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Abstract. By applying the mountain-pass lemma to an energy functional, we establish the
existence of two-dimensional water waves on the surface of an infinitely deep ocean in a
constant gravity field. The formulation used, which is due to K. I. Babenko [3,4] (and later to
others, independently), has as its independent variable an amplitude function which gives the
surface elevation. Its nonlinear term is purely quadratic but it is nonlocal because it involves
the Hilbert transform. Moreover the energy functional from which it is derived is rather
degenerate and offers an important challenge in the calculus of variations. In the present
treatment the first step is to truncate the integrand, and then to penalize and regularize it.
The mountain-pass lemma gives the existence of critical points of the resulting problem. To
check that, in the limit of vanishing regularization, the critical points converge to a non-trivial
water wave, we need a priori estimates and information on their Morse index in the spirit
of the work by Amann and Zehnder [1] (see also [14]). The amplitudes of the waves so
obtained are compared with those obtained from the bifurcation argument of Babenko, and
are found to extend the parameter range where existence is known by analytical methods.
We also compare our approach with the minimization-under-constraint method used by
R. E. L. Turner [25].

Mathematics Subject Classification (2000): 76B15, 35B38, 58E50

1 Introduction

The water-wave problem is the determination of wave profiles compatible with
Bernoulli’s theorem which implies that the pressure at the surface of a two-dimen-
sional, infinitely deep, irrotational, incompressible flow under gravity is constant
(surface tension is not considered in this paper). The physical parameters are the
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wave speed, the wavelength, and gravity (acting vertically downwards). After some
rescaling, they can be chosen equal to be, respectively, 1, 2π and λ. (Note that λ is
now the only (dimensionless) parameter in the problem.)

Consider such a wave in a reference frame propagating with the speed of the
wave. The constant-pressure condition then has the form

1
2
|v|2 + λy =

1
2

on the free boundary y = η(x), (1)

where η is a smooth 2π-periodic function and v is a smooth two-dimensional
velocity field that is divergence free and irrotational on the domain {(x, y) : y ≤
η(x)}. The asymptotic velocity at infinite depth is

lim
y→−∞ v(x, y) = (−1, 0) uniformly in x ∈ R.

If such a wave exists then the energy, kinetic plus potential, in one wavelength is

E =
∫ π

x=−π

∫ η(x)

y=−∞

1
2
{|v|2 − 1}dxdy +

∫ π

−π

1
2
λη2(x) dx, (2)

where 1 is subtracted from |v|2 so that the integral is finite (this is related to the
choice of the constant 1/2 on the right-hand side of (1)).

P. R. Garabedian [15] argued that variational methods applied toE should yield
the existence of water waves. However Turner [25] pointed out some technical
difficulties with the idea and introduced a different variational approach which led
to the existence of periodic and solitary waves on the surface of a fluid layer of
finite depth. (In the absence of surface tension, it is known that solitary waves do
not exist if the depth is infinite [13]).

More recently Babenko [3,4] introduced a new variational formulation of the
periodic water-wave problem, but used non-variational methods to study it. (See also
[18].) Plotnikov [19] discovered the analogous formulation for solitary waves. (See
[23] for references to other independent discoveries of Babenko’s formulation.) The
advantage of this formulation is that it involves a quadratic equation for a function
of a single real variable; the difficulty is that it involves the Hilbert transform which
is a non-local operator.

Underlying our approach is the idea of adapting Turner’s ideas and the moun-
tain-pass lemma to the Babenko formulation. Like Turner, we get the existence
of small-amplitude water waves. However our method works globally if, roughly
speaking, the gravitational force field λ in the Bernoulli boundary condition van-
ishes a little below the maximal height of a Stokes’ wave. Only when precise
estimates are needed to deal with constant gravity fields is the argument forced to
become local. A bifurcation-theoretic variational approach to the Babenko formu-
lation was given in [8] where a Lyapunov-Schmidt reduction, followed by a study of
the reduced problem in terms of finite-dimensional constrained optimization, was
used. However this is a strictly local method which avoids the essential difficul-
ties of the infinite-dimensional formulation and it gives no quantitative information
about the solutions found.
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In the end we prove the existence of a nonzero symmetric wave for some
λ∗ ≤ 0.99 . This result is not a consequence of the local existence theorem obtained
by Babenko [3]. Indeed, in Babenko’s paper, solutions are found forλ∗ = 1/(1+ε2)
with ε ∈ (0, 1/25], i.e. λ∗ ∈ [0.9984, 1). Note that λ∗ = 0.99 corresponds to 2ε =
0.2, which, for a small wave, is a good approximation of the trough-to-crest height
(for the extreme wave, this height is approximatively 0.8868 [7,18]). Much more
is known from global continuation methods [7–9], or from numerical investigation
[12,18]∗ and from computer assisted proofs [5,6]. However the present work may
be a small step towards a better understanding of large-amplitude water waves from
a variational viewpoint.

2 Preliminaries

Let Lp2π , 1 ≤ p < ∞, denote the linear space of 2π-periodic, real-valued, measur-
able ‘functions’ on R with

‖u‖Lp
2π

=
{∫ π

−π
|u|pdx

}1/p

< ∞ if p < ∞,

and essentially bounded if p = ∞. The space of functions u ∈ L2
2π with u′ also

in L2
2π is denoted by W 1,2

2π . Denote by C∞
2π the space of 2π-periodic functions u

which are infinitely differentiable.
Let the Fourier coefficients of u ∈ L1

2π with respect to the orthonormal basis
{(2π)− 1

2 eikt : k ∈ Z} be denoted by ûk, k ∈ Z. Then û−n = ûn, since u is real,
and L2

2π is a real Hilbert space with inner product

〈u, v〉 =
∑
n∈Z

ûnv̂n,

For u ∈ L1
2π let

[u] =
1
2π

∫ π

−π
u(t) dt =

1√
2π
û0.

In this notation the fractional order Sobolev space H
1
2 is the Hilbert space of

functions u ∈ L1
2π with norm given by

‖u‖2
H

1
2

= û2
0 +

∑
k∈Z

|k||ûk|2 < ∞. (3)

The periodic Hilbert transform of anL1
2π-function u is defined for almost all x ∈ R

by the Cauchy principle value integral

Cu(x) =
1
2π

∫ π

−π
u(y) cot ( 1

2 (x− y)) dy. (4)

∗Note added in proof. Since this paper was completed we have developed a general theory
of quasi-linear problems in an abstract Hilbert-space setting (see [10]) which is sufficiently
general to cover, for example, the existence question for periodic capillary-gravity waves with
its awkward curvature term that represents surface-tension effects. In the abstract version
of the theory, we stay closer to the spirit of Turner’s work and seek minimizers, rather than
mountain pass solutions.
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It is well known [26] that C : Lp2π → Lp2π is a bounded linear operator if 1 < p < ∞,
C does not map Lp2π into itself when p = 1 and ∞, and the Hilbert transform of an
infinitely differentiable function is infinitely differentiable. Moreover C is a Fourier
multiplication operator on Lp2π , p > 1, in the sense that

(Ĉu)0 = 0 and (Ĉu)k = −i sgn(k)ûk, k ∈ Z\{0}, when u ∈ Lp2π, p > 1; (5)

equivalently,

C(cosnt) = sinnt for n ≥ 0 and C(sinnt) = − cosnt for n ≥ 1.

From this it is clear that u 
→ Cu′ is symmetric in the sense that

〈u, Cv′〉 = 〈Cu′, v〉 for all u, v ∈ C∞
2π.

The Hilbert transform has a geometric interpretation in the complex plane.
Suppose that w ∈ W 1,2

2π and that

w(t) =
∞∑
n=0

(
an cosnt+ bn sinnt

)
, an, bn ∈ R, b0 = 0. (6)

Then the complex-valued function

ia0 +
∞∑
n=1

i(an + ibn)e−in(φ+iψ)

=
∞∑
n=1

(
an sinnφ− bn cosnφ

)
enψ + i

∞∑
n=0

(
an cosnφ+ bn sinnφ

)
enψ

is holomorphic on the open half plane {φ + iψ ∈ C : ψ < 0}, its trace on
the boundary {φ + i0 : φ ∈ R} is Cw(φ) + iw(φ) and it converges to ia0 as
ψ → −∞. Since {an} and {bn} are square-summable, it is well known [26] that
Cw(φ) + iw(φ) = 0 on a set of positive measure if and only if {an} and {bn} are
both zero sequences.

Finally we mention an alternative way of interpreting the Hilbert transform in
the framework of complex analysis. The function w, given by (6), and Cw can be
extended to the open unit disc D = {z ∈ C : |z| < 1} by writing z = reit with
0 ≤ r < 1 and t ∈ R in such a way that w(t) + iCw(t) is the trace on the unit
circle (r = 1) of the holomorphic function

a0 +
∞∑
n=1

(an − ibn)zn, z ∈ D.

Observe that the value of this extension at z = 0 is a0 = [w] and the trace on the
circle is non-zero almost everywhere if w �≡ 0.
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3 Variational formulation

Our approach is based on the following form of the water-wave problem: to find
(λ,w) such that 


1
2
{w′2 + (1 + Cw′)2}−1 + λw =

1
2
,

1 + Cw′ > 0, w ∈ C∞
2π, λ > 0.

(7)

Given a solutionw of (7) in the form (6), we obtain a solution of (1) heuristically
as follows. For φ ∈ R and ψ ≤ 0, define

x̃(φ, ψ) = φ+
∞∑
n=1

(
an sinnφ− bn cosnφ

)
enψ,

ỹ(φ, ψ) = ψ +
∞∑
n=0

(
an cosnφ+ bn sinnφ

)
enψ.

The function ỹ is harmonic and is an extension ofw in the sense thatw(t) ≡ ỹ(t, 0);
moreover ỹ(φ, ψ) − ψ is uniformly bounded on {(φ, ψ) : φ ∈ R, ψ ≤ 0}. In the
same way, x̃ is a harmonic extension of t + Cw(t), so that t + Cw(t) ≡ x̃(t, 0)
and x̃(φ, ψ) − φ is uniformly bounded. Moreover the map φ + iψ → x̃ + iỹ is
holomorphic on {φ + iψ ∈ C : ψ < 0}. Equivalently, x̃ and ỹ are harmonic
conjugates and satisfy the Cauchy-Riemann equations:

∂φx̃ = ∂ψ ỹ and ∂ψx̃ = −∂φỹ for all φ ∈ R, ψ ≤ 0.

New variables (x, y) can now be defined by writing

(x, y) =
(
x̃(φ, ψ), ỹ(φ, ψ)

)
.

We find that the half-plane {(φ, ψ) : φ ∈ R, ψ ≤ 0} is sent injectively onto
{(x, y) : x ∈ R, y ≤ η(x)}, where η is given implicitly by

η(t+ Cw(t)) = w(t),

and the velocity field is defined by

v = (∂xφ, ∂yφ) = (∂yψ,−∂xψ) = {(∂φx̃)2 + (∂φỹ)2}−1(∂φx̃, ∂φỹ)

(since φ+ iψ → x̃+ iỹ is holomorphic). Hence, as functions of x and y, φ can be
regarded as a velocity potential and ψ as a stream function. Clearly, when ψ = 0
and φ = t ∈ R,

|v|2 = {(∂φx̃)2 + (∂φỹ)2}−1 = {(1 + Cw′(t))2 + w′(t)2}−1

and y = ỹ(t, 0) = w(t) = η(x). This intuitively explains the equivalence between
(1) and (7).

Note that (7) is not a variational equation as it stands. However Babenko [4]
found that the first equation of (7) is satisfied by any w ∈ C∞

2π that satisfies

Cw′ = λ{w + wCw′ + C(ww′)}, (8)
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which is the Euler equation of the functional

J(w) =
∫ π

−π
wCw′ − λw2(1 + Cw′)dt. (9)

Recently Toland [23] (improving on [21]) observed that all smooth, non-con-
stant solutions of (8) automatically satisfy the remaining condition in (7). The
energy (2) of the corresponding wave, when written in terms ofw andλ, is −2J(w).
(The sign in front of J is chosen to ensure positive definiteness in Morse index and
other calculations later.)

The simple form of J , by comparison with (2), leads one naturally to enquire if
water waves can be found using the direct method of the calculus of variations on
(9). The present work shows that this is indeed possible. The waves which emerge
are small, but not too small. In the next three sections we study a functional more
general than J , and in the final section we specialize to J .

4 Truncation, penalization and regularization

Suppose that f ∈ C∞(R), R ∈ (0,∞] and that ρ : [0, πR2) → R is C∞, convex
with ρ(0) = ρ′(0) = 0 and ρ(s) → ∞ as s ↗ πR2 . Consider the real-valued
functional

J (w) = − ∫ π
−π{f(w)(1 + Cw′) + w}dt+ ρ

( ∫ π
−π wCw′dt

)
for w ∈ W 1,2

2π and
∫ π

−π wCw′dt < πR2.
(10)

In the case whenR = ∞, ρ ≡ 0 and f(w) = λw2 −w, the functional J coincides
with J .

The idea is to replace the functionλw2−w inJ with its truncation f in J so that
inf(−f ′) > 0 . This property will be very important when getting a priori estimates
and when studying the regularity of the critical points. Note that, as observed in
[11], much of the structure of the problem persists for general f . The role of the
penalization term ρ(

∫ π
−π wCw′dt) comes in proving the estimates needed to show

that when w is a mountain-pass critical point of the regularized Jε (see (20)), the
function λw2 − w is unaffected by the truncation. In fact it allows us to work in
the domain {w ∈ W 1,2

2π :
∫ π

−π wCw′dt < πR2} by preventing a mountain-pass
critical point from approaching the boundary. Alternatively, we could have used
the Hampwile theorem [20] in {w ∈ W 1,2

2π :
∫ π

−π wCw′dt < πR2}.

Critical points w ∈ W 1,2
2π of J with

∫ π
−π wCw′dt < πR2 satisfy J ′(w)φ = 0

for all φ ∈ W 1,2
2π , where

J ′(w)φ = −
∫ π

−π
φ{1 + f ′(w)(1 + Cw′) + C(f(w))′}dt

+2ρ′
( ∫ π

−π
wCw′dt

) ∫ π

−π
φCw′dt.
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It follows that critical points satisfy

−{f ′(w)(1 + Cw′) + C(f ′(w)w′) + 1} + 2ρ′
( ∫ π

−π
wCw′dt

)
Cw′ = 0,

w ∈ W 1,2
2π ,

∫ π

−π
wCw′dt < πR2.

(11)

For φ ∈ W 1,2
2π , the quadratic form J ′′(w)(φ, φ) is given by

J ′′(w)(φ, φ) = −
∫ π

−π
φ{f ′′(w)(1 + Cw′)φ+ f ′(w)Cφ′ + C(

f ′(w)φ
)′}dt

+2ρ′
( ∫ π

−π
wCw′dt

) ∫ π

−π
φCφ′dt (12)

+4ρ′′
( ∫ π

−π
wCw′dt

)( ∫ π

−π
φCw′dt

)2
.

In the light of relation, E = −2J , between (2) and (9), smooth solutions of (11)
should correspond to water waves when ρ ≡ 0 and f(w) = λw2 − w. The proof
of the general result, which is new even for the special case, has an immediate
generalization to the regularized functional introduced in (20).

Proposition 1. If w ∈ C∞
2π is a solution of (11) then

f ′(w)
(
w′2+(1+Cw′)2

)
+1−ρ′

( ∫ π

−π
wCw′dt

)(
w′2+(1+Cw′)2−1

) ≡ 0. (13)

In particular, if ρ ≡ 0, then f ′(w(t)) < 0 and {w′2 + (1 + Cw′)2}−1 ∈ L∞
2π .

Proof. Let w ∈ C∞
2π and let

W ∗ = i(1 + Cw′) + w′. (14)

Then as we saw in Sect. 2,W ∗ is the trace on the circle of a functionW holomorphic
on the unit disc and |W ∗| is non-zero almost everywhere on [−π, π]. Now suppose
that v ∈ C∞

2π , so that v + iCv is the trace on the boundary of some function V
holomorphic on the disc with V (0) = [v]. Let Φ = iWV and note from (14) that

W (0) = i. (15)

Then Φ(0) = −[v] ∈ R and its trace satisfies Φ∗ = φ + iCφ for some φ ∈ C∞
2π

with [φ] = [−v]. Hence

iW ∗(v + iCv) = φ+ iCφ and v = �
(φ+ iCφ

W ∗
)
.

We conclude that, for any w ∈ C∞
2π the range of the mapping

φ 
→ �
(φ+ iCφ

W ∗
)
, φ ∈ C∞

2π,

includes all v ∈ C∞
2π and, for such v, [v] = −[φ].
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Let �z and �z denote the real and imaginary parts of z ∈ C and suppose that
w ∈ C∞

2π satisfies (11). If φ ∈ C∞
2π then clearly

J ′(w)φ =
∫ π

−π

(
f ′(w){w′Cφ− φ(1 + Cw′)} − φ

)
dt

− ρ′
( ∫ π

−π
wCw′dt

) ∫ π

−π
{w′Cφ− φ(1 + Cw′) + φ}dt

=
∫ π

−π

{
f ′(w)|W ∗|2�

(φ+ iCφ
W ∗

)
− φ

}
dt

− ρ′
( ∫ π

−π
wCw′dt

) ∫ π

−π

{
|W ∗|2�

(φ+ iCφ
W ∗

)
+ φ

}
dt.

Therefore for all φ ∈ C∞
2π

J ′(w)φ =
∫ π

−π

(
|W ∗|2f ′(w) + 1

)
�

(φ+ iCφ
W ∗

)
dt

− ρ′
( ∫ π

−π
wCw′dt

) ∫ π

−π

(
|W ∗|2 − 1

)
�

(φ+ iCφ
W ∗

)
dt = 0. (16)

Since φ is arbitrary, the first assertion follows. Now suppose that ρ ≡ 0. Then

w′2 + (1 + Cw′)2 ≡ |f ′(w)|−1.

Since f, w and Cw are smooth, it follows that f ′(w) is nowhere zero and the result
follows. ��

When f(w) = λw2 − w, equation (13) can be written in the form

1

2
(
w′2 + (1 + Cw′)2

) +
λ

1 + ρ′
( ∫ π

−π wCw′dt
)w =

1
2
. (17)

When (17) is compared with (7) we see that the parameter λ has been replaced by
the a priori unknown value

λ

1 + ρ′
( ∫ π

−π wCw′dt
) ≤ λ.

However the introduction of ρwill in the end yield an a priori bound on the norm of
w. In other words, ρ plays the same role as a constraint in the calculus of variations.

For general f , (13) still has a geometric interpretation, because it can be written
formally as

1

2
(
w′2 + (1 + Cw′)2

) +
f ′(w)

2{1 + ρ′(
∫ π

−π wCw′dt)} =
ρ′(

∫ π
−π wCw′dt)

2{1 + ρ′(
∫ π

−π wCw′dt)} .
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Thus a Bernoulli condition still holds but the gravitational force field has now been
replaced by a potential field of force pointing vertically downwards with intensity

f ′′(y)
2{1 + ρ′(

∫ π
−π wCw′dt)} .

As before, y is the vertical coordinate (the height) of the surface above some hori-
zontal axis.

Observe that, when λ = 0 and therefore f(w) = λw2 − w = −w, every con-
stant w is a solution of (11). This family of “trivial” solutions makes the problem
unnecessarily complicated. To eliminate these solutions and to remove the transla-
tion invariance of the problem, we work in the subspace H of W 1,2

2π consisting of
even functions of zero mean with norm given by

‖w‖2
H =

∫ π

−π
|w′(t)|2 dt.

A critical point w of J restricted to H satisfies almost everywhere

f ′(w)
(
1 + Cw′) + C(

f ′(w)w′) + 1 − 2ρ′
( ∫ π

−π
wCw′dt

)
Cw′ = c,∫ π

−π
wCw′dt < πR2,

(18)

for some constant c. It can also give rise to a water wave, as the next result shows.

Proposition 2. Let w be a smooth critical point of J restricted to H . Then for the
constant c in (18),

f ′(w){w′2+(1+Cw′)2}+1−ρ′
( ∫ π

−π
wCw′dt

)(
w′2+(1+Cw′)2−1

)
= c. (19)

Proof. The proof is the same as that of Proposition 1. ��
When f(w) = λw2 − w, (19) can be written

1

2
(
w′2 + (1 + Cw′)2

) +
λ

1 + ρ′
( ∫ π

−π wCw′dt
)

− c

(
w − c

2λ

)
=

1
2

and the value of c can be found by integrating (18):

c =
λ

π

∫ π

−π
wCw′dt ≥ 0 .

This leads us to impose a new condition on ρ:

ρ′(s) ≥ (λ/π)s .

If ρ has this property, then 1 + ρ′
( ∫ π

−π wCw′dt
)

− c ≥ 1, and so the coefficient

λ̃ =
λ

1 + ρ′
( ∫ π

−π wCw′dt
)

− c
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is less than λ. The function w̃ := w − c/(2λ) is then a solution of the Bernoulli
equation (7) in which λ is replaced by λ̃.

Now, in addition to restricting J defined by (10) to H , we add a regularizing
term. Consider the regularized functional Jε defined by

Jε(w) = εI(w) + J (w), w ∈ H, (20)

where

I(w) =
∫ π

−π
|w′|2dt, w ∈ H.

Then critical points w ∈ H of Jε such that
∫ π

−π wCw′dt < πR2 have w′ ∈ W 1,2
2π

and satisfy

2εw′′ + f ′(w)(1 + Cw′) + C(f ′(w)w′) + 1 − 2ρ′
( ∫ π

−π
wCw′dt

)
Cw′ = c (21)

almost everywhere for some constant c. We will see that that w = 0 is a non-
degenerate minimizer of Jε when ε > 0. When ε = 0, the linear operator J ′′

ε (0) =
J ′′(0) defined on H is not invertible and present knowledge of the regularity of
the critical points of J in larger (i.e. weaker) spaces than H is rather limited [24].
On the other hand, a simple bootstrap argument shows that a solution w ∈ W 1,2

2π
of (21) has w ∈ C∞

2π .
In what follows, we do not need the generalization of the pointwise identity

(19) to the case ε > 0; an integral identity that is much easier to prove, namely

0 = J ′
ε (w)Cw′ = 2ε

∫ π

−π
w′Cw′′dt−

∫ π

−π
f ′(w){(Cw′)2 + w′2}dt

−
∫ π

−π
f ′(w)Cw′dt+ 2ρ′

( ∫ π

−π
wCw′dt

) ∫ π

−π
w′2dt (22)

suffices. (This integral identity also holds for ε = 0 and w ∈ H , as it is seen by
multiplying (18) by Cw′ and integrating.) However, for completeness, we show that
if w ∈ H satisfies

∫ π
−π wCw′dt < πR2 and is a (necessarily smooth) solution of

(21) with ε > 0, then

2εw′′ + 2ε{w′′Cw′ − C(w′w′′)}

+f ′(w){w′2+(1+Cw′)2}+1−ρ′
( ∫ π

−π
wCw′dt

)(
w′2+(1+Cw′)2−1

)
≡ c.

The proof is the same as that for (19), the only new ingredient being the following
lemma.

Lemma 3. For all w ∈ C∞
2π ∩H and W ∗ defined by (14),

I ′(w)φ = 2
∫ π

−π
w′φ′dt = 2

∫ π

−π

{
w′′ + w′′Cw′ − C(w′w′′)

} �
(
φ+ iCφ
W ∗

)
dt

for all functions φ ∈ C∞
2π ∩H with (φ+ iCφ)/W ∗ ∈ C∞(R,C).
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Proof. We have

C(
w′w′′ − Cw′Cw′′) = w′Cw′′ + w′′Cw′

and

�
(
φ+ iCφ
W ∗

)
= −C�

(
φ+ iCφ
W ∗

)
,

since (φ+ iCφ)/W ∗ has a holomorphic extension to the unit disc in the complex
plane which is zero at 0. Now

I(w) =
∫ π

−π
1
2 (|W ∗|2 − 1) dt

and so

I ′(w)φ =
∫ π

−π
�(
W ∗(φ′ + iCφ′)

)
dt

= −
∫ π

−π
�(
W ∗′(φ+ iCφ)

)
dt = −

∫ π

−π
�

(
W ∗W ∗′ φ+ iCφ

W ∗
)
dt

= −
∫ π

−π
�(W ∗W ∗′

)�
(
φ+ iCφ
W ∗

)
− �(W ∗W ∗′

)�
(
φ+ iCφ
W ∗

)
dt

=
∫ π

−π
�(W ∗W ∗′

)C
(

�
(
φ+ iCφ
W ∗

))
+ �(W ∗W ∗′

)�
(
φ+ iCφ
W ∗

)
dt

=
∫ π

−π

(
− C(�(W ∗W ∗′

)
)

+ �(W ∗W ∗′
)
)
�

(
φ+ iCφ
W ∗

)
dt

= −
∫ π

−π

(
C(
w′w′′ + (1 + Cw′)Cw′′) + w′Cw′′ − w′′(1 + Cw′)

)

· �
(
φ+ iCφ
W ∗

)
dt

=
∫ π

−π

(
2w′′ − C(

w′w′′ + Cw′Cw′′) − w′Cw′′ + w′′Cw′
)

· �
(
φ+ iCφ
W ∗

)
dt

= 2
∫ π

−π

{
w′′ + w′′Cw′ − C(w′w′′)

} �
(
φ+ iCφ
W ∗

)
dt.

This completes the proof. ��

5 A priori estimates

The mountain-pass lemma will be applied to Jε. To understand the convergence of
the critical points as ε → 0, we need a priori estimates that are independent of ε.
First we recall a useful lemma from [22].
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Lemma 4. If w ∈ W 1,2
2π and if h ∈ C∞(R) is convex on the range of w, then

h′(w(t)
)Cw′(t) − C(

h′(w)w′)(t) ≥ 0

almost everywhere and therefore∫ π

−π
h′(w(t)

)Cw′(t)dt ≥ 0.

Proof.

h′(w(t))Cw′(t) − C(
h′(w)w′)(t)

=
1
2π

∫ π

−π

(
h′(w(t)) − h′(w(s))

)
w′(s)

tan((t− s)/2)
ds

=
1
2π

∫ π

−π

(d/ds)
(
h(w(t)) + h′(w(t))(w(s) − w(t)) − h(w(s))

)
tan((t− s)/2)

ds

= − 1
4π

∫ π

−π

h(w(t)) + h′(w(t))(w(s) − w(t)) − h(w(s))
sin2((t− s)/2)

ds ≥ 0

almost everywhere. (The integrand is negative since h is convex.) ��

Here is our first result giving an a priori estimate:

Proposition 5. If w ∈ C∞
2π satisfies

∫ π
−π wCw′dt < πR2 and (21) with ε > 0, then

0 ≤
∫ π

−π
f ′(w)Cw′ dt ≤

∫ π

−π
−f ′(w) dt

and

||w′||2L2
2π

≤ sup{f ′′} ∫ π
−π wCw′dt

2 inf{−f ′} + 2ρ′(
∫ π

−π wCw′dt)

provided that inf{−f ′} > 0, sup f ′′ < ∞ and ρ′ ≥ 0 (this also holds for ε = 0
and w ∈ H).

Proof. Since ε ≥ 0, ρ′ ≥ 0 and
∫ π

−π w
′Cw′′dt ≥ 0, we deduce from (22)

∫ π

−π
−f ′(w)

{
(Cw′)2 + w′2

}
dt+ 2ρ′

( ∫ π

−π
wCw′dt

)( ∫ π

−π
w′2dt

)

≤
∫ π

−π
f ′(w)Cw′dt. (23)

It follows from this and Hölder’s inequality that( ∫ π
−π f

′(w)Cw′ dt
)2∫ π

−π −f ′(w) dt
≤

∫ π

−π
−f ′(w)(Cw′)2 dt ≤

∫ π

−π
f ′(w)Cw′dt,
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and the first assertion follows. That

||w′||2L2
2π

≤
∫ π

−π f
′(w)Cw′dt

2 inf{−f ′} + 2ρ′(
∫ π

−π wCw′dt)

follows immediately from (23). We then apply Lemma 4 with h′(s) = s sup f ′′ −
f ′(s). ��

Let Ĥ denote the completion of H with respect to the metric defined by the
inner product

〈u, v〉 1
2

=
∑
n≥1

nunvn, (24)

in which uk, vk denote the Fourier coefficients of u, v ∈ H with respect to the
orthonormal basis {π− 1

2 cosnt : n ∈ N}. Thus Ĥ is a subspace of the fractional
Sobolev space defined in (3). Clearly Ĥ is a Hilbert subspace of even functions
with zero mean in L2

2π and

〈u, v〉 1
2

=
∫ π

−π
uCv′ dt =

∫ π

−π
vCu′ dt, u, v ∈ H.

Now for ε > 0 define a new inner product on H by

〈u, v〉ε = 2
∫ π

−π
εu′v′ + uCv′ dt. (25)

Let w ∈ C∞
2π be a solution of (21) (with

∫ π
−π wCw′dt < πR2). It follows that there

exists a linear operator Lε : H → H such that

J ′′
ε (w)(u, v) = 〈Lεu, v〉ε, u, v ∈ H.

Assume that µ is a non-positive eigenvalue of Lε:

Lεu = µu, u ∈ H\{0}, µ ≤ 0.

Hence
J ′′
ε (w)(u, v) = µ〈u, v〉ε, v ∈ H. (26)

Proposition 6. If inf{−f ′(w(t))} > 0, ρ′ ≥ 0 and ρ′′ ≥ 0, then

2
(
inf{−f ′(w(t))} − µ

) ∫ π

−π
uCu′dt

≤ sup{|f ′′(w(t))|}
(√

2π + 2||w′||L2
2π

)
||u2||L2

2π
.

Remark. The right-hand side can be further estimated thanks to Proposition 5. If
inf{−f ′} > 0, ρ′ ≥ 0, ρ′′ ≥ 0, R < ∞, sup f ′′ < ∞ and u is normalized by∫ π

−π uCu′dt = 1, Proposition 6 then gives an upper bound on |µ| and a positive
lower bound on ||u2||L2

2π
that are independent of ε.
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Proof. Since µ ≤ 0 this follows from (12) because

2µ
∫ π

−π
uCu′ dt ≥ 2µ

∫ π

−π
εu′2 + uCu′ dt = µ〈u, u〉ε = J ′′

ε (w)(u, u)

= 2ε
∫ π

−π
|u′|2dt

−
∫ π

−π
u

{
f ′′(w)(1 + Cw′)u+ f ′(w)Cu′ + C(

f ′(w)u
)′}

dt

+ 2ρ′
( ∫ π

−π
wCw′dt

) ∫ π

−π
uCu′dt

+ 4ρ′′
( ∫ π

−π
wCw′dt

)( ∫ π

−π
uCw′dt

)2

≥ −
∫ π

−π
u{f ′′(w)(1 + Cw′)u+ f ′(w)Cu′ + C(

f ′(w)u
)′}dt

=
∫ π

−π
2{−f ′(w)}{uCu′ − C(uu′)}dt

−
∫ π

−π
{f ′′(w)(1 + Cw′) + C(f ′(w))′}u2

≥
∫ π

−π
2{−f ′(w)}{uCu′ − C(uu′)}dt

− sup{|f ′′(w(t))|}(
√

2π + 2||w′||L2
2π

)||u2||L2
2π
dt,

since uCu′ − C(uu′) ≥ 0 almost everywhere, by Lemma 4. ��

6 Application of the mountain-pass lemma

In this section we prove the existence of a saddle point of J restricted to H if J
has the right mountain-pass structure. For a correct choice of the parameters, the
critical point then gives a smooth solution of (7) (see next section). It is convenient
to distinguish the linear and nonlinear parts of f . To do so we write

f(x) := λg(x) − x, x ∈ R,

where λ ∈ (0, 1) is fixed, g : R → R is a smooth function with

g(0) = 0, g′(0) = 0, g′′(0) = 2,

sup
x∈R

g′(x) ≤ 2M and sup
x∈R

g′′(x) < ∞

for some constant M < 1/(2λ). The function f thus satisfies

inf{−f ′} > 0 and sup f ′′ < ∞.

Now let 0 < R < ∞ and let ρ : [0, πR2) → R be C∞ and convex, with ρ(0) = 0,
ρ′(0) ≥ 0 and

ρ(s) → +∞ as s → πR2 .
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Note that

J (w) → ∞ as
∫ π

−π
wCw′ dt ↗ πR2

since

J (w) =
∫ π

−π
{(w − λg(w))Cw′ − λg(w)}dt+ ρ

( ∫ π

−π
wCw′dt

)

≥ −λ
∫ π

−π
g(w)dt+ ρ

( ∫ π

−π
wCw′dt

)

≥ −λ(sup g′′/2)‖w‖2
L2

2π
+ ρ

( ∫ π

−π
wCw′dt

)

≥ −λ(sup g′′/2)
∫ π

−π
wCw′dt+ ρ

( ∫ π

−π
wCw′dt

)

≥ −λ(sup g′′/2)πR2 + ρ
( ∫ π

−π
wCw′dt

)
,

where the first inequality follows from Lemma 4 applied to h′(w) = −f(w) =
w − λg(w). The functional J is of class C2 on H , but it is not of class C2 on Ĥ
(see (24) for the definition of Ĥ). However, for all w ∈ H , the second derivative
J ′′(w) : H ×H → R has a continuous extension Ĵ ′′(w) : Ĥ × Ĥ → R. Indeed,
for all w ∈ H , (12) implies that

|J ′′(w)(φ, φ)| =
∣∣∣∣
∫ π

−π
2(1 − λg′(w))φCφ′ − λg′′(w)(1 + Cw′)φ2dt

+2ρ′
( ∫ π

−π
wCw′dt

) ∫ π

−π
φCφ′dt

+4ρ′′
( ∫ π

−π
wCw′dt

)( ∫ π

−π
φCw′dt

)2
∣∣∣∣

=
∣∣∣∣2

∫ π

−π
(1 − λg′(w)){φCφ′ − C(φφ′)}dt

+
∫ π

−π
{C(1 − λg′(w))′ − λg′′(w)(1 + Cw′)}φ2dt

+2ρ′
( ∫ π

−π
wCw′dt

) ∫ π

−π
φCφ′dt

+4ρ′′
( ∫ π

−π
wCw′dt

)( ∫ π

−π
φCw′dt

)2
∣∣∣∣

≤ K‖φ‖2
1
2

for some constant K > 0 and all φ ∈ H , because φCφ′ − C(φφ′) ≥ 0 almost
everywhere by Lemma 4. Applying the Cauchy-Schwartz inequality to the positive
symmetric bilinear form (φ1, φ2) → J ′′(w)(φ1, φ2) +K〈φ1, φ2〉 1

2
, we get

|J ′′(w)(φ1, φ2)| ≤ Const‖φ1‖ 1
2
‖φ2‖ 1

2
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for all φ1, φ2 ∈ H . Therefore J ′′(w)(φ1, φ2) and J ′′(w)(φ, φ) can be extended
by continuity to all φ1, φ2, φ ∈ Ĥ .

Theorem 7. Suppose that there exists u∗ ∈ H such that∫ π

−π
u∗Cu′

∗dt < πR2 and J (u∗) < 0.

Then there exists a solution w ∈ H of (18) such that∫ π

−π
wCw′dt < πR2, 0 ≤ J (w) ≤ max

0≤s≤1
J (su∗), (27)

and Ĵ ′′(w) is not positive definite:

Ĵ ′′(w)(û, û) ≤ 0 for some û ∈ Ĥ\{0}.
Since

Ĵ ′′(0)(u, u) = 2‖u‖2
1
2

− 2λ
∫ π

−π
u2dt > 0

for all u ∈ Ĥ\{0}, it follows that w �= 0.

Proof. The rest of this section is devoted to the proof. Recall that H is compactly
embedded in L∞(R) and that, for w(t) = 1√

π

∑
n≥1 wn cosnt ∈ H ,∫ π

−π
wCw′ dt =

∑
n≥1

nw2
n ≥ ‖w‖2

L2
2π
.

Since λ ∈ (0, 1), for w ∈ H with ‖w‖H sufficiently small,

J (w) ≥
∫ π

−π
wCw′ − λw2 dt− λ

∫ π

−π
{g(w) − (1/2)g′′(0)w2 + g(w)Cw′ }dt

≥ −K‖w‖3
H

for some K > 0. Therefore, for any ε > 0 there exist aε , bε > 0 such that

‖w‖H = aε implies that Jε(w) ≥ bε .

Now we check that Jε satisfies the Palais-Smale condition. Suppose that {wk} ⊂ H
is such that

∫ π
−π wkCw′

k dt < πR2, supk |Jε(wk)| < ∞ and J ′
ε (wk) → 0 in H∗

as k → ∞. From

Jε(wk) ≥
∫ π

−π
ε|w′

k|2 − λg(wk) dt+ ρ
( ∫ π

−π
wkCw′

kdt
)

≥ ε‖wk‖2
H − λ(sup g′′/2)‖wk‖2

L2
2π

≥ ε‖wk‖2
H − λ(sup g′′/2)

∫ π

−π
wkCw′

kdt

≥ ε‖wk‖2
H − λ(sup g′′/2)πR2 ,
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it follows that {wk} is bounded in H . Extracting a subsequence we may assume
that wk ⇀ w in H as k → ∞, with

∫ π
−π wCw′dt < πR2. Now J ′

ε (wk) → 0 in
H∗ as k → ∞, where

J ′
ε (w)v =

∫ π

−π

(
2εw′v′ −λg′(w)v+(w−λg(w))Cv′ +(1−λg′(w))vCw′)dt

+ 2ρ′( ∫ π

−π
wCw′dt

) ∫ π

−π
vCw′dt. (28)

Hence(J ′
ε (wk) − J ′

ε (wl)
)
(wk − wl) =∫ π

−π

{
2ε(w′

k − w′
l)

2 − λ
(
g′(wk) − g′(wl)

)
(wk − wl)

+(wk − wl − λ
(
g′(wk) − g′(wl)

)C(w′
k − w′

l)

+(wk − wl)C
(
w′
k − w′

l

) − λ
(
g′(wk)Cw′

k − g′(wl)Cw′
l

)
(wk − wl)

}
dt

+2
∫ π

−π

{
ρ′

( ∫ π

−π
wkCw′

kdt
)
Cw′

k − ρ′
( ∫ π

−π
wlCw′

ldt
)
Cw′

l

}
(wk − wl)dt

→ 0

as k, l → ∞. Since wk → w uniformly and w′
k ⇀ w′ in L2

2π it is immediate that∫ π

−π
2ε(w′

k − w′
l)

2dt → 0,

as k, l → ∞. Hence {wk} is convergent to w in H . This shows that Jε satisfies
the Palais-Smale condition.

Since the functional Jε on H has mountain-pass geometry at 0 ∈ H and
satisfies the Palais-Smale condition, there exists a critical pointwε of Jε onH with
the property that

Jε(wε) = inf
γ∈Γ

sup
u∈γ

Jε(u) ≤ max
0≤s≤1

Jε(s u∗),

where Γ denotes the set of continuous paths in H joining 0 and u∗ [2].
The next step is to let ε → 0 and for this we need an a priori bound. Since wε

is a critical point of Jε, Proposition 5 gives

||w′
ε||2L2

2π
≤ sup f ′′

2 inf{−f ′}πR
2

and therefore wε is bounded in H uniformly in ε. By taking a sequence of ε → 0,
we may suppose that wε ⇀ w as ε → 0. Since J ′

ε (wε)v = 0, taking the limit as
ε → 0 in (28) yields that for all v ∈ H ,

0 = J ′(w)v

=
∫ π

−π

(
− λg′(w)v + (1 − λg′(w))vCw′ + (w − λg(w))Cv′

)
dt

+2ρ′
( ∫ π

−π
wCw′dt

) ∫ π

−π
vCw′dt
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and hence that w ∈ H satisfies (18). Moreover

0 ≤ J (w) ≤ max
0≤s≤1

J (s u∗).

Recall space Ĥ in (24), the inner product on H for ε > 0 in (25), and the linear
operator Lε : H → H such that

J ′′
ε (wε)(u, v) = 〈Lεu, v〉ε, u, v ∈ H.

Since wε is a mountain-pass critical point of Jε, the bilinear form J ′′
ε (wε)(v, v) is

non-positive for v in a non-trivial subspace of H (see [17], [16, Ch. 6]). Therefore
the self-adjoint operator Lε has a non-positive eigenvalue µε: Lεuε = µεuε for
some uε ∈ H\{0}. Hence, by Proposition 6,

2 (inf{−f ′} − µε)
∫ π

−π
uεCu′

ε dt ≤ const ‖u2
ε‖L2

2π
,

where the constant is independent of ε. Now normalize uε such that ‖uε‖ 1
2

= 1.

Then, since Ĥ is continuously embedded inL4(−π, π), there is a constantK1 such
that ‖u2

ε‖L2
2π

≤ K1. Since µε ≤ 0 it follows that

−µε ≤ const and 1 = ‖uε‖2
1
2

≤ const ‖u2
ε‖L2

2π
.

Suppose that uε ⇀ û in Ĥ and µε → µ̂ ∈ (−∞, 0] as ε → 0. Since u2
ε converges

strongly in L2
2π to û2, it follows that û �= 0.

Since, by assumption, wε ⇀ w in H , it follows from (26) that for all smooth
v ∈ H

2µ̂
∫ π

−π
ûCv′ dt =

∫ π

−π
(1 − λg′(w))ûCv′ + ûC{(1 − λg′(w))v}′

− λ(1 + Cw′)g′′(w)ûv dt

+2ρ′
(∫ π

−π
wCw′dt

) ∫ π

−π
ûCv′dt

+4ρ′′
(∫ π

−π
wCw′dt

) ∫ π

−π
ûCw′dt

∫ π

−π
v̂Cw′dt

= Ĵ ′′(w)(û, v).

This equality can be extended by continuity to all v ∈ Ĥ and, setting v = û,

Ĵ ′′(w)(û, û) = 2µ̂‖û‖2
1
2

≤ 0.

This completes the proof of Theorem 7. ��
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7 Small water waves

From here on we suppose, in addition, that

g(x) = x2 for all x ≤ m and g′′(x) ≤ 2 for all x ∈ R ,

where 0 < m < M , and

ρ(s) =
λ

2π
s2 for 0 ≤ s ≤ πr2 and ρ′(s) ≥ λ

π
s for 0 ≤ s < πR2,

where 0 < r < R < ∞. Moreover we assume that M < 1/2 (which implies
M < 1/(2λ) uniformly in λ ∈ (0, 1)). We easily get the following particular case
of Theorem 7.

Theorem 8. Suppose that there exists u∗ ∈ H such that

1. maxu∗ ≤ m,
2.

∫ π
−π u∗Cu′

∗dt ≤ πr2,

3. J (u∗) =
∫ π

−π{u∗Cu′
∗ − λu2

∗(1 + Cu′
∗)}dt+ λ(2π)−1(

∫ π
−π u∗Cu′

∗dt)
2 < 0.

Then there exists a solution w ∈ H\{0} of (18) which satisfies (27).

The existence of u∗ is an important issue, as well as whether the estimates (27)
ensure that maxw ≤ m for right choices of r and R, in which case w �= 0 is
smooth and gives rise to a Stokes wave. The fact that w is smooth is proved in [8,
24] by a bootstrap on the equation

Cw′ = −c− 1 − f ′(w) + f ′(w)Cw′ − C(f ′(w)w′)
−2f ′(w) + 2ρ′(

∫ π
−π wCw′dt)

,

thanks to the property inf{−f ′(w)} = inf{1 − λg′(w)} > 0 and to the fact that
f ′(w)Cw′−C(f ′(w)w′) = 2λ(wCw′−C(ww′)) is more regular than first expected.

For u∗, we choose u∗(t) = a
(
cos t+ k cos 2t

)
, where a, k > 0. Then

‖u∗‖L∞(R) = a(1 + k) and
∫ π

−π
u∗Cu′

∗dt = πa2(1 + 2k2).

We first make rough estimates to give an idea of the method. We fix m > 0, let
a(1 + k) ≤ m and find

J (u∗) = πa2{1 + 2k2 − λ(1 + k2 + 2ak)
}

+ λ(2π)−1{πa2(1 + 2k2)}2.

We choose k of the same order as a and 1−λ ∈ (0, 1) of at most the same order as
a2. In order that J (u∗) < 0 for small a, we have therefore to check (keeping only
the terms of order at most 2 in a)

1 − λ+ k2 − 2ak + (1/2)a2 < 0,

which holds if we choose k = a and λ ∈ [1 − (1/4)a2, 1). Hence the three
hypotheses of Theorem 8 are verified if a is small enough, λ ∈ [1 − (1/4)a2, 1)
and r > 0 is chosen such that

πr2 =
∫ π

−π
u∗Cu′

∗dt = πa2(1 + 2a2).
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By Proposition 5 with ε=0, we can bound
∫ π

−πw
′2dtby a function ofR,(inf{−f ′})−1

< (1 − 2M)−1 < ∞ and sup f ′′ < 2. On the other hand, taking R = 2r, we also
have ∫ π

−π
wCw′dt < 4πa2(1 + 2a2) → 0

as a → 0. Hence standard interpolation inequalities give that max |w| converges
to 0 as a → 0, which shows that maxw ≤ m for small enough a. Thus we
have proved by an infinite-dimensional variational argument the existence of small
periodic water waves.

In what follows, we give better estimates on the region of existence of periodic
water waves. We suppose again that a(1 + k) ≤ m. Then g(u∗) = u2

∗ and with
r = a

√
1 + 2k2,

J (u∗) = πa2
{

1 − λ+ (2 − λ)k2 − 2λrk√
1 + 2k2

+ (λ/2)r2(1 + 2k2)
}
.

So J (u∗) < 0, and thus the three hypotheses of Theorem 8 are verified, if the two
conditions below hold:

1 − λ+ (2 − λ)k2 − 2λrk√
1 + 2k2

+ (λ/2)r2(1 + 2k2) < 0 (29)

r
1 + k√
1 + 2k2

≤ m . (30)

Theorem 8 provides us with a non-trivial solution w of (18) and (27), which
therefore satisfies, by Proposition 5,

||w′||2L2
2π

≤ λπR2

1 − 2λM + λR2 .

But [w] = 0. So, writing w(t) =
∑
n≥1 an cos(nt), we have, for all t,

|w(t)| ≤
∑
n≥1

|an| ≤

∑
n≥1

πn2|an|2



1/2 
π−1

∑
n≥1

1
n2




1/2

=
√
π

6
||w′||L2

2π
.

Now, w gives rise to a water wave if w(t) ≤ m for all t, so a sufficient condition is

π2λR2

6(1 − 2λM + λR2)
≤ m2 .

Since we can take M arbitrarily close to m, and R arbitrarily close to r, it is
sufficient to check the condition

π2λr2

6(1 − 2λm+ λr2)
< m2

which can be rewritten

r2 <
(1 − 2λm)m2

λ(π2

6 −m2)
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if m2 < π2/6. We recall here the two other conditions (29) and (30). Take m =
0.345 , r = 0.158 , k = 0.142 , λ = 0.99 : the three conditions above are fulfilled,
and we get a solution of (7) in which w and λ are replaced by w∗ = w − c

2λ and

λ∗ =
0.99

1 + ρ′(
∫ π

−π wCw′dt) − c
≤ 0.99 .
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10. Buffoni, B., Séré, É., Toland, J. F.: Minimization methods for quasi-linear problems,
with an application to periodic water waves. In preparation

11. Buffoni, B., Toland, J. F.: Dual free boundaries for Stokes waves. Comptes Rendus
Acad. Sci. Paris, Série 1 332, 73–78 (2001)

12. Chen, B., Saffman, P. G.: Numerical evidence for the existence of new types of gravity
waves of permanent form on deep water. Studies in Appl. Math. 62, 1–21 (1980)

13. Craig, W., Sternberg, P.: Symmetry of solitary waves. Comm. Partial Differential Equa-
tions 13(5), 603–633 (1988)

14. Ekeland, I., Ghoussoub, N.: Selected new aspects of the calculus of variations in the
large. Bull. Amer. Math. Soc. (N.S.) 39(2), 207–265 (2002)

15. Garabedian, P. R.: Surface waves of finite depth. J. d’Anal. Math. 14, 161–169 (1965)
16. Ghoussoub, N.: Duality and Perturbation Methods in Critical Point Theory. Cambridge

University Press, Cambridge, 1993
17. Hofer, H.: A geometric description of the neighborhood of a critical point given by the

mountain pass theorem. J. London Math. Soc. 31, 566–570 (1985)
18. Longuet-Higgins, M. S.: Bifurcation in gravity waves. J. Fluid Mech. 151, 457–475

(1985)
19. Plotnikov, P. I.: Justification of the Stokes hypothesis in the theory of surface waves.

Soviet Phys. Dokl. 28(3), 232–333 (1983)
20. Schechter, M.: The Hampwile theorem for nonlinear eigenvalues. Duke Math. 59, 325–

335 (1989)
21. Spielvogel, E. R.: A variational principle for waves of infinite depth. Arch. Rational

Mech. Anal. 39, 189–205 (1970)
22. Toland, J. F.: Continuity and differentiability of Nemytskii operators on the Hardy space

H1,1(T1). Arkiv für Mathematik 39(2), 383–394 (2001)
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