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Abstract. Given a compact Lagrangian submanifold in flat space evolving by its mean cur-
vature, we prove uniform C2,α-bounds in space and C2-estimates in time for the underlying
Monge-Ampère equation under weak and natural assumptions on the initial Lagrangian
submanifold. This implies longtime existence and convergence of the Lagrangian mean
curvature flow. In the 2-dimensional case we can relax our assumptions and obtain two
independent proofs for the same result.
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1. Introduction

In symplectic geometry there is a destinguished class of immersions, known as
Lagrangian submanifolds. They are important in physics and of course in pure
and applied mathematics as well. E.g. minimal Lagrangian immersions in a given
Calabi-Yau manifold are relevant in physics because they are related to T-duality and
Mirror symmetry [9]. However, to construct minimal Lagrangian submanifolds is a
great geometric and analytic challenge. Nevertheless there is a growing community
working on such problems and already some very nice results have been obtained,
so e.g. a version of the Bernstein problem [5]. Due to the high codimension many
techniques which are useful for hypersurfaces of prescribed curvature cannot be
used unchanged in the theory of Lagrangian submanifolds. In particular the mean
curvature flow for Lagrangian submanifolds is much more complicated than for
hypersurfaces and it is the aim of this article to close a gap in the understanding of
Lagrangian graphs moving by their mean curvature.

Let (M, ω) be a 2n-dimensional symplectic manifold with symplectic 2-form
ω. An n-dimensional submanifold L ⊂ M is called Lagrangian if

ω(V, W ) = 0 ∀ V, W ∈ TL.

The most prominent examples of symplectic manifolds are Kähler manifolds
(M, J, g), where

ω(V, W ) = g(JV, W )

K. Smoczyk: Max Planck Institute for Mathematics in the Sciences, Inselstr. 22–26,
04103 Leipzig, Germany (e-mail: Knut.Smoczyk@mis.mpg.de)



26 K. Smoczyk

is the symplectic 2-form (Kähler form) induced by the Kähler metric g and the
complex structure J .

If L is a compact n-dimensional manifold, [0, T ) ⊂ R ∪ {∞} a time interval
and

F : L × [0, T ) → M

a smooth family of immersions into a Kähler-Einstein manifold (M, J, g), such
that

L0 := F (L, 0)

is Lagrangian and such that F satisfies the mean curvature flow equation

dF

dt
=

→
H(1.1)

(
→
H = mean curvature vector along Lt := F (L, t)), then it is well-known that (1.1)

preserves the Lagrangian condition, so that Lt is Lagrangian ∀ t ∈ [0, T ) (see e.g.
[7].)

We write Ft(x) instead of F (x, t). The mean curvature form H of Lagrangian

submanifolds in Kähler manifolds (M, J, g) is related to
→
H through

H(V ) = ω(
→
H, V ) .

If (M, J, g) is Kähler-Einstein, then H is closed and any locally defined function
α with

dα = H(1.2)

is called a Lagrangian angle.
In [8] we proved the following longtime existence and convergence result for

the Lagrangian mean curvature flow in Kähler-Einstein manifolds of nonpositive
scalar curvature:

Proposition 1.1. Let L be a compact manifold and let F0 : L → L0 ⊂ M be
a smooth immersion of L as a Lagrangian submanifold into a Kähler-Einstein
manifold (M, J, g) that is either compact or complete with bounded curvature
quantities. Further assume that [0, T ), 0 < T ≤ ∞ is the maximal time interval
on which the Lagrangian mean curvature flow (1.1) admits a smooth solution. Then
the following is true:

(a) Assume there exists a constant C0 < ∞ such that

max
Lt

|A|2 ≤ C0, ∀ t ∈ [0, T ),

where |A|2 is the squared norm of the second fundamental tensor A. Then for
any m ≥ 0 there exists a constant Cm < ∞ depending on m, L0, M such that

max
Lt

|∇mA|2 ≤ Cm, ∀ t ∈ [0, T ).
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(b) If T < ∞, then

lim sup
t→T

{
max

Lt

|A|2
}

= ∞.

(c) If in addition to (a) the initial mean curvature form of L0 is exact, the ambient
Kähler-Einstein manifold has nonpositive Ricci curvature and the induced Rie-
mannian metrics F ∗

t g on L are all uniformly equivalent, then T = ∞ and the
Lagrangian submanifolds Lt converge smoothly and exponentially to a smooth
compact minimal Lagrangian immersion L∞ ⊂ M .

In general one cannot expect longtime existence results without extra assump-
tions on the initial Lagrangian submanifold. In [8] we considered Lagrangian
submanifolds generated by symplectic maps and proved convergence to minimal
Lagrangian maps under very natural and sharp conditions for the Lagrangian angle
α. Here, we will give another sufficient condition for longtime existence in flat
ambient manifolds that entirely differs from those conditions. In particular we will
not need the oscillation condition

osc (α) ≤ π

2

that was important there.
The crucial condition in this paper can be stated in terms of certain symmetric

bilinear forms S. To explain these forms suppose (M, g, J) is a 2n-dimensional
Kähler-Einstein manifold with compatible complex structure J , i.e.

ω(V, W ) = g(JV, W )

is a symplectic 2-form (Kähler form.) Let us denote the Levi-Civita connection on
M by D. We will consider tensors S ∈ Γ (T ∗M ⊗T ∗M) that satisfy the following
conditions

S(V, W ) = S(W, V ) (Symmetry),(1.3)

S(JV, W ) = S(V, JW ) (Anti-compatibility),(1.4)

DS = 0 (Parallelity)(1.5)

and denote the set of tensors satisfying Eqs. (1.3), (1.4) and (1.5) by Σ(M). Note
that if S ∈ Σ(M), then S̄ defined by

S̄(V, W ) := −S(JV, W )

also belongs to Σ(M). An example in R
2n is given by S(V, W ) := 〈V̄ , W 〉, where

〈·, ·〉 denotes the euclidean inner product and the bar is complex conjugation. Since
these conditions are very similar to the structures on hyperKähler manifolds it is
clear that one must expect a special holonomy for the underlying manifold, indeed
the existence of such a bilinear form S is so strong that it implies:

Proposition 1.2. Let S ∈ Σ(M) be non-degenerate. Then g is flat.
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A proof of the proposition will be given in the appendix where we will also discuss
Σ(R2n) in more detail. Here we only mention that this fact mainly hinges on
condition (1.5) and that this is the only reason why we restrict our considerations
to flat ambient manifolds.

The main theorem states:

Theorem 1.3. Assume F0 : L → (M, g, J) is a compact Lagrangian immersion
into a flat manifold such that there exists a tensor S ∈ Σ(M) with

F ∗
0 S(V, V ) > 0 ∀ V ∈ TL, V = 0 .(1.6)

Then there exist constants c1, c2 > 0 such that

lim sup
t→T

{
max

Lt

|
→
H|

}
≤ c1,

lim sup
t→T

{
max

Lt

|d†H|
}

≤ c2,

on the maximal time interval [0, T ), where a smooth solution of (1.1) exists (d†H
is shorthand for ∇iHi). Moreover, all induced metrics gt := F ∗

t g are uniformly
equivalent to the initial metric g0. If in addition n = 2 or

F ∗
0 S̄(V, V ) > 0 ∀ V ∈ TL, V = 0 ,(1.7)

then T = ∞ and the Lagrangian submanifolds converge smoothly to a flat
Lagrangian submanifold.

Condition (1.6) implies that the Lagrangian submanifold can be written as a
graph over a flat Lagrangian subspace so that the n height functions are given by the
n components of the gradient of a smooth function u and such that the eigenvalues
of the Hessian of u are uniformly bounded by a constant depending on S. We
discuss this in Sect. 2. Condition (1.7) will imply convexity of u. This is possible
even for compact Lagrangian submanifolds. An example can be given as follows:

Example 1.4. Let u : R
n → R be defined by

u(x) :=
a

2
|x|2 + b

n∑
i=1

cos(xi)

with two constants a, b that satisfy a > b > 0, a + b < 1 (see also Fig. 1). Then
the gradient graph

F : R
n → R

n ⊕ iRn = C
n

F (x) :=
(
x, y := Du(x)

)
describes the universal cover of a compact Lagrangian submanifold in flat space
(since F (Rn) is invariant under translations in R

2n) and the Hessian of u is

uij = diag
(
a − b cos(x1), . . . , a − b cos(xn)

)
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Fig. 1. The gradient graph of u(x) = x2

2 − cos(x)

so that all eigenvalues λ of uij satisfy

0 < λ < 1.

In particular
F ∗S(V, V ) = 〈DF (V ), DF (V )〉 > 0

and
F ∗S̄(V, V ) = 〈JDF (V ), DF (V )〉 > 0

for all V ∈ TR
n (the bar denotes complex conjugation) so that conditions (1.6)

and (1.7) are satisfied with S(X, Y ) := 〈X̄, Y 〉.
In particular we get the following corollary

Corollary 1.5. Assume u : R
n → R is a smooth strictly convex function such that

all eigenvalues of Hess(u) are bounded by 1 and such that F (x) :=
(
x, Du(x)

)
is the universal cover of a compact Lagrangian submanifold in C

n = R
n ⊕ iRn.

Then the Lagrangian mean curvature flow deforms L into a flat plane.

(1.6) and (1.7) roughly mean that the Lagrangian submanifold lies between two
different Lagrangian planes. Equation (1.1) and the Lagrangian condition then lead
to a parabolic Monge-Ampère type equation (2.10) for u which describes the flow
(see Sect. 2 for details) and the theorem implies that under condition (1.6) one gets
uniform C2-estimates for u both in space and time. Assumption (1.7) on the other
hand guarantees that the parabolic operator is concave so that we can use the C2,α-
estimates in space due to Krylov (for example Sect. 5.5 in [6]). This eventually
gives longtime existence and convergence. In case n = 2 we can drop condition
(1.7) and obtain the C2,α-estimates in two different ways, from the better regularity
theory for nonlinear equations in 2 variables and also from a direct estimate of the
full second fundamental form. We will discuss both proofs. It is unknown whether
(1.7) is redundant in any dimension.
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In this paper we will use the maximum principle for tensors due to Hamilton
[3,4]. Since there is no monotonicity formula for tensors so far, we cannot drop
the compactness condition here, although we believe that this can be done under
appropriate growth conditions as e.g. in the well known paper by Ecker and Huisken
[1] where hypersurfaces in R

n+1 represented as graphs are deformed by their mean
curvature. However, for the mean curvature flow in higher codimension one cannot
expect the same results as in [1] and a condition like in our theorem is natural in
this context. The special nature of the Lagrangian mean curvature flow allows to
obtain longtime existence and convergence merely from uniform C1,α-estimates
for the evolving maps F : L → R

2n because the quasilinear parabolic system given
by Eq. (1.1) can be integrated to the fully nonlinear parabolic equation of Monge-
Ampère type (2.10) and C1,α-estimates for F correspond to C2,α-estimates of that
equation.

This work has begun while I visited the CAS in Beijing, China in 2001 and was
completed at the Max-Planck-Institute for Mathematics in the Sciences in Leipzig,
Germany. I would like to thank Prof. Li Jiayu for his invitation to China and his
great hospitality and Prof. Jürgen Jost at the MPI for the opportunity to finish this
work.

2. Preliminaries

2.1. The Lagrangian mean curvature flow in R
2n

In this section we explain the notation and recall elementary equations for the
Lagrangian mean curvature flow in R

2n. To begin, assume that (R2n, g, J, ω) is
the euclidean space with compatible complex structure J = i and the standard
symplectic form ω. Local coordinates on R

2n will be denoted by (yα)α=1,...,2n

whereas local coordinates for a Lagrangian submanifold L will be denoted by
(xi)i=1,...,n. Moreover, we use the Einstein convention to sum over repeated indices,
the sum is taken from 1 to 2n for greek indices and from 1 to n for latin minuscles.
If

F : L → M

is an immersion, then we write

Fα
i :=

∂Fα

∂xi
, with Fα = yα(F ),

Fα
ij :=

∂2Fα

∂xi∂xj
.

The metric g = 〈·, ·〉 on R
2n can locally be written as

g = gαβ dyα ⊗ dyβ

and then
F ∗g = gij dxi ⊗ dxj

with
gij := gαβ Fα

i F β
j
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is the induced Riemannian metric on L. By the Lagrangian condition we have

ωij := ωαβFα
i F β

j = 0.

We also set

J = Jα
β

∂

∂yα
⊗ dyβ ,

να
i := Jα

β F β
i

and

νi := να
i

∂

∂yα
= J

(
∂F

∂xi

)
,

so that νi is normal along L. The induced connection on tensor bundles over L will
be denoted by ∇. Then the second fundamental tensor A is the covariant derivative
of the differential

dF = Fα
i dxi ⊗ ∂

∂yα
,

i.e.
A = ∇dF

and we set
Aα

ij := ∇iF
α
j .

The second fundamental form h ∈ Γ (T ∗L ⊗ T ∗L ⊗ T ∗L) is the tensor given by
the components

hijk := −ωαβFα
i Aβ

jk

and by definition the mean curvature form H = Hidxi is

Hi := gklhikl

so that H is related to
−→
H by

H(V ) = ω(
→
H, V ) .

We summarize the relevant equations for the second fundamental form in the fol-
lowing Lemma (compare with [7] and [8].)

Lemma 2.1. The second fundamental form h = hijkdxi ⊗ dxj ⊗ dxk of a
Lagrangian immersion into R

2n satisfies

a) hijk = hjik = hjki,
b) Rijkl = h n

ik hnjl − h n
il hnjk,

c) ∇ihjkl − ∇jhikl = 0,
d) ∇iHj = ∇jHi.

Here, Rijkl is the curvature symbol of F ∗g w.r.t. coordinates (xi)i=1,...,n and we
have set

h n
il := hilmgmn.
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Remark 2.2. In the sequel we will often rise and lower indices w.r.t. the metric
tensor gij . From Lemma 2.1 d) (the traced Codazzi equation) it follows that the
mean curvature form H is closed.

Let us introduce the following symmetric tensors

a := aij dxi ⊗ dxj

b := bij dxi ⊗ dxj

with

aij := gklHkhlij = H lhlij

bij := h mn
i hmnj .

It follows that

|A|2 = gαβgikgjlAα
ijA

β
kl = hijkhijk = gijbij(2.1)

and

gijaij = |H|2.(2.2)

In addition, the Ricci curvature is given by

Rij = aij − bij .(2.3)

We recall the evolution equations under the mean curvature flow for crucial geo-
metric objects on L (compare with Lemma 5 in [8].)

Lemma 2.3. If F : L×[0, T ) → R
2n is a smooth family of Lagrangian immersions

that evolves according to (1.1), then

a)
d

dt
gij = −2aij

b)
d

dt
dµ = −|H|2dµ

c)
d

dt
Hi = ∇id

†H = ∆Hi − R l
i Hl

d)
d

dt
hijk = ∆hijk − R l

i hljk − R l
j hlki − R l

k hlij − 2h m
in h l

jm h n
kl

e)
d

dt
|H|2 = ∆|H|2 − 2|∇H|2 + 2|aij |2

f)
d

dt
|A|2 = ∆|A|2 − 2|∇A|2 + 2|bij |2 + 2|Rijkl|2

Here, dµ denotes the volume element on L w.r.t. F ∗g.

For a proof of these equations we refer to [7] and [8].
In addition we will use the evolution equation of d†H
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Lemma 2.4.
d

dt
d†H = ∆d†H + 4aij∇iHj .

Proof. This is a direct consequence of Lemma 2.3 a) and c). ��

Now let S ∈ Σ(M) be one of the tensors described above. We set

Sij := SαβFα
i F β

j

and

Ḟα :=
d

dt
Fα.

We need an evolution equation for F ∗S = Sij dxi ⊗ dxj and compute

d

dt
Sij =

d

dt
(SαβFα

i F β
j )

= DγSαβḞ γFα
i F β

j + Sαβ∇iḞ
αF β

j + SαβFα
i ∇jḞ

β

= −Sαβ

(∇i(H lνα
l )F β

j + Fα
i ∇j(H lνβ

l )
)

= −∇iH
lSαβνα

l F β
j − ∇jH

lSαβFα
i νβ

l

−H lSαβ(∇iν
α
l F β

j + ∇jν
β
l Fα

i ) .

From ∇iF
α
l = Aα

il = −hk
ilν

α
k , DJ = 0 and J2 = −Id we obtain

∇iν
α
l = hk

ilF
α
k ,(2.4)

so that

d

dt
Sij = −∇iH

lSαβνα
l F β

j − ∇jH
lSαβFα

i νβ
l(2.5)

−H lSαβ(hk
ilF

α
k F β

j + hk
jlF

β
k Fα

i )

= −∇iH
lSαβνα

l F β
j − ∇jH

lSαβFα
i νβ

l

−ak
i Skj − ak

j Ski.

Next we compute ∆Sij :

∇kSij = ∇k(SαβFα
i F β

j )
= DγSαβF γ

k Fα
i F β

j + Sαβ(∇kFα
i F β

j + Fα
i ∇kF β

j )

= −hl
kiSαβνα

l F β
j − hl

kjSαβFα
i νβ

l

and then

∆Sij = −∇khl
kiSαβνα

l F β
j − ∇khl

kjSαβFα
i νβ

l(2.6)

−hlk
i Sαβ(hm

klF
α
mF β

j − hm
kjν

α
l νβ

m)

−hlk
j Sαβ(−hm

kiν
α
mνβ

l + Fα
i hm

klF
β
m).
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From the Codazzi equation (Lemma 2.1 c)) we deduce

∇khl
ki = ∇lHi = ∇iH

l

and (1.4) implies
Sαβνα

mνβ
l = −Sml ,

so that
∆Sij = −∇iH

lSαβνα
l F β

j − ∇jH
lSαβFα

i νβ
l

−bk
i Skj − bk

j Ski

−2hlk
i hm

kjSlm.

Inserting this into the above expression for d
dtSij we finally get

Lemma 2.5. F ∗S = Sijdxi ⊗ dxj satisfies the evolution equation

d

dt
Sij = ∆Sij − Rl

iSlj − Rl
jSli + 2hkm

i hn
jkSmn.

We define the function
s := gijSij .

Then the evolution equations for gij and Sij immediately imply

Lemma 2.6. The quantity s satisfies

d

dt
s = ∆s + 4bijSij .

2.2. The underlying parabolic equation of Monge-Ampère type

We will now see that in particular any Lagrangian L ⊂ R
2n satisfying condition

(1.6) must be a graph over an n-plane sitting in R
2n.

To see this let σS : R
2n → R

2n be the endomorphism associated to S, i.e.
〈σS(V ), W 〉 = S(V, W ). σS must be independent of y ∈ R

2n because we as-
sumed that S is parallel. If λ is an eigenvalue of σS , then −λ must also be an
eigenvalue because σSJ = −JσS and J maps the eigenspace belonging to λ to
that belonging to −λ. Since F ∗S > 0 and L is n-dimensional, we conclude that
there exist exactly n positive eigenvalues σ1, . . . , σn and n negative eigenvalues
−σ1, . . . ,−σn. Consequently we can split R

2n into the direct sum

R
2n = X ⊕ Y,

where X is the linear hull of all eigenvectors e belonging to positive eigenvalues
and Y := JX is the linear hull of eigenvectors f belonging to negative eigenvalues.
In addition F ∗S > 0 implies that L can be written as a graph over X , i.e. there exist
n functions u1, . . . , un : R

n → R and an orthonormal frame e1, . . . , en spanning
X such that

F : R
n → R

2n

F (x) := xiei + δijuifj ,
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gives an immersion of L (with fj := Jej .)
The tangent vectors Fi := ∂F

∂xi are

Fi = ei + δklukifl(2.7)

Here, L is a compact Lagrangian in a flat manifold M and we see that the
universal cover L̃ of L must be R

n immersed as a Lagrangian into R
2n, the universal

cover of M .
From the Lagrangian condition we further deduce that there exists a function

u : R
n → R such that

uk =
∂u

∂xk

holds for any k = 1, . . . , n and on all of R
n.

As in [7] we may then transform the mean curvature flow into a parabolic
equation for u, because

d

dt
F = −→

H = −Hmνm = −Hm(fm − δlpulmep)

implies the equations

dxi

dt
= Hmδliulm(2.8)

and

δip dup

dt
= −Hi(2.9)

so that in view of
dup

dt
=

∂up

∂t
+ upl

dxl

dt

we obtain the equation

P [u] := −α − ∂u

∂t
= 0(2.10)

with dα = H , where the Lagrangian angle α of L can locally be written as either

α = −arctan
(a

b

)
,

or as

α = arctan

(
b

a

)

depending on whether

a := Im
(
detC(δkl + iukl)

)
or

b := Re
(
detC(δkl + iukl)

)
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is nonzero. Either a or b must be nonzero as long as L is a graph because for the
induced metric

gij = δij + δkluikujl

we compute
det (gij) = a2 + b2.

If all induced metrics F ∗
t g of the flow would be uniformly equivalent one would

obtain uniform C2-estimates w.r.t. the space variables x of (2.10) and it would also
imply that the solution of (2.10) remains a graph.

A simple calculation shows that

∂P [u]
∂uij

= gij

which means that P [u] is always parabolic. We will also need the second derivatives
of P [u] and compute

∂2P [u]
∂uij∂ukl

=
∂gij

∂ukl

= −gisgjt gst

∂ukl

= −gisgjt
(
δpqupsδ

k
q δ l

t + δpquqtδ
k

p δ l
s

)
= −gisgjlδpkups − gilgjtδqkuqt

= −(
gisgjl + gilgjs

)
δpkups.

If at a fixed point p we consider a basis b1, . . . , bn of eigenvectors for uij such that
uij becomes diagonal at p with uij = diag(λ1, . . . , λn), then for any symmetric
tensor vkl we obtain

∂2P [u]
∂uij∂ukl

vijvkl = −2
∑
i,j

λi

(1 + λ2
i )(1 + λ2

j )
(vij)2.

Thus we have shown

Lemma 2.7. The operator P [u] = −α − ∂u
∂t is concave, if u is strictly convex.

This lemma will become important later when we show C2,α-regularity of (2.10).
We take a closer look at conditions (1.6) and (1.7). One has

Sij = S(Fi, Fj) = 〈σ(ei), ej〉 + 〈σ(fl), fq〉δklukiδ
pquqj

so that

Sij = σiδij −
n∑

k=1

σkukiukj ,(2.11)

where we do not sum over i in σiδij .
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In addition

S̄ij = 〈Jσ(Fi), Fj〉 = −〈σ(JFi), Fj〉
= −〈σ(fi − δklukiel), ej + δpqupjfq〉)
= σiuij + σjuji,(2.12)

where again there is no sum over i and j on the RHS.

Lemma 2.8. u is strictly convex if F ∗S̄ is positive definite.

Proof. Assume there exists a nonpositive eigenvalue λ of uij and let V be an
eigenvector so that

n∑
j=1

uijV
j = λ

n∑
j=1

δijV
j .

Then from (2.12)

F ∗S̄(V, V ) =
n∑

i,j=1

(σiuij + σjuji)V iV j

= 2λ

n∑
i=1

(
σiV

i
n∑

j=1

δijV
j
)

= 2λ

n∑
i=1

σi(V i)2 ≤ 0 because σi > 0

which is a contradiction. ��

3. Proof of the main theorem

In this section we will prove our main theorem. For this purpose we need the next
lemma.

Lemma 3.1. Assume there exists an ε > 0 and S ∈ Σ(M) such that

Mij := Sij − εgij > 0(3.1)

holds on a compact L at t = 0. Then this is also true for t ∈ [0, T ).

Proof. First we need an evolution equation for Mij . From Lemma 2.5 and Lemma
2.3 a) we obtain

d

dt
Mij = ∆Mij − Rl

iSlj − Rl
jSli + 2hkm

i hn
jkSmn + 2εaij

= ∆Mij − Rl
iMlj − Rl

jMli + 2εbij + 2hkm
i hn

jkSmn.

We use the maximum principle for tensors proven in [3] (see also [4] for a better
proof.) To prove that (3.1) is preserved we must only show that

NijV
iV j ≥ 0
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for any null eigenvector V of Mij that occurs for the first time, where

Nij := −Rl
iMlj − Rl

jMli + 2εbij + 2hkm
i hn

jkSmn .

If for the first time there exists a null eigenvector V of Mij , then

MijV
i = 0

and
MijW

iW j ≥ 0 ∀ W ∈ TL

But then
NijV

iV j = 2εbijV
iV j + 2hkm

i hn
jkSmnV iV j .

The quadratic tensors bij = hkl
i hjkl and hkm

i V ihn
jkV j are positive semidefinite

and since Mij ≥ 0 implies Smn ≥ εgmn we deduce

NijV
iV j ≥ 2εbijV

iV j + 2εhkm
i hn

jkgmnV iV j

= 4εbijV
iV j ≥ 0. ��

Lemma 3.2. If there exists a positive constant c, such that

Sij − cHiHj > 0(3.2)

at t = 0, then this remains true ∀ t ∈ [0, T ).

Proof. Again we use the maximum principle for tensors. Here we set Mij :=
Sij − cHiHj . Then the evolution equations for Sij and Hi imply

d

dt
Mij = ∆Sij − Rl

iSlj − Rl
jSli + 2hkm

i hn
jkSmn

−cHj(∆Hi − Rl
iHl) − cHi(∆Hj − Rl

jHl)

= ∆Mij + 2c∇kHi∇kHj − Rl
iMlj − Rl

jMli

+2hkm
i hn

jkSmn

and here we set

Nij = 2c∇kHi∇kHj − Rl
iMlj − Rl

jMli + 2hkm
i hn

jkSmn.

As in Lemma 3.1 we choose the first time where a null eigenvector V of Mij occurs
so that

MijV
i = 0

MijW
iW j ≥ 0 ∀ W ∈ TL .

Then
NijV

iV j = 2c|∇kHiV
i|2 + 2hkm

i V ihn
jkV jSmn

≥ 2chkm
i V ihn

jkV jHmHn

= 2cak
i V iajkV j ≥ 0

because ak
i V iajkV j = |Ṽ |2 with Ṽ k = ak

i V i. ��
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Lemma 3.3. With the assumptions made in Theorem 1.3 there exists a constant c2
such that

|d†H| ≤ c2(3.3)

holds for t ∈ [0, T ).

Proof. We define the function

f := |H|2 + d†H − cs

with a positive constant c to be determined. Then Lemma 2.3 e), Lemma 2.4 and
Lemma 2.6 imply

d

dt
f = ∆f − 2|∇H|2 + 2|aij |2 + 4aij∇iHj − 4cbijSij

and with Cauchy-Schwarz

d

dt
f ≤ ∆f + 4|aij |2 − 4cbijSij .

Since |aij |2 = bijHiHj , we obtain

d

dt
f ≤ ∆f + 4bij(HiHj − cSij)

and from bij ≥ 0, Sij > 0 at t = 0 and Lemma 3.2 it follows

f ≤ B

for some constant B > 0 and all t ∈ [0, T ). So we found a uniform upper bound for
d†H , if we can prove that s is bounded. But since S = Sαβdyα ⊗ dyβ is parallel,
we see that Sαβ must be constant in cartesian coordinates for the flat manifold
(M, g, J, ω). Thus there exists a positive constant σ such that

Sαβ − σgαβ < 0

as a tensor. This implies

Sij − σgij = (Sαβ − σgαβ)Fα
i F β

j < 0

and then also

gijSij < σgijgij = σn.(3.4)

In the same way we can proceed with the function f := |H|2 − d†H − cs and
obtain the lower bound for d†H . ��
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We can now prove Theorem 1.3.

Proof of Theorem 1.3. Since there exists a positive constant ε with Sij − εgij > 0
at t = 0, we can find a small positive constant c so that the symmetric tensor

Sij − cHiHj

is positive definite at t = 0. Then Lemma 3.2 implies that

|H|2 ≤ 1
c
gijSij =

s

c
∀ t ∈ [0, T ).

Since s is bounded (compare with the proof of Lemma 3.3) this proves the
uniform bound of |H|2 and by Lemma 3.1 that all induced metrics stay uniformly
equivalent. In addition, Lemma 3.3 is just the uniform bound of |d†H|. It remains
to prove longtime existence and convergence in case n = 2 or under the extra
condition (1.7). For this we recall the underlying Monge-Ampère equation

P [u] = −α − ∂u

∂t
= 0

from Sect. 2 which is the nonparametric version of the Lagrangian mean curvature
flow. Since the Lagrangian angle α depends only on second order derivatives of u
and all induced metrics gij = δij + δkluikujl are uniformly equivalent, we deduce
uniform C2-estimates in space directions for (2.10). In addition we have

∂2u

∂t2
= −∂α

∂t

= −dα

dt
+

dα

dxi

dxi

dt

= −dα

dt
+ HiH

mδliulm with (1.2) and (2.8)

= −d†H + HiH
mδliulm with (1.2) and Lemma 2.3 c).

Since we already proved uniform bounds for |H|2, |d†H| and |D2u|, we get uniform
C2-estimates in time as well. To obtain longtime existence we need uniform C1,α-
estimates in time and uniform C2,α-estimates in space for some α > 0. Hence it
remains to prove C2,α-bounds in space. So far we did not exploit condition (1.7).
From Lemma 2.8, Lemma 2.7 and Lemma 3.1 applied to S̄ we conclude that the
operator P [u] is concave for all t and the results in [6] imply uniform C2,α-estimates
in x for some α > 0. Standard Schauder estimates then give C∞-estimates both
in space and time. In particular the full norm of the second fundamental form is
uniformly bounded and we may apply Proposition (1.1) to get convergence. The
compactness of L implies that the limit manifold must be flat. In case n = 2 we
can drop condition (1.7) because if we freeze time, we may regard F as a solution
of the elliptic system

∆F =
d

dt
F = −→

H

with bounded RHS and the uniform C1-estimates for F and the regularity theory
for equations in two variables (e.g. see [2] Sect. 12) give uniform C1,α-estimates
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for F which amounts to uniform C2,α-bounds for u since F (x) =
(
x, Du(x)

)
.

��
We want to give a more direct proof of Theorem 1.3 in case n = 2. For this we

establish a uniform bound for |A|2.
Let p = p(s) be a function depending on s only and that has to be determined

later. We set
f := p|A|2

and compute the evolution equation for f

d

dt
f = p(∆|A|2 − 2|∇A|2 + 2|bij |2 + 2|Rijkl|2)

+p′|A|2(∆s + 4bijSij) ,

where we used Lemma 2.3 e), Lemma 2.6 and we have set p′ = ∂p
∂s . Then

∆f = (p′∆s + p′′|∇s|2)|A|2 + 2p′〈∇s,∇|A|2〉 + p∆|A|2

gives
d

dt
f = ∆f − 2p|∇A|2 − p′′|∇s|2|A|2 − 2p′〈∇s,∇|A|2〉

+2p(|bij |2 + |Rijkl|2 +
2p′

p
|A|2bijSij).

To proceed we observe that for n = dim(L) = 2 we have

Rijkl =
R

2
(gikgjl − gilgjk),

Rij =
R

2
gij = aij − bij ,

R = |H|2 − |A|2,
|Rijkl|2 = R2,

so that
|bij |2 = −Rij(bij + aij) + |aij |2

= −R

2
(|A|2 + |H|2) + |aij |2

≤ |A|4
2

+ c1(|A|2|H|2 + |H|4)
for some positive constant c1.

In the same way we have

bijSij =
|A|2 − |H|2

2
s + aijSij

≥ |A|2
2

s − c2(|H|2 + |H||A|)s ,

if we assume that there are positive constants c3, c4 such that

c4sgij ≥ Sij ≥ c3sgij(3.5)

(we note here, that by (3.4) and Lemma 3.1 (3.5) is valid ∀ t ∈ [0, T ), if we assume
that Sij > εgij for some ε > 0 at t = 0.)
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Lemma 3.4. Assume Sij > εgij for some ε > 0 holds on L at t = 0 and that
dim(L) = 2. Then there exists a smooth vector field V and a positive constant c

such that f := |A|2
s2 satisfies

d

dt
f ≤ ∆f + 〈V, ∇f〉 +

c

s2 − 1
2
f |A|2.

Proof. By Lemma 3.1 and (3.4) we know that (3.5) is valid ∀ t ∈ [0, T ). Let us
choose p := 1

s2 in the above expression for f = p|A|2.
Since

|hijk∇lhmns − hmns∇lhijk| ≥ 0

we get

2|A|2|∇A|2 ≥ 1
2
|∇|A|2|2

and since in addition

∇f = p′|A|2∇s + p∇|A|2,
there exists some vector field V so that for n = 2

d

dt
f ≤ ∆f + 〈V, ∇f〉 +

3
2

(p′)2

p
|A|2|∇s|2 − p′′|A|2|∇s|2

+2p(|bij |2 + |Rijkl|2 +
2p′

p
|A|2bijSij)

= ∆f + 〈V, ∇f〉 + 2p(|bij |2 + |Rijkl|2 +
2p′

p
|A|2bijSij)

≤ ∆f + 〈V, ∇f〉 + 2p

(
3
2
|A|4 + c5(|A|2|H|2 + |H|4) + 2

p′

p
|A|2bijSij

)

so that

d

dt
f ≤ ∆f + 〈V, ∇f〉 + 2p

{3
2
|A|4 + c5(|A|2|H|2 + |H|4)(3.6)

−2|A|4 + 4c2(|H|2 + |H||A|)|A|2
}

,

where we assumed that (3.5) is valid. Now by Lemma 3.1 and Lemma 3.2 we know
that (3.5) is valid and |H| uniformly bounded, if we assume that Sij > εgij for
some ε > 0 at t = 0. We apply Schwarz inequality to (3.6) and are done. ��

Lemma 3.5. Assume n = 2 and that there exists an ε > 0 such that Sij > εgij at
t = 0. Then the quantity

|A|2
s2

is uniformly bounded on [0, T ).
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Proof. From Lemma 3.4 we know that

d

dt
f ≤ ∆f + 〈V, ∇f〉 +

c

s2 − f

2
|A|2

But since s = gijSij > εgijgij = εn we obtain also

d

dt
f ≤ ∆f + 〈V, ∇f〉 +

c

n2ε2 − n2ε2

2
f2

and by the maximum principle f must be uniformly bounded from above. ��

We can now give a uniform upper bound for |A|2: From Lemma 3.5 we get

|A|2 = fs2 ≤ c6s
2

for some constant c6 and because s is also bounded from above by (3.4) we get a
uniform bound for |A|2. In view of Proposition 1.1 this gives the proof of Theorem
1.3 in case n = 2. ��

4. Appendix

Here we will give a proof of Proposition 1.2. Therefore let S ∈ Σ(M) be a tensor
satisfying (1.3)–(1.5). To any such bilinear form we can associate an endomorphism

σS : TM → TM

by setting σS V := gαβSαγV γ ∂
∂yβ . Therefore

S(V, W ) = g(σSV, W )

and (1.3)–(1.5) imply

g(σSV, W ) = g(σSW, V ) (Symmetry),(4.1)

σS ◦ J = −J ◦ σS (Anti-compatibility),(4.2)

DσS = 0 (Parallelity).(4.3)

Conversely, if σ is an endomorphism satisfying (4.1)–(4.3), then S := g(σ·, ·)
defines an element in Σ(M).

Remark 4.1. Moreover, if σ satisfies (4.1)–(4.3), then Jσ satisfies these relations
too. Conditions (4.1)–(4.3) are very similar to the conditions for the existence of a
hyper-Kähler structure on M , i.e. another complex structure K that satisfies

g(KV, W ) = −g(KW, V ),(4.4)

K ◦ J = −J ◦ K,(4.5)

DK = 0,(4.6)

K2 = −Id.(4.7)
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It is well known that hyper-Kähler metrics are Ricci-flat and that the existence of a
hyper-Kähler manifold gives restrictions on the holonomy of M . Here, we do not
require anything for σ2 and the signs in (4.1) resp. (4.4) differ.

Lemma 4.2. Let (M, g) be a Riemannian manifold and assume that σ satisfies
(4.1) and (4.3). If RM denotes the Riemannian curvature tensor on M , then one
has

RM (σV, W, X, Y ) = −RM (σW, V, X, Y ), ∀V, W, X, Y.(4.8)

RM (σX, W, Y, W ) = RM (σY, W, X, W ), ∀X, Y, W.(4.9)

Proof. The first equation follows from (4.3) and (4.1) because

0 = DV DW σ − DW DV σ − D[V,W ]σ = RM (V, W )σ.

For the second equation we use (4.8) and the first Bianchi identity

RM (σX, W, Y, W ) = −RM (σW, X, Y, W )
= RM (σW, Y, W, X) + RM (σW, W, X, Y )
= RM (σW, Y, W, X)
= −RM (σY, W, W, X)
= RM (σY, W, X, W ) ��

Lemma 4.3. Let (M, J, g) be a Kähler manifold and assume that σ satisfies (4.1)–
(4.3). Then

RM (σX, W, Y, W ) =
1
2
RM (σJX, Y, W, JW ), ∀X, Y, W.(4.10)

Proof. In a first step we compute

RM (σX, W, Y, W ) = RM (JσJX, W, Y, W ) from J2 = −Id and (4.2)

= −RM (σJX, JW, Y, W )
= RM (σJX, Y, W, JW ) + RM (σJX, W, JW, Y )
= RM (σJX, Y, W, JW ) + RM (σJX, W, JY, W ).

Now, by remark 4.1 we can apply (4.9) to σ̃ := σJ and obtain

RM (σJX, W, JY, W ) = RM (σJ2Y, W, X, W )
= −RM (σY, W, X, W )
= −RM (σX, W, Y, W ),

so that

RM (σX, W, Y, W ) = RM (σJX, Y, W, JW ) + RM (σJX, W, JY, W )
= RM (σJX, Y, W, JW ) − RM (σX, W, Y, W ). ��
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Corollary 4.4. Under the assumptions made in Lemma 4.3 we also have

RM (σX, JW, Y, JW ) = RM (σX, W, Y, W ), ∀X, Y, W.(4.11)

Proof. This follows from (4.10) if we replace W by JW . ��
Lemma 4.5. Let (M, J, g) be a Kähler manifold and assume that σ satisfies (4.1)–
(4.3). Then

RM (X, Y, V, W ) = 0, ∀X, Y, V, W ∈ ker(σ).

Proof. Let λ, µ be two different eigenvalues of σ and assume that V ∈ Eig(λ),
W ∈ Eig(µ). We apply (4.8) and obtain

λRM (V, W, X, Y ) = µRM (V, W, X, Y )

so that

RM (V, W, X, Y ) = 0, ∀V ∈ Eig(λ), W ∈ Eig(µ), ∀X, Y ∈ TM.(4.12)

With this and the first Bianchi identity we need to show only

RM (V1, V2, V3, V4) = 0

whenever V1, . . . , V4 belong to the same eigenspace Eig(λ) of a nonzero eigenvalue
λ. We let X := V1, W := V2, Y := V3 and use (4.11) to obtain

RM (V1, JV2, V3, JV2) = RM (V1, V2, V3, V2).

The LHS vanishes because of (4.12) and JV2 ∈ Eig(−λ). So

RM (V1, V2, V3, V2) = 0, ∀V1, V2, V3 ∈ Eig(λ).

But then

0 = RM (V1, V2 + V4, V3, V2 + V4)
= RM (V1, V2, V3, V4) + RM (V1, V4, V3, V2) + 0 + 0

gives

RM (V1, V2, V3, V4) = −RM (V1, V4, V3, V2)
= RM (V1, V3, V2, V4) + RM (V1, V2, V4, V3),

where we used Bianchi’s identity in the last step. Hence

RM (V1, V2, V3, V4) =
1
2
RM (V1, V3, V2, V4), ∀V1, V2, V3, V4 ∈ Eig(λ).

Applying the last identity once again we find

RM (V1, V2, V3, V4) =
1
4
RM (V1, V2, V3, V4), ∀V1, V2, V3, V4 ∈ Eig(λ)

and consequently RM (V1, V2, V3, V4) = 0. ��

Proof of Proposition 1.2. This is now a direct consequence of Lemma 4.5. ��
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