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Abstract. Given a compact Lagrangian submanifold in flat space evolving by its mean cur-
vature, we prove uniform C***-bounds in space and C?-estimates in time for the underlying
Monge-Ampere equation under weak and natural assumptions on the initial Lagrangian
submanifold. This implies longtime existence and convergence of the Lagrangian mean
curvature flow. In the 2-dimensional case we can relax our assumptions and obtain two
independent proofs for the same result.
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1. Introduction

In symplectic geometry there is a destinguished class of immersions, known as
Lagrangian submanifolds. They are important in physics and of course in pure
and applied mathematics as well. E.g. minimal Lagrangian immersions in a given
Calabi- Yau manifold are relevant in physics because they are related to T-duality and
Mirror symmetry [9]. However, to construct minimal Lagrangian submanifolds is a
great geometric and analytic challenge. Nevertheless there is a growing community
working on such problems and already some very nice results have been obtained,
so e.g. a version of the Bernstein problem [5]. Due to the high codimension many
techniques which are useful for hypersurfaces of prescribed curvature cannot be
used unchanged in the theory of Lagrangian submanifolds. In particular the mean
curvature flow for Lagrangian submanifolds is much more complicated than for
hypersurfaces and it is the aim of this article to close a gap in the understanding of
Lagrangian graphs moving by their mean curvature.

Let (M, w) be a 2n-dimensional symplectic manifold with symplectic 2-form
w. An n-dimensional submanifold L C M is called Lagrangian if

wV,W)=0 VYV,WeTL.

The most prominent examples of symplectic manifolds are Kéhler manifolds
(M, J,g), where
w(V,W) = g(JV, W)
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is the symplectic 2-form (Ké&hler form) induced by the Kéhler metric g and the
complex structure J.
If L is a compact n-dimensional manifold, [0,7") C R U {co} a time interval
and
F:Lx[0,T)— M

a smooth family of immersions into a Kéhler-Einstein manifold (M, J, g), such
that
Ly := F(L,0)

is Lagrangian and such that [’ satisfies the mean curvature flow equation

dFF =
1.1 — =0
(1.1) 7

—
(H = mean curvature vector along L; := F'(L,t)), then it is well-known that (1.1)
preserves the Lagrangian condition, so that L, is Lagrangian V ¢ € [0, T) (see e.g.
[71.)

We write F;(x) instead of F'(x,t). The mean curvature form H of Lagrangian

5
submanifolds in Kihler manifolds (M, J, g) is related to H through

H(V) = w(H,V).

If (M, J, g) is Kéhler-Einstein, then H is closed and any locally defined function
a with

(1.2) dao=H

is called a Lagrangian angle.

In [8] we proved the following longtime existence and convergence result for
the Lagrangian mean curvature flow in Kéhler-Einstein manifolds of nonpositive
scalar curvature:

Proposition 1.1. Let L be a compact manifold and let Fy : L — Lo C M be
a smooth immersion of L as a Lagrangian submanifold into a Kdhler-Einstein
manifold (M, J,g) that is either compact or complete with bounded curvature
quantities. Further assume that [0,T), 0 < T < oo is the maximal time interval
on which the Lagrangian mean curvature flow (1.1) admits a smooth solution. Then
the following is true:

(a) Assume there exists a constant Cy < oo such that

max |A]2 < Cy, Ytel0,T),

where |A|? is the squared norm of the second fundamental tensor A. Then for
any m > 0 there exists a constant C,,, < oo depending on m, Lo, M such that

max V™Al < C,,, Vtel[0,T).
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(b) If T < oo, then

t—T

lim sup {max |A|2} 0.

(c) Ifin addition to (a) the initial mean curvature form of Lg is exact, the ambient
Kdihler-Einstein manifold has nonpositive Ricci curvature and the induced Rie-
mannian metrics Fy' g on L are all uniformly equivalent, then T' = oo and the
Lagrangian submanifolds L, converge smoothly and exponentially to a smooth
compact minimal Lagrangian immersion Lo, C M.

In general one cannot expect longtime existence results without extra assump-
tions on the initial Lagrangian submanifold. In [8] we considered Lagrangian
submanifolds generated by symplectic maps and proved convergence to minimal
Lagrangian maps under very natural and sharp conditions for the Lagrangian angle
a. Here, we will give another sufficient condition for longtime existence in flat
ambient manifolds that entirely differs from those conditions. In particular we will
not need the oscillation condition

osc () <

vl 3

that was important there.

The crucial condition in this paper can be stated in terms of certain symmetric
bilinear forms S. To explain these forms suppose (M, g, J) is a 2n-dimensional
Kihler-Einstein manifold with compatible complex structure J, i.e.

w(V,W) = g(JV, W)

is a symplectic 2-form (Kihler form.) Let us denote the Levi-Civita connection on
M by D. We will consider tensors S € I'(T* M ® T* M) that satisfy the following
conditions

(1.3) S(V,W)=S(W,V) (Symmetry),
(1.4) S(JV, W) = S(V, J W) (Anti-compatibility),
(1.5) DS =0 (Parallelity)

and denote the set of tensors satisfying Egs. (1.3), (1.4) and (1.5) by X' (M). Note
thatif S € X (M), then S defined by

S(V,W) = —S(JV, W)

also belongs to X(M). An example in R?" is given by S(V, W) := (V, W), where
(-, -) denotes the euclidean inner product and the bar is complex conjugation. Since
these conditions are very similar to the structures on hyperKéhler manifolds it is
clear that one must expect a special holonomy for the underlying manifold, indeed
the existence of such a bilinear form S is so strong that it implies:

Proposition 1.2. Let S € X' (M) be non-degenerate. Then g is flat.
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A proof of the proposition will be given in the appendix where we will also discuss
Y(R?") in more detail. Here we only mention that this fact mainly hinges on
condition (1.5) and that this is the only reason why we restrict our considerations
to flat ambient manifolds.

The main theorem states:

Theorem 1.3. Assume Fy : L — (M, g,J) is a compact Lagrangian immersion
into a flat manifold such that there exists a tensor S € X (M) with

(1.6) FS(V,V)>0 VVeTL V#0.

Then there exist constants c1, co > 0 such that

—
lim sup {mLax |H|} < ¢y,
t

t—T

lim sup {max |dTH} < c¢o,
t—T Ly

on the maximal time interval [0, T'), where a smooth solution of (1.1) exists ( dtH
is shorthand for V' H;). Moreover, all induced metrics g, := F;g are uniformly
equivalent to the initial metric go. If in addition n = 2 or

(1.7) F;S(V,V)>0 YVeTL V#0,

then T' = oo and the Lagrangian submanifolds converge smoothly to a flat
Lagrangian submanifold.

Condition (1.6) implies that the Lagrangian submanifold can be written as a
graph over a flat Lagrangian subspace so that the n height functions are given by the
n components of the gradient of a smooth function u and such that the eigenvalues
of the Hessian of u are uniformly bounded by a constant depending on S. We
discuss this in Sect. 2. Condition (1.7) will imply convexity of u. This is possible
even for compact Lagrangian submanifolds. An example can be given as follows:

Example 1.4. Letu : R™ — R be defined by
u(x) = g|gc|2 + b;COS(xi)
with two constants a, b that satisfy a > b > 0,a + b < 1 (see also Fig. 1). Then

the gradient graph

F: R*">R'"@iR*"=C"
F(z) := (z,y := Du(z))

describes the universal cover of a compact Lagrangian submanifold in flat space
(since F'(R™) is invariant under translations in R?") and the Hessian of u is

u;; = diag(a — beos(z'),...,a — beos(z™))



Longtime existence of the Lagrangian mean curvature flow 29

y=u'(x)=x+sin(x)

X

Fig. 1. The gradient graph of u(z) = % — cos(x)

so that all eigenvalues \ of u;; satisfy
0< A<

In particular
F*S(V,V)=(DF(V),DF(V)) >0

and

F*S(V,V)=(JDF(V),DF(V)) >0
for all V€ TR" (the bar denotes complex conjugation) so that conditions (1.6)
and (1.7) are satisfied with S(X,Y) := (X, Y).

In particular we get the following corollary

Corollary 1.5. Assume u : R™ — R is a smooth strictly convex function such that
all eigenvalues of Hess(u) are bounded by 1 and such that F(z) := (z, Du(x))
is the universal cover of a compact Lagrangian submanifold in C* = R™ @ tR".
Then the Lagrangian mean curvature flow deforms L into a flat plane.

(1.6) and (1.7) roughly mean that the Lagrangian submanifold lies between two
different Lagrangian planes. Equation (1.1) and the Lagrangian condition then lead
to a parabolic Monge-Ampere type equation (2.10) for « which describes the flow
(see Sect. 2 for details) and the theorem implies that under condition (1.6) one gets
uniform C2-estimates for v both in space and time. Assumption (1.7) on the other
hand guarantees that the parabolic operator is concave so that we can use the C%<-
estimates in space due to Krylov (for example Sect. 5.5 in [6]). This eventually
gives longtime existence and convergence. In case n = 2 we can drop condition
(1.7) and obtain the C%*“-estimates in two different ways, from the better regularity
theory for nonlinear equations in 2 variables and also from a direct estimate of the
full second fundamental form. We will discuss both proofs. It is unknown whether
(1.7) is redundant in any dimension.
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In this paper we will use the maximum principle for tensors due to Hamilton
[3,4]. Since there is no monotonicity formula for tensors so far, we cannot drop
the compactness condition here, although we believe that this can be done under
appropriate growth conditions as e.g. in the well known paper by Ecker and Huisken
[1] where hypersurfaces in R" T represented as graphs are deformed by their mean
curvature. However, for the mean curvature flow in higher codimension one cannot
expect the same results as in [1] and a condition like in our theorem is natural in
this context. The special nature of the Lagrangian mean curvature flow allows to
obtain longtime existence and convergence merely from uniform C'*-estimates
for the evolving maps F' : L — R2" because the quasilinear parabolic system given
by Eq. (1.1) can be integrated to the fully nonlinear parabolic equation of Monge-
Ampere type (2.10) and C'1*-estimates for I’ correspond to C'*“-estimates of that
equation.

This work has begun while I visited the CAS in Beijing, China in 2001 and was
completed at the Max-Planck-Institute for Mathematics in the Sciences in Leipzig,
Germany. I would like to thank Prof. Li Jiayu for his invitation to China and his
great hospitality and Prof. Jiirgen Jost at the MPI for the opportunity to finish this
work.

2. Preliminaries
2.1. The Lagrangian mean curvature flow in R?"

In this section we explain the notation and recall elementary equations for the
Lagrangian mean curvature flow in R?", To begin, assume that (R?*", g, J,w) is
the euclidean space with compatible complex structure J = ¢ and the standard
symplectic form w. Local coordinates on R2™ will be denoted by (y"‘)a:L,_,gn
whereas local coordinates for a Lagrangian submanifold L will be denoted by
(l‘i)izl ...,n- Moreover, we use the Einstein convention to sum over repeated indices,
the sum is taken from 1 to 2n for greek indices and from 1 to n for latin minuscles.
If

F:L—M
is an immersion, then we write
oF~
F* .= —— with ' = y*(F

i 3 0 Yy (F),
2

. 0°F¢“ .

t oxioxI

The metric g = (-, -) on R?" can locally be written as
9= gap dy™ @ dy’

and then _ _
F*g=g;;dz* ® da’
with
9ij = Gap ﬂaFf
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is the induced Riemannian metric on L. By the Lagrangian condition we have

wij == wagFPF) = 0.

We also set 5
J=J3 — @dy°,
B 6ya
Ve = J§F
and

W0 (OF
= = ()

so that v; is normal along L. The induced connection on tensor bundles over L will
be denoted by V. Then the second fundamental tensor A is the covariant derivative
of the differential

dF = Fdr' ® i,
oy™
i.e.
A =VdF
and we set
A?j = ViEf.

The second fundamental form h € I'(T*L ® T*L ® T*L) is the tensor given by
the components
hijk = 7wagFiaA?k

and by definition the mean curvature form H = H;dz? is
H; = g"hiy

so that H is related to H by

H(V) = w(H, V).

We summarize the relevant equations for the second fundamental form in the fol-
lowing Lemma (compare with [7] and [8].)

Lemma 2.1. The second fundamental form h = h;jpdr’ @ do? ® da* of a
Lagrangian immersion into R?" satisfies

a) hijr = hjik = hjki,

b) Rijri = hy"hpji — by b,

c) Vihjg — Vjhi =0,

d) V;H; =V;H;.

Here, R;j; is the curvature symbol of F™* g w.r.t. coordinates (x")i:17,,,,n and we

have set
hi" = himg™".
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Remark 2.2. In the sequel we will often rise and lower indices w.r.t. the metric
tensor g;;. From Lemma 2.1 d) (the traced Codazzi equation) it follows that the
mean curvature form H is closed.

Let us introduce the following symmetric tensors

a = a; dz’ ® da?
b = le d.]?l ® d.]?j

with
aij := g* Hyhuiy = H'hu
bij = hlmnhmnj .
It follows that
2.1) |A]? = gopg™ g/ AL A, = B¥ R = gy,
and
(2.2) gai; = |H*.

In addition, the Ricci curvature is given by
(23) Rij = aij — bij .

We recall the evolution equations under the mean curvature flow for crucial geo-
metric objects on L (compare with Lemma 5 in [8].)

Lemma 2.3. IfF : Lx[0,T) — R*"isasmoothfamily of Lagrangian immersions
that evolves according to (1.1), then

d
a) = 9ij = —2ai
b) L —|H|*d
art #
c) %H,- =V.d'"H = AH; — R/'H,

d
hije = Ahiji — R hiji — R b — Ry huig — 2Ry, ™ thyy”

d) —
)dt

d
e) %\HF = A[HP = 2|VH[* + 2|a;;|?

d
N AP = AJAP = 2IVAP 4 2Jbi|* + 2| Rijwa|*
Here, dy denotes the volume element on L w.r.t. F*g.

For a proof of these equations we refer to [7] and [8].
In addition we will use the evolution equation of df H
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Lemma 2.4.

d »

%dTH = Ad'H + 44"V, H;.
Proof. This is a direct consequence of Lemma 2.3 a) and c). a

Now let S € X (M) be one of the tensors described above. We set
Sij = SaﬂFiaFjﬁ

and

. d
F* = — <%,
dt

We need an evolution equation for F*S = S;; dz* ® dz’ and compute

d d
@SZJ a % . . .
= Dy SagE FPF] + S0gViFOF + Sop FOV P
= —Sus(Vi(H'Y )Fﬁ+FaV (H'v))
= —V,H'S, g F? —V;H'S, s F v’
—H'So5(V; yaF + Vi FY).

a ;B
(SaﬁFi Fj)

From V, F* = A§) = fhflz/,‘j, DJ = 0 and J? = —Id we obtain

(2.4) Vi = hiFy,
so that
d
(2.5) —-8ij = —ViH'Sapvf ) — V;H'SosFfv)

—H'Sop(hk Fp F’B + W FPE)
= —ViH'Sopvf FP =V H' S FPV)
—a; Skj — ajSki.

Next we compute AS;;:

ViSij = Vi(SasFOFY)
=D,S BFWFaFﬁ + Sap(VeFEF) + FOVLEY)

= _hkzs sV Fy — thS ﬁFz‘aViB
and then
(2.6) A8y = —VF h,msaﬁyl — VP hlSapFov)
—hF Sap(WGFRF) — hisvivy,)

7h§ksaﬁ( kzynzyl + Fah’ m)
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From the Codazzi equation (Lemma 2.1 ¢)) we deduce
VFERL, = VIH; = Vv, H'

and (1.4) implies

Saﬁ’/sl’/ﬂ = —Pml>

so that
ASyj = —ViH'Sagif F} = V,;H'SapFv)

—b; Skj — bY Sii
—2h i S

Inserting this into the above expression for %Sij we finally get

Lemma 2.5. F*S = S;;dz" ® da’ satisfies the evolution equation
d
dt

We define the function

Sij = ASi; — RiS; — RSy + 20 ™ WYy Sy

5= g% Sij-
Then the evolution equations for g/ and S;; immediately imply

Lemma 2.6. The quantity s satisfies
d i
%S = AS + 4b S’L'j-

2.2. The underlying parabolic equation of Monge-Ampere type

We will now see that in particular any Lagrangian L, C R?" satisfying condition
(1.6) must be a graph over an n-plane sitting in R?",

To see this let 0g : R?® — R2?” be the endomorphism associated to S, i.e.
(o5(V),W) = S(V,W). o5 must be independent of y € R>*" because we as-
sumed that S is parallel. If A is an eigenvalue of og, then —\ must also be an
eigenvalue because ogJ = —Jog and J maps the eigenspace belonging to A to
that belonging to —A\. Since F'*S > 0 and L is n-dimensional, we conclude that
there exist exactly n positive eigenvalues o1, ..., 0, and n negative eigenvalues
—01,...,—0,. Consequently we can split R?" into the direct sum

RZn:X@K

where X is the linear hull of all eigenvectors e belonging to positive eigenvalues
and Y := JX is the linear hull of eigenvectors f belonging to negative eigenvalues.
In addition F*S > 0 implies that L can be written as a graph over X, i.e. there exist
n functions uq, ..., u, : R™ — R and an orthonormal frame ey, ..., e, spanning
X such that

F : R* 5> R*™
F(x) := 2'e; + 67 u, f,
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gives an immersion of L (with f; := Je;.)

The tangent vectors F; := gTF are
Q2.7) Fi = e; + 6"uy, fi

Here, L is a compact Lagrangian in a flat manifold M and we see that the
universal cover L of L must be R” immersed as a Lagrangian into R?", the universal
cover of M.

From the Lagrangian condition we further deduce that there exists a function

u : R™ — R such that
ou

Oxk
holds for any £k = 1,...,n and on all of R".

As in [7] we may then transform the mean curvature flow into a parabolic
equation for u, because

Uk =

d
aF = ﬁ = _Hnll/’rn = _Hm(f’rn - 6lpulm€p)

implies the equations

dz? -

2.8 — = H™ "y,
(2.3) 7 Uy
and
2.9 oL — _ [t
(2.9) dt
so that in view of

du,  Ouy da!

= u _—
a ot "
we obtain the equation

(2.10) Plu] := —a — Frie 0

with daw = H, where the Lagrangian angle a of L can locally be written as either

o = —arctan (%) R

()
« = arctan | —
a

a :=Im (detc (6ps + iug))

or as

depending on whether

or
b:=Re (det(c (5kl + iukl))
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is nonzero. Either a or b must be nonzero as long as L is a graph because for the
induced metric

9ij = 0ij + 6wy
we compute
det (gU) = a2 —+ bz.
If all induced metrics F}' g of the flow would be uniformly equivalent one would
obtain uniform C?-estimates w.r.t. the space variables x of (2.10) and it would also

imply that the solution of (2.10) remains a graph.
A simple calculation shows that

OPlu)

8Uij

which means that P[u] is always parabolic. We will also need the second derivatives
of P[u] and compute

O*Plu]  8gY
8uij6ukl o 8ukl
__ is_jt st
g9 O
= —g" g7t (0P8, 6, + 675,55,
— g g]lépk gilgjtéqkuqt

(gzsgjl+g gjs)épkup

If at a fixed point p we consider a basis by, . . ., b, of eigenvectors for u;; such that
u;; becomes diagonal at p with u;; = diag(Aq, ..., A,), then for any symmetric
tensor v;; we obtain

02 P[u] i 2
4, 72§ :— )
Do M ESUIESHC

Thus we have shown

Lemma 2.7. The operator Plu] = —a — % is concave, if u is strictly convex.

This lemma will become important later when we show C'?“-regularity of (2.10).
We take a closer look at conditions (1.6) and (1.7). One has

Sij = S(Fy, Fy) = (o(ei), ) + (0(f1), fq)6™ uni6? ug,

so that
@.11) Si; = 00y Zakumum,

where we do not sum over ¢ in 0;0;;.
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In addition

Sij = (Jo(Fy), Fy) = —(o(JF;), Fy)
= —(o(fi — Murier), €5 + Pup; f))
(2.12) = 0;U5 + OjUjq,

where again there is no sum over ¢ and j on the RHS.
Lemma 2.8. w is strictly convex if F*S is positive definite.

Proof. Assume there exists a nonpositive eigenvalue A of u;; and let V' be an

eigenvector so that
n n
Zuijvj = )\Z(S”Vj
j=1 j=1

Then from (2.12)

F*S(V,V) = Z (Ui’LLij + ojuji)ViVj

i,j=1
i=1 j=1

= 2)\Zoi(Vi)2 <0 because o; >0
i=1

which is a contradiction. O

3. Proof of the main theorem

In this section we will prove our main theorem. For this purpose we need the next
lemma.

Lemma 3.1. Assume there exists ane > 0 and S € X (M) such that
(31) Mij = Sij —&€9i5 > 0
holds on a compact L at t = 0. Then this is also true for t € [0,T).

Proof. First we need an evolution equation for M;;. From Lemma 2.5 and Lemma
2.3 a) we obtain

d
—M;; = AM;; — RLS;; — RLSi; + 205 hily S + 220

dt
= AM;; — RiMy; — R\ My; + 2eb; + 20 ™ Bl S

We use the maximum principle for tensors proven in [3] (see also [4] for a better
proof.) To prove that (3.1) is preserved we must only show that

N ViV >0



38 K. Smoczyk

for any null eigenvector V' of M;; that occurs for the first time, where
Nij == —RiMy; — R My; + 2bij + 20 W7y S
If for the first time there exists a null eigenvector V' of M, ;, then
Mj;Vi=0
and o
M ;W'W7 >0 VWeTL

But then o o o

N VIVI = 2ebi; VIV + 20 ™ W S VIV
The quadratic tensors b;; = h¥'h;; and hmeih?ij are positive semidefinite

and since M;; > 0 implies Sy, > €Gmn We deduce

NiViVI > 2eb; VIV + 26hf™ by gmn V' V7

= 4eb;; V'VI > 0. 0
Lemma 3.2. [f there exists a positive constant c, such that
(3.2) Sij —cH;H; >0
att = 0, then this remains true ¥ t € [0,T).

Proof. Again we use the maximum principle for tensors. Here we set M;; :=
Sij — cH;H;. Then the evolution equations for .S;; and H; imply

d mipn
%MZ = AS” - Rislj - RéSlz + th h‘ijmn
—cH;(AH; — R{H,) — cH;(AH; — R} Hy)
= AM;; + 2¢V*H;V H; — R.M;; — R\ My;

2R B S
and here we set
Ny = 2cVPH Vi H; — RIMy; — R My + 205™ b S

Asin Lemma 3.1 we choose the first time where a null eigenvector V' of M;; occurs

so that )
Mi;V' =0

M ;WiWJ >0V W €TL.
Then
NiViVi = 2e|VEH VI ? + 20" VIR VI S,
> 2chi™ V' W, VI H, H,
= ZCafViajij >0

because a¥Via;, V7 = |V|? with V* = aF V7. q
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Lemma 3.3. With the assumptions made in Theorem 1.3 there exists a constant co
such that

(3.3) |dTH| < ¢y
holds fort € [0,T).
Proof. We define the function

f=|H?+d H—ecs

with a positive constant c to be determined. Then Lemma 2.3 e), Lemma 2.4 and
Lemma 2.6 imply

d » »
%f = Af - 2|VH|2 + Q‘Clij|2 + 4(ZZJVZ‘HJ' - 4CbljSij

and with Cauchy-Schwarz

d 2 ij

%'f < Af + 4\aij| —4cb Slj
Since |a;;|* = b" H; H,;, we obtain

d ij
and from b;; > 0, S;; > 0 att = 0 and Lemma 3.2 it follows

f<B
for some constant B > O and all ¢ € [0, T). So we found a uniform upper bound for
d" H, if we can prove that s is bounded. But since S = Sody® ® dy'@ is parallel,
we see that S, must be constant in cartesian coordinates for the flat manifold
(M, g, J,w). Thus there exists a positive constant ¢ such that
Sag — 0G0 < 0
as a tensor. This implies
Sii — 0gij = (Saﬁ - O’gaﬂ)FiaF]p <0

and then also
3.4 gijSij < crgijgij =on.

In the same way we can proceed with the function f := |H|?> — d'H — cs and
obtain the lower bound for d' H. a



40 K. Smoczyk

We can now prove Theorem 1.3.

Proof of Theorem 1.3. Since there exists a positive constant € with S;; —€g;; > 0
att = 0, we can find a small positive constant c so that the symmetric tensor

Si j cH ZIT[ j
is positive definite at ¢ = 0. Then Lemma 3.2 implies that
21 i S
‘H| gfg]Sij:f VtE[O,T).
& (&

Since s is bounded (compare with the proof of Lemma 3.3) this proves the
uniform bound of | H|? and by Lemma 3.1 that all induced metrics stay uniformly
equivalent. In addition, Lemma 3.3 is just the uniform bound of |d' H|. It remains
to prove longtime existence and convergence in case n = 2 or under the extra
condition (1.7). For this we recall the underlying Monge-Ampere equation

Plul=-a——=0

4] 8

from Sect. 2 which is the nonparametric version of the Lagrangian mean curvature
flow. Since the Lagrangian angle o depends only on second order derivatives of u
and all induced metrics g;; = 0;; + gkt u;iu;; are uniformly equivalent, we deduce
uniform C?-estimates in space directions for (2.10). In addition we have

Pu O«

o2 ot
_da | da da’
@ T dr d

da

-t H;H™§"%y,,, with (1.2) and (2.8)

= —d'H + H;H™6"v,,, with (1.2) and Lemma 2.3 ¢).

Since we already proved uniform bounds for | H|?, |d" H| and | D?u/, we get uniform
C?2-estimates in time as well. To obtain longtime existence we need uniform C1>“-
estimates in time and uniform C?®-estimates in space for some o > 0. Hence it
remains to prove C%*-bounds in space. So far we did not exploit condition (1.7).
From Lemma 2.8, Lemma 2.7 and Lemma 3.1 applied to S we conclude that the
operator P[u] is concave for all ¢ and the results in [6] imply uniform C'*“-estimates
in x for some « > 0. Standard Schauder estimates then give C'°°-estimates both
in space and time. In particular the full norm of the second fundamental form is
uniformly bounded and we may apply Proposition (1.1) to get convergence. The
compactness of L implies that the limit manifold must be flat. In case n = 2 we
can drop condition (1.7) because if we freeze time, we may regard F as a solution
of the elliptic system

Ar=Yp_g
d

with bounded RHS and the uniform C'-estimates for I and the regularity theory
for equations in two variables (e.g. see [2] Sect. 12) give uniform C'®-estimates
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for F' which amounts to uniform C*-bounds for u since F(z) = (z, Du(x)).
O
We want to give a more direct proof of Theorem 1.3 in case n = 2. For this we
establish a uniform bound for |A|%.
Let p = p(s) be a function depending on s only and that has to be determined
later. We set

f=plAP?
and compute the evolution equation for f
&1 = p(AIAP —21VAP 4 20by > + 2 Rigul?)
+p/|A]*(As + 4bY S,5)

where we used Lemma 2.3 €), Lemma 2.6 and we have set p’ = %. Then

Af = (' As+p"|Vs|?)|A]? + 2p'(Vs, V|A]?) + pA|AJ]?
gives

S = Af =l VAP ~ p|VsPIAP — 20/(Vs, V]AP)

+2p(l? + | Ria? + 2 AP,

To proceed we observe that for n = dim(L) = 2 we have

R
Rijri = —(9ik9j1 — 9u95k),

2

R
R;; = 5 9ij = ij — bij,
R = |H[* - |A]?,
|Riji|* = R,

so that iy iy
[bij|? = —Ri; (b7 + a') + |ay;|?

B
2

(1A + [H?) + |ai;*
Al 2| 772 4
< Eh a(APIHE + H|Y)
for some positive constant c;.
In the same way we have
_ AP —|HP

bijSij = fs + aijSi]‘

2
AL p(m + m)A)s,

Z LA

2
if we assume that there are positive constants cs, ¢4 such that
(3.5) c459i5 > Sij > 3505

(we note here, that by (3.4) and Lemma 3.1 (3.5) is valid vV ¢ € [0,T), if we assume
that S;; > eg;; forsomee > 0 att = 0.)
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Lemma 3.4. Assume S;; > €g;; for some € > 0 holds on L att = 0 and that
dim(L) = 2. Then there exists a smooth vector field V and a positive constant ¢

2
such that = ‘A2| satisfies

S

d c 1
%fSAf+<V’Vf>+S*2—§f\A|2-

Proof. By Lemma 3.1 and (3.4) we know that (3.5) is valid V ¢ € [0,T). Let us
choose p := s% in the above expression for f = p|A|%.
Since

|hijk'vlhmns - hmnsvlhijk| >0
we get

2IA2VAP >

1 212
> [9]4P]

and since in addition
Vf=pAPVs+pV|A]?,

there exists some vector field V' so that forn = 2

3 p/ 2
DL ARV — AP [T

d
SIS A+ (VY +
2 2 2p’ 2704
+2p(|bi | + | Rijral +?|A\ b7S,5)
0
— Af + (VY1) +2p(1b 2 + [Rigual” + %AFWSU-)
3 r
SAf+(V,Vf)+2p <2|A|4 +es(|AP|H|? + |H|4) + 22|A|2b’75ij>

so that

66 Sf <AV + 2] 1A+ s APIH + HI)

~2/A* +de;(1HP + | HIADI AP},

where we assumed that (3.5) is valid. Now by Lemma 3.1 and Lemma 3.2 we know
that (3.5) is valid and | H| uniformly bounded, if we assume that S;; > eg,; for
some ¢ > 0 at t = 0. We apply Schwarz inequality to (3.6) and are done. ad

Lemma 3.5. Assume n = 2 and that there exists an € > 0 such that S;; > €g;; at
t = 0. Then the quantity

AP
s2

is uniformly bounded on [0, T).
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Proof. From Lemma 3.4 we know that
d c f
—f<A — — Z|AP
I SAf V) + 5 - 1Al

But since s = g*/ Sij > z—:gijgl-j = en we obtain also

d c n?e? ,
< - =
dtf_Af+<V,Vf>+n262 5 /

and by the maximum principle f must be uniformly bounded from above. O
We can now give a uniform upper bound for | A|?: From Lemma 3.5 we get
|A\2 = fs% < ¢gs?

for some constant cg and because s is also bounded from above by (3.4) we get a
uniform bound for | A|2. In view of Proposition 1.1 this gives the proof of Theorem
1.3incasen = 2. a

4. Appendix

Here we will give a proof of Proposition 1.2. Therefore let S € X (M) be a tensor
satisfying (1.3)—(1.5). To any such bilinear form we can associate an endomorphism

os:TM —TM
by setting og V := ¢g*? SMV”Y%. Therefore
S(V,W) =g(osV,W)

and (1.3)—(1.5) imply

4.1) g(osV,W) = g(osW, V) (Symmetry),
“4.2) ogoJ=—-Joog (Anti-compatibility),
4.3) Dog =0 (Parallelity).

Conversely, if o is an endomorphism satisfying (4.1)-(4.3), then S := g(o-,")
defines an element in X'(M).

Remark 4.1. Moreover, if o satisfies (4.1)—(4.3), then Jo satisfies these relations
too. Conditions (4.1)—(4.3) are very similar to the conditions for the existence of a
hyper-Kéhler structure on M, i.e. another complex structure K that satisfies

(4.4) g(KV, W) = —g(KW, V),
4.5) KoJ=—JoK,
(4.6) DK =0,

A7) K2 =-1d.
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It is well known that hyper-Kéhler metrics are Ricci-flat and that the existence of a
hyper-Kéhler manifold gives restrictions on the holonomy of M. Here, we do not
require anything for o2 and the signs in (4.1) resp. (4.4) differ.

Lemma 4.2. Let (M, g) be a Riemannian manifold and assume that o satisfies
(4.1) and (4.3). If RM denotes the Riemannian curvature tensor on M, then one
has

(4.8) RM(cV,W,X,Y) = —-RM(cW,V,X,Y), VV,W,X,Y.

(4.9) RM(aX,W,Y,W) = RM(cY,W,X, W), VX,Y,W.
Proof. The first equation follows from (4.3) and (4.1) because

0 = DyDwo — DwDyo — Dywyo = RM(V,W)o.
For the second equation we use (4.8) and the first Bianchi identity

RM(cX,W,Y,W) = —RM(cW,X,Y,W)
= RM(eW,Y,W, X) + RM(cW, W, X,Y)
= RM(oW,Y, W, X)
= —RM (oY, W, W, X)
= RM (oY, W, X, W) O

Lemma 4.3. Let (M, J, g) be a Kiihler manifold and assume that o satisfies (4.1)—
(4.3). Then

1
(4.10) RM(cX, W, Y,W) = iRM(aJX,Y,W,JW), VXY, W.

Proof. In afirst step we compute

RM(eX, W, Y,W) = RM(JoJX,W,Y,W)  from J? = —Id and (4.2)
= —RM(0JX,JW,Y,W)
= RM(cJX,Y,W,JW) + RM(cJ X, W, JW,Y)
= RM(cJX,Y,W,JW) + RM(cJX, W, JY,W).

Now, by remark 4.1 we can apply (4.9) to ¢ := ¢J and obtain

RM(cJX, W, JY,W) = RM(cJ?Y, W, X, W)
= —RM (oY, W, X, W)
= _RM(UX7 VV? K W)a
so that

RM(cX,W,Y,W) = RM(cJX,Y,W,JW) + RM(¢JX, W, JY, W)
=RM(cJX,Y,W,JW) — RM (¢ X, W,Y,W).
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Corollary 4.4. Under the assumptions made in Lemma 4.3 we also have
(4.11) RM(¢X,JW,Y,JW) =R (cX,W,Y,W), VX,Y,W.
Proof. This follows from (4.10) if we replace W by JW. a

Lemma 4.5. Let (M, J, g) be a Kiihler manifold and assume that o satisfies (4.1)—
(4.3). Then
RM(X,Y,V,W)=0, VX,Y,V,W & ker(c).

Proof. Let A\, u be two different eigenvalues of o and assume that V' € Eig()\),
W € Eig(u). We apply (4.8) and obtain

ARM(V,W, X, Y) = uRM (V, W, X, Y)
so that
(4.12) RM(V,W,X,Y)=0, VV € Eig(\),W € Eig(p),¥X,Y € TM.
With this and the first Bianchi identity we need to show only
RM(Vy,Va, V3, V3) =0

whenever V7, . .., V belong to the same eigenspace Eig(\) of a nonzero eigenvalue
AWelet X .=V, W :=V5,Y := V3 and use (4.11) to obtain

RM(Vy, JVa, Vs, JVa) = RM(Vy, Vi, Vs, V).
The LHS vanishes because of (4.12) and JV; € Eig(—\). So
RM(Vy, Vo, V3, Vo) =0, VY Vi,Va, Vs €Eig()).
But then

0 == RM(V17%+‘/;17V31%+‘/21)
= RM(Vy, Vo, V3, Vi) + RM(V4, Vi, V3, Va) + 0+ 0

gives

RM(Vy, Vo, V3, Vi) = —RM (W3, V4, V3, Vi)
= RM(V1, V3, Va, Vi) + RM (Vi, Vo, Vi, V),

where we used Bianchi’s identity in the last step. Hence

RM (Vi Va, V3, Vi) = %RM(Vl,Vg,VQ,m), VVi,Va, V3, Vy € Eig(A).
Applying the last identity once again we find

RM(Vi,V, V3, V) = ERM(Vl,VQ,vg,m), VVi, V2, V5, Vy € Eig())
and consequently RM (Vy, Vo, V3, V) = 0. a

Proof of Proposition 1.2. This is now a direct consequence of Lemma 4.5. a



46 K. Smoczyk

References

1. Ecker, K., Huisken, G.: Mean curvature evolution of entire graphs. Ann. of Math. 130
(2), 453-471 (1989)

2. Gilbarg, D., Trudinger, N.S.: Elliptic partial differential equations of second order.
Grundlehren der mathematischen Wissenschaften 224, 2nd edn. Springer, 1983

3. Hamilton, R.: Three-manifolds with positive Ricci curvature. J. Differential Geom. 17,
255-306 (1982)

4. Hamilton, R.: Four-manifolds with positive curvature operator. J. Differential Geom. 24,
153-179 (1986)

5. Jost, J., Xin, Y.-L.: A Bernstein theorem for special lagrangian graphs. Preprint no.
4/2001, MPI for Math. in the Sciences, Leipzig (2001)

6. Krylov, N.V.: Nonlinear elliptic and parabolic equations of the second order. Mathematics
and its applications, Reidel Publishing Company, 1987

7. Smoczyk, K.: Der Lagrangesche mittlere Kriimmungsfluss. (The Lagrangian mean cur-
vature flow). (German) Leipzig: Univ. Leipzig (Habil.-Schr.), 102 pp (2000)

8. Smoczyk, K.: Angle theorems for the Lagrangian mean curvature flow. Math. Z. 240,
849-883 (2002)

9. Strominger, A., Yau, S.-T., Zaslow, E.: Mirror Symmetry is T-duality. Nuclear Phys. B
479, 243-259 (1996)



