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Abstract. We consider a class of equations of the form

−ε2∆u + V (x)u = f(u), u ∈ H1(RN ).

By variational methods, we show the existence of families of positive solutions concentrating
around local minima of the potential V (x), as ε → 0. We do not require uniqueness of the
ground state solutions of the associated autonomous problems nor the monotonicity of the
function ξ �→ f(ξ)

ξ
. We deal with asymptotically linear as well as superlinear nonlinearities.

Mathematics Subject Classification (2000): 35B25, 35J65, 58E05

1. Introduction

In this paper we study the existence of positive solutions of the equation

−ε2∆u+ V (x)u = f(u), u ∈ H1(RN ). (1.1)

We assume f ∈ C1(R,R) and that V (x) is locally Hölder continuous and
bounded below away from 0, that is, there exists V0 > 0 such that

V (x) ≥ V0 > 0 for all x ∈ RN . (1.2)

A basic motivation to study (1.1) stems from the nonlinear Schrödinger equation

i�
∂Φ

∂t
= − �

2

2m
∆Φ+W (x)Φ− g(|Φ|)Φ. (1.3)

We are interested in standing wave solutions, namely solutions of the form Φ(x, t)
= u(x)e− iEt

� and it is easily observed that a Φ(x, t) of this form satisfies (1.3)
if and only if u(x) is a solution of (1.1) with V (x) = W (x) − E, ε2 = �

2

2m and
f(u) = g(u)u.
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An interesting class of solutions of (1.1), sometimes called semi-classical
states, are families of solutions uε(x) which concentrate and develop a spike shape
around one, or more, special points in RN , while vanishing elsewhere as ε → 0.

The existence of single and multiple spike solutions was first studied by Floer
and Weinstein [FW]. In the one dimensional case and for f(u) = u3 they construct
a single spike solution concentrating around any given non-degenerate critical point
of the potential V (x). Oh [O1], [O2] extended this result in higher dimension and
for f(u) = |u|p−1u (1 < p < N+2

N−2 ). He also constructs multiple spike solutions.
The arguments in [FW], [O1], [O2] are based on a Lyapunov-Schmidt reduction
and rely on the uniqueness and non-degeneracy of the ground state solutions of the
autonomous problems:

−∆v + V (x0)v = f(v) in H1(RN ) (x0 ∈ RN ). (1.4)

We remark that if we introduce a rescaled (around x0 ∈ RN ) function v(y) =
u(εy + x0), (1.1) becomes −∆v + V (x0 + εy)v = f(v) and (1.4) appears as a
limit as ε → 0.

Subsequently reduction methods were also found suitable to find solutions of
(1.1) concentrating around possibly degenerate critical points of V (x), when the
ground state solutions of the limit problems (1.4) are unique and non-degenerate.
In [ABC] Ambrosetti, Badiale and Cingolani consider concentration phenomena at
isolated local minima and maxima with polynomial degeneracy and in [YYL] Li
deals with C1-stable critical points of V . See also Grossi [Gr] and Pistoia [P] for
related results. Finally we mention the work of Kang and Wei [KW], in which they
establish the existence of positive solutions with any prescribed number of spikes
clustering around a given local maximum point of V (x). We also refer to del Pino,
Felmer and Tanaka [DFT] and Nakashima and Tanaka [NT] for related results in
the one dimensional setting.

We remark that the uniqueness and non-degeneracy of the ground state solu-
tions of (1.4) are, in general, rather difficult to prove. They are known, by means
of ODE analysis, only for a rather restricted class of nonlinearities f(ξ) (including
f(ξ) = |ξ|p−1ξ (1 < p < N+2

N−2 )) so far. To attack the existence of positive solutions
of (1.1) without assumptions on uniqueness and non-degeneracy, the variational
approach, initiated by Rabinowitz [R], is proved to be successful. In [R] he proves,
by a mountain pass argument, the existence of positive solutions of (1.1), for ε > 0
small, whenever lim inf |x|→∞ V (x) > infx∈RN V (x). The assumptions on f(ξ)
are roughly (f0)–(f4) as given below but no uniqueness nor non-degeneracy condi-
tions on the ground state solutions of (1.4) are required. Later Wang [W] showed
that these solutions concentrate at global minimum points of V (x).

In 1996, del Pino and Felmer [DF1] by introducing a penalization approach, so
called local mountain pass, managed to handle the case of a, possibly degenerate,
local minimum of V (x). More precisely, they assume that an open bounded set
Λ ⊂ RN satisfies

inf
x∈Λ

V (x) < min
x∈∂Λ

V (x)

and they show the existence of a single spike solution concentrating around min-
imizer of V (x) in Λ. Very recently they extended their result to the existence of
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multiple spike solutions in a, possibly degenerate, saddle point setting [DF3]. In
[DF3] stronger conditions than in [DF1] are required but no assumptions on the
uniqueness or the non-degeneracy of solutions of (1.4) are made. As results in
between [DF1] and [DF3] we mention [DF2], [Gu].

In the present paper we focus on the existence of solutions of (1.1) concentrating
in a given set of local minima of V (x). We introduce new techniques which permit
to extend the result of del Pino and Felmer [DF1] to a wider class on nonlinearities
f(ξ) ∈ C1(R,R). In [DF1] the assumptions on f(ξ) are the following:

(f0) f(ξ) ∈ C1(R,R).
(f1) f(ξ) = o(ξ) as ξ ∼ 0.
(f2) For some s ∈ (1, N+2

N−2 ) if N ≥ 3 and for some s ∈ (1,∞) if N = 1, 2

f(ξ)
ξs

→ 0 as ξ → ∞.

(f3) There exists µ > 2 such that

0 < µF (ξ) ≤ f(ξ)ξ for all ξ > 0,

where F (ξ) =
∫ ξ

0 f(τ) dτ.
(f4) The function ξ �→ f(ξ)

ξ ; (0,∞) → R is nondecreasing.

Under (f0)–(f3), the functional Iε(u) corresponding to (1.1)

Iε(u) =
1
2

∫
RN

ε2|∇u|2 + V (x)u2 dx−
∫
RN

F (u) dx

has a mountain pass geometry.
In the proofs of [DF1] the assumptions (f3) and (f4) play important roles. (f3)

is called the global Ambrosetti-Rabinowitz’s condition. It ensures the boundedness
of Palais-Smale sequences for Iε. We also remark that (f3) implies that f(ξ) is
superlinear, namely that f(ξ)

ξ → ∞ as ξ → ∞. The condition (f4) guarantees the
following properties for Iε; for any u 
= 0, the real function defined on (0,∞) → R
by t �→ Iε(tu), takes a unique local (hence global) maximum. This enables to make
use of the Nehari manifold M = {u ∈ H1(RN ) \ {0}; I ′

ε(u)u = 0} and to show
that a mountain pass critical point for Iε(u) is a least energy solution of (1.1).

We will show that the result of [DF1] holds without the assumption (f4). We also
introduce a new condition (f5) which can replace (f3) to ensure the boundedness
of Cerami sequences and enables to consider asymptotically linear problems. Our
main result is the following:

Theorem 1.1. Suppose N ≥ 2 and assume that f(ξ) satisfies (f0)–(f2) and either
(f3) or

(f5) (i) There exists a ∈ (0,∞] such that

f(ξ)
ξ

→ a as ξ → ∞.



290 L. Jeanjean, K. Tanaka

(ii) There exists a constant D ≥ 1 such that

F̂ (s) ≤ DF̂ (t) for all 0 ≤ s ≤ t, (1.5)

where F̂ (ξ) = 1
2f(ξ)ξ − F (ξ).

Let Λ ⊂ RN be a bounded open set satisfying

inf
x∈Λ

V (x) < min
x∈∂Λ

V (x) (1.6)

and, in case a < ∞ in (f5),

inf
x∈Λ

V (x) < a. (1.7)

Then there exists an ε0 > 0 such that for any ε ∈ (0, ε0], (1.1) has a solution uε(x)
satisfying

1◦ uε(x) has unique local maximum (hence global maximum) in RN at xε ∈ Λ.
2◦ V (xε) → infx∈Λ V (x).
3◦ There exist constants C1, C2 > 0 such that

uε(x) ≤ C1 exp
(

−C2
|x− xε|

ε

)
for x ∈ RN .

In Sect. 2, we will see that (f4) implies (f5) with D = 1. Thus as a special case
of Theorem 1.1 we have

Theorem 1.2. Assume that f(ξ) satisfies (f0)–(f2) and either (f3) or (f4). Then the
conclusion of Theorem 1.1 holds.

Remark 1.3. In [DF1] del Pino and Felmer showed the existence of a solutionuε(x)
satisfying 1◦–3◦ in the statement of Theorem 1.1 under the conditions (f0)–(f2) and
both (f3) and (f4). Thus our theorem generalizes their result. In Sect. 2 we give some
examples of nonlinearities that our result now permit to consider.

Concerning the removal of (f4) one of the keys of our proof is to use our recent
work [JT2] on autonomous nonlinear scalar field equations in RN , where we show
that under the same conditions which guarantee the existence of a least energy
solution (see [BL], [BGK]) these solutions have a mountain pass characterization.
Without assuming (f4) such property do not hold for Iε(u), and in particular our
solutions uε(x) may not be least energy solutions. However, to prove Theorem 1.1
we just use the mountain pass characterization on the limit equations (1.4).

To get Theorem 1.1 without assuming (f3) we have to overcome the problems
of proving the boundedness of Palais-Smale sequences (or at least of Cerami se-
quences). For this we take advantage of some techniques introduced by Jeanjean [J]
and further extended in Jeanjean and Tanaka [JT1]. Our condition (f5) do not force
f(ξ) to be superlinear and we manage to handle cases where it is asymptotically
linear.

The proof of Theorem 1.1 consists of several steps. In Sect. 2, influenced by
the work of del Pino and Felmer [DF1], we introduce a modified functional for any
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ε > 0 and show it has a mountain pass geometry. Next, in Sect. 3, we study the
boundedness of Cerami sequences for the modified functionals. We give two types
of boundedness results; one when ε > 0 is fixed, the other one to obtain uniform
boundedness when ε goes to 0. In Sect. 4, we study the behavior of bounded
Cerami sequences. We develop a parameter-dependent concentration-compactness
type argument, which may be regarded as a generalization of Proposition 2.2 of
Gui [Gu], and we believe that it could be useful in other situations. In Sect. 5, we
study the limit equations (1.4). Finally in Sect. 6, we end the proof of Theorem 1.1,
showing that the critical points of the modified functionals satisfy, after a rescaling,
the original problem (1.1).

2. Setting the modified problems

In this section we give some preliminaries for the proof of Theorem 1.1. Since we
seek positive solutions, we can assume that f(ξ) = 0 for all ξ ≤ 0.

First we summarize some basic properties of f(ξ).

Lemma 2.1. Assume (f0)–(f2). Then

(i) For any δ > 0 there exists Cδ > 0 such that

|f(ξ)| ≤ δ|ξ| + Cδ|ξ|s for all ξ ∈ R. (2.1)

(ii) If (f3) is satisfied, f(ξ) ≥ 0 for all ξ ≥ 0.

(iii) If (f5) is satisfied, f(ξ) ≥ 0, F̂ (ξ) ≥ 0, d
dξ

(
F (ξ)
ξ2

)
≥ 0 for all ξ ≥ 0.

(iv) If f(ξ) satisfies (f4), then (f5) holds with D = 1.

Proof. (i), (ii) are trivial. To show (iii) we set s = 0 in (1.5). We get

F̂ (t) ≥ 0 for all t ≥ 0. (2.2)

Thus

d

dt

(
F (t)
t2

)
=

2F̂ (t)
t3

≥ 0. (2.3)

(2.3) implies under (f1) that

F (t)
t2

≥ lim
t→0

F (t)
t2

= 0 for all t > 0. (2.4)

Finally combining (2.2) and (2.4), we have 1
2f(t)t = F̂ (t) + F (t) ≥ 0 for all

t ≥ 0.
(iv) For 0 < s < t we have

F̂ (t) − F̂ (s) =
1
2
(f(t)t− f(s)s) − (F (t) − F (s))

=
∫ t

0

f(t)
t
τ dτ −

∫ s

0

f(s)
s
τ dτ −

∫ t

s

f(τ)
τ

τ dτ

=
∫ t

s

(
f(t)
t

− f(τ)
τ

)
τ dτ +

∫ s

0

(
f(t)
t

− f(s)
s

)
τ dτ ≥ 0.

Thus (f5) with D = 1 follows. ��
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Here are some examples of nonlinearities which satisfies our conditions.

Example 2.2. (i) f(ξ) = ξ log(1 + ξ) satisfies (f0)–(f2), (f5) with a = ∞, D = 1
but not (f3).
(ii) f(ξ) = ξ2

1+kξ (k > 0) satisfies (f0)–(f2), (f5) with a = 1
k , D = 1.

(iii) For an example satisfying (f0)–(f2), (f5) with D > 1, we claim that we can
re-construct f(ξ) from F̂ (ξ). Indeed under (f1), (f5) it holds:

F̂ (ξ) = O(ξ3) at ξ = 0. (2.5)

F̂ (ξ) ≥ 0 for all ξ > 0. (2.6)

(1.5) holds if and only if sup0<s<t
F̂ (s)
F̂ (t)

< ∞. (2.7)

(Here we regard F̂ (s) = 0 if F̂ (t) = 0).

Now for a given function F̂ (ξ) ∈ C([0,∞),R) satisfying (2.5)–(2.7), we set

F (ξ) = 2ξ2
∫ ξ

0
F̂ (τ)
τ3 dτ. We can easily check that 1

2F
′(ξ)ξ − F (ξ) equals to the

given F̂ (ξ). Thus for a given F̂ (ξ) ∈ C([0,∞),R) satisfying (2.5)–(2.7), we can
re-construct f(ξ). For example for a function satisfying (2.5), (2.6), f ′(ξ) ≥ 0 near
ξ = 0 and 0 < lim infξ→∞ F̂ (ξ) ≤ lim supξ→∞ F̂ (ξ) < ∞, we can find f(ξ)
which satisfies (f0)–(f2), (f5).

2.1. Modification of the nonlinearity f(ξ)

To find a solution uε(x) concentrating in a given set Λ, we modify the nonlinearity
f(ξ). Here we follow an approach inspired by del Pino and Felmer [DF1].

Let f(ξ) be a function satisfying (f0)–(f2) and V0 < a = limξ→∞
f(ξ)

ξ ∈
(0,∞]. We choose a small number ν ∈ (0, V0

2 ) and we set

f(ξ) =

{
min{f(ξ), νξ} for ξ ≥ 0,

0 for ξ < 0.

By (f1) we can see that there exists a small rν > 0 such that

f(ξ) = f(ξ) for |ξ| ≤ rν .

Moreover there holds

f(ξ) = νξ for large ξ ≥ 0,
f(ξ) = 0 for ξ ≤ 0.

For technical reasons, we choose ν in the following way:

1◦ Under (f3), we choose ν > 0 so that

ν

2V0
<

1
2

− 1
µ
. (2.8)
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2◦ Under (f5), we choose ν ∈ (0, V0
2 ) so that ν is a regular value of ξ �→ f(ξ)

ξ :

(0,∞) → R. Since limξ→0
f(ξ)

ξ = 0 and limξ→∞
f(ξ)

ξ = a > V0 > ν, if

ν is a regular value of f(ξ)
ξ , we can see that

kν ≡ #{ξ ∈ (0,∞); f(ξ) = νξ} < ∞. (2.9)

Next, let Λ ⊂ RN be a bounded open set satisfying (1.6). We may assume that the
boundary ∂Λ is smooth. We choose an open subsetΛ′ ⊂ Λwith a smooth boundary
∂Λ′ and a function χ(x) ∈ C∞(RN ,R) such that

inf
x∈Λ\Λ′

V (x) > inf
x∈Λ

V (x),

min
x∈∂Λ′

V (x) > inf
x∈Λ′

V (x) = inf
x∈Λ

V (x),

χ(x) = 1 for x ∈ Λ′,
χ(x) ∈ (0, 1) for x ∈ Λ \ Λ′,
χ(x) = 0 for x ∈ RN \ Λ.

In what follows we assume, without loss of generality, that

0 ∈ Λ′ and V (0) = inf
x∈Λ

V (x).

Finally we define

g(x, ξ) = χ(x)f(ξ) + (1 − χ(x))f(ξ) for (x, ξ) ∈ RN × R (2.10)

and we write F (ξ) =
∫ ξ

0 f(τ) dτ , G(x, ξ) =
∫ ξ

0 g(x, τ) dτ = χ(x)F (ξ) + (1 −
χ(x))F (ξ).

From now on we try to find a solution of the following problem:

−ε2∆u+ V (x)u = g(x, u) in RN . (2.11)

We will find a solution uε(x) of (2.11) via a mountain pass argument and besides
other properties we will show that the mountain pass solution uε(x) satisfies for
small ε > 0

|uε(x)| ≤ rν for x ∈ RN \ Λ′,

that is, uε(x) also solves the original problem (1.1).
We give some fundamental properties of f(ξ).

Lemma 2.3. (i) f(ξ) = 0, F (ξ) = 0 for all ξ ≤ 0.
(ii) f(ξ) ≤ νξ, F (ξ) ≤ F (ξ) for ξ ≥ 0.
(iii) f(ξ) ≤ f(ξ) for ξ ≥ 0.
(iv) If f(ξ) satisfies either (f3) or (f5), then it holds that f(ξ) ≥ 0 for all ξ ∈ R.

(v) If f(ξ) satisfies (f5), then f(ξ) also satisfies (f5). In particular, F̂ (ξ) ≥ 0 for
all ξ ≥ 0.
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Proof. (i)–(iv) are trivial from the definition of f(ξ). For (v), we recall that ν is
taken so that (2.9) holds. First we consider the case

f(ξ) = f(ξ) in [s, t]. (2.12)

Then

F̂ (t) =
1
2
f(t)t−

∫ t

0
f(τ) dτ =

1
2
f(t)t− F (t) + F (s) − F (s)

= F̂ (t) + F (s) − F (s).

Since f(ξ) satisfies (f5) and F (s) − F (s) ≥ 0, we have

≥ 1
D
F̂ (s) +

1
D

(F (s) − F (s)) =
1
D

(
1
2
f(s)s− F (s)

)
=

1
D
F̂ (s).

Next if

f(ξ) = νξ in [s, t], (2.13)

we have

F̂ (t) =
1
2
νt2 −

∫ t

s

ντ dτ −
∫ s

0
f(τ) dτ

=
1
2
νs2 −

∫ s

0
f(τ) dτ = F̂ (s) ≥ 1

D
F̂ (s).

Thus in the general case, we can find a sequence s = α0 < α1 < α2 < · · · <
αn−1 < αn = t such that f(αj) = ναj (j = 1, 2, · · · , n− 1) and in each interval
[αj , αj+1], (2.12) or (2.13) holds. We use the above fact repeatedly and obtain
F̂ (s) ≤ DF̂ (α1) ≤ D2F̂ (α2) ≤ · · · ≤ Dn−1F̂ (αn−1) ≤ DnF̂ (t). By (2.9), n is
bounded by kν and we get F̂ (s) ≤ Dkν F̂ (t) for all 0 ≤ s ≤ t. Replacing D with
Dkν , this is the desired result. ��
Corollary 2.4. (i) g(x, ξ) ≤ f(ξ), G(x, ξ) ≤ F (ξ) for all (x, ξ) ∈ RN × R.
(ii) g(x, ξ) = f(ξ) if |ξ| < rν .
(iii) For any δ > 0 there exists Cδ > 0 such that

|g(x, ξ)| ≤ δ|ξ| + Cδ|ξ|s for all (x, ξ) ∈ RN × R.

(iv) If f(ξ) satisfies (f5)–(ii), then g(x, ξ) also satisfies

Ĝ(x, s) ≤ Dkν Ĝ(x, t) for 0 ≤ s ≤ t,

where Ĝ(x, ξ) = 1
2g(x, ξ)ξ − G(x, ξ), D ≥ 1 is given in (f5)–(ii) and kν is

given in (2.9).

Proof. By the definition of g(x, ξ) in (2.10), (i)–(iv) follow easily from Lemma 2.3.
��



Singularly perturbed elliptic problems 295

2.2. The modified functional

Introducing the re-scaled function v(y) = u(εy) we can rewrite (2.11) as

−∆v + V (εy)v = g(εy, v) in RN . (2.14)

We shall mainly deal with (2.14) instead of (2.11).
The functional corresponding to (2.14) is

Jε(v) =
1
2

∫
RN

|∇v|2 + V (εy)v2 dy −
∫
RN

G(εy, v) dy.

We consider Jε(v) on the following function space:

Hε =
{
v ∈ H1(RN );

∫
RN

V (εy)v2 dy < ∞
}

equipped with norm

‖v‖2
Hε

=
∫
RN

|∇v|2 + V (εy)v2 dy.

We shall make use the following notation:

‖u‖∞ = ess sup
x∈RN

|u(x)|, ‖u‖r
r =

∫
RN

|u|r dy for r ∈ [1,∞),

‖u‖2
H1(RN ) =

∫
RN

|∇v|2 + V0v
2 dy.

Here V0 > 0 is the constant appearing in (1.2) and thus ‖·‖H1(RN ) is equivalent to
the standard H1(RN )-norm. Since

‖v‖H1(RN ) ≤ ‖v‖Hε , (2.15)

we have Hε ⊂ H1(RN ) and Hε can be embedded into Lr(RN ) (2 ≤ r ≤ 2N
N−2

for N ≥ 3, 2 ≤ r < ∞ for N = 2) continuously, i.e., there exists C ′
r > 0 such

that

‖v‖r ≤ C ′
r‖v‖H1(RN ) for all v. (2.16)

Proposition 2.5. Jε(v) ∈ C1(Hε,R) and it has a Mountain Pass Geometry that
is uniform with respect to ε in the following sense:

1◦ Jε(0) = 0.
2◦ There are constants ρ0 > 0 and δ0 > 0 independent of ε ∈ (0, 1] such that

Jε(v) ≥ δ0 for all ‖v‖H1(RN ) = ρ0,

Jε(v) > 0 for all 0 < ‖v‖H1(RN ) ≤ ρ0.

3◦ There is a v0(x) ∈ C∞
0 (RN ) and ε0 > 0 such that Jε(v0) < 0 for all ε ∈

(0, ε0].
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Proof. Since Jε(v) = 1
2‖v‖2

Hε
− ∫

RN G(εy, v) dy, it is clear that Jε(v) ∈
C1(Hε,R). 1◦ is also trivial. To show 2◦, using (2.1), (2.15), (2.16), we compute

Jε(v) =
1
2
‖v‖2

Hε
−
∫
RN

χ(εy)F (v) + (1 − χ(εy))F (v) dy

≥ 1
2
‖v‖2

Hε
−
∫
RN

F (v) dy

≥ 1
2
‖v‖2

H1(RN ) − V0

4
‖v‖2

2 − CV0/2‖v‖s+1
s+1

≥ 1
4
‖v‖2

H1(RN ) − CV0/2C
′
s+1‖v‖s+1

H1(RN ).

Thus we can find constants ρ0, δ0 > 0 such that the statement 2◦ holds.
To show 3◦, we choose v0 ∈ C∞

0 (RN ) such that

1
2

∫
RN

|∇v0|2 + V (0)v2
0 dy −

∫
RN

F (v0) dy < 0.

Recall that V (0) < limz→∞
f(z)

z . Then the existence of such v0 ∈ C∞
0 (RN ) fol-

lows from Proposition 5.2, where it is proved that v → 1
2

∫
RN |∇v0|2 +V (0)v2

0 dy
− ∫RN F (v0) dy has a mountain pass geometry. Since we are assuming 0 ∈ Λ′, we
observe that

Jε(v0) → 1
2

∫
RN

|∇v0|2 + V (0)v2
0 dy −

∫
RN

F (v0) dy < 0 as ε → 0.

Thus we get 3◦ for sufficiently small ε > 0. ��

By Proposition 2.5, we can define the mountain pass value. For ε ∈ (0, ε0] we
set

bε = inf
γ∈Γε

max
t∈[0,1]

Jε(γ(t)), (2.17)

Γε = {γ ∈ C([0, 1], Hε); γ(0) = 0, Jε(γ(1)) < 0}. (2.18)

In what follows, we will show that for ε small, bε is a critical value of Jε(v) and
the corresponding critical point has — after re-scaling — exactly one peak in Λ.

By the above Proposition 2.5, we have the following a priori bound for the
mountain pass value bε.

Corollary 2.6. There are constants m1, m2 > 0 such that for ε ∈ (0, ε0]

m1 ≤ bε ≤ m2. (2.19)

Proof. Since γ([0, 1]) ∩ {v ∈ Hε; ‖v‖H1(RN ) = ρ0} 
= ∅ for any γ ∈ Γε, by
Proposition 2.5, we have

max
t∈[0,1]

Jε(γ(t)) ≥ inf
‖v‖H1(RN )=ρ0

Jε(v) ≥ δ0.
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On the other hand, taking a path γ(t) = tv0, where v0 ∈ C∞
0 (RN ) is given in

Proposition 2.5, we have

bε ≤ sup
ε∈(0,ε0]

max
t∈[0,1]

Jε(γ0(t)) ≡ m2.

Thus we get (2.19) with m1 = δ0 and m2 given in the above formula. ��

In the following sections, we will discuss the boundedness of Cerami
sequences corresponding to bε. We will also discuss “uniform boundedness” with
respect to ε ∈ (0, ε0].

3. Boundedness of Cerami sequences

From Proposition 2.5 and Ekeland’s principle, for any ε ∈ (0, ε0] there exists a
Cerami sequence (vj)∞

j=1 ⊂ Hε at level bε:

Jε(vj) → bε,

(1 + ‖vj‖Hε
)‖J ′

ε(vj)‖H∗
ε

→ 0 as j → ∞.

We will show under the assumptions (f3) or (f5) that (vj)∞
j=1 is bounded in Hε

and has a convergent subsequence. Thus Jε(v) has a critical point vε satisfying
J ′

ε(vε) = 0 and Jε(vε) = bε. Also we show that (vε) is bounded in the sense that

lim sup
ε→0

‖vε‖Hε
< ∞. (3.1)

This type of boundedness is important in our argument. More precisely we show:

Proposition 3.1. Assume that f(ξ) satisfies (f0)–(f2) and either (f3) or (f5). Then
there exists ε1 ∈ (0, ε0] such that for any ε ∈ (0, ε1] and for any sequence (vj) ⊂
Hε satisfying

Jε(vj) → c > 0, (3.2)

(1 + ‖vj‖Hε)‖J ′
ε(vj)‖H∗

ε
→ 0 as j → ∞ (3.3)

for some c > 0, we have

(i) ‖vj‖Hε
is bounded as j → ∞.

(ii) There exist a subsequence jk and v0 ∈ Hε such that vjk
→ v0 strongly in Hε.

Proposition 3.2. Assume that f(ξ) satisfies (f0)–(f2) and either (f3) or (f5). Sup-
pose that a sequence (vε)ε∈(0,ε1] satisfies

vε ∈ Hε,

Jε(vε) ∈ [m1,m2] for all ε ∈ (0, ε1], (3.4)

(1 + ‖vε‖Hε)‖J ′
ε(vε)‖H∗

ε
→ 0 as ε → 0 (3.5)

for m2 > m1 > 0. Then (3.1) holds.
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Since the proofs of Propositions 3.1 (i) and 3.2 have many similar points, we
mainly deal with Proposition 3.2. First we prove it under (f0)–(f2) and (f3). In what
follows we write χε(y) = χ(εy).

Proof of Proposition 3.2 under condition (f3). This is quite standard. Let (vε)
satisfy (3.4) and (3.5). From (3.4) we have

1
2
‖vε‖2

Hε
−
∫
RN

(1 − χ(εy))F (vε) + χ(εy)F (vε) dy ≤ m2. (3.6)

From (3.5) it follows that |J ′
ε(vε)vε| ≤ ‖J ′

ε(vε)‖H∗
ε
‖vε‖Hε ≤ 1 for small ε, i.e.,∣∣∣∣‖vε‖2

Hε
−
∫
RN

(1 − χ(εy))f(vε)vε + χ(εy)f(vε)vε dy

∣∣∣∣ ≤ 1. (3.7)

Thus computing (3.6) − 1
µ (3.7) and using (f3), we get(

1
2

− 1
µ

)
‖vε‖2

Hε
≤
∫
RN

(1 − χ(εy))
(
F (vε) − 1

µ
f(vε)vε

)
dy +m2 +

1
µ
.

Recalling that ξf(ξ) ≥ 0 for all ξ, it leads to(
1
2

− 1
µ

)
‖vε‖2

Hε
≤
∫
RN

(1 − χ(εy))F (vε) dy +m2 +
1
µ
.

By Lemma 2.3 (ii), we have F (ξ) ≤ 1
2ν|ξ|2 for all ξ ∈ R. Thus∫

RN

(1 − χ(εy))F (vε) dy ≤ 1
2
ν‖vε‖2

2 ≤ ν

2V0
‖vε‖2

Hε
.

Therefore (
1
2

− 1
µ

)
‖vε‖2

Hε
≤ ν

2V0
‖vε‖2

Hε
+m2 +

1
µ
.

By our choice (2.8) of ν, we can see that ‖vε‖Hε is bounded as ε → 0. ��
For the proof of Proposition 3.2 under (f5), we use ideas from [J] and [JT1].

Proof of Proposition 3.2 under condition (f5). Following the argument in [J] and
[JT1], we argue indirectly and assume that lim supε→0 ‖vε‖Hε

= ∞. We take a
subsequence εj → 0 such that ‖vεj ‖Hεj

→ ∞. For simplicity of notation, we write
just ε instead of εj .

We set wε = vε

‖vε‖Hε
. Clearly ‖wε‖H1(RN ) ≤ ‖wε‖Hε = 1 and since χε is

uniformly bounded in C1 there exists C1 > 0 independent of ε > 0 such that

‖χεwε‖H1(RN ) ≤ C1. (3.8)

Also, since ‖J ′
ε(vε)‖Hε

∗ → 0 we have

−∆wε + V (εy)wε = χε
f(vε)
vε

wε + (1 − χε)
f(vε)
vε

wε +
o(1)

‖vε‖Hε

. (3.9)
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Multiplying (3.9) by wε
−(y) = max{−wε(y), 0} and integrating over RN , it

follows that

‖wε
−‖2

Hε
→ 0 as ε → 0. (3.10)

Now we observe that one of the following 2 cases must take place:

Case 1: lim sup
ε→0

sup
z∈RN

∫
B1(z)

|χε(y)wε|2 dy > 0.

Case 2: lim
ε→0

sup
z∈RN

∫
B1(z)

|χε(y)wε|2 dy = 0.

Here we use the notation:

B1(y) = {z ∈ RN ; |z − y| < 1} for y ∈ RN .

We will show neither Case 1 nor Case 2 takes place and this will provide the desired
contradiction.

Step 1: Case 1 cannot take place under (f5) with a = ∞.
Arguing indirectly, we assume that Case 1 occurs. Then, taking a subsequence if
necessary, we can find a sequence (yε) ⊂ RN , d > 0 and x0 ∈ Λ such that∫

B1(yε)
|χεwε|2 dy → d > 0, (3.11)

εyε → x0 ∈ Λ. (3.12)

In fact, since Case 1 occurs, the existence of (yε) with (3.11) is clear. Also, it must
be B1(yε) ∩ suppχε 
= ∅, that is, εyε ∈ Nε(Λ) ≡ {z ∈ RN ; dist (z, Λ) < ε}.
Thus we may assume εyε → x0 ∈ Λ. Extracting a subsequence again, there holds

wε(y + yε) ⇀ w0(y) weakly in H1(RN ). (3.13)

Then we have

(χεwε)(y+ yε) = χ(εy+ εyε)wε(y+ yε) ⇀ χ(x0)w0(y) weakly in H1(RN ).

By (3.10) and (3.11), we can see χ(x0) 
= 0 and w0(y) ≥ 0 (
≡ 0). In particular,
we can find a set K ⊂ RN such that

meas K > 0, (3.14)

wε(y + yε) → w0(y) > 0 for y ∈ K. (3.15)

On the other hand, multiplying (3.9) bywε and integrating over RN , it follows that

1 =
∫
RN

χε
f(vε)
vε

wε
2 + (1 − χε)

f(vε)
vε

wε
2 dy + o(1)

and thus

lim sup
ε→0

∫
RN

χε
f(vε)
vε

wε
2 dy ≤ 1. (3.16)
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We can rewrite (3.16) in the following way.

lim sup
ε→0

∫
RN

χ(εy + εyε)
f(vε(y + yε))
vε(y + yε)

wε(y + yε)2 dy ≤ 1.

By (3.14) and (3.15), we have vε(y+ yε) → ∞ as ε → 0 for y ∈ K. Therefore by
Fatou’s lemma and since limξ→∞

f(ξ)
ξ = a = ∞ we have∫

RN

χ(εy + εyε)
f(vε(y + yε))
vε(y + yε)

wε(y + yε)2 dy

≥
∫

K

χ(εy + εyε)
f(vε(y + yε))
vε(y + yε)

wε(y + yε)2 dy → ∞.

This is a contradiction to (3.16). ��
Step 2: Case 1 cannot take place under (f5) with a < ∞.
As in Step 1, we extract a subsequence and we assume that (3.11), (3.12), (3.13)
hold with χ(x0) 
= 0 and w0(y) ≥ 0 (
≡ 0). We shall prove that w0(y) satisfies

−∆w0 + V (x0)w0 = (χ(x0)a+ (1 − χ(x0))ν)w0 in RN . (3.17)

Since the operator −∆ has no eigenvalues in H1(RN ), this gives us the desired
contradiction. To prove (3.17), it suffices to show that∫

RN

∇wε(y + yε)∇ϕ(y) + V (εy + εyε)wεϕdy

→
∫
RN

∇w0∇ϕ+ V (x0)w0ϕdy, (3.18)∫
RN

g(εy + εyε, vε(y + yε))
vε(y + yε)

wεϕdy

→ (χ(x0)a+ (1 − χ(x0))ν)
∫
RN

w0ϕdy (3.19)

for any ϕ ∈ C∞
0 (RN ). (3.18) is a direct consequence of (3.13). To prove (3.19)

we takeR > 1 such that suppϕ ⊂ BR(0). Then wε → w0 strongly in L2(BR(0))
and thus after extracting a sequence there exists h(y) ∈ L2(BR(0)) such that
|wε(y)| ≤ h(y) a.e. inBR(0) (see [Br], Theorem IV 9). Next since a < ∞, we can
find a C > 0 such that |g(x, ξ)/ξ| ≤ C for all ξ > 0. Thus∣∣∣∣g(εy + εyε, vε(y + yε))

vε(y + yε)
wεϕ

∣∣∣∣ ≤ C‖ϕ‖∞|wε(y)| ≤ C‖ϕ‖∞h(y) ∈ L1(BR(0)).

(3.20)

We have also

g(εy + εyε, vε(y + yε))
vε(y + yε)

wε → (χ(x0)a+ (1 − χ(x0))ν)w0(y) a.e. in BR(0).

(3.21)
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In fact, if w0(y) = 0, (3.21) clearly holds. If w0(y) 
= 0, we have vε(y+ yε) → ∞
and (3.21) holds again. Combining (3.20) and (3.21), we get (3.19) by Lebesgue’s
theorem. ��

Finally we show Case 2 cannot take place.

Step 3: Case 2 cannot take place.
Again we argue indirectly and assume Case 2 takes place. First we claim that
‖χεwε‖s+1 → 0. In fact (χεwε) is a bounded sequence inH1(RN ) by (3.8). Thus
the following lemma implies ‖χεwε‖s+1 → 0.

Lemma 3.3 ([L]). Suppose (uj) ⊂ H1(RN ) satisfies for some constant C > 0

‖uj‖H1(RN ) ≤ C for all j and sup
z∈RN

∫
B1(z)

|uj |2 dy → 0.

Then ‖uj‖r → 0 for r ∈ (2, 2N
N−2 ) when N ≥ 3 and r ∈ (2,∞) when N = 1, 2.

Following [J], for L > 1 we compute

Jε

(
L

‖vε‖Hε

vε

)
=

1
2
L2 −

∫
RN

χεF (Lwε) dy −
∫
RN

(1 − χε)F (Lwε) dy.

By Lemma 2.3 (ii), we have
∫
RN (1−χε)F (Lwε) dy ≤ ∫RN

νL2

2 |wε|2 dy ≤ 1
4L

2.
Thus

Jε

(
L

‖vε‖Hε

vε

)
≥ 1

4
L2 −

∫
RN

χεF (Lwε) dy. (3.22)

On the other hand, by (2.1) and our previous claim we have∫
RN

χεF (Lwε) dy ≤ δL2‖wε‖2
2 + CδL

s+1‖χεwε‖s+1‖wε‖s
s+1

≤ δL2

V 2
0

‖wε‖2
Hε

+ o(1). (3.23)

Remarking that δ > 0 is arbitrary in (3.23), we obtain, combining (3.22) and (3.23),

lim inf
ε→0

Jε

(
L

‖vε‖Hε

vε

)
≥ 1

4
L2.

Since ‖vε‖Hε → ∞, L
‖vε‖Hε

∈ (0, 1) for sufficiently small ε > 0 and it follows
that

max
t∈[0,1]

Jε(tvε) ≥ Jε

(
L

‖vε‖Hε

vε

)
≥ 1

4
L2.

We recall that Jε(vε) ≤ m2 is independent of ε and we choose L > 0 so large that
m2 <

1
4L

2. Thus there exists tε ∈ (0, 1) such that Jε(tεvε) = maxt∈[0,1] Jε(tvε)
and since L is arbitrary,

Jε(tεvε) → ∞ as ε → 0. (3.24)
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Now since J ′
ε(tεvε)(tεvε) = 0 we can write

Jε(tεvε) = Jε(tεvε) − 1
2
J ′

ε(tεvε)(tεvε) =
∫
RN

Ĝ(εy, tεvε) dy

≤ Dkν

∫
RN

Ĝ(εy, vε) dy = Dkν (Jε(vε) − 1
2
J ′

ε(vε)vε)

≤ Dkνm2 + o(1). (3.25)

Here we use Corollary 2.4 (iv) and (3.5). Since (3.24) and (3.25) are incompatible,
Case 2 cannot occur. ��
Step 4: Conclusion
By Steps 1–3, both Cases 1 and 2 cannot take place. Thus ‖vε‖Hε

must stay bounded
as ε → 0. ��
Proof of Proposition 3.1. The proof of (i) in Proposition 3.1 can be done essentially
in a similar way. However, since we fix ε > 0 in Proposition 3.1, we need to modify
the following points in Steps 1, 2.

In Step 1 for a given sequence (vj) we find (yj) ⊂ RN such that∫
B1(yj)

|χεwj |2dy → d > 0. Such (yj) satisfies εyj ∈ Nε(Λ) and we may as-

sume εyj → x0 ∈ Nε(Λ), where x0 satisfies χ(εy + x0) 
≡ 0 in B1(0).
In Step 2, instead of (3.17) we get

−∆w0 + V (εy + x0)w0 = (χ(εy + x0)a+ (1 − χ(εy + x0))ν)w0 in RN

(3.26)

with w0 ∈ H1(RN ) and w0 ≥ 0 (
≡ 0). We remark that the maximum principle
implies w0(y) > 0 for all y ∈ RN . Setting w̃(x) = w0((x− x0)/ε), (3.26) gives

−ε2∆w̃ + V (x)w̃ = (χ(x)a+ (1 − χ(x))ν)w̃. (3.27)

We claim that this is impossible for sufficiently small ε > 0. To show this we
use an argument given to us by Stuart [Stu] and already used in [JT1]. We take
� > 0 small such that χ(x) = 1 and V (x) < a in B�(0). Let λ1 > 0 be the first
eigenvalue of −∆ in B�(0) under Dirichlet boundary condition and let ϕ1(y) > 0
be a corresponding positive eigenfunction. Then multiplying (3.27) by ϕ1(y), we
obtain ∫

B�(0)
−ε2∆w̃ϕ1 + (V (x) − a)w̃ϕ1 dy = 0.

Since∫
B�(0)

−∆w̃ϕ1 dy =
∫

B�(0)
−∆ϕ1w̃ dy +

∫
∂B�(0)

w̃
∂ϕ1

∂n
dS ≤

∫
B�(0)

λ1w̃ϕ1 dy,

where n is the outer unit normal on ∂B�(0). We finally get∫
B�(0)

(V (x) − a+ ε2λ1)w̃ϕ1 dy ≥ 0.
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But this is impossible since V (x) − a + ε2λ1 < 0 in B�(0) for small ε > 0 and
w̃ϕ1 > 0 in B�(0).

To prove (ii) of Proposition 3.1 we fix ε ∈ (0, ε1] and (vj) satisfying (3.2)–
(3.3). By (i) (vj) is bounded inHε. After extracting a subsequence if necessary, we
may assume that vj ⇀ v0 weakly in Hε. To show that this convergence is actually
strong we follow del Pino and Felmer [DF1] who observe that it suffices to show
that for any given δ > 0 there exists R > 0 such that

lim sup
j→∞

∫
|y|≥R

|∇vj |2 + V (εy)v2
j dy < δ. (3.28)

Let ηR ∈ C∞(RN ,R) be a cut-off function such that ηR(y) = 0 for |y| ≤ R/2,
ηR(y) = 1 for |y| ≥ R, ηR(y) ∈ [0, 1] for all y ∈ RN , |∇ηR(y)| ≤ C/R for all
y ∈ RN for a suitable constant C > 0.

Since J ′
ε(vj)(ηRvj) = o(1), we have for sufficiently large R > 0∫

RN

(|∇vj |2 + V (εy)v2
j )ηR + vj∇vj∇ηR dy =

∫
RN

f(vj)vjηR dy + o(1)

≤ ν

∫
RN

|vj |2ηR dy + o(1).

Therefore 1
2

∫
|y|≥R

|∇vj |2 + V (εy)v2
j dy ≤ C

R‖vj‖2‖∇vj‖2 + o(1) and (3.28)
clearly follows. ��

From Propositions 3.1 and 3.2, we directly obtain

Corollary 3.4. There exists ε1 ∈ (0, ε0] such that for any ε ∈ (0, ε1] there exists
a critical point vε ∈ Hε of Jε(v) satisfying Jε(vε) = bε, where bε ∈ [m1,m2] is
defined in (2.17)–(2.18). Moreover there exists a constant M > 0 independent of
ε ∈ (0, ε1] such that ‖vε‖Hε

≤ M for all ε ∈ (0, ε1].

In the next section we will study the behavior of vε as ε → 0.

4. Concentration-compactness type argument for Jε(v)

In this section we study the behavior as ε → 0 of the critical points (vε) obtained
in Corollary 3.4. More generally we study the behavior of functions (vε) satisfying

vε ∈ Hε, (4.1)

Jε(vε) → c ∈ R, (4.2)

(1 + ‖vε‖Hε)‖J ′
ε(vε)‖H∗

ε
→ 0, (4.3)

‖vε‖Hε ≤ m, (4.4)

where the constants c, m are independent of ε. We give a concentration-
compactness type result depending on a parameter. For a standard setting of
concentration-compactness principle, we refer to Lions [L] and Struwe [Str].
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To state our result, we need some definitions. For x0 ∈ RN , let Φx0 : H1(RN )
→ R be given by

Φx0(v) =
1
2

∫
RN

|∇v|2 + V (x0)v2 dy −
∫
RN

G(x0, v) dy.

For x0 ∈ RN and u, v ∈ H1(RN ) we write

〈u, v〉Hε
=
∫
RN

∇u∇v + V (εy)uv dy,

〈u, v〉x0 =
∫
RN

∇u∇v + V (x0)uv dy, v 2
x0

=
∫
RN

|∇v|2 + V (x0)v2 dy.

We choose a function ψ(y) ∈ C∞
0 (RN ,R) such that ψ(y) = 1 for y ∈ Λ,

ψ(y) ∈ [0, 1] for all y ∈ RN . We also define ψε(y) = ψ(εy). Finally we set

H(x, ξ) = −1
2
V (x)ξ2 + χ(x)F (ξ) + (1 − χ(x))F (ξ),

Ω = {x ∈ RN ; sup
ξ>0

H(x, ξ) > 0}.

Remark 4.1. (i) Ω ⊂ Λ and 0 ∈ {x ∈ Λ′; V (x) = infx∈Λ V (x)} ⊂ Ω.
(ii) If (f3) or (f5) with a = ∞ holds, Ω = Λ.

Now we can state the main result of this section.

Proposition 4.2. Assume that f(ξ) satisfies (f0)–(f2) and that (vε)ε∈(0,ε1] satisfies
(4.1)–(4.4). Then there exists a subsequence εj → 0, � ∈ N ∪ {0}, sequences
(yk

εj
) ⊂ RN , xk ∈ Ω, ωk ∈ H1(RN ) \ {0} (k = 1, 2, · · · , �) such that

|yk
εj

− yk′
εj

| → ∞ as j → ∞ for k 
= k′. (4.5)

εjy
k
εj

→ xk ∈ Ω as j → ∞. (4.6)

ωk 
≡ 0 and Φ′
xk(ωk) = 0. (4.7)∥∥∥∥∥vεj

− ψεj

(
�∑

k=1

ωk(y − yk
εj

)

)∥∥∥∥∥
Hεj

→ 0 as j → ∞. (4.8)

Jεj
(vεj

) →
�∑

k=1

Φxk(ωk). (4.9)

Remark 4.3. (i) When � = 0 in the statement of Proposition 4.2, it means that
‖vεj ‖Hεj

→ 0 and Jεj (vεj ) → 0.
(ii) A closely related result to Proposition 4.2 is obtained in Proposition 2.2 of Gui
[Gu]. We remark that in [Gu] it is assumed, besides other conditions,

0 ≤ fξ(ξ) ≤ a1 + a2ξ
p−1

for some a1, a2 > 0 and p ∈ (1, N+2
N−2 ), so Proposition 4.2 may be regarded as a

generalization.



Singularly perturbed elliptic problems 305

Before proving Proposition 4.2, we remark that the functional Φx0(v) corre-
sponds to the limit problem:

−∆v + V (x0)v = g(x0, v) in RN . (4.10)

A typical feature of the limit problem is its x-independence, that is, (4.10) is an
autonomous equation. The following lemma is important in the proof of Proposi-
tion 4.2.

Lemma 4.4. Assume that f(ξ) satisfies (f0)–(f2). Then

(i) Φx0(v) has non-zero critical points if and only if x0 ∈ Ω.
(ii) There exists a constant δ1 > 0 independent of x0 ∈ RN such that v x0 ≥ δ1

for any non-zero critical point v(y) of Φx0(v).

Although the proof of Lemma 4.4 is not complicated, we postpone it to Sect. 5.

Remark 4.5. Since we don’t assume any growth condition on V (x), in general
ω 
∈ Hε for a critical point ω(y) of Φx0(v) and ε > 0. This motivates the in-
troduction of a cut-off function ψε(y) in (4.8) of Proposition 4.2. We remark that
supψ(εy)V (εy) < ∞ and ψε has the following properties:

(i) For any w ∈ H1(RN ), ψεw ∈ Hε and there is a constant C > 0 independent
of ε such that

‖ψεw‖Hε
≤ C‖w‖H1(RN ) for all w ∈ H1(RN ). (4.11)

(ii) For any w ∈ H1(RN ) and for any sequence (zε) ⊂ RN satisfying εzε → x0
for some x0 ∈ Λ we have

‖ψε(y)w(y − zε)‖2
Hε

=
∫
RN

|∇(ψε(y)w(y − zε))|2 + V (εy)ψε(y)2w(y − zε)2 dy

=
∫
RN

|∇(ψ(εy + εzε)w(y))|2 + V (εy + εzε)ψ(εy + εzε)2w(y)2 dy

→
∫
RN

|∇w|2 + V (x0)w2 dy = w 2
x0

as ε → 0.

Proof of Proposition 4.2. The proof of Proposition 4.2 consists of several steps. For
simplicity of notation, we write ε instead of εj . We take subsequences repeatedly
and we also write just ε.

Step 1: Extracting a subsequence if necessary, we can assume that vε ⇀ v0 weakly
in H1(RN ) with v0(y) a critical point of Φ0(v).
First we remark that ‖vε‖H1(RN ) ≤ m follows from (4.4) and (2.15). Thus (vε)
is bounded in H1(RN ) and we may assume that vε ⇀ v0 ∈ H1(RN ) weakly in
H1(RN ). In a standard way we can see that v0(y) is a critical point ofΦ0(v). Indeed
for anyϕ(y) ∈ C∞

0 (RN ), we have J ′
ε(vε)ϕ → 0, i.e.,

∫
RN ∇vε∇ϕ+V (εy)vεϕ−

g(εy, vε)ϕdy → 0. Thus
∫
RN ∇v0∇ϕ + V (0)v0ϕ − g(0, v0)ϕdy = 0. That is,
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Φ′
0(v0)ϕ = 0 for all ϕ ∈ C∞

0 (RN ). Since C∞
0 (RN ) is dense in H1(RN ), we

have Φ′
0(v0) = 0. ��

If v0(y) 
≡ 0, we set y1
ε = 0 and ω1 = v0.

Step 2: Suppose there exist n ∈ N ∪ {0}, (yk
ε ) ⊂ RN , xk ∈ Ω, ωk ∈ H1(RN )

(k = 1, 2, · · · , n) such that (4.5), (4.6), (4.7) of Proposition 4.2 hold for k =
1, 2, · · · , n and

vε(y + yk
ε ) ⇀ ωk(y) weakly in H1(RN ) for k = 1, 2, · · · , n. (4.12)

Assume moreover that

sup
y∈RN

∫
B1(y)

∣∣∣∣∣vε − ψε

n∑
k=1

ωk(y − yk
ε )

∣∣∣∣∣
2

dy → 0. (4.13)

Then ∥∥∥∥∥vε − ψε

n∑
k=1

ωk(y − yk
ε )

∥∥∥∥∥
Hε

→ 0. (4.14)

We set ζε(y) = vε(y) − ψε(y)
∑n

k=1 ω
k(y − yk

ε ). Using (4.11), we have

‖ζε‖Hε
≤ ‖vε‖Hε

+ ‖ψε

n∑
k=1

ωk(y − yk
ε )‖Hε

≤ m+ C

n∑
k=1

‖ωk‖H1(RN ).

Thus ζε is bounded in H1(RN ) by (2.15). It follows from (4.13) and Lemma 3.3
that ‖ζε‖s+1 → 0 as ε → 0. Now we compute

‖ζε‖2
Hε

=〈vε − ψε

n∑
k=1

ωk(y−yk
ε ), ζε〉Hε

=〈vε, ζε〉Hε
−

n∑
k=1

〈ψεω
k(y−yk

ε ), ζε〉Hε
.

(4.15)

We claim that for all k = 1, · · · , n

〈ψεω
k(y − yk

ε ), ζε〉Hε = 〈ωk(y − yk
ε ), ψεζε〉xk + o(1). (4.16)

In fact,

〈ψεω
k(y − yk

ε ), ζε〉Hε
− 〈ωk(y − yk

ε ), ψεζε〉xk

=
∫
RN

ωk(y − yk
ε )∇ψε∇ζε − ∇ψε∇ωk(y − yk

ε )ζε dy

+
∫
RN

(V (εy + εyk
ε ) − V (xk))ψ(εy + εyk

ε )ωk(y)ζε(y + yk
ε ) dy

= (I) + (II).

Since ‖∇ψε‖∞ → 0 as ε → 0, we get (I) → 0 from the boundedness of
‖ζε‖H1(RN ). We remark that (V (εy + εyk

ε ) − V (xk))ψ(εy + εyk
ε ) is bounded

in L∞(RN ). By (4.12) and (4.5), we have

ζε(y + yk
ε ) ⇀ 0 weakly in H1(RN ) and strongly in L2

loc(R
N ). (4.17)
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Thus (II) → 0 and we get (4.16).
Combining (4.15) and (4.16), we have

‖ζε‖2
Hε

= 〈vε, ζε〉Hε −
n∑

k=1

〈ωk(y − yk
ε ), ψεζε〉xk + o(1)

= J ′
ε(vε)ζε +

∫
RN

g(εy, vε)ζε dy

−
n∑

k=1

(
Φ′

xk(ωk(y − yk
ε ))(ψεζε) +

∫
RN

g(xk, ωk(y − yk
ε ))ψεζε dy

)
+ o(1)

=
∫
RN

g(εy, vε)ζε dy −
n∑

k=1

∫
RN

g(xk, ωk(y − yk
ε ))ψεζε dy + o(1)

= (III) −
n∑

k=1

(IV ) + o(1).

By Corollary 2.4 (iii), |(III)| ≤ δ‖vε‖2‖ζε‖2 + Cδ‖vε‖s
s+1‖ζε‖s+1. Since

‖ζε‖s+1 → 0 and ‖vε‖2, ‖ζε‖2 are bounded, we can see that (III) → 0. For
(IV ), we have

(IV ) =
∫
RN

g(xk, ωk(y))ψ(εy + εyk
ε )ζε(y + yk

ε ) dy.

Recalling (4.17), we get (IV ) → 0. Thus we have proved that ‖ζε‖Hε
→ 0. That

is (4.14). ��
Next we consider the case where the conclusion (4.14) does not hold. In this

case we can find a sequence zε satisfying (4.18) below.

Step 3: Suppose there existn ∈ N∪{0}, (yk
ε ) ⊂ RN ,xk ∈ Ω,ωk ∈ H1(RN )\{0}

(k = 1, 2, · · · , n) such that (4.5), (4.6), (4.7), (4.12) hold. Assume moreover that
there exists zε ∈ RN such that∫

B1(zε)

∣∣∣∣∣vε − ψε

n∑
k=1

ωk(y − yk
ε )

∣∣∣∣∣
2

dy → c > 0 (4.18)

for some c > 0. Then there exists xk+1 ∈ Ω and ωk+1(y) ∈ H1(RN ) \ {0} such
that

|zε − yk
ε | → ∞ for all k = 1, 2, · · · , n, (4.19)

εzε → xk+1 ∈ Ω, (4.20)

vε(y + zε) ⇀ ωk+1(y) 
≡ 0 weakly in H1(RN ), (4.21)

Φ′
xk+1(ωk+1) = 0. (4.22)

It is standard to check that zε satisfies (4.19) and that there exists ωk+1 ∈
H1(RN ) \ {0} satisfying (4.21). Let us prove (4.20). First we show that
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lim supε→0 |εzε| < ∞. We argue indirectly and assume |εzε| → ∞. For any
ϕ ∈ C∞

0 (RN ) with ϕ ≥ 0, we have J ′
ε(vε)(ϕ(y − zε)vε) → 0. That is,∫

RN

∇vε(y + zε)∇(ϕ(y)vε(y + zε)) + V (εy + εzε)vε(y + zε)2ϕ(y) dy

−
∫
RN

g(εy + εzε, vε(y + zε))vε(y + zε)ϕ(y) dy → 0. (4.23)

We observe that g(εy + εzε, vε(y + zε)) = f(vε(y + zε)) on suppϕ for small ε
under the assumption |εzε| → ∞. Also since∫

RN

∇vε(y + zε)(∇ϕ)(y) vε(y + zε) dy →
∫
RN

∇ωk+1(∇ϕ)ωk+1 dy,

lim inf
ε→0

∫
RN

|∇vε(y + zε)|2ϕdy ≥
∫
RN

|∇ωk+1|2ϕdy,

we deduce from (4.23) that∫
RN

|∇ωk+1|2ϕ+∇ωk+1(∇ϕ)ωk+1+V0(ωk+1)2ϕ−f(ωk+1)ωk+1ϕdy ≤ 0.

(4.24)

We choose ϕ̃(y) ∈ C∞
0 (RN ) satisfying ϕ̃(y) ≥ 0, ϕ̃(0) = 1 and set ϕ(y) =

ϕ̃(y/R) in (4.24). Taking a limit as R → ∞, in (4.24) we get∫
RN

|∇ωk+1|2 + V0(ωk+1)2 − f(ωk+1)ωk+1 dy ≤ 0.

By Lemma 2.3 (i)–(ii), this implies that ωk+1 ≡ 0, which contradicts with (4.21).
Thus lim supε→0 |εzε| < ∞ and we may assume that εzε → xk+1 ∈ RN . At this
point we can get (4.22) in a standard way and since ωk+1 is a non-trivial critical
point of Φxk+1(v), we deduce that xk+1 ∈ Ω by Lemma 4.4 (i). ��
Step 4: Conclusion
We follow a recursive procedure. If the weak limit v0(y) of vε(y) provided by Step
1 is not 0, we set y1

ε = 0, x1 = 0, ω1(y) = v0(y). Then if ‖vε − ψεω
1‖Hε → 0

(or ‖vε‖Hε → 0 in case v0 ≡ 0), we are done. Otherwise, by Step 2, we can see
that (4.13) does not take place, and that there exists a sequence (zε) satisfying the
assumption (4.18) of Step 3. Applying Step 3, we can find x2 and ω2(y) (or x1 and
ω1(y) in case v0 ≡ 0) satisfying (4.18)–(4.22). We set y2

ε = zε (or y1
ε = zε in case

v0 ≡ 0). If ‖zε − ψε(ω1(y) + ω2(y − y2
ε))‖Hε

→ 0, we are done. Otherwise, we
use Steps 2, 3 and we continue this procedure. Now we need to prove that it stops
after a finite number of steps.

First we prove that under the assumptions (4.5)–(4.7) and (4.12)

lim
ε→0

∥∥∥∥∥vε − ψε

n∑
k=1

ωk(y − yk
ε )

∥∥∥∥∥
2

Hε

= lim
ε→0

‖vε‖2
Hε

−
n∑

k=1

ωk 2
xk (4.25)
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In fact,

‖vε − ψε

n∑
k=1

ωk(y − yk
ε )‖2

Hε
= ‖vε‖2

Hε
− 2

n∑
k=1

〈vε, ψεω
k(y − yk

ε )〉Hε

+
∑
k,k′

〈ψεω
k(y − yk

ε ), ψεω
k′

(y − yk′
ε )〉Hε

(4.26)

and we have

〈vε, ψεω
k(y − yk

ε )〉Hε =
∫
RN

∇vε(y + yk
ε )∇(ψ(εy + εyk

ε )ωk(y))

+V (εy + εyk
ε )ψ(εy + εyk

ε )vε(y + yk
ε )ωk(y) dy

→
∫
RN

|∇ωk|2 + V (xk)(ωk)2 dy = ωk 2
xk
. (4.27)

In a similar way, we have

〈ψεω
k(y − yk

ε ), ψεω
k′

(y − yk′
ε )〉Hε →

{
0 if k 
= k′,

ωk 2
xk

if k = k′.
(4.28)

Thus (4.25) follows from (4.26)–(4.28).
Now from (4.25) it follows that

∑n
k=1 ωk 2

xk ≤ limε→0 ‖vε‖2
Hε

and using
Lemma 4.4 (ii), (4.4), we deduce δ1n ≤ limε→0 ‖vε‖2

Hε
≤ m2. Thus the procedure

to find (yk
ε ), xk, ωk ends after a finite number of steps. Therefore we can find

� ∈ N ∪ {0}, (yk
ε ), xk, ωk (k = 1, 2, · · · , �) such that (4.5)–(4.8) hold. (4.9)

follows in a standard way from (4.5)–(4.8). This ends the proof of Proposition 4.2.
��

5. The functionals Φx0(v)

In this section we study the limit functionals Φx0(v) for x0 ∈ RN . Since Φx0(v) is
autonomous, we can deal with Φx0(v) in a space of radially symmetric functions
and we have the following existence result. It is due to Berestycki and Lions [BL]
for N ≥ 3 and Berestycki, Gallouët and Kavian [BGK] for N = 2.

Proposition 5.1 ([BL], [BGK]). Assume that h(ξ) satisfies

(h0) h(ξ) ∈ C(R,R) is continuous and odd.
(h1) −∞ < lim infξ→0

h(ξ)
ξ ≤ lim supξ→0

h(ξ)
ξ < 0 for N ≥ 3, limξ→0

h(ξ)
ξ ∈

(−∞, 0) for N = 2.

(h2) When N ≥ 3, lim
|ξ|→∞

h(ξ)

|ξ| N+2
N−2

= 0, when N = 2, for any α > 0 there exists

Cα > 0 such that |h(ξ)| ≤ Cαe
α|ξ|2 for all ξ.

Then the problem

−∆u = h(u) in RN , u(x) ∈ H1(RN ) (5.1)

has a non-zero solution if and only if the following condition is satisfied.
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(h3) There exists ξ0 > 0 such that H(ξ0) > 0, where H(ξ) =
∫ ξ

0 h(τ) dτ .

Moreover under (h0)–(h3), (5.1) has a least energy solution u(x) which satisfies
u(x) > 0 and is radially symmetric in RN .

Here by a least energy solution we mean a solution ω(x) which satisfies Ĩ(ω)
= m, where

m = inf{Ĩ(u); u ∈ H1(RN ) \ {0} is a solution of (5.1)}, (5.2)

Ĩ(u) =
∫
RN

1
2
|∇u|2 −H(u) dy.

It is also shown that m > 0.
In our recent work [JT2], we have revisited (5.1) and enlighten a mountain pass

characterization of least energy solutions.

Proposition 5.2 ([JT2]). Assume that (h0)–(h3) hold. Then Ĩ(u) has a mountain
pass geometry and there holds that b = m, where m is defined in (5.2) and b is the
mountain pass value for Ĩ(u);

b = inf
γ∈Γ

max
t∈[0,1]

Ĩ(γ(t)),

Γ = {γ(t) ∈ C([0, 1], H1(RN )); γ(0) = 0, Ĩ(γ(1)) < 0}.
Moreover for any least energy solution ω(x) of (5.1) there exists a path γ(t) ∈ Γ
such that

Ĩ(γ(t)) ≤ m = Ĩ(ω) for all t ∈ [0, 1], (5.3)

ω ∈ γ([0, 1]). (5.4)

Remark 5.3. Both Propositions 5.1 and 5.2 are stated for odd nonlinearities h(ξ).
Since we just consider positive solutions, extending the nonlinearity f(ξ) to an odd
function on R, we can apply Propositions 5.1 and 5.2 to our setting (See [JT1] for
more details).

Now we give a proof of Lemma 4.4.

Proof of Lemma 4.4. We apply Proposition 5.1 with H(ξ) = H(x0, ξ) =
− 1

2V (x0)ξ2 +G(x0, ξ). We can see that (h3) holds if and only if x0 ∈ Ω. Thus (i)
of Lemma 4.4 follows. Now assume that v(y) is a non-zero critical point ofΦx0(v).
Then we have Φ′

x0
(v)v = 0, i.e.,∫

RN

|∇v|2 + V (x0)v2 dy −
∫
RN

g(x0, v)v dy = 0.

By Corollary 2.4 (i), we have ‖v‖2
H1(RN ) − ∫RN f(v)v dy ≤ 0 and, using (2.1), it

follows that for any arbitrary δ > 0

‖v‖2
H1(RN ) ≤ δ‖v‖2

2 + Cδ‖v‖s+1
s+1 ≤ δ

V0
‖v‖2

H1(RN ) + CδC
′
s+1‖v‖s+1

H1(RN ).
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Thus 1
2‖v‖2

H′(RN ) ≤ CδC
′
s+1‖v‖s+1

H1(RN ) and there exists δ1 > 0 such that

‖v‖H1(RN ) ≥ δ1 for any non-zero critical point v and x0 ∈ RN . Since
v x0 ≥ ‖v‖H1(RN ), we get (ii). ��

For x ∈ RN we set

m(x) =

{
least energy level of Φx(v) if x ∈ Ω,

∞ if x ∈ RN \Ω.
By Proposition 5.2, m(x) is equal to the mountain pass value for Φx(v) if x ∈ Ω.
We have the following

Proposition 5.4. m(x0) = infx∈RN m(x) if and only if x0 ∈ Λ and V (x0) =
infx∈Λ V (x). In particular, m(0) = infx∈RN m(x).

Proof. Suppose that x0 ∈ Λ satisfies V (x0) = infx∈Λ V (x). By our choice of Λ′

and χ, we have x0 ∈ Λ′ and χ(x0) = 1. We also have x0 ∈ Ω by Remark 4.1.
Using V (x) ≥ V (x0) in Λ, G(x, ξ) ≤ F (ξ) for all (x, ξ), we have for any x ∈ Ω,

Φx(v) =
1
2
‖∇v‖2

2 +
1
2
V (x)‖v‖2

2 −
∫
RN

G(x, v) dy

≥ 1
2
‖∇v‖2

2 +
1
2
V (x0)‖v‖2

2 −
∫
RN

F (v) dy

= Φx0(v) for all v ∈ H1(RN ).

(We remark that this inequality is strict if V (x) > V (x0) and v 
≡ 0.) Thus
m(x0) ≤ m(x) for all x ∈ RN .

Next suppose that x′ ∈ Λ satisfies V (x′) > V (x0). We take a path γ ∈ Γ such
that (5.3)–(5.4) are satisfied for Ĩ(v) = Φx′(v). Then

m(x0) ≤ max
t∈[0,1]

Φx0(γ(t)) < max
t∈[0,1]

Φx′(γ(t)) = m(x′).

Therefore Proposition 5.4 holds. ��
We end this section establishing the continuity of m(x).

Proposition 5.5. The function m(x) : RN → (−∞,∞] is continuous in the
following sense:

m(xj) → m(x0) if xj → x0 ∈ Ω,

m(xj) → ∞ if xj → x0 ∈ RN \Ω.
Proof. We make use of Propositions 5.1 and 5.2. First we deal with the case x0 ∈ Ω
and suppose (xj) ⊂ Ω satisfies xj → x0 ∈ Ω. The upper semi-continuity
lim supj→∞m(xj) ≤ m(x0) is a consequence of the mountain pass character-
ization of m(x). To show the lower semi-continuity lim infj→∞m(xj) ≥ m(x0),
it suffices to show that for least energy solutions uj(y) of Φxj (v) one has

(i) ‖uj‖H1(RN ) is bounded as j → ∞.
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(ii) After extracting a subsequence, uj has a non-zero weak limit u0(y) and
lim infj→∞ Φxj (uj) ≥ Φx0(u0).

Indeed it is then easily seen that the weak limit u0(y) is a non-zero critical point of
Φx0(v) and thus we have lim infj→∞m(xj) = lim infj→∞ Φxj

(uj) ≥ Φx0(u0)
≥ m(x0). The proof of (i)–(ii) consists of several steps. First we remark that we
may assume uj(y) to be radially symmetric with respect to 0. We also recall that
uj(x) satisfies the Pohozaev identity:

N − 2
2

‖∇uj‖2
2 = N

∫
RN

H(xj , uj(y)) dy. (5.5)

Step 1: There exist m0, m1 > 0 independent of j such that m0 ≤ m(xj) ≤ m1
for all j ∈ N.
The existence of the uniform upper bound m1 follows from the upper semi-
continuity. Form0, we observe thatΦxj (v) ≥ 1

2‖∇v‖2
2+ 1

2V0‖v‖2
2−∫RN F (v) dy.

Thus choosing m0 to be the mountain pass value of v �→ 1
2‖∇v‖2

2 + 1
2V0‖v‖2

2 −∫
RN F (v) dy, we get the conclusion of Step 1.

Step 2: ‖∇uj‖2
2 ∈ [Nm0, Nm1].

Using the Pohozaev identity (5.5), we have

m(xj) =
1
2
‖∇uj‖2

2 −
∫
RN

H(xj , uj(y)) dy =
1
N

‖∇uj‖2
2.

Thus the conclusion of Step 2 follows from Step 1.

Step 3: Boundedness of ‖uj‖2.
We argue indirectly and assume that ‖uj‖2 → ∞. We set tj = 1

‖uj‖N/2
2

→ 0 and

ũj(y) = uj(y/tj). Then we have

‖ũj‖2 = 1 and ‖∇ũj‖2
2 = tN−2

j ‖∇uj‖2
2. (5.6)

We claim that ũj ⇀ 0 weakly in H1(RN ). In fact, suppose that ũj ⇀ ũ0 after
extracting a subsequence. Since uj(y) is a critical point of Φxj

(v), we have

−t2j∆ũj + V (xj)ũj = g(xj , ũj) in RN . (5.7)

Thus, passing to the limit as j → ∞, we obtain V (x0)ũ0(y) = g(x0, ũ0(y)) in
RN . Since ũ0 ∈ H1(RN ) and 0 ∈ R is an isolated solution of V (x0)ξ = g(x0, ξ),
this shows that ũ0(y) ≡ 0. Now we recall the following lemma.

Lemma 5.6 ([BL]). Suppose N ≥ 2. Then there exists a constant CN > 0 such
that for any radially symmetric function u(y) ∈ H1(RN )

|u(x)| ≤ CN‖u‖H1(RN )|x|−
N−1

2 for all |x| ≥ 1.
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Applying Lemma 5.6 to ũj(y), we get |ũj(y)| ≤ C ′|y|− N−1
2 for |y| ≥ 1 and

we can fix R > 1 such that∣∣∣∣g(xj , ũj(y))
ũj(y)

∣∣∣∣ ≤ 1
2
V0 for all j ∈ N and |y| ≥ R. (5.8)

Multiplying (5.7) by ũj and integrating over RN , we get

t2j‖∇ũj‖2
2 +

∫
|y|≥R

(
V (xj) − g(xj , ũj(y))

ũj(y)

)
ũ2

j (y) dy

≤ −
∫

|y|≤R

V (xj)ũ2
j (y) − g(xj , ũj(y))ũj(y) dy. (5.9)

Since ũj ⇀ 0 weakly in H1(RN ), and thus strongly in Ls+1(|y| ≤ R), we can

see
∫

|y|≥R

(
V (xj) − g(xj ,ũj(y))

ũj(y)

)
ũ2

j (y) dy → 0. Using (5.8), we get

‖ũj‖L2(|y|≥R) → 0, that is, ‖ũj‖2 → 0. But this contradicts (5.6). Thus the proof
of Step 3 is completed.

Step 4: After extracting a subsequence, uj has a non-zero weak limit u0(y) 
≡ 0.
We remark that the boundedness of ‖uj‖H1(RN ) follows from Steps 2–3. Here we
argue indirectly as in Step 3. We assume that uj ⇀ 0 weakly in H1(RN ) and
strongly in Ls+1

loc (RN ). Using Lemma 5.6, we can find a R > 1 such that∣∣∣∣g(xj , uj(y))
uj(y)

∣∣∣∣ ≤ 1
2
V0 for all j ∈ N and |y| ≥ R.

Arguing as in (5.9), it follows from Φ′
xj

(uj)uj = 0 that

‖∇uj‖2
2 ≤ −

∫
|y|≤R

V (xj)u2
j (y) − g(xj , uj(y))uj(y) dy → 0 as j → ∞.

This is in contradiction with Step 2.

Step 5: lim infj→∞ Φxj (uj) ≥ Φx0(u0).
Since we are working in a space of radially symmetric functions, we can see from
(f1)–(f2) that

∫
RN G(xj , uj) dy → ∫

RN G(x0, u0) dy as j → ∞, (See Theorem
A.I of [BL]). Thus we have the desired result from the lower semi-continuity of the
L2-norm.

Finally we deal with the case x0 
∈ Ω.

Step 6: Suppose x0 
∈ Ω and xj → x0. Then m(xj) → ∞.
In fact, if m(xj) 
→ ∞, we can find a subsequence — still denoted by xj —
such that m(xj) stays bounded as j → ∞. Then by the arguments of Steps 1–5,
we can find a non-zero critical point of Φx0(v). However it is a contradiction to
Lemma 4.4 (i).
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6. End of the proof of Theorem 1.1

In this section we conclude the proof of Theorem 1.1. First we study the behavior
of bε as ε → 0.

Proposition 6.1. Let (bε)ε∈(0,ε1] be the mountain pass value of Jε(v) defined in
(2.17)–(2.18). Then bε → m(0) = infx∈RN m(x) as ε → 0.

Proof. By Proposition 5.2 there exists a path γ ∈ C([0, 1], H1(RN )) such that

γ(0) = 0, Φ0(γ(1)) < 0, Φ0(γ(t)) ≤ m(0) for all t ∈ [0, 1],
max

t∈[0,1]
Φ0(γ(t)) = m(0).

Let ϕ(y) ∈ C∞
0 (RN ) be such that ϕ(0) = 1 and ϕ ≥ 0. Setting γR(t)(y) =

ϕ(y/R)γ(t)(y), we have γR(t) ∈ C([0, 1], Hε), γR(0) = 0 and Φ0(γR(1)) < 0
for sufficiently large R > 1. Then, in particular, γR(t) ∈ Γε. Also for any fixed
R > 0, Jε(γR(t)) → Φ0(γR(t)) as ε → 0 uniformly in t ∈ [0, 1]. Thus for
sufficiently large R > 1

bε ≤ max
t∈[0,1]

Jε(γR(t)) → max
t∈[0,1]

Φ0(γR(t)) as ε → 0.

Since maxt∈[0,1] Φ0(γR(t)) → m(0) asR → ∞, we have lim supε→0 bε ≤ m(0).
Next we show lim infε→0 bε ≥ m(0). Let vε ∈ Hε be a critical point of Jε(v)

associated to bε. Applying Proposition 4.2, we can find εj → 0, � ∈ N ∪ {0},
(yk

εj
), xk, ωk (k = 1, 2, · · · , �) satisfying (4.5)–(4.9). If we assume that � = 0, then

(4.9) implies that bεj = Jεj (vεj ) → 0 in contradiction with (2.19). Thus � ≥ 1 and
again from (4.9) it follows that

lim inf
j→∞

bεj =
�∑

k=1

Φxk(ωk) ≥
�∑

k=1

m(xk) ≥ �m(0) ≥ m(0).

This ends the proof of Proposition 6.1 ��
As a consequence of Proposition 6.1 we have:

Proposition 6.2. For any ε ∈ (0, ε1] let (vε) denote a critical point of Jε(v)
corresponding to bε. Then for any sequence εj → 0 there exist a subsequence —
still denoted by εj — and yεj

, x1, ω1 such that

εjyεj → x1. (6.1)

x1 ∈ Λ′ satisfies V (x1) = infx∈Λ V (x). (6.2)

ω1(y) is a least energy solution of Φ′
x1(v) = 0. (6.3)∥∥vεj − ψεjω

1(y − yεj )
∥∥

Hεj

→ 0. (6.4)

Jεj (vεj
) → m(x1) = m(0). (6.5)

Proof. Arguing as in the proof of Proposition reftheorem:6.1 it follows that � = 1
in Proposition 4.2. Hence we have (6.1)–(6.5). ��
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Now we are ready to give the proof of Theorem 1.1.

Proof of Theorem 1.1. We divide the proof of Theorem 1.1 into several steps. In
what follows, vε(y) ∈ Hε denotes a critical point corresponding to bε. We shall
prove that this is a desired solution when ε > 0 is small enough. For this it suffices
to show that for any sequence εj → 0 there exists a subsequence — still denoted
by εj — such that for large j, vεj takes a unique local maximum at x̄εj ∈ Λ/εj

with V (εj x̄εj ) → infx∈Λ V (x) and decreases sufficiently fast away from x̄εj .
Let εj → 0 be an arbitrary fixed sequence. Applying Proposition 6.2 we can

assume that there exists (yεj
), x1, ω1 such that (6.1)–(6.5) hold. Moreover, by the

maximum principle, vε(y) ≥ 0 for all y ∈ RN .

Step 1: If a sequence (zεj
) ⊂ RN satisfies lim infj→∞

∫
B1(zεj

) |vεj
|2 dy > 0, then

lim supj→∞ |zεj − yεj | < ∞. In particular we have limj→∞ |εjzεj − x1| = 0.
Conversely if (zεj

) satisfies |zεj − yεj | → ∞, we have
∫

B1(zεj
) |vεj |2 dy → 0.

This clearly follows from (6.1), (6.4). ��
Step 2: supz∈(Λ\Λ′)/εj

|vεj
(z)| → 0 as j → ∞.

It follows from Step 1 that supz∈(Λ\Λ′)/εj

∫
B1(z) |vεj |2 dy → 0 as j → ∞. It also

follows from the boundedness of (vεj
) in H1(RN ) that

‖vεj ‖Ls+1(B1(z)) → 0 uniformly in z ∈ (Λ \ Λ′)/εj . (6.6)

We remark that V (εjy), χ(εjy) stay bounded uniformly in (Λ \Λ′)/εj as j → ∞.
Thus since vεj (y) is a solution of −∆v + V (εjy)v = g(εjy, v) in B1(z). By
standard regularity arguments we have vεj

(y) ∈ C(B1(z)), and (6.6) implies
‖vεj

‖L∞(B1(z)) → 0 as j → ∞ uniformly in z ∈ (Λ \ Λ′)/εj . ��
Step 3: For the constant rν > 0 given in Sect. 2.1, there holds vεj (y) ≤ rν in
RN \ (Λ′/εj).
By Step 2, supz∈(Λ\Λ′)/εj

|vεj (y)| ≤ rν

2 for small εj . Since
ṽεj

≡ (vεj
(y) − rν)+ |

RN \(Λ′/εj)
∈ Hε it follows from J ′

ε(vεj
)ṽεj

= 0 that∫
RN \(Λ′/εj)

|∇(vεj − rν)+|2+V (εjy)vεj (vεj −rν)+−f(vεj )(vεj −rν)+ dy = 0.

By Lemma 2.3 (ii),∫
RN \(Λ′/εj)

|∇(vεj − rν)+|2 + (V0 − ν)vεj (vεj − rν)+ dy ≤ 0.

Thus (vεj
− rν)+ ≡ 0 in RN \ (Λ′/εj). That is, Step 3 holds. ��

By Step 3 we see that vεj
(y) is a solution of the rescaled original problem:

−∆v + V (εjy)v = f(v) in RN

for sufficiently small εj > 0. Since f(ξ) ∈ C1(RN ,R), we have vεj (y) ∈
C2(RN ) from a standard regularity argument. From the boundedness of ‖vεj ‖Hε

we can see also that ‖vεj
‖C2(K/εj) is bounded on any compact set K ⊂ RN as
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j → ∞. We remark that V (εjy) and χ(εjy) stay bounded uniformly in K/εj as
j → ∞.

Step 4: Suppose that vεj (y) takes a local maximum at zεj . Then (zεj ) satisfies
lim supj→∞ |zεj − yεj | < ∞ and εjzεj

→ x1.
By the maximum principle, we see that vεj (zεj ) ≥ rν . Since vεj (y) is bounded in
C2

loc, we can also get lim infj→∞
∫

B1(zεj
) |vεj |2 dy > 0. We conclude by Step 1.

��
Step 5: vεj has only one local maximum for εj small.
Assume that vεj

(y) takes a local maximum at y = zεj
. By the maximum prin-

ciple, vεj (zεj ) ≥ rν . Since vεj is bounded in H1(RN ) and C2
loc(R

N ), af-
ter extracting a subsequence, we may assume vεj (y + zεj ) → ω(y) weakly in
H1(RN ) and strongly in C2

loc with ω(y) satisfying −∆ω + V (x1)ω = f(ω)
in RN and having a local maximum at y = 0. Thus by the result of [GNN],
ω(y) is radially symmetric with respect to 0 and strictly decreasing with re-
spect to r = |y|. Thus if vεj (y) takes two local maxima at y = zεj and
y = z′

εj
, then we necessarily have |zεj − z′

εj
| → ∞. However Step 4 implies

lim sup |zεj
− z′

εj
| ≤ lim sup |zεj

− yεj
|+lim sup |z′

εj
− yεj

| < ∞. This contra-
diction shows that vεj (y) takes only one local maximum. ��
Step 6: There exists �0 > 0 such that for small εj > 0

|vεj (y)| < rν for all |y − x̄εj | ≥ �0,

where x̄εj
is the unique local maximum of vεj

(y).
Indeed, if zεj satisfies vεj

(zεj ) ≥ rν , then we have lim infj→∞
∫

B1(zεj
) |vεj

|2 dy
> 0 and Steps 1,4 implies that lim sup |zεj − x̄εj | ≤ lim sup |zεj − yεj | +
lim sup |yεj − x̄εj | < ∞. Thus there is no sequence (zεj ) satisfying |zεj − x̄εj |
→ ∞ and vεj (zεj ) ≥ rν . Step 6 follows. ��
Step 7: Conclusion.
Consider the unique solution η(y) ∈ H1(|y| ≥ �0) of the following problem:

−∆η +
V0

2
η = 0 in |y| ≥ �0, η(y) = rν on |y| = �0.

It is easily seen that η(y) has an exponential decay and since
f(vεj

(y))
vεj

(y) ≤ V0
2 when

|y| ≥ �0, we have, by the maximum principle that vεj
(y+x̄εj

) ≤ η(y) for |y| ≥ �0.
Thus vεj (y) also has an exponential decay.

Now setting uεj (x) = vεj (x/εj) we can easily see that uεj (x) has the desired
properties. This concludes the proof of Theorem 1.1. ��
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the Laboratoire de Mathématiques of the University of Franche-Comté. He would like to
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20, 107–143 (2003)

[O1] Oh, Y.-G.: Existence of semiclassical bound states of nonlinear Schrödinger equa-
tions with potentials of the class (V )a. Comm. Partial Differential Equations 13
(12), 1499–1519 (1988)

[O2] Oh,Y.-G.: On positive multi-lump bound states of nonlinear Schrödinger equations
under multiple well potential. Comm. Math. Phys. 131 (2), 223–253 (1990)

[P] Pistoia, A.: Multi-peak solutions for a class of nonlinear Schrödinger equations.
NoDEA Nonlinear Diff. Eq. Appl. 9, 69–91 (2002)

[R] Rabinowitz, P.: On a class of nonlinear Schrödinger equations. Z. Angew Math
Phys 43, 270–291 (1992)



318 L. Jeanjean, K. Tanaka

[Str] Struwe, M.: A global compactness result for elliptic boundary value problems
involving limiting nonlinearities. Math. Z. 187, 511–517 (1984)

[Stu] Stuart, C.A.: Personal communication. Summer 2000
[W] Wang, X.: On concentration of positive bound states of nonlinear Schrödinger

equations. Comm. Math. Phys. 153, 229–244 (1993)


