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Abstract. In this paper we prove existence and precise decay estimates at infinity of solu-
tions to the Bogomol’nyi system of the static Einstein equations coupled with the Maxwell-
Higgs fields with translational symmetry in one direction. The equations model cosmic
strings(or superconducting strings) in equilibrium state. The Higgs fields of our solutions,
in particular, tend to the symmetric vacuum at infinity. The construction of our solution is
by the perturbation type of argument combined with the implicit function theorem.
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1 Introduction and the Main Theorem

Let us consider the (3+1) dimensional Lorentzian manifold (M, gµν), where gµν

is a metric with signature given by (−,+,+,+). We denote gµν for the inverse
matrix of gµν . We raise and lower the tensor indices by gµν and gµν . On this
manifold let us introduce the Lagragian,

L =
1
4
gµαgνβFµνFαβ +

1
2
gµν(Dµφ)(Dνφ)∗ +

1
8
(|φ|2 − σ2)2, (1.1)

where φ is a cross section on a U(1)-line bundle, called Higgs field,A = Aµdx
µ is

a (gauge) connection 1-form, called the Maxwell field,F = dA = 1
2Fµνdx

µ ∧dxν

with Fµν = ∂µAν − ∂νAµ is a (gauge) curvature 2-form, and D = d − iA is a
(gauge) covariant derivative.We denoteφ∗ as the complex conjugation ofφ.σ > 0 is
called the symmetry breaking parameter. LetΓ ρ

µν = 1
2g

ρα(∂νgαµ+∂µgαν−∂αgµν)
be the Christoffel symbol, representing the Levi-Civita connection on (M, gµν),
and let

Rµ
νρτ = ∂τΓ

µ
νρ − ∂ρΓ

µ
ντ + Γµ

ραΓ
α
τν − Γµ

ταΓ
α
τν

be the Riemann curvature tensor on the manifold. LetRµν = Rα
µαν andR = Rα

α be
the Ricci tensor and the scalar curvature of the manifold respectively. LetG > 0 be
the gravitational constant. Then, the Einstein equations coupled with the Maxwell-
Higgs fields are

Rµν − 1
2
gµνR = 8πGTµν , (1.2)
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where the energy-momentum tensor Tµν given by

Tµν = gαβFµαFνβ +
1
2
[(Dµφ)(Dνφ)∗ + (Dνφ)(Dµφ)∗] − gµνL, (1.3)

coupled with the matter equations,

1√|g|Dµ(gµν
√

|g|Dνφ) =
1
2
(|φ|2 − σ2)φ, (1.4)

and
1√|g|∂α(gµνgαβ

√
|g|Fνβ) =

i

2
gµν [φ(Dνφ)∗ − φ∗(Dνφ)], (1.5)

where we denoted g = det(gµν). We assume that our metric is static and transla-
tional invatiant along a spatial direction, say along the x3 axis. More precisely, we
assume our metric is of the form

ds2 = gµνdx
µdxν = −dt2 + dx2

3 + γijdx
idxj ,

where ∂tγij = ∂3γij = 0, and M = R2 × M2. We also assume that our matter
fields Aµ, φ depend on x1, x2, the coordinates of M2, and Aµ = (0, A1, A2, 0).
We denote below A = (A1, A2). In this case it is known ([13,18]) that the system
(1.2)–(1.5) posess the self-dual equations,

Kγ = 8πGE , (1.6)

(Dj ± iεk
jDk)φ = 0, (1.7)

εjkFjk ± (|φ|2 − σ2) = 0, (1.8)

where Kγ is the Gaussian curvature of (M2, γij), E = T00 is the energy density,
εjk is the Levi-Civita skew-symmtetric tensor with the normalization ε12 =

√
γ,

where γ = det(γij). The Bogomol’nyi system, (1.6)–(1.8) represents a model for
cosmic strings (or superconducting strings) in equilibrium ([10,19]). We further
assume that our reduced manifold, (M2, γij) is conformally flat, namely there
exists a function η such that

γij = eηδij . (1.9)

Following [20], we make a scale transform, x �→ x
σ , φ �→ σφ,Aj �→ σAj . Then,

the energy and the Gaussian curvature transform as E �→ σ4E ,Kγ �→ σ2Kγ . Then,
following standard Jaffe-Taubes’ procedure [9], we represent

φ = exp


u

2
+ i

m∑
j=1

njArg(z − zj)


 ,

where the zero set of φ, Z(φ) = {zj}m
j=1 ⊂ C = R

2 is prescribed together with
their multiplicities {nj}m

j=1. We can thus reduce further the system (1.6)–(1.9) into
the semilinear elliptic system for (u, η)

∆u = eη(eu − 1) + 4π
m∑

j=1

njδ(z − zj), (1.10)
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∆(η + aeu) = aeη(eu − 1), (1.11)

where we set

a = 4πGσ2. (1.12)

The system (1.10)–(1.11) is our basic equations to solve in the following sections.
We want to solve (1.10)–(1.11) under the finite energy condition∫

R2
Eeηdx < ∞,

∫
R2
Kγe

ηdx < ∞. (1.13)

Here we note that, in terms of u, η, E ,Kγ and F12 have the representations,

Kγ = −1
2
e−η∆η = aE , F12 = −1

2
eη(eu − 1).

A solution pair (u, η) satisfying (1.10)–(1.11) generates a static finite energy solu-
tion (φ,A, g) of (1.6)–(1.8), (and thus solutions of (1.2)–(1.5)) called a multi-string
solution. In particular, we consider the two types of solutions of (1.10)–(1.13) dis-
tinguished by the boundary conditions for u at infinity:

u(x) → 0 as |x| → ∞, (1.14)

and

u(x) → −∞ as |x| → ∞. (1.15)

Physically, (1.14) implies that the Higgs field, φ(x) has the asymmetric vacuum
(|φ(x)| = 1) at infinity, while (1.15) implies that the Higgs field satisfies the
symmetric vacuum (|φ(x)| = 0) at infinity. Mathematical study of the system
(1.10)–(1.11) is extensively done in [6,16,21]. We also mention that recently there
are many mathematical studies on the similar type of equations arising from other
vortex models (see [1–5,11–15,17] and, in particular [20] for a comprehensive
survey of the subject.). In [6] it is found that the necessary condition for existence
of solution of (1.10)–(1.13) is 0 < aN < 2, and under the assumption 0 < aN < 1,
general (nonradial) multi-string solutions satisfying (1.14) are constructed in [21].
In this paper, we construct a family of solution to (1.10)–(1.13) satisfying the
condition (1.15) in the full range 0 < aN < 2. Our method of construction is
a variation of the perturbation type of argument, which has been developed in a
series of papers [1–3]. In order to formulate our main theorem we introduce some
functions. Given ε > 0, and δ ∈ C = R

2, we define

ρI
ε,δ(z) :=

8
1
a ε2N+2 ∏m

j=1 |z − zj |2nj

a
1
a (1 + |εz + δ|2) 2

a

, (1.16)

and

ρII
ε,δ(z) :=

8ε2

a(1 + |εz + δ|2)2 . (1.17)
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where z = x1 + ix2. We also introduce the associated functions

ρ1(r) :=
8

1
a r2N

a
1
a (1 + r2)

2
a

, (1.18)

and

ρ2(r) :=
8

a(1 + r2)2
, (1.19)

where r = |z|. Below we set f(t) = (a+ 1)ρ1(t)ρ2(t). Then, the function w1(r)
is defined by

w1(r) := ϕ0(r)
{∫ r

0

φf (s) − φf (1)
(1 − s)2

ds+
φf (1)r
1 − r

}
(1.20)

with

φf (r) :=
(

1 + r2

1 − r2

)2 (1 − r)2

r

∫ r

0
ϕ0(t)tf(t)dt,

and

ϕ0(r) :=
1 − r2

1 + r2
,

where φf (1) andw1(1) are defined as limits of φf (r) andw1(r) as r → 1. We also
define

w2 := aw1 − aρ1. (1.21)

The following is our main theorem.

Theorem 1.1 Let {nj}m
j=1 ⊂ N and {zj}m

j=1 ∈ R
2 be given. We set N =∑m

j=1 nj . Suppose 0 < aN < 2. Then, there exists a constant ε1 > 0 such that
for any ε ∈ (0, ε1) there exists a family of solutions to (1.6)–(1.8), (φε, A

ε, γε
ij)

satisfying the finite energy condition (1.13). Moreover, the solutions we constructed
have the following properties:

(i) The Higgs fields φε has zeros at {zj}m
j=1 with multiplicities {nj}m

j=1 respec-
tively.

(ii) The functions φε, γ
ε
ij have the representations

φε(z) = exp


uε

2
+ i

m∑
j=1

njArg(z − zj)


, (1.22)

and

γε
ij = eηεδij , i, j = 1, 2 (1.23)

with

uε(z) = ln ρI
ε,δ∗

ε
(z) + ε2w1(ε|z|) + ε2v∗

ε (εz), (1.24)
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and

ηε(z) = ln ρII
ε,δ∗

ε
(z) + ε2w2(ε|z|) + ε2ξ∗

ε (εz), (1.25)

where δ∗
ε → 0 as ε → 0, and

w1(ε|z|) = −κ1 ln |z| +O(1), (1.26)

w2(ε|z|) = −κ2 ln |z| +O(1) (1.27)

as |z| → ∞ with

κ1 :=
(a+ 1)81+ 1

a (1 − aN)N !
a2+ 1

a

∏2
k=1−N

( 2
a + k

) , (1.28)

and

κ2 :=
(a+ 1)81+ 1

a (1 − aN)N !
a1+ 1

a

∏2
k=1−N

( 2
a + k

) . (1.29)

The functions v∗
ε and ξ∗

ε in (1.24), (1.25) satisfy

sup
z∈R2

|v∗
ε (εz)| + |ξ∗

ε (εz)|
ln(|z| + 1)

≤ o(1) as ε → 0. (1.30)

(iii) There exist constants C1 = C1(G, σ), C2 = C2(G, σ) and functions β1(ε),
β2(ε) defined on a small neighborhood of ε = 0 such that

ln |φε(z)|2 = uε(z) =
[
2N − 4

a
− β1(ε)

]
ln |z| + o(ln |z|)

as |z| → ∞. (1.31)

|D1φε|2+|D2φε|2 ≤ C1

|z| 4
a −2N+β1(ε)

+o
(

1
|z| 4

a −2N+β1(ε)

)
as |z| → ∞,

(1.32)

ηε(z) = [−4 − β2(ε)] ln |z| + o(ln |z|) as |z| → ∞. (1.33)

The Gaussian curvature has the decaying property,∣∣∣Kε
γ(x) − a

2

∣∣∣ = O(euε−ηε) as |z| → ∞, (1.34)

and determined by comparison of decays between uε and ηε as described
above. In the above the functions β1(ε), β2(ε) satisfy

lim
ε→0

β1(ε)
ε2

= κ1, lim
ε→0

β2(ε)
ε2

= κ2.



52 D. Chae

(iv) The corresponding magnetic flux, total gravitational curvature, and the energy
of the matter part are given by∫

R2
F ε

12dx = 4π
(
N − 1

a

)
+ πκ1ε

2 + o(ε2), (1.35)

∫
R2
Kε

γe
ηεdx = 4π + πκ2ε

2 + o(ε2), (1.36)

and ∫
R2

Eeηεdx =
1
G

[
1 +

κ2

4
ε2 + o(ε2)

]
(1.37)

as ε → 0 respectively.

Remarks.

(i) We note κ1, κ2 > 0 for 0 < aN < 1, and κ1, κ2 < 0 for 1 < aN < 2.
Thus aN = 1 corresponds to the “critical" case similarly to the solutions
constructed in [6,21].

(ii) Even in the range 0 < aN < 1 our multi-string solutions are different from
those constructed in [21], since our solution satisfy the boundary condition
(1.15), not (1.14).

(iii) We compare our decay estimates with the well-known results on the topolog-
ical solutions in [18]. From (1.10) and (1.11) we find that

∆(au− η − aeu − 2a
m∑

j=1

nj ln |z − zj |) = 0.

Thus, for both the topological and the nontopological solutions we can set the
harmonic function h(z) = au−η−aeu−2a

∑m
j=1 nj ln |z−zj | = Constant.

Hence,

lim
|z|→∞

η(z)
ln |z| = −2aN + a lim

|z|→∞
u(z)
ln |z| . (1.38)

The formula (1.38) holds for both the topological and the nontopological
solutions. For the topological solutions, we have lim|z|→∞

u(z)
ln |z| = 0, and

lim
|z|→∞

η(z)
ln |z| = −2aN,

which holds for general topological solutions. Namely, for any topological
solution there should be obvious dependence of the decay of η on the total
string numberN . For the nontopological solutions, in particular, for our family
of solutions (uε, ηε) constructed in Theorem 1.1, we derive from (1.31)

lim
|z|→∞

uε(z)
ln |z| = 2N − 4

a
− κ1ε

2 + o(ε2),
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Hence,

lim
|z|→∞

ηε(z)
ln |z| = −4 − aκ1ε

2 + o(ε2) = −4 − κ2ε
2 + o(ε2),

and, we obtain limε→0 lim|z|→∞
ηε(z)
ln |z| = −4, which has no dependence on

N . This is not surprising, since, as will be clear in the next section, our solution
ηε is a perturbation of ln ρ2, which is smooth everywhere, and does not have
any dependence on the vortices.

2 Functional formulation

Let us setα ∈ (0, 1
2 ) throughout this paper. Following [1], we introduce the Banach

spaces Xα and Yα as

Xα = {u ∈ L2
loc(R

2) |
∫

R2
(1 + |x|2+α)|u(x)|2dx < ∞}

equipped with the norm ‖u‖2
Xα

=
∫

R2(1 + |x|2+α)|u(x)|2dx, and

Yα = {u ∈ W 2,2
loc (R2) | ‖∆u‖2

Xα
+

∥∥∥ u(x)
1 + |x|1+ α

2

∥∥∥2

L2(R2)
< ∞}

equipped with the norm ‖u‖2
Yα

= ‖∆u‖2
Xα

+
∥∥ u(x)

1+|x|1+ α
2

∥∥2
L2(R2). We first recall

the following proposition proved in [1].

Proposition 2.1 Let Yα be the function space introduced above. Then we have the
followings.

(i) If v ∈ Yα is a harmonic function, then v ≡ constant.
(ii) There exists a constant C1 > 0 such that for all v ∈ Yα

|v(x)| ≤ C1‖v‖Yα(ln+ |x| + 1), ∀x ∈ R
2,

where we denote ln+ |x| = max{ ln |x|, 0}.

Next, given ε > 0, and δ ∈ C = R
2, we consider the functions ρI

ε,δ(z), ρ
II
ε,δ(z)

introduced in (1.16), (1.17) respectively. We note that ρI
ε,δ, ρ

II
ε,δ are solutions of the

equations

∆ ln ρI
ε,δ = −ρII

ε,δ + 4π
m∑

j=1

njδ(z − zj) (2.1)

∆ ln ρII
ε,δ = −aρII

ε,δ (2.2)

The key idea is that we can view a solution (u, η) of the system (1.10)–(1.13)
together with (1.15) as a perturbed one from (ln ρI

ε,δ, ln ρ
II
ε,δ) in an appropriate

sense. We set

u− ln ρI
ε,δ = û, η − ln ρII

ε,δ = η̂ (2.3)
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Then, û, η̂ satisfy

∆û = ρI
ε,δρ

II
ε,δe

û+η̂ − ρII
ε,δe

η̂ + ρII
ε,δ, (2.4)

∆(η̂ + aρI
ε,δe

û) = aρI
ε,δρ

II
ε,δe

û+η̂ − aρII
ε,δ(e

η̂ − 1) (2.5)

Next, we make a scaling transform z → z/ε, and set

ũ(z) = û
(z
ε

)
, η̃(z) = η̂

(z
ε

)
, (2.6)

and

gI
ε (z, δ) =

1
ε2
ρI

ε,δ

(z
ε

)
, gII

ε (z, δ) =
1
ε2
ρII

ε,δ

(z
ε

)
. (2.7)

Below we denote r = |z|, then we find

lim
ε→0

gI
ε (z, 0) =

8
1
a r2N

a
1
a (1 + |z|2) 2

a

= ρ1(r), (2.8)

and

lim
ε→0

gII
ε (z, 0) =

8
a(1 + |z|2)2 = ρ2, (r) (2.9)

where ρ1(r), ρ2(r) are introduced in (1.18), (1.19) respectively. Then, we find

∆ũ = ε2gI
ε (z, δ)gII

ε (z, δ) − gII
ε eη̃ + gII

ε (z, δ), (2.10)

∆(η̃ + aε2gI
ε (z, δ)eũ) = aε2gI

ε (z, δ)gII
ε (z, δ) − agII

ε (eη̃ − 1). (2.11)

For further transform of the equations we consider w1(r), w2(r) defined in (1.20),
(1.21) respectively, which will be shown below to satisfy the systems of linear
ordinary differential equations,

∆w1 + ρ2w2 − ρ1ρ2 = 0 (2.12)

∆w2 + aρ2w2 + a∆ρ1 − aρ1ρ2 = 0 (2.13)

Lemma 2.1 Let κ1, κ2 be the numbers introduced in (1.28), (1.29) respectively.
Then, the functions w1, w2 are solutions in Yα of the system (2.12)–(2.13), which
satisfy the following asymptotic formula

w1(r) = −κ1 ln r +O(1), (2.14)

w2(r) = −κ2 ln r +O(1). (2.15)

as r = |x| → ∞.
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Proof. From (2.12) ×a− (2.13) we obtain

∆(aw1 − w2 − aρ1) = 0.

We seek w1, w2 with aw1 − w2 − aρ1 ∈ Yα. Then, it follows that aw1 − w2 −
aρ1 =constant by ([1], Proposition 1.1).We choose this constant= 0. Then,ρ2w2 =
aρ2w1−aρ1ρ2. Substituting this into (2.12) we obtain the following reduced system
for w1, w2.

∆w1 + aρ2w1 = (a+ 1)ρ1ρ2, (2.16)

w2 = aw1 − aρ1. (2.17)

Let us set f(r) = (a+1)ρ1ρ2. Then, it is found in [1] that the ordinary differential
equation (2.18) has a solution w1(r) ∈ Yα given by the formula (1.20). From the
formula (1.20) we find that

w1(r) = ϕ0(r)
∫ r

2

(
1 + s2

1 − s2

)2
I(s)
s
ds+ (bounded function of r) (2.18)

as r → ∞, where

I(s) = (a+ 1)
∫ s

0
ϕ0(t)tρ1(t)ρ2(t)dt.

Since ϕ0(r) → −1 as r → ∞, (2.14) follows if we show

I = I(∞) = (a+ 1)
∫ ∞

0
ϕ0(r)rρ1(r)ρ2(r)dr

=
(a+ 1)81+ 1

a (1 − aN)N !
a2+ 1

a

∏2
k=1−N

( 2
a + k

) (= κ1).

Indeed, substituting r2 = t in the integrand of I , we have

I =
4(a+ 1)8

1
a

a1+ 1
a

∫ ∞

0

(1 − t)tN

(1 + t)3+
2
a

dt

=
4(a+ 1)8

1
a

a1+ 1
a

[∫ ∞

0

tN

(1 + t)3+
2
a

dt−
∫ ∞

0

tN+1

(1 + t)3+
2
a

dt

]

=
4(a+ 1)8

1
a

a1+ 1
a

[
N !∏2

k=2−N

( 2
a + k

) − (N + 1)!∏2
k=1−N

( 2
a + k

)
]

=
(a+ 1)81+ 1

a (1 − aN)N !
a2+ 1

a

∏2
k=1−N

( 2
a + k

) . (2.19)

The formula (2.15), on the other hand, follows from (2,17) combined with (2.18).
This completes the proof of Lemma 2.1. �
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Now, we change of variables ũ → ε2(v+w1), η̃ → ε2(ξ+w2) in (2.10)–(2.11)
to get

∆v = gI
εg

II
ε eε2(v+ξ+w1+w2) − 1

ε2
gII

ε (eε2(ξ+w2) − 1) −∆w1, (2.20)

∆(ξ+agI
εe

ε2(v+ξ)) = agI
εg

II
ε eε2(v+ξ+w1+w2) − a

ε2
gII

ε (eε2(ξ+w2) − 1) −∆w2.

(2.21)

We introduce functional

P = (P1, P2) : Yα × Yα × R
2 × (−ε0, ε0) → Xα ×Xα,

where P1, P2 are defined by

P1(v, ξ, δ, ε) = ∆v − gI
εg

II
ε eε2(v+ξ+w1+w2)

+
1
ε2
gII

ε (eε2(ξ+w2) − 1) +∆w1, (2.22)

P2(v, ξ, δ, ε) = ∆(ξ + agI
εe

ε2(v+ξ)) − agI
εg

II
ε eε2(v+ξ+w1+w2)

+
a

ε2
gII

ε (eε2(ξ+w2) − 1) +∆w2. (2.23)

The parameter ε0 is chosen so small so that P (·) is well-defined from Yα × Yα ×
R

2×(−ε0, ε0) intoXα ×Xα. In particular we note that our condition 0 < aN < 2
implies that gI

ε (z) = O(|z|2N− 4
a ) = o(1). By standard procedure similar to the

case of [1] we can check that there exists such ε0 > 0. We note, particular, that
due to the conditions (2.14) and (2.15) we can have the continuous extension of
P (·, ·, ·, ε) up to ε = 0 by definition P (0, 0, 0, 0) = 0. Then, finding a solution of
(1.10)–(1.11) is reduced to that of finding an implicit function

ε �→ (vε, ξε, δε)

satisfying

P (vε, ξε, δε, ε) = 0.

We note that once a family of solutions {(v∗
ε , ξ

∗
ε , δ

∗
ε )} is found, then our solution

(u, η) of the system (1.10)–(1.11) is recovered by the formula,

u(x) = ln ρI
ε,δ∗

ε
(x) + ε2w1(ε|x|) + ε2v∗

ε (εx), (2.24)

and

η(x) = ln ρII
ε,δ∗

ε
(x) + ε2w2(ε|x|) + ε2ξ∗

ε (εx). (2.25)

We note here that although the nonlinear functional P (·, ·, ·, ε) itself is well defined
at ε = 0 by continuous extension remarked above, the formula (2.24), (2.25) are
defined only for ε ∈ (−ε0, ε0) \ {0}, since our change of variables (2.6) is not
defined at ε = 0.
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3 Proof of the Main Theorem

Let us introduce functions ϕ± defined by

ϕ+(r, θ) =
r cos θ
1 + r2

, ϕ−(r, θ) =
r sin θ
1 + r2

. (3.1)

We can easily obtain by direct computation

lim
ε→0

∂gI
ε (z, δ)
∂δ1

∣∣∣∣
δ=0

= −4
a
ρ1ϕ+, lim

ε→0

∂gI
ε (z, δ)
∂δ2

∣∣∣∣
δ=0

= −4
a
ρ1ϕ−,

lim
ε→0

∂gII
ε (z, δ)
∂δ1

∣∣∣∣
δ=0

= −4ρ2ϕ+, lim
ε→0

∂gII
ε (z, δ)
∂δ2

∣∣∣∣
δ=0

= −4ρ2ϕ−.

Using these results, we compute the linearized operator, A[·] defined by

A[u, η, β]:=P ′
(v,ξ,δ)(0, 0, 0, 0)[u, η, β]=(L1[u, η] +M1[β], L2[u, η]+M2[β]),

(3.2)

where

L1[u, η] = ∆u+ ρ2η, L2[u, η] = ∆η + aρ2η, (3.3)

M1[β] =
4
a
[(a+ 1)ρ1ρ2 − aw2ρ2]ϕ+β1 +

4
a
[(a+ 1)ρ1ρ2 − aw2ρ2]ϕ−β2,

(3.4)

and

M2[β] = 4 {[(a+ 1)ρ1ρ2 − aw2ρ2]ϕ+ −∆(ρ1ϕ+)}β1

+4 {[(a+ 1)ρ1ρ2 − aw2ρ2]ϕ− −∆(ρ1ϕ−)}β2. (3.5)

(3.6)

Here we set β = (β1, β2) ∈ R
2. For the linearized operator A[·] we will establish

the following key lemma.

Lemma 3.1 The operator A : Y 2
α × R

2 → X2
α given by (3.2)–(3.5) is onto.

Moreover, kernel of A is given by

KerA = Span{(1, 0); (
ϕ±
a
, ϕ±); (

ϕ0

a
, ϕ0)} × {(0, 0)}. (3.7)

Thus if we decompose Y 2
α × R

2 = Uα ⊕ KerA, where we set Uα = (KerA)⊥,
then A is an isomorphism from Uα onto X2

α.

In order to prove the above lemma we first recall the following lemma, which
is established in [1].
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Lemma 3.2 Let L2 be the operator defined in (3.3), then

KerL2 = Span {ϕ+, ϕ−, ϕ0} . (3.8)

Moreover, we have

ImL2 = {f ∈ Xα|
∫

R2
fϕ±dx = 0}. (3.9)

Next, we need the following:

Proposition 3.1 Let w2 solve (2.16)–(2.17), then

I± =
∫

R2

{
[(a+ 1)ρ1ρ2 − aw2ρ2]ϕ2

± −∆(ρ1ϕ±)ϕ±
}
dx > 0. (3.10)

Proof. From (3.8) and (3.3) we have

∆ϕ+ = −aρ2ϕ+.

By integration by part we obtain

I± =
∫

R2

{
[(a+ 1)ρ1ρ2 − aw2ρ2]ϕ2

± − ρ1ϕ±∆ϕ±
}
dx

=
∫

R2
[(2a+ 1)ρ1ρ2 − aw2ρ2]ϕ2

±dx. (3.11)

Now, we prove (3.10) for I+. The case of I− is similar. Below we list useful
formulas, which can be checked by elementary computations.

ϕ2
+ρ2 =

1
16

cos2 θL2ρ2, ϕ2
−ρ2 =

1
16

sin2 θL2ρ2, (3.12)

ϕ2
+ =

a

8
r2ρ2 cos2 θ, ϕ2

− =
a

8
r2ρ2 sin2 θ (3.13)

∆ρ2 = a(2r2 − 1)ρ2
2. (3.14)

Using (3.12)–(3.14), and integrating by parts, we transform the integral as follows.

I+ =
∫ ∞

0

∫ 2π

0

{
a(2a+ 1)

8
r2ρ1ρ

2
2 − a

16
(L2w2)ρ2

}
r cos2 θdθdr

= π

∫ ∞

0

{
a(2a+ 1)

8
r2ρ1ρ

2
2 − a

16
(aρ1ρ2 − a∆ρ1)ρ2

}
rdr

= π

∫ ∞

0

{
a(2a+ 1)

8
r2ρ1ρ

2
2 − a2

16
ρ1ρ

2
2 +

a2

16
ρ1∆ρ2

}
rdr

=
a(a+ 1)π

16

∫ ∞

0
[2(a+ 1)r2 − a]ρ1ρ

2
2rdr

=
4(a+ 1)8

1
aπ

a1+ 1
a

∫ ∞

0

[2(a+ 1)r2 − a]r2N+1

(1 + r2)
2
a +4

dr (Setting r2 = t)
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=
2(a+ 1)8

1
aπ

a1+ 1
a

∫ ∞

0

[
2(a+ 1)tN+1

(1 + t)
2
a +4

− atN

(1 + t)
2
a +4

]
dt

=
2(a+ 1)8

1
aπ

a1+ 1
a

[
2(a+ 1)(N + 1)!∏3

k=2−N

( 2
a + k

) − aN !∏3
k=3−N

( 2
a + k

)
]

=
2(a+ 1)(3a+ 2)8

1
aN ·N !π

a1+ 1
a

∏3
k=2−N

( 2
a + k

) > 0. (3.15)

This completes the proof of Proposition (3.1). �

We are now ready to prove Lemma 3.1.

Proof of Lemma 3.1. Given (f1, f2) ∈ X2
α, we want first to show that there exists

(v, η) ∈ Y 2
α , β1, β2 ∈ R such that

A(v, η, β1, β2) = (f1, f2), (3.16)

which can be rewritten as

∆v + ρ2η +
4
a
[(a+ 1)ρ1ρ2 − aw2ρ2]ϕ+β1

+
4
a
[(a+ 1)ρ1ρ2 − aw2ρ2]ϕ−β2 = f1, (3.17)

and

∆η + aρ2η + 4 {[(a+ 1)ρ1ρ2 − aw2ρ2]ϕ+ −∆(ρ1ϕ+)}β1

+4 {[(a+ 1)ρ1ρ2 − aw2ρ2]ϕ− −∆(ρ1ϕ−)}β2 = f2. (3.18)

Let us set

β1 =
1

4I+

∫
R2
f2ϕ+dx, β2 =

1
4I−

∫
R2
f2ϕ−dx, (3.19)

where I± > 0 is defined in (3.9). We introduce f̃ by

f̃2 = f2 − β1ϕ+ − β2ϕ−. (3.20)

Using the fact ∫ 2π

0
ϕ+ϕ−dθ = 0, (3.21)

we find easily ∫
R2
f̃2ϕ±dx = 0. (3.22)

Hence, by (3.9) there exists η ∈ Yα such that ∆η + aρ2η = f̃2. Thus we have
found (η, β1, β2) ∈ Yα × R

2 satisfying (3.18). Given such (η, β1, β2), in order to
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construct v ∈ Yα satisfying (3.17), we consider the following equation, obtained
by (3.17)×a−(3.18),

∆(av − η + 4ρ1ϕ+β1 + 4ρ1ϕ−β2) = af1 − f2. (3.23)

Obviously, the function

v(x) =
1

2πa

∫
R2

ln(|x− y|)(af1(y) − f2(y))dy

+
1
a
(η − 4ρ1ϕ+β1 − 4ρ1ϕ−β2) (3.24)

satisfies (3.23), and belongs to Yα. We have just finished the proof that A : Y 2
α ×

R
2 → X2

α is onto.
We now show that KerA = Span{(1, 0); (ϕ±

a , ϕ±); (ϕ0
a , ϕ0)} × {(0, 0)}. Let us

consider the equations

∆v + ρ2η +
4
a
[(a+ 1)ρ1ρ2 − aw2ρ2]ϕ+β1

+
4
a
[(a+ 1)ρ1ρ2 − aw2ρ2]ϕ−β2 = 0, (3.25)

and

∆η + aρ2η + 4 {[(a+ 1)ρ1ρ2 − aw2ρ2]ϕ+ −∆(ρ1ϕ+)}β1

+4 {[(a+ 1)ρ1ρ2 − aw2ρ2]ϕ− −∆(ρ1ϕ−)}β2 = 0. (3.26)

Taking L2(R2) inner product of (3.26) with ϕ±, and using (3.8), (3.21) and (3.9),
we find β1 = β2 = 0. Thus, (3.26) implies η ∈ KerL2 = Span{ϕ±, ϕ0}, where
we used the fact (3.8). When η takes each one of 0, ϕ±, ϕ0 we find that the solution
v ∈ Yα of ∆v + ρ2η = 0 is given by 1, ϕ±/a, ϕ0/a respectively. This completes
the proof of the lemma. �


We are now ready to prove our main theorem.

Proof of Theorem 1.1. Let us set Uα = (KerA)⊥. Then, Lemma 3.1 shows that
P ′

(v,ξ,β)(0, 0, 0, 0) : Uα → Xα × Xα is an isomorphism for α ∈ (0, 1
2 ). Then,

the standard implicit function theorem (see e.g. [22]), applied to the functional
P : Uα × (−ε0, ε0) → Xα ×Xα, implies that there exists a constant ε1 ∈ (0, ε0)
and a continuous function ε �→ ψ∗

ε := (v∗
ε , ξ

∗
ε , δ

∗
ε ) from (0, ε1) into a neighborhood

of 0 in Uα such that

P (v∗
ε , ξ

∗
ε , δ

∗
ε , ε) = (0, 0), for all ε ∈ (0, ε1).

Let (u, η) be the functions recovered by the formula (2.24) and (2.25) . Then
γjk = eηδjk, and (A, φ) defined by the formulas,

φ(x) = σ exp
(

1
2u(x) + i

∑m
j=1 njArg(z − zj)

)
,

A1 = Re(2i∂∗
z lnφ), A2 = Im(2i∂∗

z lnφ),



Multi-strings of the EMH system 61

where we denoted ∂∗
z = (∂1 + i∂2)/2, form a solution (φ,A, g) of the original

system (1.2)–(1.5). By standard elliptic regularity estimates (see e.g. [8]) one can
easily check that (φ,A, g) is smooth. We now prove the decay estimates in Theorem
1.1. We first obtain easily

|φ(x)|2 = σ2eu(x) = O(|x|2N− 4
a −κ1ε2+o(ε2)), (3.27)

and

eη(x) = O(|x|−4−κ2ε2+o(ε2)). (3.28)

From (1.10) we have the integral representation,

u(x) =
1
2π

∫
R2

ln |x− y|eη(y)(eu(y) − 1)dy + 2
m∑

j=1

nj ln |x− zj | + C

for some constant C. Since u(x) ≤ 0 for x ∈ R
2 (by the maximum principle

applied to (1.10)), taking derivative of u we obtain

|∇u(x)|2 ≤ C

(∫
R2

eη(y)

|x− y|dy
)2

+ C

m∑
j=1

1
|x− zj |2 = O(1) (3.29)

as |x| → ∞. This estimate, combined with |D1φ|2 + |D2φ|2 = 1
2e

u|∇u|2, gives

|D1φ|2 + |D2φ|2 = O(eu) = O(|x|2N− 4
a −κ1ε2+o(ε2)). (3.30)

From the rescaled form of (1.8) we note

F12 = −1
2
eη(eu − 1). (3.31)

Thus,

|F12(x)| = O(eη) = O(|x|−4−κ2ε2+o(ε2)). (3.32)

In order to estimate the decay of the Gaussian curvature we first note that Kγ =
− 1

2e
−η∆η for γij = eηδij . Now, from (1.11), (1.10)

∆η = −a|∇u|2eu − a∆ueu + aeη(eu − 1)
= −a|∇u|2eu − aeu+η(eu − 1) + aeη(eu − 1),

and
Kγ =

a

2
|∇u|2eu−η +

a

2
eu(eu − 1) − a

2
(eu − 1).

Thus, using (3.29), we obtain∣∣∣Kγ(x) − a

2

∣∣∣ = O(eu−η) as |x| → ∞. (3.33)
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This provides (1.34). We now prove (1.35)–(1.37). From (3.31) and (1.10), using
the Gauss theorem, we deduce∫

R2
F12dx = −1

2
lim

R→∞

∮
SR

∂u

∂r
ds+ 2πN, (3.34)

where we set SR = {x ∈ R
2| |x| = R}. For our solution, u(x) = uε(x) given

by (2.24), we compute∮
SR

∂uε

∂r
ds =

∮
SR

∂

∂r
ln ρI

ε,δ∗
ε
ds+ ε2

∮
SR

∂w1(ε|z|)
∂r

ds+ ε2
∮

SR

∂u∗
ε(εx)
∂r

ds

= I1 + ε2I2 + ε2I3. (3.35)

Following [1] (pp. 135–138) we easily compute

I1 = −4π(N − 2
a
) +O

(
1
R

)
, (3.36)

and

I2 = −2π(a+ 1)
∫ ∞

0
ϕ0tρ1ρ2dt+O

(
1
R

)

=
−2π(a+ 1)81+ 1

a (1 − aN)N !
a2+ 1

a

∏2
k=1−N

( 2
a + k

) +O

(
1
R

)
(3.37)

as R → ∞, where we used the result of the computation in the proof of Lemma
2.1, and finally

sup
R>0

|I3| ≤ C‖v∗
ε‖Yα ≤ C‖ψ∗

ε‖Uα → 0 (3.38)

as ε → 0 due to the continuity of ε �→ ψ∗
ε in Uα on (−ε1, ε1). Combining (3.35)–

(3.38) with (3.34), (3.33) we obtain (1.35). Similarly to the above by the Gauss
theorem we compute∫

R2
Kγe

ηdx = −1
2

∫
R2
∆ηdx = −1

2
lim

R→∞

∮
SR

∂η

∂r
ds

= −1
2

lim
R→∞

∮
SR

∂

∂r
ln ρII

ε,α∗
ε
ds

−ε2

2
lim

R→∞

∮
SR

∂w2(ε|z|)
∂r

ds− ε2

2

∫
R2
∆ξ∗

ε (εx)dx

= J1 + ε2J2 + ε2J3. (3.39)

Similarly to the case of magnetic flux we easily compute

J1 = 4π. (3.40)

From the relation (2.16), (2.17) between w1 and w2, and using (3.37), we obtain

J2 =
πa(a+ 1)81+ 1

a (1 − aN)N !
a1+ 1

a

∏2
k=1−N

( 2
a + k

) . (3.41)
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Similarly to I3 above we have

|J3| ≤ C‖ξ∗
ε‖Yα ≤ C‖ψ∗

ε‖Uα → 0 (3.42)

as ε → 0. Combination of (3.38) and (3.4) together with Proposition 2.1 imply
(1.30). This completes the proof of Theorem 1.1. �
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