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Abstract. We study the following semilinear elliptic equation

−∆u + b(x)u = f(u), x ∈ RN ,

where b is periodic and f is assumed to be asymptotically linear. The purpose of this paper
is to establish the existence of infinitely many homoclinic type solutions for this class of
nonlinearities.
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1. Introduction

In this paper we study the semilinear elliptic equation

−∆u + b(x)u = f(u), x ∈ RN (1.1)

under the following basic assumptions on the potential:

(b0) b ∈ C(RN ,R) and there exists a b0 > 0 so that b(x) ≥ b0 for a.e x ∈ RN .
(b1) b(x1, . . . , xN ) is Ti periodic in xi, i = 1, . . . , N .

During the past decade a variational method was developed to establish the existence
of homoclinic type multibump solutions. After the initial ground breaking work by
Séré [15], Coti Zelati, Ekeland and Séré [2], and Coti Zelati and Rabinowitz [3],
there are many papers that utilize this method for both Hamiltonian systems and
semilinear elliptic equations (see [12,13] and references therein). However, in all the
results mentioned above, it is assumed that the nonlinearity f satisfies a superlinear
growth condition, i.e. f(s)/s → ∞ as |s| → ∞. The purpose of this paper is to
adapt this technique to a different class of nonlinearities. More precisely, we make
the following assumptions on f :

(f0) f ∈ C1(R,R), f(0) = 0.
(f1) f(s) = o(s) as |s| → 0.
(f2) There exists an a ∈ (0,∞) so that f(s)

s → a as |s| → ∞ and a > inf σ(−∆+
b) (here σ denotes the spectral set).
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(f3) H(s) := 1
2f(s)s − F (s) ≥ 0 for all s ∈ R, where F (s) :=

∫ s

0 f(t) dt.
(f4) There exists a δ0 > such that f(s) ≥ b0 − δ0 ⇒ H(s) ≥ δ0.

Thus f is asymptotically linear. There are many recent existence and multiplicity
results for asymptotically linear problems on RN , see for instance [1,5,6,8,16–
20,23]. Our goal is to establish the existence of infinitely many homoclinic type
solutions to (1.1).

In order to properly state our main result, we define the energy functional
associated with (1.1):

I : W 1,2(RN ) → R, I(u) :=
1
2
‖u‖2 −

∫
RN

F (u) dx,

where F is the primitive of f and

‖u‖2 :=
∫
RN

|∇u|2 + b(x)u2 dx.

Remark 1.2. By (b0) and (b1), there exists a b < ∞ so that b(x) ≤ b for all
x ∈ RN . Thus it is clear that ‖ · ‖ is equivalent to,

‖u‖2
W 1,2(RN ) :=

∫
RN

|∇u|2 + u2 dx,

the standard norm on W 1,2(RN ).

It is well known that under (f0)-(f2), I ∈ C1(W 1,2(RN ),R), and critical
points of I correspond to classical solution of (1.1) satisfyingu(x) → 0 as |x| → ∞.
Set K := {u ∈ W 1,2(RN ) : I ′(u) = 0}. We also use the following notation to
denote the level sets of I: Ib := {u ∈ W 1,2(RN ) : I(u) ≤ b}, Ia := {u ∈
W 1,2(RN ) : I(u) ≥ a} and Ib

a := Ib ∩ Ia. Then Kb := K ∩ Ib, Ka := K ∩ Ia

and Kb
a = K ∩ Ib

a.
From results in for instance [5,6,20], it is clear that under (b0) and (f1)-(f2),

I possess a Mountain Pass geometry, i.e.

Γ :=
{
g ∈ C([0, 1], W 1,2(RN )) : g(0) = 0, g(1) ∈ I0\{0}

}

= ∅.

We may therefore define the Mountain Pass level

c := inf
g∈Γ

sup
t∈[0,1]

I(g(t)) > 0.

Recall that (un) ⊂ W 1,2(RN ) is a Palais-Smale sequence ((PS)d for short) of I
if I(un) ≤ d and I ′(un) → 0. I satisfies the Palais-Smale condition if any such
sequence contains a convergent subsequence.

We also note that, due to (b1), I and I ′ are invariant under the discrete transla-
tions

τku(x) := u(x1 + k1T1, . . . , xN + kNTN ),

for any k = (k1, . . . , kN ) ∈ ZN . This leads to the conclusion that the Palais-
Smale condition fails at every level. It is therefore not immediately clear wether c
is a critical value.We exploit this lack of compactness, together with the assumption,
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(∗) there exists an α > 0 so that Kc+α/ZN is finite,

to obtain:

Theorem 1.3. Assume (b0)-(b1), (f0)-(f4), and (∗). Then Kkc+α
kc−α/ZN is infinite

for all k ∈ N/{1}.

This mimics the result obtained by Coti Zelati and Rabinowitz [3,4] for a semilin-
ear elliptic equation with a superlinear, subcritical nonlinearity. In order to prove
Theorem 1.3, we adopt the techniques used in the above mentioned papers.

Finally we highlight some of the major differences between our case and the
superlinear case considered in [4]. First is the lack of an a priori bound for Palais-
Smale sequences. However, to overcome this difficulty, an argument based on the
Concentration Compactness Lemma of P.L. Lions [9] was developed by L. Jeanjean
[5].

Also, in the superlinear case, it is easily verified that there exists a c > 0 so that

I(v) ≥ c ∀v ∈ K\{0}.

This plays a crucial rule in determining the exact behavior of Palais-Smale se-
quences and the nature of the non-compactness due to the translation invariance.
Roughly, it is shown that there exists a finite dichotomy of any (PS)d sequence
into a collection of translated non-trivial critical points with energy less than d.
The above lower bound ensures that the energy is exhausted in a finite number of
steps. See [4] for more details. Since, in our case, the existence of such a uniform
bound is not immediately apparent, we will use a different approach, based on the
Concentration-Compactness Principle, to obtain a similar result.

After establishing the required properties for Palais-Smale sequences, the rest
of the construction is very similar. This is due to the fact that the arguments used
in the later part of [4] depends largely on the behavior of the nonlinearity near
0, which, due to (f1), is the same for both cases. However, there are some minor
adjustments and simplifications, in which case full details will be provided.

This paper is organized as follows: In Section 2, we collect all the important
properties of Palais-Smale sequences. Section 3 sets up a suitable existence criterion
for our main result, Theorem 1.3. Section 4 contains the bulk of the construction
used in the contradiction argument outlined in Section 3.

Acknowledgement. I would like to thank Professor Zhi-Qiang Wang for bringing this prob-
lem to my attention, and for his many helpful suggestions and comments during the prepa-
ration of this manuscript.

Further notations and conventions
For any r > 0, set Br(y) := {x ∈ RN : |x−y| ≤ r} and to simplify notation we let
Br := Br(0). If K ⊂ W 1,2(RN ), then Nr(K) := {u ∈ W 1,2(RN ) : ‖u−K‖ ≤
r} and, for w ∈ W 1,2(RN ), Br(w) := {u ∈ W 1,2(RN ) : ‖u − w‖ ≤ r}. Let
τ j := (j1T1, . . . , jNTN ) ∈ RN , where j ∈ ZN . For any Ω ⊂ RN , we set
τjΩ := {x + τ j : x ∈ Ω}. We will also make use of

‖u‖2
Ω :=

∫
Ω

|∇u|2 + b(x)u2 dx,
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to denote the restriction of ‖ · ‖ to Ω ⊂ RN . All other norms will be distinguished
by a proper subscript. Subsequences of (un) will still be denoted by (un).

2. Behavior of Palais-Smale sequences

This section concerns itself with the properties of sequences (un) ⊂ W 1,2(RN )
satisfying

I(un) ≤ d, I ′(un) → 0, (2.1)

where 0 < d < ∞.
By (f1) and (f2), there exists a Cf > 0 such that∣∣∣∣f(s)

s

∣∣∣∣ ≤ Cf ∀s ∈ R. (2.2)

Thus for any ε > 0 and 2 < p ≤ 2∗ (here 2∗ := 2N/N − 2 if N ≥ 3 and 2∗ = ∞
if N = 2), by (f1)-(f2), there exists a Cε > 0 such that

f(s) ≤ εs + Cεs
p−1 ∀s ∈ R. (2.3)

Lemma 2.4. There exists a δ1 > 0, such that if (un) ⊂ W 1,2(RN ), satisfy

I ′(un) → 0,

then, up to a subsequence, either ‖un‖ ≥ δ1 or ‖un‖ → 0 as n → ∞.

Proof. By (2.3) there exists a C b0
2

> 0 such that

f(s)s ≤ b0

2
|s|2 + C b0

2
|s|2∗ ∀s ∈ R.

Thus for any u ∈ W 1,2(RN ),

I ′(u)u = ‖u‖2 −
∫
RN

f(u)u dx

≥ 1
2
‖u‖2 − C2‖u‖2∗

,

where we used the continuity of the embedding W 1,2(RN ) ↪→ L2∗
(RN ) and

Remark 1.2. Therefore, there exists a δ1 > 0 such that

1
4
‖u‖2 ≤ I ′(u)u for ‖u‖ < δ1. (2.5)

Let (un) ⊂ W 1,2(RN ) satisfy I ′(un) → 0 as n → ∞. Then, up to a subsequence,
either

lim sup
n→∞

‖un‖ < δ1 or lim inf
n→∞ ‖un‖ ≥ δ1.

For the first option, we have by (2.5) that

1
4
‖un‖2 ≤ o(1) · ‖un‖

for n large and therefore lim infn→∞ ‖un‖ = 0. ��
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Corollary 2.6. (i) If u ∈ K\{0}, then ‖u‖ ≥ δ1.
(ii) If (un) ⊂ W 1,2(RN ), I ′(un) → 0 and lim infn→∞ I(un) 
= 0, then ‖un‖ ≥

δ1.

Corollary 2.7. There exists a δ2 > 0 such that ‖v‖L2(RN ) ≥ δ2 for all v ∈ K\{0}.

Proof. Suppose this is false, then there exists a (vn) ⊂ K\{0} such that

‖vn‖L2(RN ) → 0.

By (2.2) this implies that,

‖vn‖2 = I ′(vn)vn +
∫
RN

f(vn)vn dx ≤ Cf‖vn‖2
L2(RN ) → 0,

which contradicts Corollary 2.6 (i). ��

Next, we show that for any (un) ⊂ W 1,2(RN ) satisfying (2.1), there exists a
M > 0, depending only on d, so that ‖un‖ ≤ M , i.e. (PS) sequences are bounded
in W 1,2(RN ).

Proposition 2.8. If (un) ⊂ W 1,2(RN ) satisfy

I(un) ≤ d, I ′(un) → 0,

then there exists a M = M(d) > 0 such that ‖un‖ ≤ M .

Using the translation invariance of I , our arguments are similar to the techniques
used in [5]. In order to prove Proposition 2.8, we need the following results. For any
(un) ⊂ W 1,2(RN ), q ∈ N and r > 0 define the family of concentration functions:

Qn,q(r) := sup
{y1,... ,yq}∈RN

∫
∪q

i=1Br(yi)
u2

n dx.

We state the following Concentration Compactness result (see [22, Lemma 4.1]).

Lemma 2.9. Suppose (un) ∈ W 1,2(RN ) satisfies ‖un‖2
L2(RN ) ≤ M < ∞, then,

up to a subsequence, limn→∞ Qn,q(r) exists for all q ∈ N, r > 0, and

(i) (λi), defined by

λ1 : = lim
m→∞ lim

n→∞ Qn,1(m) and for q > 1,

λq : = lim
m→∞ lim

n→∞ Qn,q(m) −
q−1∑
i=1

λi,

is a nonnegative, nonincreasing sequence satisfying

lim
q→∞

q∑
i=1

λi ≤ M.
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(ii) For each λi > 0, there exists a (yi,n) ⊂ RN satisfying

|yi,n − yj,n| → ∞, ∀i 
= j,

and given any q ≥ 1 with λq > 0, for any ε > 0, there exists a R > 0 such that

lim sup
n→∞

q∑
i=1

∣∣∣∣∣λi −
∫

Br(yi,n)
u2

n dx

∣∣∣∣∣ < ε,

for a all r ≥ R.

Remark 2.10. From the proof of Lemma 2.9, we note that, for λq > 0 and R > 0,
the sequences (yi,n) ⊂ RN are chosen so that

lim sup
n→∞

∫
∪q

i=1Br(yi,n)
u2

n dx = lim
n→∞ Qn,q(r),

for all r ≥ R. We also note that Lemma 2.9 is a generalization of P.L. Lions
Concentration Compactness Lemma [9] and is a reformulation of a result in [10].
If λ1 = 0, the sequence (un), vanishes. If, on the other hand, λ1 > 0, then (un) is
non-vanishing.

Proposition 2.11. If (un) ⊂ W 1,2(RN ) satisfies

‖un‖ ≥ δ1, I(un) ≤ d, I ′(un) → 0,

then wn := un/‖un‖ is non-vanishing.

Proof. Seeking a contradiction, suppose (wn) vanishes, i.e.,

lim
n→∞ sup

y∈RN

∫
BR(y)

w2
n dx = 0, ∀R > 0. (2.12)

Observe that ∫
RN

f(un)un dx = ‖un‖2 + o(1) · ‖un‖.

Thus,

lim
n→∞

∫
RN

f(un)
un

w2
n dx = 1. (2.13)

Set

Kn := {x ∈ RN :
f(un(x))

un(x)
≤ b0 − 1

2
δ0}.

Since 1 = ‖wn‖2 ≥ b0‖wn‖2
L2(RN ),∫

Kn

f(un)
un

w2
n dx ≤

(
b0 − 1

2
δ0

)∫
Kn

w2
n dx ≤ 1

b0

(
b0 − 1

2
δ0

)
< 1,
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thus, by (2.13),

lim
n→∞

∫
RN \Kn

f(un)
un

w2
n dx > 0. (2.14)

Next we show that m
(
RN\Kn

)
→ ∞ (here m denotes the Lebesque measure on

RN ). Since (wn) is bounded in W 1,2(RN ), it follows from (2.12) and a lemma of
P.L. Lions (see for instance [21, Lemma 1.21]), that wn → 0 in L2q(RN ), where
1 < q < 2∗/2. Thus if m

(
RN\Kn

)
< ∞,∫

RN \Kn

f(un)
un

w2
n dx ≤ Cf

∫
RN \Kn

w2
n dx

≤ Cf

(∫
RN \Kn

|wn|2q dx

) 1
q (

m
(
RN\Kn

))1/q′
→ 0,

which contradicts (2.14). By (f3),

d ≥ I(un) − I ′(un)un =
∫
RN

H(un) dx ≥
∫
RN \Kn

H(un) dx.

Since H(un) ≥ δ0 on RN\Kn, this implies that

d ≥
∫
RN \Kn

H(un) dx ≥ δ0m
(
RN\Kn

)
→ ∞,

which yields the desired contradiction. ��

Corollary 2.15. If (un) ⊂ W 1,2(RN ) satisfy

I(un) ≤ d, I ′(un) → 0,

then either (i) ‖un‖ → 0 or, (ii) (un) is non-vanishing.

Proof. Suppose (i) does not hold, then by Lemma 2.4, ‖un‖ ≥ δ1. For contradiction
suppose (ii) fails, i.e. (un) vanishes. Since

|wn| =
|un|
‖un‖ ≤ 1

δ1
|un|,

this implies that (wn) vanishes, which contradicts Proposition 2.11. ��

Proof of Proposition 2.8. Seeking a contradiction suppose ‖un‖ → ∞. Set wn :=
un/‖un‖. By Proposition 2.11, (wn) is non-vanishing, i.e. there exists ρ0 > 0,
R0 > 0 and (yn) ⊂ RN such that

lim
n→∞

∫
BR0 (yn)

w2
n dx ≥ ρ0. (2.16)
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For each component (yi
n), i = 1, . . . , N , set ki

n := [[yi
n/Ti]], where [[x]] denotes

the integer part of x. Then

∣∣(k1
nT1, . . . , kN

n TN

)
− yn

∣∣ ≤
(

N∑
i=1

T 2
i

)1/2

=: T

and therefore

lim
n→∞

∫
BR0+T

(τknwn)2 dx ≥ lim
n→∞

∫
BR0 (yn)

w2
n dx ≥ ρ0. (2.17)

Set w1
n := τknwn and u1

n := τknun. Using the invariance of ‖ · ‖ and I under the
translations τ :

‖w1
n‖ = ‖wn‖ = 1

I(u1
n) = I(un) ≤ d

I ′(u1
n) = I ′(un) → 0.


 (2.18)

Thus, up to a subsequence, w1
n ⇀ w in W 1,2(RN ), w1

n → w in L2
loc(R

N ). This,
together with (2.17), implies that w 
= 0. Next we show that,

−∆w + b(x)w = aw, x ∈ RN , (2.19)

i.e., a is an eigenvalue of the operator −∆ + b. This would contradict the fact
that under (b0)-(b1), the Schrödinger operator −∆ + b has only purely continuous
spectrum [14, Theorem XIII.100]. In order to show (2.19) it suffices to show∫

RN

∇w∇ϕ + b(x)wϕ dx = a

∫
RN

wϕ dx ∀ϕ ∈ C∞
0 (RN ). (2.20)

Fixing an arbitrary ϕ ∈ C∞
0 (RN ), (2.18) implies that∫

RN

∇w1
n∇ϕ + b(x)w1

nϕ dx = o(1) +
∫
RN

f(u1
n)

u1
n

w1
nϕ dx.

By virtue of the weak convergence,∫
RN

∇w1
n∇ϕ + b(x)w1

nϕ dx →
∫
RN

∇w∇ϕ + b(x)wϕ dx,

and to complete (2.20), we only need to establish∫
RN

f(u1
n)

u1
n

w1
nϕ dx → a

∫
RN

wϕ dx. (2.21)

Clearly w1
nϕ → wϕ in L1(RN ). Set N := {x ∈ RN : w(x)ϕ(x) 
= 0}. Since we

may assume that ϕ 
= 0, m(N ) > 0. For any x ∈ N , u1
n(x) → ∞ which implies

that
f(u1

n(x))
u1

n(x)
→ a ∀x ∈ N ,

and (2.21) follows from [20, Lemma A.1]. This completes the proof of Proposition
2.8.

We end this section with an important result that describes the lack of compact-
ness of I . First we need the following lemma:
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Lemma 2.22. If (un) ⊂ W 1,2(RN ) satisfy I ′(un)→0, andun ⇀ v inW 1,2(RN ),
then v ∈ K and I ′(un − v) → 0.

Proof. The fact that v ∈ K is easily verified, see for instance [20]. We also note
that, in order to show I ′(un − v) → 0, it suffices to show∫

RN

(f(un − v) − f(un) + f(v)) w dx = o(1) · ‖w‖,

for all w ∈ W 1,2(RN ). Under (f1) and (f2), this is the content of [20, Lemma
3.7]. ��

Proposition 2.23. Suppose (un) ⊂ W 1,2(RN ) satisfy

lim inf
n→∞ I(un) > 0, I(un) ≤ d, I ′(un) → 0,

then there exist l = l(d) ∈ N, {vi}l
i=1 ∈ Kd/{0} and corresponding {ki,n}l

i=1 ∈
ZN such that

‖un −
l∑

i=1

τki,nvi‖ → 0,

and
|ki,n − kj,n| → ∞ ∀i 
= j.

Proof. By Corollary 2.6, ‖un‖ ≥ δ1 which implies that (ii) of Corollary 2.15
holds, i.e. (un) is non-vanishing. Thus, by Lemma 2.9 and Remark 2.10, there
exist constants ρ1, m1 > 0 and a sequence (y1,n) ⊂ RN such that

lim
n→∞

∫
Bm(y1,n)

u2
n dx = lim

n→∞ Qn,1(m) ≥ ρ1, (2.24)

for all m ≥ m1. As in the proof of Proposition 2.8, setting k
i

1,n = [[yi
1,n/Ti]] and

u1,n = τk1,n
un yields∫

Bm

(u1,n)2 dx ≤
∫

Bm(y1,n)
u2

n dx ≤
∫

Bm+T

(u1,n)2 dx. (2.25)

Since I(u1,n) = I(un) ≤ d and I ′(u1,n) = I ′(un) → 0, by Proposition 2.8
‖u1,n‖ ≤ M(d). Thus, up to a subsequence, u1,n ⇀ v1 in W 1,2(RN ), u1,n → v1
in L2

loc(R
N ). By (2.24), (2.25) and Lemma 2.22, v1 ∈ K\{0}. Also, by (f3) and

Fatou’s Lemma

d = lim inf
n→∞

∫
RN

H(u1,n) dx ≥
∫
RN

H(v1) dx = I(v1),

thus v1 ∈ Kd\{0}. Next, observe that

lim
m→∞

(
lim

n→∞

∫
Bm

(u1,n)2 dx

)
≤ λ1 ≤ lim

m→∞

(
lim

n→∞

∫
Bm+T

(u1,n)2 dx

)
,
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i.e., λ1 = ‖v1‖2
L2(RN ). Set u2,n := u1,n − v1. By Lemma 2.22, I ′(u2,n) → 0 and

therefore, by Corollary 2.15, either (i) ‖u2,n‖ → 0 or (ii) (u2,n) is non-vanishing.
If (i) occurs, then we have completed the proof with l = 1 and k1,n = −k1,n.

Thus suppose (ii) occurs, i.e. there exist constants ρ2, m2 > 0 and a sequence
(zn) ∈ RN such that

lim
n→∞

∫
Bm(zn)

(u2,n)2 dx ≥ ρ2,

for all m ≥ m2. Clearly |zn| → ∞. Let ε > 0 be arbitrary. Choose a N = N(ε)
such that∫

Bm(zN )
(v1)2 dx − ε ≤

∫
Bm(zN )

u1,nv1 dx ≤
∫

Bm(zN )
(v1)2 dx +

ε

2
,

for all n≥N where m is fixed. Increasing N , we may also assume that
∫

Bm(zN )(v1)2

dx ≤ ε
2 . Thus

lim
n→∞

∫
Bm(zn)

u1,nv1 dx = lim
n→∞

∫
Bm(zn)

(v1)2 dx = 0,

and therefore

lim
n→∞

∫
Bm(zn)

(u2,n)2 dx = lim
n→∞

∫
Bm(zn)

(u1,n)2 dx.

Then ∫
Bm(zn+y1,n)

u2
n dx ≤

∫
Bm(zn)

(u1,n)2 dx ≤
∫

Bm+T (zn+y1,n)
u2

n dx,

and since we may assume y2,n = zn + y1,n, we conclude that

λ2 = lim
m→∞ lim

n→∞

∫
Bm(zn)

(u2,n)2 dx.

As before, there exists a (k2,n) ∈ ZN and v2 ∈ Kd/{0} such that τk1,n
u2,n ⇀ v2

and λ2 = ‖v2‖2
L2(RN ).

Once again, setting u3,n := τk2,n
u2,n −v2, either (i) ‖u3,n‖ → 0, or (ii) (u3,n)

is non-vanishing. Continuing this process, we obtain a sequence (vi) ∈ Kd\{0}
with λi = ‖vi‖2

L2(RN ). It remains to show that this process terminates after a finite
number of steps (i.e. there exists a l ∈ N such that (i) occurs after l steps). Since,

‖un‖2
L2(RN ) ≤ 1

b0
‖un‖2 ≤ M2(d)

b0
,

Lemma 2.9 yields
∞∑

i=1

‖vi‖2
L2(RN ) ≤ M2(d)

b0
< ∞,

and we conclude by Lemma 2.7 that there exists a l ∈ N (which depends on d)
such that ‖vi‖2

L2(RN ) = 0 for all i ≥ l. ��
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Remark 2.26. We note that all the results in this section are completely independent
of (∗). Thus Palais-Smale sequences behave in a similar way when (∗) is replaced
with certain weaker conditions.

3. A criterion for existence

Let F := Kc+α/ZN , then under (∗) F is finite. For any l ∈ N, define

T (l) :=

{
k∑

i=1

τji
vi : 1 ≤ k ≤ l, ji ∈ ZN , vi ∈ F

}
.

From a combinatorial result in [3], we deduce that T (l) is a discreet set, i.e.

µ(l) := inf {‖x − y‖ : x 
= y ∈ T (l)} > 0.

By Proposition 2.23, we fix a l ∈ N such that, whenever (un) ⊂ Ic+α
0 satisfy

I ′(un) → 0, then un → T (l). Also, by the discreteness property mentioned above,
we set

α1 := sup
{
γ < α : Kc+γ

c−γ = K(c)
}

> 0.

Proposition 3.1. There exists a finite, non-emptyC ⊂ K(c) such that for all ε ≤ α1
2 ,

r1 ≤ 1
12µ(l) and p ∈ N, there exists an ε1 ∈ (0, ε) and g1 ∈ Γ satisfying

(i) maxt∈[0,1] I(g1(t)) ≤ c + ε1
p and

(ii) I(g1(t)) ≥ c − ε1 ⇒ g1(t) ∈ Nr1(C).

Since the proof of Proposition 3.1 is similar to the equivalent result obtained
in [3], we will not provide any details. We do however note that Proposition 3.1
follows from a suitable deformation result. Since the Palais-Smale condition fails,
we lack a positive lower bound for I ′ outside some neighborhood of K and the
standard Deformation Theorem does not apply. However, due to Proposition 2.23,
we have the following:

Proposition 3.2. For any r < 1
3µ(l) there exists a δ3 > 0 such that ‖I ′(u)‖ ≥ δ3

for all u ∈ Ic+α
c−α\N r

8
(T (l)).

Proof. If not, we can find a (un) ⊂ Ic+α
c−α\N r

8
(T (l)) such that I ′(un) → 0. By

Proposition 2.23, un → T (l), a contradiction. ��

A variant of the standard Deformation Theorem then follows:

Proposition 3.3. If d ∈ (0, c + α), then for any ε ∈ (0, α] and r < 1
3µ(l),

there exists an ε ∈ (0, ε), η ∈ C
(
[0, 1] × W 1,2(RN ), W 1,2(RN )

)
and σ ∈

C
(
Id+ε, [0, 1]

)
such that

1o η(0, u) = u for all u ∈ W 1,2(RN ),
2o η(s, u) = u for all u ∈ Id+ε

d−ε ,
3o I(η(s, ·)) is non-increasing,
4o η(1, Id+ε\Nr(Kd+ε

d−ε)) ⊂ Id−ε,
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5o σ(u) = 0 for all u ∈ Id−ε\Nr(Kd+ε
d−ε) and I(η(σ(u), u)) = d − ε for all

u ∈ Id+ε
d−ε\Nr(Kd+ε

d−ε).
6o ‖η(σ(u), u) − u‖ ≤ r for all u ∈ W 1,2(RN ) and
7o η(s, τju) = τjη(s, u) for all u ∈ W 1,2(RN ), j ∈ ZN .

See [3] for a proof.
Next we prove a suitable existence criteria for our main result. We also provide

the initial setup for the contradiction argument that occupy Section 4. First, we fix
a n0 ∈ N and j1, . . . , jk ∈ ZN so that

|ji − jm| ≥ n0 ∀i 
= m,

implies,

‖
k∑

i=1

τjivi‖ ≥ 1
2

k∑
i=1

‖vi‖ ≥ k

2
δ1 ∀vi ∈ C, (3.4)

and∣∣∣∣∣I
(

k∑
i=1

τjivi

)
−

k∑
i=1

I(vi)

∣∣∣∣∣ =
∣∣∣∣∣I
(

k∑
i=1

τji
vi

)
− kc

∣∣∣∣∣ < α

2
∀vi ∈ C. (3.5)

For l ∈ N, we introduce the following notation:

M(l) :=

{
k∑

i=1

τlji
vi : vi ∈ C

}
, M∗ :=

⋃
l∈N

M(l).

The next couple of results are similar to their counter parts in [3,4], with similar
proofs. We simply state the results here:

Proposition 3.6. There exists a rk > 0 such that if r ≤ rk and w ∈ Nr(M∗),
then w ∈ Ikc+α

kc−α .

Proposition 3.7. Set

r1 = min
(

1
12

µ(l),
δ1

2
, rk

)
, (3.8)

then for any r ≤ r1 and l ∈ N, either

(i) there exists a δ̂l > 0 such that ‖I ′(w)‖ ≥ δ̂l for all w ∈ Nr(M(l)), or
(ii) there exists a w ∈ Nr(M(l)) such that I ′(w) = 0, i.e. Nr(M(l)) ∩ K 
= ∅.

Set
L := {l ∈ N : (i) of Proposition 3.7 holds for M(l)},

and
W :=

⋃
l∈L

M(l).

Combining Proposition 3.6 and Proposition 3.7, we can formulate the following
existence criterion:
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Proposition 3.9. If |L| < ∞, then Kkc+α
kc−α/ZN is infinite.

Proof. Assuming L is finite, Proposition 3.6 and Proposition 3.7 yields

Kkc+α
kc−α/ZN ∩ Nr(M(l)) 
= ∅,

for all but finitely many l. Since Nr(M(l1)) ∩ Nr(M(l2)) = ∅, if |l1 − l2| is
sufficiently large, the proof is complete. ��

Thus, in order to prove Theorem 1.3, it suffices to show |L| < ∞. Towards this
end, we essentially follow [4]. Define the following class of functions:

Γk : ={G∈C([0, 1]k, W 1,2(RN )) : G = g1+ . . .+gk, and gi satisfies (g1)-(g3)}

(g1) gi ∈ C([0, 1]k, W 1,2(RN )) for all 1 ≤ i ≤ k;
(g2) Setting 0i := (t1, . . . , ti−1, 0, ti+1, . . . , tk) and

1i := (t1, . . . , ti−1, 1, ti+1, . . . , tk), we require gi(0i) = 0 and I(gi(1i)) <
0 for all 1 ≤ i ≤ k;

(g3) There exist compact sets Si ⊂ RN such that Si ∩ Sj = ∅ for all i 
= j and
supp gi ⊂ Si for all 1 ≤ i ≤ k.

Note that, if gi ∈ Γ satisfies (g3), then G(t) =
∑k

i=1 gi(ti) ∈ Γk. Set

ck := inf
G∈Γk

sup
t∈[0,1]k

I(G(t)).

To show that L is finite, we argue in the following manner: Seeking a contradiction
suppose |L| = ∞, then we construct a G ∈ Γk such that

I(G(t)) ≤ kc − ε,

where ε > 0. This would contradict the following:

Proposition 3.10. ck = kc.

The construction of such a G occupies Section 4. We close this section with the
proof of Proposition 3.10.

Lemma 3.11. Let gi satisfy (g1)-(g3), 1 ≤ i ≤ k. Then there exists a t ∈ [0, 1]k

such that

I(gi(t)) ≥ c,

for all 1 ≤ i ≤ k.

Proof. See [3, Proposition 3.4].

Lemma 3.12. For any u∈W 1,2(RN ) and ε, ε∗>0, there exists a R = R(ε, ε∗) > 0
and u∗ ∈ W 1,2(RN ) such that (i) ‖u − u∗‖ ≤ ε∗, (ii) |I(u) − I(u∗)| ≤ ε, and
(iii) supp u∗ ⊂ BR+1.
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Proof. For any R > 0, let χR ∈ C∞(R+,R) satisfy |χ′
R(s)| ≤ 2 and

χR(s) =
{

1 if s ≤ R
0 if s ≥ R + 1.

For any u ∈ W 1,2(RN ) set

u∗(x) = χR(|x|)u(x).

We claim that for R sufficiently large, u∗ defined above satisfies properties (i)-(iii).
Property (iii) is obvious. Set

γ(R) := ‖u‖2
Bc

R
.

Note that

‖u − u∗‖2 ≤
∣∣∣∣∣
∫

|x|>R

|∇u|2 + b(x)u2 dx

∣∣∣∣∣
+

∣∣∣∣∣
∫

R<|x|<R+1
|∇χRu|2 + b(x)(χRu)2 dx

∣∣∣∣∣ .
A calculation yields |∇χRu|2 ≤ 2(χ′

Ru)2 + 2χ2
R|∇u|. Thus,

‖u − u∗‖2 ≤ γ(R) + 8

∣∣∣∣∣
∫

R<|x|<R+1
|∇u|2 + (b(x) + 1)u2 dx

∣∣∣∣∣
≤ γ(R) + 8γ(R) +

8
b0

γ(R) ≤
(

8 + 9b0

b0

)
γ(R).

Choosing R large enough such that γ(R) < ε∗b0
8+9b0

, property (i) holds. Finally, by
(2.2),

|I(u) − I(u∗)| ≤
(

8 + 9b0

b0

)
γ(R) +

∣∣∣∣∣
∫

|x|>R

F (u) dx

∣∣∣∣∣
+

∣∣∣∣∣
∫

R<|x|<R+1
F (χRu) dx

∣∣∣∣∣
≤ (ε∗ + 2

Cf

b0
)γ(R).

Once again, choosing R large enough completes the proof. ��

Proof of Proposition 3.10. Lemma 3.11 yields

sup
t∈[0,1]k

I(G(t)) = sup
t∈[0,1]k

k∑
i=1

I(gi(t)) ≥ kc,
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for all G ∈ Γk. Hence ck ≥ kc. Let ε > 0 and choose a g ∈ Γ so that

sup
t∈[0,1]

I(g(t)) ≤ c +
ε

2k
.

Since [0, 1] is compact, we may apply Lemma 3.12 to obtain a R̂ > 0 and ĝ ∈ Γ
so that supp ĝ(t) ⊂ BR̂+1 and

sup
t∈[0,1]

I(ĝ(t)) ≤ c +
ε

k
.

Choose m1, . . . , mk ∈ ZN so that τmi
BR̂+1

⋂
τmj

BR̂+1 = ∅ for all i 
= j. Then

G(t) =
k∑

i=1

τmi ĝ(ti) ∈ Γk,

and

sup
t∈[0,1]

I(G(t)) ≤
k∑

i=1

I(ĝ(ti)) ≤ kc + ε.

Since ε > 0 was arbitrary, it follows that ck ≤ kc. ��

4. Construction of G

Assuming |L| = ∞, we construct a G ∈ Γk with supt∈[0,1]k I(G(t)) < kc. Since
this contradicts Proposition 3.10, we conclude that |L| < ∞ and by Proposition
3.9 the proof of Theorem 1.3 would be complete.

Let

ε < min
(

α1

2
,
δ4r

40

)
. (4.1)

Step 1: The construction of G1

For r < r1 and ε < ε, by Proposition 3.1 there exists a g1 ∈ Γ such that

I(g1(t)) ≤ c +
2ε

6k
,

and
I(g1(t)) ≥ c − 2ε ⇒ g1(t) ∈ N r

16k
(C).

Since [0, 1] is compact, we may apply Lemma 3.12 to obtain a g0 ∈ Γ and R0 > 0
such that ‖g0(t) − g1(t)‖ ≤ r

16k , |I(g0(t)) − I(g1(t))| ≤ 2ε
3k and supp g1(t) ⊂

BR0+1 for all t ∈ [0, 1]. Thus,

I(g0(t)) ≤ |I(g0(t)) − I(g1(t))| + |I(g1(t))| ≤ c +
ε

k
, (4.2)
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and

I(g0(t)) ≥ c − (k + 1)ε
3k

⇒ 2ε

3k
+ I(g1(t)) ≥ c − (k + 1)ε

3k
⇒ I(g1(t)) > c − 2ε ⇒ g1(t) ∈ N r

16k
(C)

⇒ g0(t) ∈ N r
8k

(C).

For l ∈ L, set

G1(t) :=
k∑

i−1

τlji
g0(ti).

For notational convenience we set R
2 = R0 + 1, and

β := inf
i �=m

|τlji
BR+1 − τljm

BR+1| . (4.3)

We require that β > β̂, where β̂ is free for the moment. We note that, since it is
assumed that L is infinite, β̂ can be made arbitrarily large.

If β̂ > 0, then G1 ∈ Γk and

supp G1(t) ⊂
k⋃

i=1

τlji
BR

2
.

Thus I(G1(t)) ≤ kc + ε and for any 1 ≤ m ≤ k,

I(G1(t)) ≥ kc − ε ⇒ I(g0(tm)) +
k∑

i �=m

I(g0(ti)) ≥ kc − ε

⇒ I(g0(tm)) + (k − 1)c +
(k − 1)ε

k
≥ kc − ε

⇒ I(g0(tm)) > c − 2ε ⇒ g0(tm) ∈ N r
8k

(C),

which impliesG1(t) ∈ N r
8
(W).We complete Step 1 by summarizing the properties

of G1 ∈ Γk:

(G1)1 I(G1(t)) ≤ kc + ε,
(G1)2 I(G1(t)) ≥ kc − ε ⇒ G1(t) ∈ N r

8
(W) and

(G1)3 supp G1(t) ⊂
⋃k

i=1 τljiBR
2
.

Step 2: Construction of G2 via a deformation of G1

The idea is to construct a deformation of G1 from Ikc+ε to Ikc−ε using the
gradient flow. This amounts to showing that there exists a η ∈ C([0, 1], W 1,2(RN ))
and σ ∈ C(W 1,2(RN ), [0, 1]) such that

η(0, G1(t)) = G1(t) and G2(t) := η(σ(G1(t)), G1(t)) ⊂ Ikc−ε.

This follows exactly as in [4, Section 4, Step 2]. We summarize the basic properties
of G2:
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(G2)1 I(G2(t)) ≤ kc − ε,
(G2)2 ‖G2(t) − G1(t)‖ ≤ 5

8r and
(G2)3 G2(t) = G1(t) for t = 0i,1i.

At this point we note that, if also G2 ∈ Γk, then by (G2)1 our proof would be
complete. However, due to the way in which G2 was constructed, property (g3)
may no longer be satisfied. The rest of this section concerns itself with modifying
or “cutting” (G2) into disjoint pieces without compromising the crucial energy
estimate (G2)1.

Step 3: Construction of G3 via a smooth approximation of G2

Let ρ ∈ C∞
0 (RN ) be a properly scaled mollifier, i.e. ρ ≥ 0,

∫
RN ρ dx = 1 and

supp ρ ⊂ B1. Then we set

G∗(t)(x) = Jε∗G2(t)(x) :=
1
εN∗

∫
RN

ρ

(
x − y

ε∗

)
G2(t)(y) dy.

It is well known (see for instance [7]) that G∗ ∈ C([0, 1]k, W 1,2(RN )), G∗(t) ∈
C∞(RN ) and for any ε̃ > 0 there exists a ε∗ > 0 such that

‖G∗(t) − G2(t)‖ ≤ ε̃.

By (G2)3 and (G1)3, we note that for t = 0i,1i,

supp G∗(t) = supp Jε∗G1(t) ⊂
k⋃

i=1

τljiBR
2 +ε∗ .

Thus choosing ε∗ small enough, we may assume

supp G∗(t) ⊂
k⋃

i=1

τljiBR

for t = 0i,1i. Also note that, since g0(0) = 0,

supp G∗(0i) ⊂
k⋃

n �=i

τljnBR.

Setting ε̃ = min
(

ε
2 ,− 1

2I(g0(1))
)
, we also choose ε∗ << 1 such that

|I(G∗(t)) − I(G2(t))| ≤ ε̃ and ‖G∗(t) − G2(t)‖ ≤ r
4 .

Then, by (G2)1, (G2)2 and (G2)3,

I(G∗(t)) ≤ kc − ε

4
, ‖G∗(t) − G1(t)‖ ≤ 7

8
r, I

(
G∗(1i)|τlji

BR

)
< 0.

Using the techniques of Lemma 3.12, there exits a R̂ > 0 and G3(t) ∈ C∞
0 (RN )

such that

‖G3(t) − G∗(t)‖ ≤ r

8
, |I(G3(t)) − I(G∗(t))| ≤ ε

4
, supp G3(t) ⊂ BR̂+1,
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for all t ∈ [0, 1]k. We also choose R̂ large enough such that ∪k
1=1τljiBR ⊂ BR̂+1

and ∣∣∂BR̂+1 − τlji
BR

∣∣ > β + 2, for all i = 1, . . . , k. (4.4)

We complete Step 3 by summarizing the properties of G3:

(G3)1 G3(t) ∈ C∞
0 (RN ) and supp G3(t) ⊂ BR̂+1,

(G3)2 I(G3(t)) ≤ kc − ε
4 ,

(G3)3 ‖G3(t) − G1(t)‖ ≤ r,
(G3)4 supp G3(t) ∈

⋃k
i=1 τljiBR for t = 0i,1i, supp G3(0i) ⊂

⋃k
n �=i τljnBR

and I
(
G3(1i)|τlji

BR

)
< 0.

Step 4: Modifying G3

Set

S := {x ∈ BR̂+1 : x /∈
k⋃

i=1

τljiBR}

and
Ĥ(t) := {v ∈ W 1,2(S) : ‖v‖S < 4r and u = G3(t) on ∂S}.

By (G3)3 and (G1)3,

‖G3(t)‖S = ‖G3(t) − G1(t)‖S ≤ r,

which shows that G3(t) ∈ Ĥ(t) and Ĥ(t) 
= ∅. Define

IS(v) :=
1
2
‖v‖2

S −
∫

S

F (v) dx,

and
m̂(t) := inf

v∈Ĥ(t)
IS(v).

Step 4.1. There exists a unique v̂ = v̂(t) ∈ Ĥ(t), which depends continuously on
t, such that IS(v̂) = m̂(t).

We first show that if IS(v̂) = m̂(t), then v̂ lies in the interior of Ĥ(t). By (2.3),
there exist a C8 > 0 such that

F (v) ≤ b0

8
|v|2 + C8|v|2∗

.

Thus, by the Sobolev imbedding, there exists a K1 > 0 such that∫
S

F (v) dx ≤ 1
8
‖v‖2

S + C8K
2∗
1 ‖v‖2∗

S .

Let r2 > 0 satisfy:

C8K
2∗
1 (4r2)2

∗−2 =
1
8
,
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then if r < r2 and v ∈ Ĥ(t),∫
S

F (v) dx ≤ 1
4
‖v‖2

S ,

which implies that

IS(v) ≥ 1
4
‖v‖2

S .

Next, note that

m̂(t) ≤ IS(G3(t)) ≤ 3
4
‖G3(t)‖2

S ≤ 3
4
r2.

Thus, if ‖v‖S ≥ 2r, then

IS(v) ≥ r2 > IS(G3(t)) ≥ m̂(t),

and we conclude that ‖v̂‖S < 2r.
Let (vn) ⊂ Ĥ(t) be a minimizing sequence, i.e. IS(vn) → m̂(t). Since

‖vn‖S < 4r, up to a subsequence, vn ⇀ v̂ in Ĥ(t), vn → v̂ in L2(S). Since
F (v) ≤ 1

2Cf |v|2, F (vn) → F (v̂) in L1(S) (see [21, Lemma A.2]) and

m̂(t) = lim
n→∞ IS(vn) ≥ IS(v̂) ≥ m̂(t),

which shows that m̂(t) is achieved.
Since f ∈ C1 and ∂S ∈ C∞, standard regularity arguments show that v̂ ∈

C2,γ(S), 0 < γ < 1, and is a classical solution of

−∆v + b(x)v = f(v) in S
v = G3(t) on ∂S.

}
(4.5)

Finally we show that for r sufficiently small, v̂ is unique. This would immediately
imply that v̂(t) depends continuously on t. Seeking a contradiction, suppose ŵ 
= v̂
solves (4.5). Then

‖v̂−ŵ‖2
S =

∫
S

(f(v̂) − f(ŵ)) (v̂−ŵ) dx =
∫

S

(v̂−ŵ)2
∫ 1

0
f ′(v̂−t(v̂−ŵ)) dt dx

By (f1)-(f2), f ′(s) → 0 as |s| → 0 and f ′(s) → a as |s| → ∞. Thus, there exists
a C ′

8 > 0 such that

f ′(s) ≤ b0

8
+ C ′

8|s|
4

N−2 .

Using Hölders Inequality with p = N
N−2 and p′ = N

2 yields

‖v̂ − ŵ‖2
S ≤ b0

8

∫
S

(v̂−ŵ)2 dx + C ′
8‖v̂−ŵ‖2

L2∗ (S)

(
‖v̂‖L2∗ (S) + ‖ŵ‖L2∗ (S)

) 4
N−2

≤ 1
8
‖v̂ − ŵ‖2

S + C ′
8K

2
1‖v̂ − ŵ‖2

S (K1‖v̂‖S + K1‖ŵ‖S)
4

N−2

≤ 1
8
‖v̂ − ŵ‖2

S + C ′
8K

2
1‖v̂ − ŵ‖2

S(K1(2r))
4

N−2 .
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Let r3 > 0 satisfy

C ′
8K

2∗
1 (2r3)

4
N−2 =

3
4
.

Then, with r ≤ r3,

‖v̂ − ŵ‖2
S ≤ 7

8
‖v̂ − ŵ‖2

S ,

which yields the desired contradiction, and completes Step 4.1.

Step 4.2. Set Dρ := {x ∈ S : |x−∂S| ≥ ρ}. Then there exists a K > 0, depending
only on ρ and N , such that

‖v̂‖L∞(Dρ) ≤ K ‖v̂‖S .

Fix any arbitrary x ∈ Dρ. Define

Bi := B iρ
2(j+1)

(x), i = 1, . . . , j + 1

where 1 ≤ j < ∞ is free for the moment. (The integer j would later be determined
in terms of N .) Note that Bi ⊂ S. Since v̂ ∈ C2,γ(S) solves (4.5), the elliptic Lp

loc

estimates (see [7, Theorem 9.11]) yields

‖v̂‖W 2,p(Bi) ≤ K1
(
‖v̂‖Lp(Bn) + ‖f(v̂)‖Lp(Bn)

)
, (4.6)

for any i < n ≤ j + 1 and 1 < p < ∞. Since i runs over a finite range, we can
assume that the constant K1 > 0 depends only on N and p.

By the Sobolev-Rellich-Kondrachov Imbedding (see [7, Theorem 7.11]) there
exists a K2 > 0 such that if p > N

2 then

‖v̂‖L∞(Bi) ≤ K2‖v̂‖W 2,p(Bi). (4.7)

We will also make use of the Gagliardo-Nirenberg inequality in the following form:

‖v̂‖Lt(Bi) ≤ K3‖v̂‖γ
W 2,d(Bi)

‖v̂‖1−γ
Lq(Bi)

, (4.8)

where 1 ≤ d, q < ∞, K3 > 0 and

1
t

= γ

(
1
d

− 2
N

)
+ (1 − γ)

1
q
.

As before, we may assume K2, K3 to be independent of Bi. Finally, note that, for
any 1 < p < ∞,

‖f(v̂)‖Lp(Bi) ≤ Cf‖v̂‖Lp(Bi). (4.9)

Set p1 = 2∗. For the remainder of this step the positive constants km, km and
Km are chosen independent of Bi.

Case 1. N < 6
Then p1 > N

2 . Set j = 1. By (4.9), (4.6) and the Sobolev Imbedding

‖v̂‖W 2,p1 (B1) ≤ K1(1 + Cf )‖v̂‖Lp1 (B2) ≤ k1‖v̂‖W 1,2(B2) ≤ k2‖v̂‖S . (4.10)
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By (4.7), this implies
‖v̂‖L∞(B1) ≤ K1‖v̂‖S .

Case 2. N = 6
Then p1 = N

2 . Set j = 1. Setting t = ∞, d = p1 and γ = 1, (4.8) and (4.10)
yields

‖v̂‖L∞(B1) ≤ K2‖v̂‖S .

Case 3. N > 6
Then p1 < N

2 . Set j = [[N−6
4 ]] + 1. Let 1

t1
= 1

p1
− 2

N . By (4.8) with γ = 1 and
(4.10)

‖v̂‖Lt1 (Bj+1) ≤ K3‖v̂‖W 2,p1 (Bj+1) ≤ k1‖v̂‖S .

Then, by (4.9) and (4.6)

‖v̂‖W 2,t1 (Bj) ≤ k1‖v̂‖S .

Continuing this process with,

1
ti

=
1

ti−1
− 2

N

yields
‖v̂‖W 2,ti (Bj−i+1) ≤ ki‖v̂‖S .

Note that
1
ti

=
1
2∗ − 2i

N
=

N − 2(1 + 2i)
2N

and therefore

tj >
2N

N − 2(1 + 2(N−6
4 ))

=
N

2
.

We conclude by (4.7) that

‖v̂‖L∞(B1) ≤ K2‖v̂‖W 2,tj (B1) ≤ K3‖v‖S .

Since the above holds for all x ∈ Dρ and the constants Ki are independent of
B1, we have completed Step 4.2.

Step 4.3. v̂ is exponentially small in certain annular regions contained in S.
Define the following sets:

M̂ := {x ∈ RN : R + 1 ≤ |x| ≤ R + β + 1} and Ŝi = τljiM̂.

By (4.3) and (4.4), Sm∩τljiB
o
R = ∅ for all m 
= i, and Ŝi ⊂ D1 for all i = 1, . . . , k.

Set Ŝ := ∪k
i=1Ŝi. Using elliptic estimates similar to [4, Section 5, Step 4] it follows

that, for

Âi := τlji{x ∈ RN : R +
β

2
+

1
2

≤ |x| ≤ R +
β

2
+ 1} ⊂ Ŝi,
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and ω := min(1, b0), it holds,

v̂2(x) ≤ 2s2e−ω β
2 cosh

ω

2
for x ∈ Âi, i = 1, . . . , k. (4.11)

This completes Step 4.3.
To complete Step 4, define

G4(t)(x) :=
{

G3(t)(x) if x /∈ S
v̂(t)(x) if x ∈ S.

We summarize the properties of G4:

(G4)1 By (G3)2 and the definition of v̂(t),

I(G4(t)) ≤ I(G3(t)) ≤ kc − ε

4
.

(G4)2 G4(t) ∈ C2(S), and there exists a constant A1 > 0 such that

G4(t)(x) = v̂(t)(x) ≤ A1se
−ω β

4 for all x ∈ Âi, i = 1, . . . , k.

Step 5: The construction of G

Set

Ai := τlji{x ∈ RN : R +
β

2
+

5
8

≤ |x| ≤ R +
β

2
+

7
8
} ⊂ Âi.

Let ζβ ∈ C∞(R,R) such that |ζ ′
β | ≤ c0, for some positive constant c0, and

ζβ(s) =
{

1 if s ≤ R + β
2 + 5

8
0 if s ≥ R + β

2 + 7
8 .

For i = 1, . . . , k, define

gi(t)(x) :=




G4(t)(x) if x ∈ τljiBR+ β
2 + 5

8

ζβ(|x − τ lji
|)v̂(t)(x) if x ∈ Ai

0 otherwise.

Step 5.1. gi(t) satisfies (g1)-(g3).
By (G4)1, we see that gi satisfies (g1). Since β̂ > 0, gi satisfies (g3). If t = 0i

or 1i, by (G3)4,
G3(t)(x) = 0 for x ∈ S.

This implies that v̂(t)(x) = 0 for x ∈ ∂S, and by uniqueness v̂(t)(x) = 0 for
x ∈ S. Thus, for t = 0i or 1i,

gi(t)(x) =
{

G3(t)(x) if x ∈ τlji
BR

0 otherwise.

Finally, by (G3)4, this implies that gi(0i) = 0 and I(gi(1i)) < 0, which shows
that gi(t) satisfies (g2) and completes Step 5.1.
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Setting

G(t) :=
k∑

i=1

gi(t),

we have just shown that G ∈ Γk.

Step 5.2. I(G(t)) ≤ kc − ε
8 .

We first provide some additional uniform estimates for v̂ on Ai.

Step 5.2.1. There exists a constant A2 > 0 such that

‖v̂(t)‖C1(Ai) ≤ A2e
−ωβ

4 ,

for all i = 1, . . . , k.
Fix any arbitrary x ∈ Ai. Set O := B 1

32
(x) and Ô := B 1

16
(x). Note that

O ⊂⊂ Ô ⊂⊂ Âi. By (4.6), for any 1 < p < ∞,

‖v̂‖W 2,p(O) ≤ K1

(
‖f(v̂)‖Lp(Ô) + ‖v̂‖Lp(Ô)

)
.

Choose β̂ large enough such that A1e
−ω β

4 ≤ 1. Then, by (G4)2, |v̂(x)| ≤ s for all
x ∈ Âi and we conclude that

‖f(v̂)‖Lp(Ô) ≤ b0

2
‖v̂‖Lp(Ô).

Thus,

‖v̂‖W 2,p(O) ≤ K1

(
1 +

b0

2

)
‖v̂‖Lp(Ô) ≤ K1

(
1 +

b0

2

)
A1se

−ω β
4 (m(Ô))

1
p

= K2e
−ω β

4 ,

where K2 depends only on N and p. Fix a p > N , then there exist a K3 > 0 such
that

‖v̂‖C1(O) ≤ K3‖v̂‖W 2,p(O) ≤ K4e
−ω β

4 .

Since the above holds for all x ∈ Ai, we have completed Step 5.2.1.
Set A := ∪k

i=1Ai, and

I1 :=
∣∣∣∣
∫

A

1
2
(|∇G(t)|2 + b(x)G(t)2) − F (G(t)) dx

∣∣∣∣
I2 :=

∣∣∣∣
∫

A

1
2
(|∇G4(t)|2 + b(x)G4(t)2) − F (G4(t)) dx

∣∣∣∣ .
Since G(t) and G4(t) agrees everywhere except on A, by (G4)1,

I(G(t)) ≤ kc − ε

4
+
∣∣I(G(t)) − I(G4(t))

∣∣ ≤ kc − ε

4
+ I1 + I2.

To complete Step 5.2, it suffices to show I1, I2 ≤ ε
16 .

Step 5.2.2. I1 ≤ ε
16 .
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Note that

I1 =

∣∣∣∣∣
k∑

i=1

(
1
2
‖gi(t)‖2

Ai
−
∫

Ai

F (gi(t)) dx

)∣∣∣∣∣ ≤ 1
2

(
1 +

Cf

b0

) k∑
i=1

‖gi(t)‖2
Ai

.

By the uniform estimates of Step 5.2.1:

‖gi(t)‖2
Ai

=
∫

Ai

|∇ζβ |x − τ lji |v̂(x)|2 + b(x)(ζβ |x − τ lji |v̂(x))2 dx

≤ 2c0

∫
Ai

|∇v̂(x)|2 + (b + 1)v̂2(x) dx

≤ 2c0

(
A2e

−ω β
2 + A2(b + 1)e−ω β

2

)
m(Ai).

Choosing β̂ >> 1 such that

2c0A2

(
e−ω β

2 + (b + 1)e−ω β
2

)
m(Ai) ≤ ε

8k(1 + Cf

b0
)
, (4.12)

for all β ≥ β̂, we conclude that I1 ≤ ε
16 .

Step 5.2.3. I2 ≤ ε
16 .

As in Step 5.2.2, we have that

I2 ≤ 1
2

(
1 +

Cf

b0

) k∑
i=1

‖v̂(t)‖2
Ai

,

and
‖v̂(t)‖2

Ai
≤
(
A2e

−ω β
2 + A2be

−ω β
2

)
m(Ai).

If β̂ satisfies (4.12), then I2 ≤ ε
16 , and Step 5 is complete.
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