ejy)v = f(v) inRN

for sufficiently small £; > 0. Since f(¢) € C'(R™,R), we have v, (y) €
C?(RY) from a standard regularity argument. From the boundedness of ||ve, || 7.
we can see also that ||v., [|c2 (e, is bounded on any compact set K C R as
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j — oo. We remark that V(¢;y) and x(¢;y) stay bounded uniformly in K /e; as
J — oo.

Step 4: Suppose that v, (y) takes a local maximum at z,. Then (z.,) satisfies
limsup; . |2c;, — ye,| < ooand gjz., — x'.

By the maximum principle, we see that v, (z.;) > 7,,.. Since v, () is bounded in
Cfcr we can also get liminf; o0 [5 (. | |ve,[*dy > 0. We conclude by Step 1.
J

O

Step 5: ve, has only one local maximum for £; small.

Assume that v, (y) takes a local maximum at y = z.,. By the maximum prin-
ciple, v, (2e,) > 7. Since v, is bounded in H'(RY) and C? _(RY), af-
ter extracting a subsequence, we may assume v, (y + 2.,) — w(y) weakly in
H'(RY) and strongly in C2_ with w(y) satisfying —Aw + V(2w = f(w)
in RY and having a local maximum at y = 0. Thus by the result of [GNN],
w(y) is radially symmetric with respect to O and strictly decreasing with re-
spect to 7 = |y|. Thus if v, (y) takes two local maxima at y = 2., and
y = z_, then we necessarily have |z.; — 2. | — oco. However Step 4 implies
limsup [z.; — 2{,| < limsup [2.; — e, |+ limsup |2, — y.,| < oco. This contra-
diction shows that v, () takes only one local maximum. O

Step 6: There exists £5 > 0 such that for small €; > 0
|Usj (y)| <r, forall |y - i’sj| > Ao,

where I is the unique local maximum of v, (y).
Indeed, if 2, satisfies v, (2c;) > 7., then we have liminf;_, fBl(Z ) |ve, 12 dy
€

> 0 and Steps 1,4 implies that limsup |z., — Z.,| < limsup|z; —ye,| +
limsup |y., — Z,| < oo. Thus there is no sequence (z.,) satisfying |z., — Z, |
— oo and v, (2¢;) > 7,,. Step 6 follows. O

Step 7: Conclusion.
Consider the unique solution 7)(y) € H!(|y| > £y) of the following problem:

1% .
—An+7077:0 in |yl >4y, nly)=r, on |y =4

It is easily seen that 77(y) has an exponential decay and since f(;#((yy))) < % when
ly| > Lo, we have, by the maximum principle that v, , (y+Z.,) < n(y) for [y| > £o.
Thus v, (y) also has an exponential decay.

Now setting u. () = v, (x/€;) we can easily see that u, (x) has the desired
properties. This concludes the proof of Theorem 1.1. a
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