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Abstract. A short elementary proof based on polarizations yields a useful (new) rear-
rangement inequality for symmetrically weighted Dirichlet type functionals. It is then used
to answer some symmetry related open questions in the literature. The non symmetry of
the Hénon equation ground states (previously proved in [19]) as well as their asymptotic
behavior are analyzed more in depth. A special attention is also paid to the minimizers of
the Caffarelli-Kohn-Nirenberg [8] inequalities.

Mathematics Subject Classification (2000): 35B40 – 35J20

1. Introduction

The symmetry properties of positive solutions of symmetric PDE’s is a wide and
crucial question. Symmetrization as well as moving plane methods are among the
most useful tools in this direction. When they do not apply, symmetry breaking can
sometimes be proved, but weaker symmetries than the ones present in the problem
may still remain and be useful even in analyzing the symmetry breaking.

Numerous model problems in the literature involve radially symmetrically
weighted Lp or Dirichlet type norms. In the next section, using a fairly simple
approach based on polarizations, we prove a rearrangement inequality for such
kind of functionals. The main important consequence of this inequality is that
ground states of these problems, when they are not radial, keep a strong degree of
symmetry : they essentially depend on only two variables, the radial one and one of
the angular ones. The simplicity and usefulness of polarizations for rearrangement
inequalities was discovered by Ahlfors [1] for functions on C and Baernstein [3,4]
(see also [6] for a detailed study of polarizations in many different settings.)

In Sect. 3, we use this partial symmetry result to analyze more in depth the
asymptotic behavior, as α → +∞, of the ground states of the Hénon [14] equation,{−∆u = |x|αup−1 in Ω

u = 0 on ∂Ω,
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where N ≥ 3, 2 < p < 2∗ and α > 0. The symmetry breaking for these ground
states was previously studied by the authors in [19].

In Sect. 4, we analyze the symmetry properties of the minimizers for the
Caffarelli-Kohn-Nirenberg inequality in the case where the weights are increas-
ing in |x|. These minimizers satisfy, up to some Lagrange multiplier, the equation

−div(|x|−qa|∇u|q−2∇u) = |x|−bpup−1 in R
N ,

where 0 < 1
q − 1

p = 1+a−b
N , q > 1, p > 1, and a ≤ b < N

q , and hence fall in the
setting of Sect. 2. Symmetry breaking for the CKN ground states was studied by
Catrina and Wang in [10]. We extend it somewhat here and answer some questions
left open in [10], mainly the existence of a region where full radial symmetry
remains even though moving planes or Schwarz symmetrization techniques do not
apply.

We have considered only basic model problems in order to stress the simplicity
of the approach, but it makes no doubt that the partial symmetry which follows
from the rearrangement inequality of Sect. 2 can be proved in many different nearby
settings, like invariance under subgroups of SO(N) as cylindrical symmetry in [2].
This particular example will be treated elsewhere [18]. We also would like to point
out an interesting recent work by Pacella [16] where the maximum principle is used
to prove partial symmetry results for index 1 solutions of problems where moving
plane fails.

2. Polarization and foliated Schwarz symmetrization

Let us consider first the case of R
N equipped with its Lebesgue measure. We

denote by H the set of all half spaces in R
N (or equivalently the set of all (N −

1)-dimensional affine hyperplanes with orientation), and by H0 the subset of H
corresponding to N − 1-dimensional Euclidean hyperplanes.

Let H ∈ H be a half space, we denote by σH the reflexion with respect to ∂H.

Definition 2.1. The polarization (with respect to H) of a measurable positive func-
tion u is defined by

uH(x) :=

{
max(u(x), u(σH(x))) if x ∈ H,

min(u(x), u(σH(x))) if x ∈ R
N \ H.

Similarly, the polarization (with respect to H) of a measurable set A ⊆ R
N is

defined by χAH
= (χA)H .

Observe that if v := u ◦ σH , then

uH(x) :=




1
2
(u(x) + v(x)) +

1
2
|u(x) − v(x)| if x ∈ H,

1
2
(u(x) + v(x)) − 1

2
|u(x) − v(x)| if x ∈ R

N \ H.

If µ is a Radon measure over R
N , and M(µ) the measurable sets for µ, then a

mapping ∗ : M(µ) → M(µ) is called a rearrangement provided it satisfies both
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the monotonicity property (A ⊂ B ⇒ A∗ ⊂ B∗) and the conservation property
(µ(A∗) = µ(A)).
The following lemma is straightforward.

Lemma 2.2. Let f : R
+ → R+ positive measurable. The mapping A �→ AH is a

rearrangement for the Lebesgue measure for any H ∈ H, and is a rearrangement
for the measure dµ := f(|x|)dx for any H ∈ H0. In particular, ‖uH‖Lp(dµ) =
‖u‖Lp(dµ) for each H ∈ H0 and u ∈ Lp(dµ).

We now concentrate essentially on weighted norms, the unweighted case being
already well known leading to Schwarz symmetrization. In the sequel, we will
assume that f is a positive bounded measurable function on R+, and write dµ :=
f(|x|)dx where dx is the Lebesgue measure. The boundedness condition on f can
be easily removed by working in weighted Sobolev spaces, we do not include this
here for simplicity. For a functional space E, we will denote by E+ the positive
cone of non negative functions in E.

The following simple lemma is the key to the subsequent rearrangement in-
equalities.

Proposition 2.3. Let 1 ≤ p < +∞, dµ := f(|x|)dx and H ∈ H0. If u ∈
W 1,p

+ (RN ), then uH ∈ W 1,p
+ (RN ) and ‖∇uH‖Lp(dµ) = ‖∇u‖Lp(dµ).

Let v := u ◦ σH , so that clearly u − v ∈ W 1,p
0 (H). By a standard result,

|u−v| ∈ W 1,p
0 (H) and similarly |u−v| ∈ W 1,p

0 (σH(H)). Now let f := χH |u−v|
and g := (χH − 1)|u − v|, then both f and g belong to W 1,p(RN ), and since
uH = 1

2 (u + v + f + g) we obtain uH ∈ W 1,p(RN ).
Almost everywhere uH satisfies,

∇uH(x) =

{ ∇u(x) on (H ∩ {u ≥ v}) ∪ (σH(H) ∩ {u < v})

∇u(σH(x)) on (H ∩ {u < v}) ∪ (σH(H) ∩ {u ≥ v},
(1)

but notice also that

{x ∈ H s.t. u(x) < v(x)} = σH ({x ∈ σH(H) s.t. u(x) > v(x)})

and {x ∈ σH(H) s.t. u(x) ≥ v(x)} = σH ({x ∈ H s.t. u(x) ≤ v(x)}) .
(2)

Taking the modulus of (1) to the power p and integrating over R
N , we get the desired

result. Indeed, the part of the integrals on (H ∩{u ≥ v})∪(σH(H)∩{u < v}) are
clearly the same,while on the complement one uses the change of variable formula
with y = σH(x), taking into account (2) and the fact that since H ∈ H0, the
measure f(|x|)dx is transported into itself under σH . ��

We arbitrarily choose (1, 0, · · · , 0) as a fixed direction in R
N which we will

refer to as the north pole direction, and we denote by H1 the subset of H0 consisting
of half spaces containing the direction of the north pole.
Let R > 0 and dσ denote the standard measure on ∂B(R). The symmetrization
A∗ of a set A ⊂ ∂B(R) is defined as the closed geodesic ball in ∂B(R) centered
at the north pole and whose dσ-measure equals that of A.
If f ∈ L1(∂B(R)) is positive, the symmetric decreasing rearrangement f∗ of f is
defined in such a way that {f > t}∗ = {f∗ > t} for all t > 0.
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Definition 2.4. Let 1 ≤ p < +∞. The foliated Schwarz symmetrization u∗ of
u in W 1,p

+ (RN ) is defined on any sphere ∂B(R) by the symmetric decreasing
rearrangement of the restriction of u to the same sphere.

The definition clearly makes sense for a broader class of functions, and extends
to sets, but we shall not focus on this. It seems that it was first introduced in [17] in
dimension 2. The following is also straightforward.

Lemma 2.5. The foliated Schwarz symmetrization is a rearrangement of R
N for

any measure of the form dµ := f(|x|)dx. Moreover, if H ∈ H1 then (u∗)H =
u∗ = (uH)∗.

We denote by K(RN ) the set of continuous functions with compact support in
R

N . The following two lemmas borrow and simplify some ideas from [6].

Lemma 2.6. Let 1 ≤ p < +∞ and u ∈ K+(RN ). If u �= u∗ then there exists
H ∈ H0 such that

‖uH − u∗‖p < ‖u − u∗‖p.

If u �= u∗, there exists R > 0 and t > 0 such that {u > t} ∩ ∂B(R) �= {u∗ >
t} ∩ ∂B(R). Since ∗ is a rearrangement, dσ({u > t} ∩ ∂B(R)) = dσ({u∗ >
t} ∩ ∂B(R)), and there exist y, z ∈ ∂B(R) satisfying

u∗(y) > t ≥ u(y) and u(z) > t ≥ u∗(z).

Let H ∈ H0 with y ∈ H and z = σH(y). Since u∗(y) > u∗(z), it follows that y
is closer to the north pole than z, and hence H ∈ H1. For all x ∈ H, using the fact
that (u∗)H = u∗ we have :

|uH(x) − u∗(x)|p + |uH(σH(x)) − u∗(σH(x))|p

≤ |u(x) − u∗(x)|p + |u(σH(x)) − u∗(σH(x))|p,
and by continuity the inequality is strict in neighbourhood of y. Integrating over H
yields the result. ��

Clearly for u ∈ K+(RN ), the mapping H �→ uH is continuous form H1 ∼
SO(N)/Z2 to Lp. By compactness, the minimization problem

c := inf
H∈H1

‖uH − u∗‖p

is achieved by some H := H(u).

Lemma 2.7. Let 1 ≤ p < +∞ and u ∈ D+(RN ). The sequence (un) defined by
u0 = u, un+1 = (un)Hn and

‖un+1 − u∗‖p = min
H∈H1

‖(un)H − u∗‖p

converges to u∗ in Lp(RN ).
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Let R > 0 such that the support of u is contained in B(R), clearly the same
holds for each un. Take q > N, by Lemma 2.3 the sequence (un) is bounded in
W 1,q

0 (B(R) and by the Rellich theorem we can assume that up to a subsequence
subsequence un → v uniformly. Since (un)∗ = u∗ it follows that v∗ = u∗. For
each H ∈ H1 we have (u∗)H = u∗ and

‖un+1 − u∗‖p ≤ ‖(un)H − u∗‖p ≤ ‖un − u∗‖p.

Taking the limit along the subsequence in the preceding inequality we obtain

‖v − u∗‖p ≤ ‖vH − u∗‖p ≤ ‖v − u∗‖p.

But v∗ = u∗ and H is arbitrary, the conclusion then follows from Lemma 2.6. ��

The following rearrangement inequality is now an easy consequence.

Theorem 2.8. Let 1 < p < +∞ and dµ := f(|x|)dx for some positive bounded
measurable function f. If u ∈ W 1,p

+ (RN ) then u∗ ∈ W 1,p
+ (RN ) and

∫
RN

f(|x|)|∇u∗|p dx ≤
∫

RN

f(|x|)|∇u|p dx.

Assume first that u ∈ D+(RN ). The sequence (un) associated to u as in Lemma
2.7 is such that un → u∗ in Lp(RN ) and by Lemma 2.3

‖un‖p = ‖u‖p, ‖∇un‖Lp(dµ) = ‖∇u‖Lp(dµ).

Hence, u∗ ∈ W 1,p
+ (RN ) and by weak lower semi-continuity ‖∇u∗‖Lp(dµ) ≤

‖∇u‖Lp(dµ).

If u ∈ W 1,p
+ (RN ), there exist a sequence (un) ∈ D+(RN ) such that un → u in

W 1,p
+ (RN ). Since any rearrangement is a contraction in Lp, u∗

n → u∗ in Lp(RN )
and by what precedes ‖∇u∗

n‖Lp(dµ) ≤ ‖∇un‖Lp(dµ), so that

‖∇u∗‖Lp(dµ) ≤ lim inf
n→+∞ ‖∇u∗

n‖Lp(dµ) ≤ lim inf
n→+∞ ‖∇un‖Lp(dµ) = ‖∇u‖Lp(dµ).

The proof is complete. ��

Remark 2.9. Notice the interesting property of the approximating scheme of the
symmetrized u∗ in Lemma 2.7 : the Dirichlet norm is constant along the full se-
quence and finally just decreases in the weak limit. As n → +∞, the functions un

thus look like the limit u∗ plus some small edged oscillation.
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3. Ground states for the Hénon equation

The Hénon equation {−∆u = |x|αup−1 in Ω

u = 0 on ∂Ω,
(3)

was introduced in [14] in the context of stellar clusters. Here, α is a positive constant,
2 < p < 2∗ := 2N/(N − 2) and Ω stands for the unit ball in R

N .
An interesting feature of Eq. (3) is the presence of the weight |x|α in the non-

linearity, which is increasing in |x| since α > 0. Because of this, the Gidas-Ni-
Nirenberg [12] theorem cannot be applied to positive solutions of (3).

In [19], we studied the symmetry of ground state solutions of (3), depending on
both the parameters α and p. By a ground state, or least energy solution, we mean
any solution which also minimizes the Rayleigh quotient

Sα,p := inf
u∈H1

0 (Ω)

∫
Ω

|∇u|2 dx

(
∫

Ω
|x|α|u|p dx)2/p

. (4)

Equivalently, a least energy solution is a critical point corresponding to the lowest
critical value of the associated energy functional

Jα,p(u) :=
∫

Ω

1
2
|∇u|2 − |x|α |u|p

p
dx.

Our main result in [19] can be summarized as follows :

Theorem. Let N ≥ 2. a) Given 2 < p < 2∗, there exists α∗ > 0 such that for
α ≥ α∗, no ground state solution of (3) is radially symmetric.
b) For each n ∈ N, there exists δn > 0 such that the unique ground state solution
of (3) is radial provided α ≤ n and p ≤ 2 + δn.
c) Assume N ≥ 3, then for any n ∈ N, there exists γn > 0 such that no ground
state solution of (3) is radially symmetric if α ≥ 1/n and 2∗ − γn < p < 2∗.

Roughly speaking, this means that for p fixed symmetry breaking always occur
for sufficiently large α, but also that α has to be very large if p is close to 2 or can
be very small if p is close to 2∗.
Actually, when p = 2∗ the minimization problem (4) has no solution, so that
symmetry breaking is easily deduced from a Brezis-Nirenberg type argument [5].
A more precise description of the ground state solutions for fixed α and p → 2∗

was subsequently obtained by Cao and Peng [9].
To state their result, remember that the equation −∆U = U2∗−1 on R

N has a
unique positive solution in D1,2(RN ) (up to translations and dilations), which is
given by U(x) := (1 + |x|2)(2−N)/2. It is standard to denote equation preserving
scalings of U by Uε,y(x) := ε

2−N
2 U(x−y

ε ).

Theorem (Cao and Peng [9]). Let N ≥ 3 and α > 0. If (up) is a sequence of
ground state solutions of (3) with p → 2∗, then up to a subsequence there exists
x0 ∈ ∂Ω such that

– |∇up|2 → µδx0 in the sense of measure
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– |up|2∗ → νδx0 in the sense of measure
– ∃ε > 0 such that for 2∗ − p < ε, up has a unique maximum point xp such that

dist(xp, ∂Ω) → 0 as p → 2∗, up(xp) → +∞, and

lim
p→2∗

∫
Ω

∣∣∇ (up − Uλp,xp

)∣∣2 dx = 0,

where λp := up(xp).

The main reason behind it is that as p → 2∗, the ground state solutions of
(3) tend to concentrate on a single point, and because they need to minimize the
quotient in (4), this point has to be on the boundary, where the weight is maximal.

The asymptotic of the ground state solutions when p is fixed and α → +∞
seems less clear, since there is a priori no limit equation. In the remaining of this
section, we will give a precise characterization of them.

By the results of Sect. 2, we know that for any ground state solution uα of (3),
there exists some ξ ∈ SN−1 such that the restriction of uα to any sphere ∂B(r) is
symmetric decreasing with respect to the distance to rξ. Without loss of generality,
we can assume that ξ is a fixed direction, say ξ0 = (1, 0, · · · , 0).

To the solution uα, we associate vα defined by

vα(x) := α− 2
p−2 uα

(x

α
+ ξ0

)
on Ωα := α(Ω − ξ0).

The exponent −2
p−2 was chosen as the right scaling so that vα satisfies the equation


−∆vα = |x
α

+ ξ0|α vp−1
α in Ωα

vα = 0 on ∂Ωα.
(5)

Lemma 3.1. There exists C > 0 independent of α such that for all α large,

1
C

≤
∫

Ωα

|∇vα|2 dx ≤ C.

First notice that because vα satisfies Eq. (5), there holds∫
Ωα

|∇vα|2 dx =
∫

Ωα

∣∣∣x
α

+ ξ0

∣∣∣α vp
α dx. (6)

Since uα is a minimizer for (4), so is vα for the rescaled version. Let ϕ ∈ D(RN )
positive such that the support of ϕ is contained in B(0, 1) − ξ0, for α sufficiently
large ∫

Ωα
|∇vα|2 dx

(
∫

Ωα
| x
α + ξ0|α vp

α dx)2/p
≤

∫
RN |∇ϕ|2 dx

(
∫

RN | x
α + ξ0|α ϕp dx)2/p

≤ C

∫
RN |∇ϕ|2 dx

(
∫

RN ϕp dx)2/p
,

which combined with (6) yields(∫
Ωα

|∇vα|2 dx

)1−2/p

≤ C.
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Concerning the lower bound, first remark that there exists C > 0 such that for
sufficiently large α,∣∣∣x

α
+ ξ0

∣∣∣α ≤ Cdist(x, ∂Ωα)−γ , ∀x ∈ Ωα,

where γ := N−2
2 (2∗ − p) (see Lemma 3.3 for a very similar proof).

Hence,(∫
Ωα

|x
α

+ ξ0|α vp
αdx

)2/p

≤ C

(∫
Ωα

vp
α

|dist (x, ∂Ωα) |γ dx

)2/p

≤ C

(∫
Ωα

v2
α

|dist (x, ∂Ωα) |2 dx

)γ/p(∫
Ωα

v2∗
α dx

)(2−γ)/p

≤C

∫
Ωα

|∇vα|2dx,

(7)

where C does not depend on α, by the Hardy and Sobolev inequalities. Combining
(6) with (7) gives the lower bound and ends the proof. ��

A crucial step in the analysis is the following lemma.

Lemma 3.2. There exist δ > 0 and R > 0 such that for all α large,∫
dist(x,∂Ωα)≤R

vp
α dx ≥ δ.

We make the proof by contradiction. Let wα(x) := vα(x − αξ0), if the thesis
is false, there exist sequences (δi) → 0, (Ri) → +∞ and (αi) → +∞ such that
Ri/αi → 0 and ∫

αi−Ri≤|x|≤αi

wp
α dx < δi. (8)

Let ϕi a radial cut-off function such that ϕi ≡ 1 on B(0, αi − Ri) and ϕi ≡ 0 on
B(0, αi) \ B(αi − Ri/2) with |∇ϕi| ≤ 4/Ri. There holds:∫

B(0,αi)

∣∣∣∣ x

αi

∣∣∣∣
αi

wp
αi

dx

≤
∫

B(0,αi−Ri/2)

∣∣∣∣ x

αi

∣∣∣∣
αi

wp
αi

ϕp
i dx +

∫
B(0,αi)\B(0,αi−Ri)

∣∣∣∣ x

αi

∣∣∣∣
αi

wp
αi

dx

≤
∫

B(0,αi−Ri/2)

∣∣∣∣ x

αi

∣∣∣∣
αi

wp
αi

ϕp
i dx + δi.

(9)

By Lemma 3.3, there exist (εi) → 0 such that

| x

αi
|αi ≤ εi dist(x, ∂B(0, αi − Ri/2))−γ ∀ x ∈ B(0, αi − Ri/2),
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where γ := p − Np/2 + N (0 < γ < 2) does not depend on i. Using the Hardy-
Sobolev inequality as in (7) we thus obtain

∫
B(0,αi)

∣∣∣∣ x

αi

∣∣∣∣
αi

wp
αi

dx ≤ Cεi

(∫
B(0,αi−Ri/2)

|∇(wαiϕi)|2 dx

)p/2

+ δi.

On the other hand, using Lemma 3.1∫
B(0,αi−Ri/2)

|∇(wαiϕi)|2 dx

≤2

[∫
B(0,αi−Ri/2)

|∇wαi |2 dx +
∫

αi−Ri≤|x|≤αi−Ri/2
w2

αi
|∇ϕi|2 dx

]

≤C


1 + R−2

i

(∫
αi−Ri≤|x|≤αi−Ri/2

wp
αi

dx

)a(∫
B(0,αi)

w2∗
αi

dx

)1−a



≤C

[
C + R−2

i δa
i C

(
1
αi

)2∗(1−a)/2
]

≤C,

(10)

where a = (2∗ − 2)/(2∗ − p). Hence, by Lemma 3.1 we get the contradiction

0 <
1
C

≤
∫

B(0,αi)
|∇wαi

|2 dx =
∫

B(0,αi)
| x

αi
|αiwp

αi
dx ≤ Cεi + δi → 0.

��

Lemma 3.3. Let a > 0 be fixed and two sequences (Ri) → +∞ and αi → +∞
such that Ri

αi
→ 0. Then there exist (εi) → 0 such that

∀ r ∈ [0, αi − Ri/2],
∣∣∣∣ r

αi

∣∣∣∣
αi

≤ εi |αi − Ri/2 − r|−a
.

We make the proof by contradiction. Let s := αi−Ri/2−r
αi−Ri/2 and suppose that

there exist ε > 0 and si ∈ (0, 1] such that

(
αi − Ri/2 − si(αi − Ri/2)

αi

)αi

> ε (si(αi − Ri/2))−a
.

Taking the log of both sides we get

αi log
(

(1 − si)
αi − Ri/2

αi

)
> ε − a log (si(αi − Ri/2)) , (11)
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so that necessarily si → 0. Hence,

αi log
(

(1 − si)
αi − Ri/2

αi

)
= αi log

(
1 − si − (1 − si)Ri

2αi

)

∼ αi

(
−si − (1 − si)Ri

2αi

)
∼ −Ri − αisi → −∞.

(12)

If (11) is satisfied, then it holds log(si(αi − Ri/2)) → +∞, so that siαi → +∞,
but then (12) leads to a contradiction. The lemma is proved. ��

We are now in position to state the main result of this section. We denote by
R

N
− the half space {x ∈ R

N s.t. x1 < 0}, where x1 refers to the first coordinate.

Theorem 3.4. Let (uα) be a sequence of least energy solutions of (3) for α → +∞.
Then, up to a subsequence and some rotations, the rescaled functions

vα(x) := α−2/(p−2)uα(x/α + ξ0)

satisfy

vα −→ V ∗ in D1,2
0 (RN

− ) and uniformly on any compact subset of R
N
− ,

where V ∗ is a positive least energy solution of the equation{−∆V = exp(x1)V p, in R
N
− ,

V = 0 on {x1 = 0} .
(13)

Because of the results of Sect. 2, we can assume that on each sphere centered at
zero, uα attains its maximum on the segment joining zero and ξ0. Let R and δ given
by Lemma 3.2, and denote v∗

α the restriction of vα to the set {x s.t. dist(x, ∂Ωα) <
R}. If

lim
α→+∞

∫
B(−Rξ0/2,R/2)

|vα|p dx → 0,

then also

lim
α→+∞ sup

y∈RN

∫
B(y,R/2)

|v∗
α|p dx = 0,

so that by a P.L. Lions lemma (see [20] Lemma 1.21), v∗
α → 0 in Lp(RN ), in

contradiction with Lemma 3.2. By Lemma 3.1, vα is bounded in D1,2
0 (RN

− ), we
may thus assume, going if necessary to a subsequence, that vα ⇀ V ∗ in D1,2

0 (RN
− ).

Since vα does not converge to 0 locally in Lp by what precedes, V ∗ �= 0. Because
for any compact subset K of R

N
− ,∣∣∣x

α
+ ξ0

∣∣∣α → exp(x1), uniformly on K for α → +∞, (14)

it follows by standard elliptic estimates that V ∗ satisfies (13) and that the conver-
gence even holds in Ck

loc for any k ≥ 0. It remains to prove that V ∗ is a least energy
solution of (13) and that the convergence is strong in D1,2

0 (RN
− ).
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Remember that a least energy solution for equation (3),(5) or (13) is also char-
acterized by the fact that it minimizes the energy E(u) := (1

2 − 1
p )
∫ |∇u|2 on the

Nehari constraint, which in the case of (3) is

N :=
{
u ∈ H1

0 (Ω) s.t. 〈J ′
α,p(u), u〉 = 0

}
,

and is defined analogously for the other equations. Let V ∈ D1,2
0 (RN

− ) be any
solution of (13), and (Vn) ∈ D(RN

− ) a sequence of smooth functions converging to
V in D1,2

0 (RN
− ). For each n, there is a unique tn > 0 such that tnVn belongs to the

Nehari manifold of equation (13). Clearly, since Vn → V in D1,2
0 (RN

− ), necessarily
tn → 1. For a fixed n, if α is large enough so that the support of Vn is contained in
Ωα, we have tnVn ∈ H1

0 (Ωα) and hence sn,αtnVn belongs to the Nehari manifold
of (3) for some unique sn,α > 0. Because the support of Vn is a fixed compact in
R

N
− , using (14) we infer that also sn,α → 1 as α → +∞. Given ε > 0, we first

take n large enough so that tn < 1 + ε, and then choose α so that sn,α < 1 + ε.
Since vα is a least energy solution, we obtain lim sup E(vα) ≤ (1+ ε)4E(V ), and
since ε is arbitrary,

lim sup
α→+∞

∫
Ωα

|∇vα|2 dx ≤
∫

R
N
−

|∇V |2 dx. (15)

On the other hands, by weak lower semi-continuity∫
R

N
−

|∇V ∗|2 dx ≤ lim inf
α→+∞

∫
Ωα

|∇vα|2 dx. (16)

As V was arbitrary, it follows that V ∗ is a least energy solution of (13) and that
‖vα‖ → ‖V ∗‖. The strong convergence follows by uniform convexity. ��
Remark 3.5. 1) The existence of a least energy solution for equation (13) can be
established using standard concentration-compactness techniques. Actually, our
analysis even gives a rather diverted proof of it.
2) Provided one establishes the uniqueness of a least energy solution of (13) up to
translations orthogonal to the x1 direction, then the convergence of the full sequence
vα to V ∗ holds.
3) It also follows from the convergence, or directly from Sect. 2, that V ∗ is radially
symmetric in the variable r := |(x2, · · · , xN )|.

4. Minimizers of the CKN inequalities

The Caffarelli-Kohn-Nirenberg inequality ensures that(∫
RN

|∇u|q|x|−aq dx

)
≥ S(q, a, b, N)

(∫
RN

|u|p|x|−bp dx

) q
p

(17)

holds for any function u ∈ D(RN ), provided 0 < 1
q − 1

p = 1+a−b
N , q > 1, p > 1,

and a ≤ b < N
q .

Some well known particular versions of this inequality are the Sobolev inequality
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(q = 2, a = b = 0, p = 2∗) and the Hardy inequality (q = p = 2, a = 0, b = 1). A
simple computation, based on the action of the group of dilations, shows that given
q, a and b as above, there is just one p for which such an inequality may hold.
Because of this invariance under dilations, the associated variational problem

S(q, a, b, N) := inf
{∫

RN

|∇u|q|x|−aq dx,

∫
RN

|u|p|x|−bp dx = 1
}

(18)

is critical, and lacks compactness. The existence of minimizers for S(q, a, b, N) as
well as their (partial) symmetry has attracted much attention recently. The situation
is as follows. Concerning existence, the picture is complete over the whole range of
admissible parameters : a minimizer always exists unless b = a + 1 or b = a < 0.
The answer to the question of symmetry properties of minimizers is less complete.
The case a ≥ 0 was essentially treated by Horiuchi [15] by a clever reduction to
the case a = 0 (where Schwarz symmetrization gives the answer) : the minimizer
is radial and unique up to the invariance of the problem.

When a < 0, less is known. If a = b < 0, while S(q, a, b, N) is never achieved
it can be shown that the infimum over the restricted class of radial functions (which
we denote by SR(q, a, b, N)) is always achieved. Hence by a lower semi-continuity
argument one easily infers that for a < b, but sufficiently close one another, no
minimizer is radial. This symmetry breaking was first observed by the authors (see
[20]) and studied on a more quantitative basis by Catrina and Wang [10] (see also
[11]) in the case p = 2. More precisely, the following theorem holds.

Theorem (Catrina and Wang [10]).

i) There exists a0 ≤ 0 and a function h(a) defined for a ≤ a0 satisfying h(a0) =
a0, a < h(a) < a + 1 for a < a0 and a + 1 − h(a) → 0 as a → −∞, such
that no minimizer of S(2, a, b, N) is radial if a < a0 and a < b < h(a).

ii) There is an open set H inside the a− negative region containing {(a, a), a < 0}
such that symmetry breaking occurs in H . (see also [20])

Remark 4.1.

1) When N = 2, a0 is proved to be 0.
2) When N = 1, the situation is fully understood, and symmetry breaking occurs

everywhere in the a-negative region (when N = 1, b is restricted by b <
a + 1/2).

The proof in [10] is restricted to q = 2, because it relies on a change of variable
which behaves nicely with respect to the Laplacian but not the q-Laplacian. The
usefulness of such kind of transformation, namely

u(x) = |x|− N−2−2a
2 v

(
− log(|x|), x

|x|
)

, (19)

was observed in a different situation by Gidas and Spruck [13].
The purpose of this section is threefold. We first start by giving a simplified

proof of the symmetry breaking result above using a different idea as in [19]. It also
has the advantage of being valid for general q.



Partial symmetry 69

Whether this result is sharp or not was left open in [10] (unless when N = 1),
i.e. is it true that symmetry breaking occurs only in a subregion of {a < 0} or
instead do we have complete symmetry breaking like in dimension 1 ? When q = 2
and N ≥ 3, we give a positive answer to this question.

Finally, using the results of Sect. 2, we will prove that in the region where
symmetry breaking holds, partial symmetry is preserved and that roughly speaking
the minimizers do only depend on two variables : the radial one and one angular
one.

The symmetry breaking result is based on an asymptotic analysis of both
S(q, a, b, N) and SR(q, a, b, N) in the next two lemmas.

Lemma 4.2. The following equality holds :

SR(q, a, b, N) =
(

N − q

N − q − aq

)1−q−q/p

SR(q, 0, b − a, N).

Let u ∈ C∞(RN ) be radial and positive. Define s := rγ and v(s) := u(r)
where γ is to be determined later. We have∫

RN

|∇u|q|x|−aq dx = ωN−1

∫ +∞

0
|u′(r)|qrN−1−aq dr

= ωN−1

∫ +∞

0
|v′(rγ)|qγqrγq−qrN−1−aq dr

= ωN−1γ
q−1

∫ +∞

0
s

N−1−aq+(q−1)(γ−1)
γ |v′(s)|q ds

= γq−1
∫

RN

|∇v|q dx

(20)

provided

N − 1 − aq + (q − 1)(γ − 1)
γ

= N − 1, i.e. γ =
N − q − aq

N − q
.

For this choice of γ, we now have∫
RN

|u|p|x|−bp dx = ωN−1

∫ +∞

0
|u(r)|prN−1−bp dr

= ωN−1

∫ +∞

0
γ−1s

N−1−bp+1−γ
γ |v(s)|p ds

= γ−1
∫

RN

|u|p|x|−(b−a)p dx,

(21)

the last line being just a consequence of the definition of γ and of the equality
1
q − 1

p = 1+a−b
N . The lemma follows. ��

Concerning the asymptotic of S(q, a, b, N) we have the following :
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Lemma 4.3. For a sufficiently negative, S(q, a, b, N) ≤ C|a|q−N+qN/p, where C
only depends on q and p.

Let u ∈ C∞
0 (B(0, 1)), define e := (1, 0, · · · , 0) and ua(x) := u (|a|(x − e)) .

Hence,∫
RN

|∇ua|q|x|−aq dx =
∫

RN

|a|q|∇u(|a|(x − e))|q|x|−aq dx

≤
(

1 +
1
|a|
)q|a|

|a|q−N

∫
B(0,1)

|∇u|q dx.

(22)

And on the other hand,

(∫
RN

|ua|p|x|−bp dx

)q/p

≥
(

1 − 1
|a|
)q|b|

|a|−Nq/p

(∫
B(0,1)

|u|p dx

)q/p

,

(23)
so that, for a sufficiently negative,

S(q, a, b, N) ≤ (exp(2q)S(q, p, B(0, 1)) + o(1)) |a|q−N+ Nq
p , (24)

where S(q, p, B(0, 1)) is the best constant for the embedding of W 1,q
0 (B(0, 1))

into Lp(B(0, 1)). This ends the proof. ��
Hence, the following symmetry breaking result holds for large negative a :

Theorem 4.4. Given q and p, there exist a0(q, p, N) such that for a < a0(q, p, N)
and b satisfying 1

q − 1
p = 1+a−b

N , no minimizer for S(q, a, b, N) is radial.

It follows from Lemma 4.2 that for a sufficiently negative,

SR(q, a, b, N) ≥ (SR(q, 0, b − a, N) + o(1))|a|−1+q+q/p.

But −1 + q + q/p > q − N + Nq/p as soon as N > 1. The result is then a direct
consequence of the preceding lemma. ��
Remark 4.5.

1) One can deduce from the previous analysis an asymptotic bound for the region
where symmetry breaking occurs, more precisely (1+a−b) ≤ C(log(|a|))−1

for |a| large. This bound is not sharp.
2) It also follows from the proof that a0 can be chosen uniformly as long as p, q

remain bounded and the difference |p − q| bounded away form zero.
3) After this work was completed we received [7] where the case q �= 2 is also

treated, but the method is much less direct.

We now come to the persistence of a symmetry zone in the region {a < 0}.
Remember [15] that the minimization problem

SR(q, a, b, N) := inf
{∫

RN

|∇u|q|x|−aq dx, u radial,
∫

RN

|u|p|x|−bp dx = 1
}

(25)
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has, for N ≥ 3, a unique minimizer up to invariance given by

Uα,β(r) =
(
α + βr

(p−q)(N−q−aq)
q(q−1)

)− q
p−q

, (26)

where α and β are positive constants. Notice also that the appropriate functional
spaces in which (18) or (25) are treatable are respectively D1,q

a := {u ∈ L1
loc

s.t. |x|−a|∇u| ∈ Lq(RN )} and its restriction to radial functions, and hence are
depending on a. It seems then difficult to obtain a symmetry result for a nega-
tive but small by a perturbative argument from the case a = 0 (where Schwarz
symmetrization works). Instead, we will take advantage of the a−depending trans-
formation (19) to work in a fixed space, but then restrict ourselves to the case q = 2.

The Euler-Lagrange equation of (18), after elimination of the Lagrange multi-
plier using the homogeneity, is given by

−div(|x|−2a∇u) = |x|−bpup−1, (27)

and is transformed after the transformation (19) into the Eq. (see [10])

−∆gv + (
N − 2 − 2a

2
)2v = vp, (28)

where ∆g refers to the Laplace-Beltrami operator (analysts sign) on the infinite
cylinder R × SN−1. It is convenient to write any point in R × SN−1 by (t, θ), and
to denote by dg its canonical volume form.

Equation (27) is invariant under the group action U �→ Uε(.) := ε
2−N

2 U(./ε),
which translates in the variable V into the invariance under the group action V �→
Vt(.) := V (. − t). The following proposition states that the first two eigenspaces
of the linearized problem are full-filed by these invariances.

Proposition 4.6. Let a = 0, b �= 0 and U of the form (26) appropriately scaled so
that

−∆U = |x|−bpUp−1.

Then if V corresponds to U under the transformation (19), the spectrum of the
operator

v �−→
(

−∆g +
(

N − 2
2

)2

I

)−1

(V p−2v)

on L2(V p−2dg), is of the form

1 = λ1 > λ2 =
1

p − 1
> λ3 · · · → 0,

where 〈λ1〉 is spanned by V and 〈λ2〉 is spanned by ∂tV.
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With the help of the inverse transform of (19), it suffices to prove that the first
two eigenvalues of

{−∆u = λ|x|−bpUp−2u

u ∈ D1,2(RN )

are 1 and p − 1, spanned respectively by U and ∂/∂εU|ε=1.
We claim that an eigenfunction corresponding to an eigenvalue λ ≤ (p−1) has to be
radial. This being proved, the reducedode is then easily seen to have eigenfunctions
U and ∂/∂εU|ε=1 corresponding to λ = 1 and (p − 1). Since U is positive and
∂/∂εU|ε=1 has only one zero, the classical Sturm-Liouville theory ensures that 1
and (p − 1) are the two first eigenvalues, with multiplicity 1.

Let us denote by Ψi, i = 0, 1, · · · the sequence of spherical harmonics in
dimension N, which form a Hilbert basis of L2(SN−1) and are eigenfunctions of
the Laplace-Beltrami operator on SN−1 :

{−∆θΨi = σiΨi

λ0 = 0, σ1 = · · · = σN = N − 1, σN+1 > σN .

To prove the claim, it suffices to show that for all i ≥ 1,

ϕi(r) :=
∫

SN−1
u(r, θ)Ψi(θ) dθ ≡ 0,

if u is an eigenfunction corresponding to λ ≤ (p − 1). We have,

∆rϕi =
∫

SN−1
∆ru(r, θ)Ψi(θ) dθ

=
∫

SN−1
− 1

r2 ∆θu(r, θ)Ψi(θ) dθ −
∫

SN−1
λr−bpUp−2uΨi dθ

=
∫

SN−1

σi

r2 u(r, θ)Ψi(θ) dθ −
∫

SN−1
λr−bpUp−2(r)u(r, θ)Ψi dθ

=
(σi

r2 − λr−bpUp−2(r)
)

ϕi(r).

(29)

On the other hand, we have

∂

∂r
(∆U) =

∂

∂r

(
∂2U

∂r2 +
N − 1

r

∂U

∂r

)
= ∆

(
∂U

∂r

)
− N − 1

r2

∂U

∂r
,
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so that multiplying (29) by ∂U
∂r and integrating on some fixed ball B(0, R) yields

0 =
∫

B(R)
∆ϕi

∂U

∂r
+
(
λr−bpUp−2 − σi

r2

)
ϕi

∂U

∂r

=
∫

B(R)
ϕi∆

(
∂U

∂r

)
+
(
λr−bpUp−2 − σi

r2

)
ϕi

∂U

∂r

+
∫

∂B(R)

(
∂U

∂r

∂ϕi

∂r
− ϕi

∂2U

∂r2

)

=
∫

B(R)

N − 1
r2 ϕi

∂U

∂r
+

∂

∂r

(−r−bpUp−1)ϕi +
(
λr−bpUp−2 − σi

r2

)
ϕi

∂U

∂r

+
∫

∂B(R)

(
∂U

∂r

∂ϕi

∂r
− ϕi

∂2U

∂r2

)

=
∫

B(R)

(N − 1) − σi

2
ϕi

∂U

∂r
+
∫

B(R)
(λ − (p − 1)) Up−2 ∂U

∂r
ϕi

+
∫

B(R)
bpr−bp−1Up−1ϕi +

∫
∂B(R)

(
∂U

∂r

∂ϕi

∂r
− ϕi

∂2U

∂r2

)
.

(30)

Let R be the first zero of ϕi different from zero, with the convention that R = +∞
if ϕi is of constant sign. Without loss of generality, we can assume that ϕi is non
negative on (0, R). Hence, ∂ϕi

∂r |r=R
≤ 0 and the four integrals in the last line of

(30) are all non negative, with the third one being positive unless ϕi ≡ 0. This ends
the claim and the proof. ��
Proposition 4.7. There exist ε > 0, a neighborhood V of V in H1(R×SN−1) and
a function

U : [0, ε) −→ V
λ �−→ U(λ)

such that for all λ ∈ [0, ε),

−∆u +
(

N − 2
2

)2

u = up−1 − λu ⇐⇒ u = U(λ)(· − t0, ·)

for some t0 ∈ R.

Let K denote the operator −∆g + (N−2
2 )2I and

T (λ, u) :=
(
u − K−1(up−1 − λu) + 〈u, ∂tV 〉∂tV

)
defined on L2(V p−2dg). We have,

∂T (0, V )(v) = v − K−1((p − 1)V p−1v) + 〈v, ∂tV 〉∂tV.
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If ∂T (0, V )(v) = 0, then taking the scalar product of the preceding equality with
∂tV we get

0 = ‖∂V ‖2
L2(V p−2dg) 〈v, ∂tV 〉.

Hence,

K−1(V p−1v) =
1

p − 1
v and 〈v, ∂tV 〉 = 0,

so that v = 0 by Proposition 4.6. Conversely, if w ∈ L2(V p−2dg), we write

w0 := w − 〈w, ∂tV 〉 ∂tV

‖∂tV ‖2 ,

so that w0 ∈ (∂tV )⊥. By the Fredholm alternative, there exists v0 ∈ (∂tV )⊥ such
that

−(p − 1)K−1(V p−1v0) + v0 = w0.

Then, if v := v0 + 〈w, ∂V 〉∂tV ‖∂tV ‖−2, ∂T (0, V )(v) = w. Being continuous
and bijective, ∂T (0, V ) is a homeomorphism; the implicit function theorem ends
the proof. ��

Theorem 4.8. Let N ≥ 3. Given 2 < p < 2∗ there exists ε > 0 such that for
any 0 ≤ −a ≤ ε and b satisfying 1/2 − 1/p = (1 + a − b)/N , any minimizer
u ∈ D1,2

a (RN ) of S(2, a, b, N) is radially symmetric.

Let ua be a minimizer for S(2, a, b, N), after applying the transformation (19)
to ua and a possible scaling ua → αaua, we get a solution va of

−∆gv +
(

N − 2
2

)2

v = vp−1 − λav

where λa = (N − 2 − 2a)2/4 − (N − 2)2/4. Up to a translation, we can assume
that 〈va, ∂tV 〉 = 0, so that by standard elliptic estimates and uniqueness we have
va → V. By the preceding proposition, va is unique and hence constant in the
θ variable. Coming back to the original variable, we deduce that ua was radially
symmetric, which ends the proof. ��

Remark 4.9. When N = 2, the conditions for the Caffarelli-Kohn-Nirenberg in-
equalities to hold imply that a < 0. The above method to deduce preserved sym-
metry by a continuation argument from the situation a = 0 hence can no longer be
used. It is an interesting open question in that case to decide between preserved or
broken symmetry for small negative a.
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