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Abstract. This is an addendum to the recent Cambridge Tract “Harmonic maps between
Riemannian polyhedra”, by J. Eells and the present author. Hölder continuity of locally
energy minimizing maps ϕ from an admissible Riemannian polyhedron X to a complete
geodesic space Y is established here in two cases: (1) Y is simply connected and has curvature
� 0 (in the sense of A.D. Alexandrov), or (2) Y is locally compact and has curvature � 1,
say, and ϕ(X) is contained in a convex ball in Y satisfying bi-point uniqueness and of
radius R < π/2 (best possible). With Y a Riemannian polyhedron, and R < π/4 in case
(2), this was established in the book mentioned above, though with Hölder continuity taken
in a weaker, pointwise sense. For X a Riemannian manifold the stated results are due to N.J.
Korevaar and R.M. Schoen, resp. T. Serbinowski.

Mathematics Subject Classification (1991): 58E20, 49N60, 53C22.

1. Introduction and preliminaries

This article is an addendum to the recent book [EF], by J. Eells and the present
author, but written in a manner that hopefully permits independent reading. My
recent discussions with Professor Eells on the topic of the present work have led to
improvements in the presentation.

Certain regularity results for harmonic maps from an admissible Riemannian
polyhedron, obtained in [EF], will be established here under weaker, and mostly
optimal, hypotheses on the target space and/or the size of the range of the map.
Furthermore, Hölder continuity is taken here in the customary locally uniform
sense. For this purpose a weak Poincaré inequality for maps is needed in a similar
generality (Proposition 2 and Corollary 1). Altogether, Riemannian polyhedra can
be replaced as targets by geodesic spaces in the regularity and existence theory
for harmonic (or locally energy minimizing) maps as developed in [EF, Chaps. 10
and 11]. The domain of such a map shall be an admissible Riemannian polyhedron
(X, g).

The main results of the present paper assert that a locally energy minimizing
map of (X, g) into a simply connected complete geodesic space of nonpositive
Alexandrov curvature is Hölder continuous (Theorem 1); while such a map into
a complete locally compact geodesic space of curvature � K (K > 0) is Hölder
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continuous provided that it maps X into a ball of radius � π/(2
√
K) satisfying

bipoint uniqueness (Theorem 2).
Alternatively, the target can be a smooth Riemannian manifold without bound-

ary (Theorems 3 and 4). The study of maps into a manifold is not quite a particular
case of that of a geodesic space target because our concept of energy of maps into
a geodesic space, extending that of Korevaar and Schoen [KS1] for maps from
a (smooth) Riemannian manifold, requires that the Riemannian metric g on the
domain polyhedron X be simplexwise smooth, while bounded measurable com-
ponents of g suffices for a good concept of energy of maps into a Riemannian
manifold. The two concepts of energy are identical (up to a constant factor) when g
is simplexwise smooth and when moreover the map is bounded [EF, Theorem 9.2]
or the target manifold is simply connected and complete with nonpositive curvature
[F3, Proposition 3].

The article [F3], likewise an outgrowth of [EF], deals with existence, unique-
ness, and continuity up to the boundary for the solution to the Dirichlet problem
for harmonic maps in the same four settings as here.

Recall from [EF, Chapter 4] that a polyhedron X is termed admissible if it is
dimensionally homogeneous, say of dimension m, and if any two m-simplexes
of X with a common face s (dim s = 0, 1, . . . ,m − 2) can be joined by a chain
of m-simplexes containing s, any two consecutive ones of which have a common
(m− 1)-face containing s (this is trivially fulfilled if m = 1).

We denote throughout by X an m-dimensional admissible polyhedron, con-
nected and locally finite, and endowed with a nondegenerate Riemannian metric g
whose restriction to each closed m-simplex of X is (at least) bounded and mea-
surable. The associated volume measure on X is denoted by µg = µ, the intrinsic
(Riemannian) distance on X by dg

X = dX , and the closed ball with centre x ∈ X
and radius r by BX(x, r). The interior of a set A ⊂ X is denoted by A◦.

The metric space (X, dX) is locally compact. Furthermore, (X, dX) is a length
space, i.e., for any two points x0, x1 ∈ X , dX(x0, x1) is the infimum of the lengths
of all rectifiable paths joining x0 to x1, [EF, Proposition 4.1]. It follows by the
Hopf-Rinow theorem that (X, dX), if complete, is a geodesic space, i.e., the above
infimum is a true minimum (cf. e.g. [EF, Chapter 2]).

Based on the work of Korevaar and Schoen [KS1] a concept of energy of a
map ϕ of (X, g) into a metric space (Y, dY ) is developed in [EF, Chapter 9] under
the hypothesis that g be simplexwise smooth (i.e., g should have a C∞-smooth
restriction to each topdimensional closed simplex of X). The map ϕ is supposed
first of all to have separable range and to be of class L2(X,Y ) in the sense that
the distance function dX(ϕ(·), y) is of class L2(X,µ) for some and hence for any
point y ∈ Y . The approximate energy density eε(ϕ) ∈ L1

loc(X,µ) is then defined
for ε > 0 at every point x ∈ X by

eε(ϕ)(x) =
∫

BX(x,ε)

d2
Y (ϕ(x), ϕ(x′))

εm+2 dµ(x′). (1.1)
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Definition 1. The energy of ϕ : (X, g) → (Y, dY ) is

E(ϕ) = sup
f∈Cc(X,[0,1])

(
lim sup

ε→0

∫
X

feε(ϕ) dµ
)

(� ∞), (1.2)

whereCc stands for continuous functions of compact support.W 1,2
loc (X,Y ) denotes

the space of all mapsX → Y for whichE(ϕ|U ) < ∞ for every relatively compact
open set U ⊂ X (equivalently: the above lim sup is finite for every f ).

If X is compact then (1.2) reduces to

E(ϕ) = lim sup
ε→0

∫
X

eε(ϕ) dµ.

It is shown that, if ϕ ∈ W 1,2
loc (X,Y ) (and only then), there exists a nonnegative

function e(ϕ) ∈ L1
loc(X,µ), called the energy density ofϕ, such that eε(ϕ) → e(ϕ)

as ε → 0, in the sense of weak convergence as measures:

lim
ε→0

∫
X

feε(ϕ) dµ =
∫

X

fe(ϕ) dµ (1.3)

for every f ∈ Cc(X). In the affirmative case it follows from (1.2), (1.3) that

E(ϕ) =
∫

X

e(ϕ) dµ.

For the above assertions, see Steps 2, 3, and 4 of the proof of [EF, Theorem 9.1].1

These steps are independent of the general requirement in [EF] that also the target of
mapsX → Y shall be locally compact. Step 1, however, leading to quasicontinuity
of ϕ, does make use of the local compactness of Y .

A function u : X → R is of class W 1,2
loc (X,R) in the sense of Definition 1

(with Y = R) if and only if u ∈ W 1,2
loc (X) as defined in [EF, p. 63f.]. 2 If that is

the case, the energy density of u equals

e(u) = cm|∇u|2 = cmg
ij∂iu ∂ju a.e. in X , (1.4)

with the usual summation convention. Here cm = ωm/(m + 2), ωm being the
volume of the unit ball in R

m. See [EF, Corollary 9.2], which is based on [KS1,
Theorem 1.6.2] (whereX is a Riemannian domain in a Riemannian manifold), and
is also a particular case of [EF, Theorem 9.2].

1 In the second paragraph of Step 3 of the proof of [EF, Theorem 9.1] the point is that
it makes no difference whether M = (s1 ∪ ss)◦ is considered with the given Riemannian
metric on X or as the Riemannian domain (M, ge), ge denoting a “Euclidean” Riemannian
metric on X .

2 The gradient ∇u ∈ L2(X) defined there is independent of the choice of Cauchy se-
quence (uj) in (Lip1,2(X), || · ||) with uj → u in L2(X). This follows by considering the
restrictions of u and the uj to each open m-simplex of X , the assertion being known to hold
for a Riemannian manifold X , see [FHK].
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By polarization, (1.3) and (1.4) lead, for any two functions u, v ∈ W 1,2
loc (X), to∫

BX(x,ε)

(u(x) − u(x′))(v(x) − v(x′))
εm+2 dµ(x′) → cm〈∇u(x),∇v(x)〉 (1.5)

as ε → 0, in the sense of weak convergence as measures.
Preservation of finite energy of a map under postcomposition with a Lipschitz

map [EF, Corollary 9.1] obviously does not require local compactness of the target,
nor does the lower semicontinuity of energy [EF, Lemma 9.1].

For any map ϕ ∈ W 1,2
loc (X,Y ) and any open set U ⊂ X it is easily shown that

e(ϕ|U ) = e(ϕ) µ-a.e. in U , and so E(ϕ|U ) =
∫

U
e(ϕ) dµ. It follows that if two

maps ϕ,ψ ∈ W 1,2
loc (X,Y ) agree µ-a.e. off a closed set F ⊂ X then e(ϕ) = e(ψ)

µ-a.e. in X \ F , and hence (if E(ϕ) < ∞)

E(ψ) − E(ϕ) =
∫

F

(e(ψ) − e(ϕ)) dµ. (1.6)

A map ϕ ∈ W 1,2
loc (X,Y ) is said to be locally E-minimizing, or to be a local

E-minimizer, ifX can be covered by relatively compact subdomains U for each of
which E(ϕ|U ) � E(ψ|U ) for every map ψ ∈ W 1,2

loc (X,Y ) such that ψ = ϕ µ-a.e.
inX \U , [EF, Definition 10.1]. It would clearly amount to the same to require that
ψ = ϕ µ-a.e. off some closed set F ⊂ U (F depending on ψ). If E(ϕ) < ∞ (e.g.
if X is compact) then the inequality E(ϕ|U ) � E(ψ|U ) may therefore be replaced
equivalently by E(ϕ) � E(ψ), according to (1.6).

These two comments to the definition of a local E-minimizer apply as well to
the following concept of harmonic map, proposed in [EF, Definition 12.1]:

A harmonic map ϕ : X → Y is a continuous map of class W 1,2
loc (X,Y )

which is bi-locally E-minimizing in the sense that X can be covered by relatively
compact subdomains U for each of which there is an open set V ⊃ ϕ(U) in Y
such that E(ϕ|U ) � E(ψ|U ) holds for every continuous map ψ ∈ W 1,2

loc (X,Y )
with ψ(U) ⊂ V and ψ = ϕ µ-a.e. in X \ U .

Clearly, every continuous local E-minimizer is harmonic (take V = Y ). In
the setting of Theorem 1 or Theorem 2 below, a continuous local E-minimizer
ϕ : X → Y is the same as a harmonic map, [EF, Lemma 12.1, Remark 12.1].

2. Formulation of results

We proceed to formulate and comment on the results of the present paper. Proofs are
mostly given in subsequent sections. Compactness of the admissible m-dimensi-
onal Riemannian polyhedron X is only required when stated. For the concepts of
(weakly) harmonic and (weakly) sub/superharmonic functions, see [EF, Definitions
5.1, 5.2, 7.1, and Theorem 7.1].

Some inequalities for harmonic and superharmonic functions. In this subsection
the nondegenerate Riemannian metric g on the admissible polyhedronX is merely
required to be bounded and measurable on each m-simplex.
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Lemma 1. Suppose m > 1. For any compact K ⊂ X and any constant κ > 1
there are constants � > 0 and c > 1, depending only on X,ΛX ,K, κ, such that
for any point a ∈ K and any harmonic function u � 0 in Be

X(a, κr)◦ \ {a}
max

∂Be
X(a,r)

u � c min
∂Be

X(a,r)
u for r � �.

Here ΛX � 1 denotes an ellipticity constant for g on X (or just on K), i.e.,
a constant such that, in terms of Euclidean coordinates x1, . . . , xm on each m-
simplex s of X ,

Λ−2
X

m∑
i=1

(ξi)2 � gij(x)ξiξj � Λ2
X

m∑
i=1

(ξi)2

µ-a.e. for x ∈ X , and for every (ξ1, . . . , ξm) ∈ R
m. Furthermore, Be

X(x,R)◦

denotes the interior of the closed ball Be
X(x,R) centred at x and of radius R, but

relative to the Euclidean Riemannian metric ge on X , given by gij = δij .
The proof of Lemma 1, given in Sect. 3, is an adaptation of the proof of [EF,

Proposition 6.2] (in which uwas required to be harmonic and � 0 in all ofX \{a}).
The next lemma compares the Green kernels GU and Ge

U on U = Be
X(a, κr)◦

relative to the given Riemannian structure g, resp. the Euclidean Riemannian struc-
ture ge on X , cf. [EF, Theorem 7.3].

Lemma 2. For any compact K ⊂ X and any constant κ > 1 there are constants
� > 0 and c > 1, depending only on X,ΛX ,K, κ, such that for every a ∈ K and
r � �:

c−1Ge
U (x, y) � GU (x, y) � cGe

U (x, y) for x, y ∈ Be
X(a, r),

whereby U = Be
X(a, κr)◦.

Essentially, this lemma can be derived from a result by Biroli and Mosco [BM,
Theorem 1.3]. In Sect. 4 below we give an alternative proof by reducing Lemma 2
to [EF, Lemma 7.2] (in which a and rwere fixed). This is done by use of an iteration
procedure, exploiting the polyhedral structure of the domain space X . The same
iteration scheme is employed in the proof of Lemma 1 above.

We proceed to estimate mollified Green functions GUµr, cf. [GH, p. 134]. For
a given point a ∈ X write

µr = µ|Be
X(a,r).

Lemma 3. For any compact K ⊂ X and any constant κ > 1 there are constants
� > 0 and γ1 > γ2 > 0, depending only on X,ΛX ,K, κ, such that for every
a ∈ K and r � �:

GUµr � γ1r
2 on U = Be

X(a, κr)◦,
GUµr � γ2r

2 on Be
X(a, r).

This is obtained just like [EF, Sublemma 10.1] (in which awas fixed), with [EF,
Lemma 7.2] replaced by Lemma 2 above.

Using Lemmas 1, 2, and 3, we establish in Sect. 5 the following proposition, of
which part (a) is essentially contained in [BM, Theorem 1.1]:
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Proposition 1. (Harnack inequalities for variable balls.) For any compactK ⊂ X
and any constant κ > 1 there are constants � > 0 and c > 1, depending only on
X,ΛX ,K, κ, such that the following holds for every a ∈ K and r � �:

(a) If u is harmonic � 0 in Be
X(a, κr)◦ then

max
Be

X(a,r)
u � c min

Be
X(a,r)

u.

(b) If u is superharmonic � 0 in Be
X(a, κr)◦ then

1
µ(Be

X(a, r))

∫
Be

X(a,r)
u dµ � c min

Be
X(a,r)

u.

Maps into metric spaces. In this subsection we suppose that the Riemannian
metric g of the admissible polyhedronX be simplexwise smooth. We first consider
maps of X into an arbitrary metric space (Y, dY ). In Sect. 6 we establish the
following proposition and corollary:

Proposition 2. (Poincaré inequality.) Suppose that X is compact. Every finite
energy map ϕ of (X, g) into a metric space (Y, dY ) satisfies the inequality

inf
y∈Y

∫
X

d2
Y (ϕ(x), y) dµ(x) � C E(ϕ), (2.1)

where C only depends on X as a polyhedron and on the ellipticity constant ΛX .

This was obtained in [EF, Proposition 9.1] under the extra hypothesis that there
exist a (globally) bi-Lipschitz bijection of Y onto a closed subset of a Euclidean
space (e.g., Y is a compact Riemannian polyhedron); this allowed for a reduction
to the case Y = R.

For the case that (X, g) is a Riemannian manifold, Proposition 2 is contained
in a result by Korevaar and Schoen [KS2, §1.4].

The infimum on the left hand side of (2.1) is of course no bigger than the integral
mean of

∫
d2

Y (ϕ(x), ϕ(x′)) dµ(x) as a function of x′ ∈ X , taken with respect to
dµ(x′); and (2.1) is therefore a consequence of the inequality

1
µ(X)

∫
X

∫
X

d2
Y (ϕ(x), ϕ(x′)) dµ(x) dµ(x′) � C E(ϕ). (2.2)

Conversely, (2.1) implies that (2.2) holds (with C replaced by 4C) in the case
where Y is a simply connected complete geodesic space of nonpositive curvature
in the sense of A.D. Alexandrov [A1], [A2] (cf. [EF, Chapter 2]).3 And in that case
it is well known that the infimum on the left of (2.1) is attained by precisely one
point y = ϕ of Y , called the meanvalue of ϕ over (X,µ), [KS1, Lemma 2.5.1].

3 This follows by triangle comparison for the triple ϕ(x), ϕ(x′), y for any y ∈ Y :

d2
Y (ϕ(x), ϕ(x′)) � 2d2

Y (ϕ(x), y) + 2d2
Y (ϕ(x′), y) − 4d2

Y (z, y),

where z denotes the midpoint of the geodesic segment ϕ(x)ϕ(x′).
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Corollary 1. (Weak Poincaré inequality for variable balls.) There exist constants
� > 0, κ > 1, and C > 0, depending only on X,ΛX , such that

inf
y∈Y

∫
BX(a,r)

d2
Y (ϕ(x), y) dµ(x) � Cr2

∫
BX(a,κr)

e(ϕ) dµ (2.3)

for any a ∈ X and r � �.

Compactness of X is not required here. Again, there is a more general version
in the spirit of (2.2). In view of [St, Theorem 2.4], Corollary 1 holds even with
κ = 1 (strong Poincaré inequality), but we shall not make use of that fact.

Next we pass to the regularity of local E-minimizers as defined in Sect. 1. We
shall say that a map ϕ : (X, dX) → (Y, dY ) between metric spaces is pointwise
Hölder continuous if, for any point a ∈ X , there are positive constants A,α, δ
(allowed to depend on a) such that

dY (ϕ(x), ϕ(a)) � AdX(x, a)α when dX(x, a) < δ.

If this holds for all points a ∈ X with A,α, δ independent of a, at least locally, we
say that ϕ is locally uniformly Hölder continuous, or simply Hölder continuous; it
follows then that A,α, δ can be chosen independently of a in any given compact
subset of X . For example, every harmonic function on an admissible Riemannian
polyhedron is Hölder continuous, by [EF, Theorem 6.3]. 4 In [EF] the distinction
between Hölder continuity and pointwise Hölder continuity was not made; and in
[EF, Chaps. 10–12] Hölder continuity was understood in the pointwise sense, like in
[Jo]. In the present paper, local compactness of the target space Y is only assumed
when stated.

Theorem 1. Let (Y, dY ) be a simply connected complete geodesic space of non-
positive curvature. Every local E-minimizer ϕ : X → Y is Hölder continuous
(after correction on a null set for µ).

In [EF, Theorem 10.1] it was shown thatϕ is pointwise Hölder continuous, under
the extra hypothesis that (Y, dY ) be (locally) Lipschitz homeomorphic with a closed
subset of a Euclidean space (in particular locally compact); this was imposed in
order to ensure the validity of the weak Poincaré inequality for balls. The proof was
based on a general procedure of Jost [Jo]. The proof of Theorem 1, given in Sect. 7
below (without the indicated extra hypothesis, and with locally uniform Hölder
continuity), will proceed by reduction to the proof in [EF] while using Proposition
1 (b), Lemma 3, and Corollary 1 above.

Theorems 11.1 and 11.2 in [EF] likewise hold for geodesic space targets Y (cf.
[EF, Remark 11.4]) because the homotopy classification stated in [EF] does not
require that X and Y have polyhedral structure; for a proof of that classification
see [Sp, Chap. 7, §3, Theorem 8].

For the case where (X, g) is a Riemannian manifold, Theorem 1 was obtained
by Korevaar and Schoen [KS1, §2.4]. Earlier this had been established by Gromov
and Schoen [GS] when Y is a Riemannian polyhedron. Local E-minimizers ϕ

4 In [EF, Theorem 6.3] the constant factor A is missing on the right hand side of eq. (6.30).
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from a Riemannian manifold were shown in these two articles to be even Lipschitz
continuous; in the more general setting of Theorem 1 above (with polyhedral domain
X) ϕ need not be Lipschitz continuous, not even if (Y, dY ) = R, cf. [Ch], or [EF,
Example 6.1], where X is the Riemann surface of

√
z, including the point 0, and

ϕ(z) =
√
z.

Remark (with thanks to James Eells). The notion of Lipschitz manifold in [EF,
Example 3.6] has been adjusted by Donaldson and Sullivan [DS] to include quasi-
conformal manifolds – described by coordinate atlases whose transition maps are
quasiregular homeomorphisms; i.e., homeomorphisms θ ∈ W 1,n

loc (n being the
dimension) whose Jacobian determinant Jθ satisfies |dθ(x)| � K Jθ(x) a.e. in the
domain U of θ, for some constant K � 1.

Basic properties:
(1) If θ is quasiregular, then there exists p > n such that θ ∈ W 1,p

loc , [BI,
Theorem 5.1].

(2) Every quasiregular map is locally Hölder continuous [BI, Theorem 5.2],
[HKM, Theorem 14.44].

(3) In the direct methods of variational theory, quasiregular maps appear as
quasiminima [GG, §2b], [G, Chapter IX, §1]. However, Hölder continuity for
quasiminima is much more problematical [G, Chapter IX, p. 253]; in particular,
Harnack’s inequality is in doubt [GG, after Definition 1.1].

In the next theorem the complete geodesic target space (Y, dY ) has instead
upper bounded curvature, again in the Alexandrov sense. For our proof (in Sect. 8)
we need to assume that Y is locally compact. Every bounded closed subset of Y is
then compact, by the Hopf-Rinow theorem (cf. e.g. [EF, Chap. 2]).

Theorem 2. Let (Y, dY ) be a locally compact, complete geodesic space of curvature
� K for some constant K > 0. A local E-minimizer ϕ : X → Y is then Hölder
continuous provided that its range ϕ(X) is contained in a closed convex ball B =
BY (q,R) of radius R < π/(2

√
K) satisfying bipoint uniqueness.

With Y as stated (in fact, even without local compactness), a set V ⊂ Y of
diameter< π/

√
K is said to satisfy bipoint uniqueness if every pair of points y0, y1

of V can be joined by a unique Y -geodesic in V which is minimizing within V
(not necessarily within Y unless V is convex), 5 and if that segment varies contin-
uously with its endpoints (in the uniform topology on curves). Since geodesics in
V have no conjugate points [AB1, Theorem 3] this definition agrees with the more
restrictive one given by Alexander and Bishop in [AB2], where it is also shown
that the continuous dependence is automatic in case Y is locally compact. Bipoint
uniqueness of V implies that V is simply connected (two paths in V with the same
endpoints are connected even by a geodesic homotopy). As shown by Alexandrov
[A1], [A2], a convex set V ⊂ Y satisfies bipoint uniqueness if and only if every
geodesic triangle with vertices in V and perimeter< 2π/

√
K admits triangle com-

parison; then the distance function dY (q, ·) is convex in V , and hence every ball

5 See [AB2, §4] for the simple example of a ball V of radius 1 in an ordinary cylinder Y
of circumference 3. Thus V need not be convex (in Y ), contrary to what was stated in [EF,
p. 28]. The proof of [EF, Theorem 11.4] therefore requires that B be convex.
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in V is convex. A ball B (open or closed) in Y of radius R < π/(2
√
K) satisfies

bipoint uniqueness if and only if B satisfies radial uniqueness with respect to its
centre q; i.e., the particular case of bipoint uniqueness where one of the above two
points y0, y1 of V = B is q (kept fixed), [AB2, Theorem 4.3 and Proposition 4.2].

It is shown that Theorem 2 likewise holds for an open convex ball B =
VY (q,R) := {y ∈ Y : dY (y, q) < R} (instead of a closed ball); this is not
obvious because bipoint uniqueness may get lost when passing to the closure. It
is not known to the author whether convexity of B is needed in Theorem 2 (cf.
Theorem 4), and whether local compactness of Y is needed in Theorem 2.

Under the more restrictive hypothesis R < π/(4
√
K) (instead of R <

π/(2
√
K)) and with Y for example a Riemannian polyhedron, Theorem 2 was es-

tablished in [EF, Theorem 10.2] (for a correction, see footnote 6 in Sect. 8 below);
our proof for the general case is done by reduction to the case R < π/(4

√
K),

in which local compactness of Y is not needed. For the case where (X, g) is a
Riemannian manifold the theorem was obtained by Serbinowski [Se], even with
Lipshitz continuity, and without assuming Y locally compact.

As a consequence of Theorem 2 above, the last assertion of [EF, Theorem 11.4]
(about Hölder continuity in X \ bX of the variational solution to the Dirichlet
problem for maps X → Y with prescribed restriction to the boundary bX) holds
without the stated additional hypothesis that R < π/(4

√
K); and Y can now be a

locally compact complete geodesic space (instead of a Riemannian polyhedron).
An example by Hildebrandt, Kaul, and Widman [HKW, §6] shows that Theorem

2 is sharp (even whenX and Y are Riemannian manifolds), in the sense that a local
E-minimizerϕ : X → Y with rangeϕ(X) in a closed ball of radiusR = π/(2

√
K)

satisfying bipoint uniqueness, need not be continuous (cf. [EF, Example 12.3]).
Especially in the proof of Theorem 2 we shall use “fine” potential theory, i.e.,

potential theory relative to the fine topology of H. Cartan on X – the coarsest
topology in which all subharmonic functions are continuous. The fine topology is
finer than the metric topology on X (and strictly finer when dimX > 1).

Maps into a Riemannian manifold. In this subsection the Riemannian metric g on
each closedm-simplex of them-dimensional admissible polyhedronX is allowed
to be just bounded and measurable (rather than smooth), and as always nondegen-
erate, i.e., with elliptic bounds (cf. [EF, Eq. (4.1)]). For maps ϕ of (X, g) into an
n-dimensional separable RiemannianC1-manifold (N,h) (without boundary) there
is an immediate concept of energy density e(ϕ) and energy E(ϕ) =

∫
e(ϕ) dµ in

terms of a Riemannian isometric embedding of (N,h) onto a submanifold of some
R

q, as in Nash’s theorem. Ifϕ1, . . . , ϕq denote the components ofϕ : X → R
q then

ϕ has locally finite energy if and only if ϕ1, . . . , ϕq are of Sobolev classW 1,2
loc (X).

In the affirmative case,

e(ϕ) = |∇ϕ|2 =
q∑

i=1

|∇ϕi|2.

There is an equivalent covariant energy concept (not using Nash’s theorem),
defined in terms of a countable atlas of charts η : V → R

n, [EF, Definition 9.2,
Lemma 9.3]. For simplicity of enunciation we suppose here that X is compact.
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Definition 2. A map ϕ : (X, g) → (N,h) has finite energy if and only if

(i) ϕ can be redefined on a µ-null set so as to become quasicontinuous; and
(ii) the components ϕ1, . . . , ϕn of ϕ in each chart V → R

n are of class W 1,2 on
the quasiopen set ϕ−1(V ); and

(iii) the energy density e(ϕ) ofϕ, definedµ-a.e. in each of the setsϕ−1(V ) covering
X by

e(ϕ) = traceg ϕ
∗h = (hαβ ◦ ϕ)〈∇ϕα,∇ϕβ〉 (2.4)

(summed over α, β = 1, . . . , n), is integrable over (X,µ).

The energy of ϕ is then defined by E(ϕ) =
∫
e(ϕ) dµ.

For the terms quasiopen and quasicontinuous, see [EF, Definitions 7.2, 7.3],
where the capacity is associated with the Dirichlet form

∫
X

|∇u|2dµ,u ∈ L1,2
0 (X),

see [EF, p. 21 and Proposition 7.3], possibly applied locally, cf. [EF, Remark 7.2].
Note that the above pre-images ϕ−1(V ) in (ii) and (iii) are quasiopen in view

of (i); we refer to Kilpeläinen and Malý [KM] for the Sobolev space W 1,2(U) on
a quasiopen set U ⊂ R

m and the gradient operator ∇ on it, equally applicable in
the present setup, where U ⊂ X . Cf. [EF, text following Definition 7.4].

If ϕ(X) has compact closure in N then (iii) is a consequence of (i) and (ii)
because only finitely many coordinate patchesV meetϕ(X). Ifϕ is even continuous
(or if ϕ(X) is contained in a single coordinate patch V , as in Theorems 3 and 4
below) then W 1,2(ϕ−1(V )) becomes the usual Sobolev (1,2)-space on ϕ−1(V ).

The above definition is independent of the choice of countable atlas onN , [EF,
text following Definition 9.2]

If g is simplexwise smooth then the concepts of energy of a map ϕ : X → N
according to Definition 1 and Definition 2 are identical (up to the constant factor
cm from (1.4)) in either of the following cases: (a) ϕ(X) has compact closure inN
(e.g. ϕ is continuous), [EF, Theorem 9.2]; or (b) N is simply connected, complete,
and has nonpositive curvature, [F3, Proposition 3].

In the rest of this subsection we no longer insist that X be compact, nor that g
be simplexwise smooth. For any quasiopen set U ⊂ X define as in [KM, p. 372]

W 1,2
0 (U) =

⋂ {
W 1.2

0 (G) : G open in X , G ⊃ U
}
.

The well-known concept of weak harmonicity of maps between Riemannian mani-
folds extends readily to the present setting as follows, [EF, Definition 12.2]:

A weakly harmonic map ϕ : (X, g) → (N,h) is a quasicontinuous map of
locally finite energy (cf. Definition 2) such that, for any chart η : V → R

n on N ,∫
ϕ−1(V )

〈∇λ,∇ϕk〉dµ =
∫

ϕ−1(V )
λ(Γ k

αβ ◦ ϕ)〈∇ϕα,∇ϕβ〉dµ (2.5)

holds for every k = 1, . . . , n and every bounded function λ of classW 1,2
0 (ϕ−1(V ))

on the quasiopen set ϕ−1(V ).
Weak harmonicity of a map is a local property.
A continuous mapϕ : X → N of locally finite energy is weakly harmonic if and

only ifϕ is a harmonic map (as defined in Sect. 1); and this is further equivalent toϕ
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pulling germs of geodesically convex functions onN back to germs of subharmonic
functions on X , [EF, Theorem 12.1]. In the case where also X is a Riemannian
manifold the latter equivalence is due to Ishihara [Ish].

Theorem 1 above has a companion for weakly harmonic maps into manifolds:

Theorem 3. Let (N,h) be a simply connected complete Riemannian manifold
of nonpositive sectional curvature. Every weakly harmonic map ϕ : X → N is
Hölder continuous (and hence harmonic).

As in the proof of Theorem 1 in Sect. 7 one may use Lemma 3, Proposition
1 (b), and Corollary 1 above in order to pass from pointwise Hölder continuity to
locally uniform Hölder continuity in the proof of [EF, Proposition 12.1]. (As to
Corollary 1 in the present setting see [EF, Remark 9.6].)

Theorem 2 above has a similar companion in the present setting (now for targets
of upper bounded curvature):

Theorem 4. Let (N,h) be a complete Riemannian manifold with sectional cur-
vature � K for some constant K > 0. A weakly harmonic map ϕ : X → N
is Hölder continuous provided that its range ϕ(X) is contained in a closed ball
B = BN (q,R) of radius R < π/(2

√
K), lying within normal range from each of

its points (i.e., B shall not meet the cut locus of any of its points).

Under the remaining hypotheses onN andB the cut locus condition is fulfilled
if and only if B satisfies bipoint uniqueness (cf. the paragraph following Theorem
2 above); for the “if” part see e.g. [KN, Theorem 7.1], and for the “only if” part
see [K1, §4.4] and [K2, Satz 4].

In the proof of Theorem 4, given in Sect. 9, the ball B is allowed to be closed
or open (as in Theorem 2). With pointwise Hölder continuity, B closed, and R <
π/(4

√
K), the theorem was obtained in [EF, Proposition 12.2] (where convexity

of B is not used in the proof).

3. Proof of Lemma 1

We may assume that κ � 2 (otherwise replace κ by 2). Because K is compact we
may choose � = �(X,K) so that Be

X(a, 4�) � stX(a) (the open star of a in X)
for every a ∈ K. Suppose there is no constant c as stated in the lemma. There exists
then a sequence of balls Bj = Be

X(aj , rj) with aj ∈ K, rj � �; and harmonic
functions uj � 0 in Be

X(aj , κrj)
◦ with respect to some Riemannian metric gj on

X with ellipticity constant � ΛX such that

max
∂Bj

uj > jmin
∂Bj

uj . (3.1)

We may assume that aj → a ∈ K and rj → r ∈ [0, �]. Write κ−1 = 4δ (∈ ]0, 1[).
Step 1. The case r > 0. We may further assume that de

X(aj , a) <
1
2δr and

|rj − r| < 1
2δr for all j. Then Be

X(a, r − δr) ⊂ Bj ⊂ Be
X(a, r + δr), and hence

∂Bj ⊂ A := Be
X(a, r + δr) \Be

X(a, r − δr)◦.
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Furthermore, uj is harmonic (with respect to gj) and � 0 in the open set

Y := Be
X(a, r + 2δr)◦ \ {a, a1, a2, . . . }

becauseBe
X(a, r+2δr) ⊂ Be

X(aj , κrj) (this usesκ = 1+4δ � 3).Y is connected
becauseX is admissible of dimensionm > 1, and hence no countable subset of an
open ball in Y divides Y . Since ∂Bj ⊂ A, (3.1) contradicts the Harnack inequality
[EF, Theorem 6.1] applied to the compact set A ⊂ Y .

Step 2. The remaining case rj → 0. Here we use an iterative scheme, earlier
employed in [EF] (in the proofs of Theorems 5.1 and 7.4 there). Let s denote
the carrier of a (i.e., a belongs to the relative interior s◦ of the simplex s). After
embedding the (open) star S = stX(s) = stX(a) in a Euclidean vector space
V with origin at a and norm | · | we denote by p : V → Rs the orthogonal
projection on Rs. Because aj → a (= 0) and p(aj) → p(a) = a, we may assume
that aj ∈ Be

X(a, �) (� S) and p(aj) ∈ s◦ ∩ Be
X(a, �). Consider for each j the

Euclidean homothety ψj of V with centre p(aj) and factor

αj =
1
�

max{|aj − p(aj)|, rj} > 0. (3.2)

Writing a′
j = ψ−1

j (aj) (∈ V ), we have

a′
j − p(aj) = α−1

j (aj − p(aj)), (3.3)

and by (3.2)
|a′

j − p(aj)| = α−1
j |aj − p(aj)| � �. (3.4)

Since |p(aj)| � � it follows from (3.4) that |a′
j | � 2�, which in turn implies that

a′
j lies in K ′ := Be

X(a, 2�), a compact subset of S (by the choice of �). Writing
r′
j := α−1

j rj � �, by (3.2), and recalling the notation Bj = Be
X(aj , rj), we infer

that
B′

j := ψ−1
j (Bj) = Be

X(a′
j , r

′
j) ⊂ Be

X(a, 3�) (� S). (3.5)

Use ψ−1
j to transport the Riemannian metric gj on Be

X(aj , κrj)
◦ into the Rie-

mannian metric g′
j := α−2

j (ψ−1
j )∗gj onBe

X(a′
j , κr

′
j)

◦ ⊂ Be
X(a, 4�) � S (because

a′
j ∈ K ′ and κr′

j � 2�); and g′
j has ellipticity constant � ΛX . Writing uj ◦ψj = u′

j

we have from (3.1) its analogue

max
∂B′

j

u′
j > jmin

∂B′
j

u′
j . (3.6)

By (3.5), u′
j is harmonic � 0 with respect to g′

j in Be
X(a′

j , κr
′
j)

◦.
Because a′

j ∈ K ′ and r′
j � �, we may assume that a′

j → a′ ∈ K ′ and
r′
j → r′ ∈ [0, �]. From Step 1, now with the “dashed” quantities, we infer from

(3.6) that r′ = 0. We may therefore assume that r′
j < �, and so rj (= αjr

′
j)

< αj� = |aj − p(aj)|, by (3.2). Since p(aj) → 0 it therefore follows from (3.4)
that

|a′| = lim |a′
j − p(aj)| = limα−1

j |aj − p(aj)| = �.

Moreover, a′ = limj(a
′
j − p(aj)) ∈ K ′ � S, and a′ is orthogonal to Rs because

a′
j − p(aj) is so for each j, by (3.3). It follows that a′ ∈ S \ Rs, and hence the

carrier s′ of a′ inX contains s properly, so that dim s′ > dim s. Iterating the above
procedure at most m− dim s times therefore leads to an absurdity.
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4. Proof of Lemma 2

We may assume that κ � 2 (otherwise replace κ by 2). Because K is compact
we may assume that the (open) star stX(a) of each point a ∈ K satisfies the
Poincaré-style inequality [EF, eq. (7.3)], cf. [EF, Remark 7.2]. Every domain U
in stX(a) has then a symmetric Green kernel GU , [EF, Theorem 7.3]. We may
choose � = �(X,K) > 0 so that Be

X(a, 4�) � stX(a) for every a ∈ K. Suppose
there is no constant c as stated in the former inequality of the lemma. Then, for any
j = 1, 2, . . . , there exist aj ∈ K, rj ∈ ]0, �], and (xj , yj) ∈ Bj ×Bj such that

GUj
(xj , yj) < j−1Ge

Uj
(xj , yj), (4.1)

where Bj := Be
X(aj , rj) and Uj := Be

X(aj , κrj)
◦. Here GUj

denotes the Green
kernel on Uj for some Riemannian metric gj on Uj with ellipticity constant � ΛX .
In particular, GUj

(xj , yj) < ∞, and so xj �= yj (if dimX > 1). We may assume
that aj → a ∈ K and rj → r ∈ [0, �]. Write κ− 1 = 4δ (∈ ]0, 1]).

Step 1. The case r > 0. We may further assume that de
X(aj , a) <

1
2δr and

|rj − r| < 1
2δr for all j. With the abbreviations

B = Be
X(a, r + δr), U = Be

X(a, r + 2δr)◦, Ũ = Be
X(a, r + 6δr)◦,

we have Bj ⊂ B ⊂ U ⊂ Uj ⊂ Ũ ⊂ Be
X(a, 4�) � S := stX(a) for r � �. It

follows by [EF, Proposition 7.5 (a)] that

GU � GUj
, Ge

Uj
� Ge

Ũ
on B ×B. (4.2)

According to [EF, Lemma 7.2] there is a constant c1 such that

Ge
Ũ

� c1GŨ on B ×B. (4.3)

By further application of [EF, Proposition 7.5 (a)] we have G
Ũ

= GU +H , where
H is finite and continuous in U × U , while GU is lower semicontinuous and > 0
there. It follows that H/GU and hence GŨ/GU are bounded on B × B off the
diagonal, and so

GŨ � c2GU on B ×B, (4.4)

for some constant c2. Applying successively (4.2) (the latter inequality), (4.3), (4.4),
(4.2) (the former inequality), and (4.1), we obtain 0 < Ge

Uj
< c1c2j

−1Ge
Uj
< ∞

at the point (xj , yj) ∈ Bj ×Bj ⊂ B ×B; and this is absurd for j > c1c2.
Step 2. The remaining case rj → 0. Recall the text in the first paragraph of Step

2 in Sect. 3. WriteU ′
j = ψ−1

j (Uj), and use ψ−1
j to transport the Riemannian metric

gj on Uj into the Riemannian metric g′
j := α−2

j (ψ−1
j )∗gj on U ′

j , with ellipticity
constant � ΛX . By [EF, Lemma 7.3], GUj

transforms under ψ−1
j into

GU ′
j
(x′, y′) = αm−2

j GUj
(x, y), x′ = ψ−1

j (x) ∈ U ′
j , y′ = ψ−1

j (y) ∈ U ′
j .

With x′
j = ψ−1

j (xj) ∈ B′
j and y′

j = ψ−1
j (yj) ∈ B′

j , cf. (3.5), we have x′
j �= y′

j (if
dimX > 1); and (4.1) transforms into

GU ′
j
(x′

j , y
′
j) < j−1Ge

U ′
j
(x′

j , y
′
j). (4.5)
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This leads to an absurdity in the same way as described in the last paragraph of
Sect. 3. Having thus established the former inequality of the lemma, the latter
inequality is proved similarly, by interchanging G and Ge.

5. Proof of Proposition 1

To begin with, choose � > 0 so that, for every a ∈ K, Be
X(a, κ�) ⊂ stX(a) (the

open star of a inX). Part (a) is proved just like Lemma 1 (now also form = 1) after
replacing ∂Bj byBj andBe

X(aj , κrj)◦ \{aj} byBe
X(aj , κrj)◦, etc. Alternatively

(form > 1), apply to Lemma 1 the maximum principle for harmonic functions (cf.
e.g. [EF, Chapter 2]).

To prove part (b), fix for a while a point a ∈ K and denote

Br = Be
X(a, r), Ur = Be

X(a, κr)◦, µr = µ|Br
, 0 < r � �.

For � sufficiently small, (Ur, g) has for every 0 < r � � a symmetric Green kernel
GUr

, [EF, Theorem 7.3 and Remark 7.2]. In accordance with the F. Riesz theorem
(cf. e.g. [EF, Chapter 2]) write

u = GUr
λ+ h,

whereλ is a positive measure onUr andh � 0 a harmonic function onUr. Applying
(a) to h in place of u we have

1
µ(Br)

∫
Br

h dµ � max
Br

h � cmin
Br

h.

It therefore remains (if λ �= 0) to prove that

1
µ(Br)

∫
Br

GUr
λ dµ � cmin

Br

GUr
λ (5.1)

(with a possibly larger constant c). For suitable constants �, γ1 > 0 we have by
Lemma 3 and the symmetry of the Green kernel,∫

Br

GUr
λ dµ =

∫
X

GUr
λ dµr =

∫
Ur

GUr
µr dλ � γ1r

2
∫

Ur

dλ (5.2)

for r � �. On the other hand it follows from (5.2) and Lemma 2, and from [EF,
Lemma 7.3] with α = �/r, that there exist positive constants �, c1 (depending on
X,ΛX ,K, κ only) such that for r � � and x, y ∈ Br

c1GUr
(x, y) � Ge

Ur
(x, y) =

(�
r

)m−2
Ge

U�
(
�

r
x,
�

r
y) �

(�
r

)m−2
c2(a), (5.3)

c2(a) := min{Ge
U�

(x, y) : (x, y) ∈ B� ×B�} > 0, a ∈ K. (5.4)

Writing ε = (κ − 1)�/3, finitely many balls Be
X(ai, ε), i = 1, . . . , k, cover K.

For each a ∈ K ∩ Be
X(ai, ε) we have U� = Be

X(a, κ�)◦ ⊃ Be
X(ai, κ� − ε) and
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B� = Be
X(a, �) ⊂ Be

X(ai, � + ε). Because � + ε < κ� − ε it follows in view of
[EF, Proposition 7.5 (a)] that, on B� ×B�,

Ge
U�

� Ge
Be

X(ai,κ�−ε)

� c(i):= min{Ge
Be

X(ai,κ�−ε)(x, y):(x, y) ∈ Be
X(ai, �+ε)×Be

X(ai, �+ε)}

for i = 1, . . . , k and a ∈ K ∩Be
X(ai, ε); and hence by (5.4) for every a ∈ K

c2(a) � c2 := min{c(1), . . . , c(k)} > 0, (5.5)

where c2 = c2(X,K, κ). Now insert (5.5) in (5.3), and integrate with respect
to dλ(y) over Ur. Next, take minimum over x ∈ Br, and compare the resulting
inequality with (5.2); that leads for every a ∈ K to∫

Br

GUr
λ dµ � c1

c2
γ1�

2
( r
�

)m

min
Br

GUr
λ.

This, in turn, leads to (5.1) after division by µ(Br) because µ(Br) � cKΛ
−2m
X rm,

by the proof of [EF, Lemma 4.4] applied toX0 = K, whereby cK > 0 depends on
X and K only.

6. Proof of Proposition 2 and Corollary 1

Step 1. Let the domain be the unit cube X = [0, 1]m in R
m with the Euclidean

structure and Lebesgue measure µ. That case is covered by [KS2, Corollary 1.4.2],
but we give an alternative elementary proof in the slightly amplified form (2.2).

For given k divide the cube X into km subcubes σ in the obvious way, each σ
having the volume µ(σ) = 1/km. The integral I on the left hand side of (2.2) then
decomposes into the sum I =

∑
σ,σ′ I(σ, σ′), where

I(σ, σ′) =
∫

σ

∫
σ′
d2

Y (ϕ(x), ϕ(x′)) dµ(x) dµ(x′).

For a given (ordered) pair of distinct σ, σ′ consider a chain of distinct subcubes
σ0, σ1, . . . , σn of X with σ0 = σ, σn = σ′, and σi−1, σi being neighbours, i.e.,
having a common (m − 1)-face. For x ∈ σ, x′ ∈ σ′ we then have for any x1 ∈
σ1, . . . , xn−1 ∈ σn−1, by the triangle inequality and Cauchy’s inequality,

d2
Y (ϕ(x), ϕ(x′)) � n

n∑
i=1

d2
Y (ϕ(xi−1), ϕ(xi)).

Taking meanvalues with respect to (x1, . . . , xn−1) ∈ σ1 × . . .× σn−1 gives

1
n
d2

Y (ϕ(x), ϕ(x′) � km

∫
σ1

d2
Y (ϕ(x), ϕ(x1)) dµ(x1)

+
n−1∑
i=2

k2mI(σi−1, σi) + km

∫
σn−1

d2
Y (ϕ(xn−1), ϕ(x′)) dµ(xn−1).
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By integration with respect to dµ(x) dµ(x′) it follows that

I(σ, σ′) � n

n∑
i=1

I(σi−1, σi) (6.1)

(trivial if σ = σ′ with the chain reducing to σ, σ).
Now choose the chain from σ to σ′ �= σ specifically as follows: First let σ0

(= σ),σ1, . . . , σn1 be a subchain consisting of successive neighbours, each obtained
from σ by translation in the direction of the (positive or negative) x1-axis. Next let
σn1 , . . . , σn2 (n2 − n1 < k) be successive neighbours, translates of σn1 in the x2-
direction, etc., ending with translatesσnm−1 , . . . , σnm ofσnm−1 in thexm-direction
and such that σnm = σ′. Then n = nm < mk.

For any pair τ, τ ′ of neighbouring subcubes of X there are at most km+1 pairs
σ, σ′ of distinct subcubes of X such that τ, τ ′ occur as two neighbours σi−1, σi in
the chain specified above, joining σ to σ′. Since n � mk we therefore obtain from
(6.1) ∑

σ �=σ′
I(σ, σ′) � mkm+2

∑
τ,τ ′

∗
I(τ, τ ′),

where the star indicates summation over all pairs of neighbouring subcubes τ, τ ′

of X . Adding to this
∑

σ I(σ, σ) =
∑

τ=τ ′ I(τ, τ ′) yields

I =
∑
σ,σ′

I(σ, σ′) � mkm+2
∑

τ

(∑
τ ′
I(τ, τ ′)

)
,

where τ, τ ′ are either neighbours or identical.
For any points x ∈ τ , x′ ∈ τ ′ we have dX(x, x′) � ε := 2

√
m/k, and we

conclude that

I � mkm+2
∑

τ

∫
τ

dµ(x)
∫

BX(x,ε)
d2

Y (ϕ(x), ϕ(x′)) dµ(x′)

= mkm+2εm+2
∑

τ

∫
τ

eε(ϕ) dµ = C

∫
X

eε(ϕ) dµ

with C = m(2
√
m)m+2, eε(ϕ) being the approximate energy density of ϕ, see

(1.1). For k → ∞, i.e., ε → 0, this leads to (2.2) for X = [0, 1]m according to
(1.2) or (1.3) since µ(X) = 1.

Step 2. LetX be any compact admissiblem-dimensional polyhedron endowed
with a Euclidean Riemannian metric ge on eachm-simplex s (taken as a Euclidean
simplex, cf. [EF, Chapter 4]). Let µe denote the corresponding volume measure on
X . Being compact and covered by the open stars of its vertices, the polyhedron X
is finite. Hence there is a constant λ = λ(X) > 0 such that

λ−1 � µe(s) � λ for every m-simplex s.

For any two distinct m-simplexes s, s′ of X write

I(s, s′) =
∫

s

∫
s′
d2

Y (ϕ(x), ϕ(x′)) dµe(x) dµe(x′).
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s can be joined to s′ by a chain of distinctm-simplexes s0, s1, . . . , sn with s0 = s,
sn = s′, and si−1, si being neighbours, i.e., having a common (m − 1)-face,
i = 1, . . . , n. (For s ∩ s′ �= ∅ this follows from X being admissible, and for
general s, s′ it therefore follows from X being connected.) Similarly to (6.1) we
obtain

1
n
I(s, s′) �

n∑
i=1

λ2I(si−1, si) � λ2
n∑

i=1

I(si−1 ∪ si, si−1 ∪ si) (6.2)

with the obvious understanding of the terms in the latter sum. Each si−1 ∪ si

is a “double simplex”, bi-Lipschitz homeomorphic to the union of two adjacent
unit cubes, cf. [EF, Sublemma 4.3], hence also to a single unit cube σ = [0, 1]m.
Let θ : σ → si−1 ∪ si be a bi-Lipschitz bijection with constant |θ| � 1. Then
(2.2), applied to X = σ with Lebesgue measure µ (cf. Step 1) and to the map
ϕ ◦ θ : σ → Y , reads∫

σ

∫
σ

d2
Y

(
(ϕ ◦ θ)(ξ), (ϕ ◦ θ)(ξ′)

)
dµ(ξ) dµ(ξ′) � C

∫
σ

e(ϕ ◦ θ) dµ. (6.3)

For x = θ(ξ) we have |θ|−mdµ(ξ) � dµe(x) � |θ|mdµ(ξ) and

θ(Bσ(ξ, ε)) ⊂ Be
si−1∪si

(x, |θ|ε),
whereBe refers to a ball relative to the Euclidean Riemannian metric ge onX . The
approximate energy densities (cf. (1.1)) eε(ϕ ◦ θ) on σ and e′

|θ|ε(ϕ) on si−1 ∪ si,
the latter relative to ge, are therefore related by

eε(ϕ ◦ θ)(ξ) � |θ|2m+2e′
|θ|ε(ϕ)(x).

Applying (1.2) or (1.3) to the right hand side of (6.3) now leads to

I(si−1 ∪ si, si−1 ∪ si) � C|θ|5m+2
∫

si−1∪si

e′(ϕ) dµe, (6.4)

where e′(ϕ) denotes the energy density of ϕ relative to ge. Because there are only
finitely many pairs of neighbours such as si−1, si, we may replace C|θ|5m+2 by
a constant C1 = C1(X). When N denotes the number of m-simplexes of X , we
have n+ 1 � N in (6.2). Combining (6.2) and (6.4) therefore leads to

I(s, s′) � 2C1Nλ
2E′(ϕ)

for any pair of distinct m-simplexes s, s′ of X , whereby E′(ϕ) denotes the total
energy of ϕ relative to ge. For a single m-simplex s = θ(σ), say, we similarly
obtain from Step 1:

∑
s I(s, s) � C2E

′(ϕ), and we arrive at (2.2) by adding up:∫
X

∫
X

d2
Y (ϕ(x), ϕ(x′)) dµe(x) dµe(x′) =

∑
s,s′

I(s, s′) � C ′µe(X)E′(ϕ)

in terms of a new constant C ′ = C ′(X).
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Step 3. (The general case.) We argue as in the proof of (6.4). LetΛX = Λ denote
the ellipticity constant for the given Riemannian metric g on the finite polyhedron
X , cf. [EF, eq. (4.2)]; then Λ−mdµe � dµg � Λmdµe, Be

X(x, ε) ⊂ BX(x,Λε),
and hence e′

ε(ϕ) � Λ2m+2eΛε(ϕ). From (2.2) relative to ge (Step 2) with constant
C ′ we therefore obtain the stated inequality (2.2) relative to g, with µ = µg and
the constant C = Λ6m+2C ′.

Proof of Corollary 1. We view X as embedded Lipschitz homemorphically in a
Euclidean space V with each simplex embedded as a Euclidean simplex in V , [EF,
Lemma 4.1].

Consider first the case of the Euclidean Riemannian metric ge on X , with
volume measure µe and balls Be

X(a, r). Let S = stX(a) denote the open star of a
point a in X , and fix R > � > 0, depending only on X , so that, when a is taken as
origin in V , we have �

RS � Be
X(a,R)◦ and Be

X(a,R) � S, and hence

Be
X(a, �) � �

R
S and

�

R
S � Be

X(a,R)◦.

It follows by Proposition 2, with (X, g) replaced by the present compact Riemannian
polyhedron ( �

RS, g
e), that

inf
y∈Y

∫
Be

X(a,�)
d2

Y (ϕ(ξ), y) dµe(ξ) � C ′�2
∫

Be
X(a,R)

e′(ϕ) dµe, (6.5)

where e′(ϕ) denotes the energy density of ϕ relative to ge, and we have written
C ′�2 in place of C ′ = C ′(X). For given r � � consider the homothety ψ of V
defined by x = ψ(ξ) = λ−1ξ, where λ = �/r � 1. Applying (6.5) to the map
ϕ ◦ ψ : Be

X(a, �) → Y in place of ϕ, and performing the transformation ψ :
Be

X(a, �) → Be
X(a, r), we obtain (via the approximate energy density e′

ε(ϕ)(x) =
λ2eλε(ϕ ◦ ψ)(ξ))

inf
y∈Y

∫
Be

X(a,r)
d2

Y (ϕ(x), y) dµe(x) � C ′r2
∫

Be
X(a,κr)

e′(ϕ) dµe

for r � �, writing R/� = κ. This is a “Euclidean” version of (2.3). From that we
readily derive the general version, noting again that e′

ε(ϕ) � Λ2m+2eΛε(ϕ):

inf
y∈Y

∫
BX(a,r)

d2
Y (ϕ(x), y) dµ(x) � C ′Λ4m+4r2

∫
BX(a,Λ2κr)

e(ϕ) dµ

for r � Λ−2�, because BX(a, r) ⊂ Be
X(a, Λr) ⊂ BX(a, Λ2r).

7. Proof of Theorem 1

In the proof of [EF, Theorem 10.1], one now replaces Lemma 10.1 (a) and Sub-
lemma 10.1 by the above Proposition 1 (b) (cf. [EF, Remark 7.4]) and Lemma 3,
respectively, in order to allow the point a ∈ X to vary and to make all estimates lo-
cally uniform in a. This leads to locally uniform (rather than just pointwise) Hölder
continuity.
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Local compactness of (Y, dY ) was only used towards the end of the proof of
[EF, Theorem 10.1] when a point q was chosen (p. 191) in the intersection of the
lower directed family of nonvoid compact essential images ϕ(Be

X(a, r)), r > 0. In
the absence of local compactness, choose instead qj as any point ofϕ(Be

X(a, βjr)),
j = 1, 2, . . . ; then eqs. (10.15) and (10.16) in [EF] hold (cf. (10.14) there) with
q replaced by qj , and the rest of the proof remains unchanged. Of course, for the
proof of (10.12) in [EF] one now uses the weak Poincaré inequality from Corollary
1 above, in place of [EF, Proposition 9.1] where a restriction was imposed on Y .
Because “Euclidean” ballsBe

X(a, r) are involved in (10.12) in [EF], one uses once
again the relationsBe

X(a, r) ⊂ BX(a, ΛXr) ⊂ Be
X(a, Λ2

Xr) (now with r replaced
by 5r/6, cf. eq. (10.11) in [EF]).

8. Proof of Theorem 2

We may assume that X is compact. By rescaling the metric dY we achieve that
K = 1, and hence R < π/2. For brevity, write BY (q,R) = B. Every geodesic
triangle yy′q in B with one vertex at the centre q has perimeter < 2π and hence
admits a comparison triangle ỹỹ′q̃ in the unit sphere S2 in R

3. Write

dY (y, q) = v, dY (y′, q) = v′, dY (y, y′) = d;

thus v, v′ � R and d � 2R (< π). For given 0 � λ, λ′ < 1 consider the point
yλ ∈ [y, q] (the geodesic segment joining y and q), the point y′

λ ∈ [y′, q], and the
distance dλ given by dY (y, yλ) = λv, dY (y′, y′

λ) = λ′v′, dY (yλ, y
′
λ) = dλ. By

abuse of notation we thus have

yλ = (1 − λ)y + λq, y′
λ = (1 − λ′)y′ + λ′q.

Similarly write ỹλ = (1 − λ)ỹ + λq̃, ỹ′
λ = (1 − λ′)ỹ′ + λ′q̃, and by triangle

comparison

d̃λ := dS2(ỹλ, ỹ
′
λ) � dλ.

We shall estimate dλ from above in terms of d. First a rough estimate: Write
z = (1 − λ)y′ + λq. The spherical cosine relation applied to ỹỹ′q̃ with angle θ at
q̃ may be written as

cos dS2(ỹ, ỹ′) = cos(v − v′) − (1 − cos θ) sin v sin v′.

Replacing ỹ, ỹ′ by ỹλ, z̃ amounts to replacing v, v′ by (1 − λ)v, (1 − λ)v′ whilst
keeping θ, and so cos dS2(ỹλ, z̃) � cos dS2(ỹ, ỹ′). Hence, by triangle comparison,

dY (yλ, z) � dS2(ỹλ, z̃) � dS2(ỹ, ỹ′) = dY (y, y′) = d.

Since dY (z, y′
λ) = |λ′ − λ|v′ � 1

2π|λ′ − λ|, it follows by the triangle inequality
that

dλ = dY (yλ, y
′
λ) � d+ 1

2π|λ′ − λ|. (8.1)
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To obtain a more precise upper estimate of dλ in terms of d we estimate the
compared distance d̃λ � dλ. We thus obtain by spherical trigonometry

sin v sin v′ cos dλ � sin(v − λv) sin(v′ − λ′v′) cos d
+ sin(v − λv) sin(λ′v′) cos v
+ sin v′ sin(λv) cos(v′ − λ′v′),

cf. [EF, p. 193]. After division by sin v sin v′, and manipulations serving to render
(1.2) through (1.5) applicable, this leads to the latter inequality (10.17) in [EF]
(now with the convex set V of diameter D < π/2 replaced by the ball B of radius
R < π/2):

cos d− cos dλ = 2 sin2( 1
2 dλ) − 2 sin2( 1

2d) �
4∑

j=1

R(j), (8.2)

where

R(1) : = −2 sin2( 1
2 d)

(
1 − sin(v − λv)

sin v
sin(v′ − λ′v′)

sin v′
)

= −2 sin2( 1
2 d)[λv cot v + λ′v′ cot v′ +O(λ2 + λ′2)]

� − sin2R

2R2 d2R cotR[2λ− (λ− λ′) +O(λ2 + λ′2)],

the functions t−2 sin2 t and t cot t being decreasing and > 0 for 0 < t � R
(< π/2);

R(2) : = cos(λv) cos(λ′v′)(cos v − cos v′)
( tan(λv)

sin v
− tan(λ′v′)

sin v′
)

= (cos v − cos v′)
( tan(λv)

sin v
− tan(λ′v′)

sin v′
)
(1 +O(λ2 + λ′2));

R(3) : = (cos v − cos v′)2
sin(λv)
sin v

sin(λ′v′)
sin v′

= (cos v − cos v′)2O(λ2 + λ′2);

R(4) : = 2 sin2 λv − λ′v′

2
− 2 sin2 v − v′

2
sin(λv)
sin v

sin(λ′v′)
sin v′

� 1
2 (λv − λ′v′)2.

WithU as in the definition of a localE-minimizer (Sect. 1), consider a function
λ ∈ Lipc(U), 0 � λ < 1, and apply the above to

y = ϕ(x), y′ = ϕ(x′), λ = λ(x), λ′ = λ(x′)

for x ∈ U and x′ ∈ BU (x, ε); and write yλ = ϕλ(x), y′
λ = ϕλ(x′). Then

v = v(x) = dY (ϕ(x), q) , v′ = v(x′) = dY (ϕ(x′), q),
d = dY (ϕ(x), ϕ(x′)) , dλ = dY (ϕλ(x), ϕλ(x′)).
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By [EF, Corollaries 9.1 and 9.2], v ∈ W 1,2(U) because dY (·, q) ∈ Lip(Y ).
The product of two bounded W 1,2-functions being a bounded W 1,2-function, it
follows by [EF, Lemma 5.2] that the functions v cot v, cos v, λv, tan(λv)/ sin v
(= λ[tan(λv)/(λv)] [v/ sin v]) and similarly sin(λv)/ sin v are of class W 1,2(U).
Furthermore, ϕλ = ϕ in U \ suppλ. Denoting by ‖λ‖Lip the Lipschitz constant of
λ we have |λ(x) − λ(x′)| = ‖λ‖LipO(ε) because x′ ∈ BX(x, ε). From (8.1) we
therefore obtain for ε → 0

dλ � d+ ‖λ‖LipO(ε).

We proceed to compare 1
2 (d2

λ − d2) with cos d− cos dλ. At points x such that
dλ(x) � d(x) we have by Taylor expansion

1
2!

(d2
λ − d2) − 1

4!
(d4

λ − d4) � cos d− cos dλ

with d4
λ − d4 = d3‖λ‖LipO(ε) since d � π. In particular,

1
2 (d2

λ − d2) � (cos d− cos dλ) + d2‖λ‖LipO(ε), (8.3)

also when dλ � d (and then even without the remainder term).6 Inserting all this
in (8.2) and noting that ϕλ = ϕ off F := suppλ, we obtain by (1.2) through (1.6)

0 � 1
2
E(ϕλ) − 1

2
E(ϕ) =

1
2

∫
F

(e(ϕλ) − e(ϕ))dµ =
1
2
E((ϕλ)|U ) − 1

2
E(ϕ|U )

� lim sup
f∈Cc(U,[0,1])

lim sup
ε→0

∫
U

f(x) dµ(x)
∫

BU (x,ε)

1
εm+2

4∑
j=1

R(j) dµ(x′)

� − sin 2R
2R

∫
U

λe(ϕ) dµ+ E(ϕ)O(‖λ‖2
L∞)

+cm(1 +O(‖λ‖2
L∞))

∫
U

〈
∇ cos v,∇ tan(λv)

sin v

〉
dµ

+cmO(‖λ‖2
L∞)

∫
U

|∇ cos v|2dµ

+cm
1
2

∫
U

|∇(λv)|2dµ.

For the second inequality here we use the interpretation of the supremum in
(1.2) (now with U in place of X) as the limit of the corresponding increasing net
with the upper directed index set Cc(U, [0, 1]) (ordered pointwise).

For given λ ∈ Lip+
c (U), λ �≡ 0, apply this with tλ in place of λ above,

0 < t < 1/‖λ‖L∞ ; divide by t, and let t → 0, noting that

∇ tan(tλv)
t sin v

→ ∇ λv

sin v
in L2(U) as t → 0.

6 The inequality (8.3) replaces the former inequality (10.17) in [EF], valid only for dλ � d.
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This leads to∫
U

〈
∇ cos v,∇ λv

sin v

〉
dµ � c′

cm

∫
U

λe(ϕ) dµ, λ ∈ Lip+
c (U),

where c′ = (2R)−1 sin 2R. Here λv/ sin v can be replaced by any λ ∈ Lip+
c (U),

cf. [EF, p. 195], and we conclude that, for λ ∈ Lip+
c (U),∫

U

〈∇ cos v,∇λ〉dµ � c′

cm

∫
U

λ
sin v
v

e(ϕ) dµ � c

cm

∫
U

λe(ϕ) dµ, (8.4)

where c = 2c′/π. By application of a Lipschitz partition of unity (cf. [EF, p. 41 f.])
U can be replaced here by all of X . The result is expressed by saying that

∆ cos v � − c

cm
e(ϕ) (8.5)

holds in X in the weak sense. In particular, cos v is weakly superharmonic in X in
the sense of [EF, Definition 5.2].

We shall prove that ϕ (after correction on a nullset) is Hölder continuous in a
neighbourhood of any point of X . If R < π/4 this follows from the proof of [EF,
Theorem 10.2] (slightly modified as in the beginning of the proof of Theorem 1
in Sect. 7 above, and therefore valid even if Y were not locally compact), applied
to the convex compact ball V = BY (q,R) of diameter D � 2R < π/2. We may
therefore assume that R � π/4.

According to [EF, Theorem 9.1] we may define ϕ : X → Y on a nullset so
that ϕ becomes quasicontinuous, Y being locally compact, by hypothesis. By [EF,
Proposition 7.8 (c)] this means that ϕ is finely continuous off a certain polar set
P ⊂ X , cf. [EF, pp. 18, 109]. It follows that

ϕ(X \ P ) ⊂ B = BY (q,R), (8.6)

the nullset of points x ∈ X \ P with ϕ(x) /∈ B being finely open and hence void,
by Lemma 4 below.

Fix � > 0 with � < π/2 − R (� π/4). For any point z ∈ BY (q, �) consider
the distance function

v(x, z) = dY (ϕ(x), z), x ∈ X. (8.7)

Because dY (·, z) is Lipschitz, v(·, z) and cos v(·, z) are of class W 1,2(X) by [EF,
Corollaries 9.1 and 9.2]. Since v(x, z) � R+ � < π/2 (in particular, any triangle
ϕ(x)ϕ(x′)z has perimeter < 2π), it follows from (8.5), applied with q and R
replaced by z and R+ �, respectively, that

∆ cos v(·, z) � − c

cm
e(ϕ)

in the weak sense, where c only depends on m and R+ �. In particular, cos v(·, z)
is weakly superharmonic. Furthermore, the distance function v(·, z) from (8.7) is
finely continuous in X \ P because ϕ is so. The weakly superharmonic function
cos v(·, z) ∈ W 1,2(X) is therefore finely superharmonic in X \ P . Indeed, X is a
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countable union of domains Ω ⊂ X satisfying the Poincaré-style inequality [EF,
eq. (7.3)] and hence admitting a symmetric Green kernelG, as in [EF, Theorem 7.3].
And [F2, Theorem 11] applies with R

m replaced in our setting by any such domain
Ω, showing that cos v(·, z) is finely superharmonic q.e. in X; hence everywhere in
X \ P , by fine continuity in view of the removable singularity theorem for finely
superharmonic functions [F1, Theorem 9.14].

By the same removable singularity theorem the bounded finely superharmonic
function cos v(·, z) : X \ P → [cos(R + �), 1] agrees on X \ P with a unique
finely superharmonic function fz : X → [cos(R + �), 1], and fz is even a usual
superharmonic function, [F1, Theorem 9.8]. In particular, fz is lower semicontin-
uous (relative to the metric topology on X) and finely continuous. Consequently,
the function v∗(·, z) := Arc cos fz : X → [0, R+ �] is upper semicontinuous and
finely continuous; and v∗(·, z) = v(·, z) in X \ P .

Let a ∈ X be given. We denote by C(ϕ, a) ⊂ B the cluster set for ϕ(x) as
x → a (in the metric topology) through points x ∈ X \ P , x �= a. Note that
C(ϕ, a) is compact and nonvoid, B being compact by the Hopf-Rinow theorem
(cf. e.g. [EF, Chapter 2]).

Replacing the metric topology on X by the fine topology we are led to the fine
cluster set Cf (ϕ, a) for ϕ at a, now with x → a in the fine topology (through
points x ∈ X \P , x �= a). Again, Cf (ϕ, a) is compact and nonvoid. Furthermore,
Cf (ϕ, a) ⊂ C(ϕ, a), the fine topology on X being finer than the metric topology.

Fix for a while a point z ∈ BY (q, �), as just before (8.7). For any fine cluster
point y ∈ Cf (ϕ, a), dY (y, z) is a fine cluster value of the distance function v(x, z)
from (8.7) as x → a, x ∈ X \ P \ {a}, i.e., dY (y, z) ∈ Cf (v(·, z), a). Hence
dY (y, z) equals the actual fine limit v∗(a, z) of v∗(x, z) = v(x, z) as x → a finely
through X \ P . Thus,

dY (y, z) = v∗(a, z), y ∈ Cf (ϕ, a), (8.8)

for any z ∈ BY (q, �). In other words, the fine cluster set Cf (ϕ, a) lies on each
sphere SY (z, v∗(a, z)) := {y ∈ Y : dY (y, z) = v∗(a, z)}. It follows that the
metric cluster set C(ϕ, a) lies on each ball BY (z, v∗(a, z)). Indeed, since v∗(·, z)
is upper semicontinuous, v∗(a, z) majorizes the metric cluster values dY (y, z),
y ∈ C(ϕ, a), of v∗(x, z) = v(x, z) as x → a, x ∈ X \ P \ {a}:

dY (y, z) � v∗(a, z), y ∈ C(ϕ, a). (8.9)

In order to proceed by induction define the integer k by

2k−1� � R+ �− π/4 < 2k�; (8.10)

this is possible, andk > 0, becauseR � π/4. For j ∈ {0, 1, . . . , k} write �j = 2j�,
and choose Rj with R0 = R so that Rj + �j increases strictly with j from R + �
(< π/2) up to

Rk + �k < min{π/2, π/4 + �k}; (8.11)

this is possible because R+ � < π/4 + �k by (8.10). It follows that

�j < π/4 � Rj for j < k; 0 < Rk < π/4. (8.12)
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Indeed,Rj � R+�−�j � R+�−�k−1 � π/4 by (8.10); hence �j < π/2−Rj �
π/4; next, Rk + �k < π/4 + �k by (8.11), and Rk > Rk−1 + �k−1 − �k =
Rk−1−�k−1 > 0 becauseRk−1 � π/4 > �k−1, as just established with j = k−1.

Consider for 0 < δ � 1 the image S(a, δ) of the closed star of a in X under
the Euclidean homothety with centre a and factor δ; then S(a, δ) is a compact
admissible Riemannian polyhedron. Suppose for some j ∈ {0, . . . , k} that Xj :=
S(a, δj) (with 0 < δj � 1), Yj ⊂ Y , and qj ∈ Yj have been defined so that
dY (q, qj) � �j − �, that Yj is a closed convex subset of B ∩ BY (qj , Rj) (hence
satisfies bipoint uniqueness, along with B), and that

ϕ(Xj \ P ) ⊂ Yj (⊂ BY (qj , Rj)). (8.13)

For j = 0 this is fulfilled with δ0 = 1, Y0 = B, and q0 = q, cf. (8.6). We proceed
to show that either ϕ is Hölder continuous in a neighbourhood of a, or else j < k
and there exist δj+1, Yj+1, qj+1 conforming with the above requirements. In the
latter case, repeat the argument with j replaced by j + 1, etc.; that will complete
the proof that ϕ is Hölder continuous in a neighbourhood of the given point a.

For the given index j ∈ {0, . . . , k} let Xj , Yj , qj , Rj , and �j take the place
of X , Y , q, R, and �, recalling that Rj + �j < π/2. If j = k then Rj < π/4 by
(8.12), and it follows from (8.13) by the previous argument for the case R < π/4
that ϕ is Hölder continuous in a neighbourhood of a (after correction on a nullset).

We may therefore assume that j < k. Because dY (q, qj) � �j − � we may
apply (8.7), (8.8), and (8.9) to points z ∈ BY (qj , �j) (⊂ BY (q, �)), in particular
to z = qj . Consider a number r such that �j � r < π/4, cf. (8.12). Since
dY (q, qj) � �j − � � R − π/4 < R − r by (8.10), we have BY (qj , r) ⊂ B, and
so BY (qj , r) is convex (hence satisfies bipoint uniqueness along with B).

If v∗(a, qj) � �j thenC(ϕ, a) ⊂ BY (qj , �j) ⊂ BY (qj , r)
◦ for �j < r < π/4,

by (8.9). By a standard compactness argument it follows that there exists 0 < δ � 1
such that ϕ(x) ∈ BY (qj , r)

◦ for x ∈ S(a, δ) \ P . Because r < π/4 we have
therefore found above that ϕ is Hölder continuous on S(a, δ) (a neighbourhood of
a in X) after correction on a nullset (a subset of P ∪ {a}, by the way).

In the remaining case where v∗(a, qj) > �j , BY (qj , �j) does not meet the
sphere SY (qj , v

∗(a, qj)) containing Cf (ϕ, a), by (8.8) applied to z = qj . For any
two distinct fine cluster points y1, y2 ∈ Cf (ϕ, a) (⊂ B) let zi (i = 1, 2) denote
the nearest point projection of yi on BY (qj , �j) (convex compact in B, as shown
above, now for r = �j), i.e., the point of the geodesic segment [yi, qj ] at distance
�j from qj . If z1 �= z2 then (again by (8.8) for z = qj)

dY (y1, qj) = dY (y2, qj) < dY (y2, z1) + dY (z1, qj)

since z1 is not on [y2, qj ]. Subtracting dY (z1, qj) we infer that dY (y1, z1) <
dY (y2, z1), which contradicts (8.8) for z = z1 ∈ BY (qj , �j), because y1, y2 ∈
Cf (ϕ, a).

We have thus found that all fine cluster points y ∈ Cf (ϕ, a) have the same
nearest point projection qj+1 on BY (qj , �j), and by (8.8) (applied to z = qj+1)
the same distance from qj+1. That distance equals dY (y, qj+1) = dY (y, qj) − �j .
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Because Yj ⊂ BY (qj , Rj) we therefore obtain from (8.8) (now also with z = qj)
and (8.13)

v∗(a, qj+1) = v∗(a, qj) − �j � Rj − �j = Rj + �j − �j+1 < Rj+1. (8.14)

It therefore follows by (8.9) (with z = qj+1) and by (8.13), (8.14) that the usual
cluster set C(ϕ, a) ⊂ Yj does satisfy

C(ϕ, a) ⊂ BY (qj+1, v
∗(a, qj+1)) ⊂ Yj ∩BY (qj+1, Rj+1)

◦ ⊂ BYj
(qj+1, Rj+1).

As in (8.6) there exists accordingly 0 < δj+1 � δj (� 1) such that Xj+1 :=
S(a, δj+1) satisfies

ϕ(Xj+1 \ P ) ⊂ Yj+1 := BYj
(qj+1, Rj+1),

cf. (8.13); and the ball Yj+1 in Yj of radius Rj+1 < π/2 − �j+1 < π/2 is a closed
convex subset of Yj and hence of B. Finally, dY (q, qj+1) � dY (q, qj) + �j �
�j+1 − �.

Case of an open ball. The above proof, up to and including (8.5), applies unaltered
whenB is instead an open ball VY (q,R) (with the properties stated in the theorem).
However, deducing from (8.5) that ϕ is Hölder continuous, cf. the proof of [EF,
Theorem 10.1, p. 189], seems to require that B be closed, in order for ϕ : X → B
to possess a meanvalue over certain subsets of X . According to [EF, Remark 7.4]
the weakly superharmonic function cos v > cosR differs only on a µ-nullset from
a superharmonic function f = fq on X . Actually, f � cosR holds everywhere
in X because the nullset Z where f < cosR is finely open, and hence void by
Lemma 4 below. From f > cosR µ-a.e. and f � cosR everywhere it follows
that f > cosR everywhere in X , by the minimum principle for superharmonic
functions, cf. e.g. [EF, p. 18]. Define v∗ : X → [0, π/2] by cos v∗ = f ; then
v∗ = v a.e. and v∗ < R everywhere in X . Since X is compact, and −f and hence
v∗ are upper semicontinuous, we conclude that indeedR∗ := max v∗ < R < π/2,
i.e.,ϕ(X) ⊂ BY (q,R∗) – a closed ball contained inVY (q,R), and therefore convex
and satisfying bipoint uniqueness.

The following potential theoretic lemma is essentially known:

Lemma 4. (a) Every polar set e ⊂ X is a µ-nullset. (b) Every finely open µ-nullset
Z ⊂ X is void.

Proof. In view of [EF, Theorem 7.2 and Remark 7.2] we have the Dirichlet space
L1,2

0 (X), hypoelliptic in the sense of Feyel and de La Pradelle [FP]. In particular,
X is a P-harmonic space [EF, pp. 19, 108].

Ad (a). There exists anE-potential p ∈ L1,2
0 (X) (⊂ W 1,2

loc (X)) such that p = ∞
on e, [FP, 32◦], see also [EF, p. 109]; it follows that µ(e) = 0.

Ad (b). Exploiting the polyhedral structure of X this can be reduced to the
known case X = R

m. We give a direct, potential theoretic proof for the present,
more general case:
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For any set A ⊂ X the base of A is defined as the set b(A) of points of X at
whichA is not thin in the sense of Brelot, cf. e.g. [CC, §6.3]; in particular, b(A) ⊂ A
if (and only if) A is finely closed [CC, Proposition 6.3.3 (b)].

According to Lassoued [L] the harmonic space X satisfies the axiom of domi-
nation and therefore also the axiom of polarity, see e.g. [CC, Corollary 9.2.3]. The
latter axiom means that (for any set A ⊂ X) the set e = A \ b(A) of points of A
at which A is thin, is polar [CC, Theorem 9.1.1], and hence a µ-nullset, by (a).

For the finely closed set A = X \Z there are two finite potentials u and v � u
(e.g. v = R̂A

u ) such that

b(A) = {x ∈ X : u(x) = v(x)},
[CC, Propositions 7.2.1 and 7.2.2]. By hypothesis, X \ A = Z is a µ-nullset, and
so is therefore X \ b(A) = Z ∪ e. Thus u = v holds µ-a.e. in X , and indeed
everywhere by [FP, 33◦], according to which

u(x) = ess lim inf
y→x

u(y) = ess lim inf
y→x

v(y) = v(x)

for every x ∈ X . Consequently, X = b(A) ⊂ A, i.e., Z = ∅.

9. Proof of Theorem 4

We may assume that X is compact and that K = 1, hence R < π/2. Choose
normal coordinates y1, . . . , yn centred at q and defined in some relatively compact
domain V = Vq in N containing B = BN (q,R). Write

w(y) = u(y)2 = d2
N (y, q) =

n∑
k=1

(yk)2, y ∈ V, (9.1)

and denote H(w) the Hessian of w, formed by the covariant second derivatives

wαβ = ∂α∂βw − Γ k
αβ ∂kw (9.2)

of w. Then H(w) − 2ch is positive semidefinite for c = R cotR:

wαβ(y)ξαξβ � 2c hαβ(y)ξαξβ , y ∈ B, (ξ1, . . . , ξn) ∈ R
n. (9.3)

In [HKW, eq. (2.2)] this is derived (with a similar constant c) from Rauch’s com-
parison theorem. We reproduce from [EF, p. 231 f.] an alternative proof of (9.3):

Because N has sectional curvature � 1, hence also Alexandrov curvature � 1,
and becauseB satisfies bi-point uniqueness, every triangle yy′q inB admits triangle
comparison, its perimeter being � 4R < 2π. By continuity it suffices to consider
the case where y �= q and y ∈ B◦. Consider a geodesic segment γ : [−ε, ε] → B◦,
parametrized by path length and satisfying γ(0) = y �= q. Triangle comparison of
γ(t)γ(−t)q with median γ(0)q gives, writing for a while u(t) for (u ◦ γ)(t), and
later w(t) for (w ◦ γ)(t), cf. (9.1),

cosu(t) + cosu(−t) − 2 cosu(0) cos t � 0.
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Subtracting 2 cosu(0)(1 − cos t) on both sides, and dividing by t2, we obtain for
t → 0

d2

dt2
cos

√
w(t)

∣∣∣
t=0

� − cosu(0),

and so

ẅ(0) � 2u(0)
tanu(0)

+
1

2u(0)

(
1

u(0)
− 1

tanu(0)

)
ẇ(0)2 � 2c

with c = R cotR, as stated above. Thus (w ◦ γ)··(0) � 2c. By (9.2) and the
differential equation γ̈k + Γ k

αβ γ̇
αγ̇β = 0 for the geodesic γ of speed 1, that is,

(hαβ ◦ γ)γ̇αγ̇β = 1, we obtain

(wαβ ◦ γ)γ̇αγ̇β � 2c(hαβ ◦ γ)γ̇αγ̇β at t = 0.

Inserting γ(0) = y this establishes (9.3) because we may choose the geodesic γ
through y with initial velocity γ̇(0) = ξ when |ξ| = 1, i.e., hαβ(y)ξαξβ = 1.

Because ϕ ∈ W 1,2(X,N), the components ϕk = yk ◦ ϕ of ϕ are of class
W 1,2(X) (Definition 2 in Sect. 2). They are moreover bounded since ϕ(X) ⊂ B,
and so

∑n
k=1(ϕ

k)2 = w ◦ ϕ = d2
N (ϕ, q) � R2, cf. (9.1). Consequently, w ◦ ϕ ∈

W 1,2(X), and ∇(w ◦ ϕ) = 2
∑n

k=1 ϕ
k∇ϕk = [(∂kw) ◦ ϕ]∇ϕk; alternatively,

this follows from the chain rule [EF, Lemma 5.2].7 For λ ∈ Lip(X) we therefore
obtain∫

X

〈∇λ,∇(w ◦ ϕ)〉dµ =
∫

X

〈[(∂αw) ◦ ϕ]∇λ,∇ϕα〉dµ (9.4)

=
∫

X

〈∇(λ [(∂αw) ◦ ϕ]),∇ϕα〉dµ−
∫

X

λ [(∂α∂βw) ◦ ϕ]〈∇ϕα,∇ϕβ〉dµ.

Note that, since (∂kw)◦ϕ = 2ϕk is bounded and of classW 1,2(X), so is λ[(∂kw)◦
ϕ], by [EF, Remark 5.1 (a)]. In the definition (2.5) of weak harmonicity of ϕ we
may accordingly replace λ by λ[(∂kw) ◦ ϕ]. In the resulting equation insert (9.2)
(after composition with ϕ), and compare with (9.4). That leads to

−
∫

X

〈∇λ,∇(w ◦ ϕ)〉dµ =
∫

X

λ(wαβ ◦ ϕ)〈∇ϕα,∇ϕβ〉dµ (9.5)

for every Lipschitz function λ on X . From (9.3) it follows that

(wαβ ◦ ϕ)〈∇ϕα,∇ϕβ〉 � 2c(hαβ ◦ ϕ)〈∇ϕα,∇ϕβ〉 = 2c e(ϕ), (9.6)

by the present definition (2.4) of the energy density e(ϕ). Indeed, for each y ∈ B,
the positive semidefinite n × n matrix with entries aαβ = wαβ(y) − 2c hαβ(y),

7 In the chain rule for maps ϕ : X → N in [EF, Remark 9.7] (not used in the present
paper) a hypothesis should be added in order to ensure the global finiteness of the Sobolev
norm of v ◦ ϕ on the quasiopen set U � X with ϕ(U) ⊂ V (V ⊂ N being the domain of
the given C1-function v). It suffices to add the requirement that ϕ(U) � V (for then ϕ(U)
meets only finitely many coordinate patches W of N ). In particular, it suffices to suppose
that the map ϕ be continuous (as it is in all applications of the chain rule for maps in [EF]).
– Also note that, in the version of the chain rule in [EF, eq. (7.26)], U ⊂ X should have
been U � X .
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cf. (9.3), has a symmetric square root (bαβ), and for y = ϕ(x) it follows that (at
almost every point x ∈ X)(

(wαβ ◦ ϕ) − 2c(hαβ ◦ ϕ)
)〈∇ϕα,∇ϕβ〉 = (aαβ ◦ ϕ)〈∇ϕα,∇ϕβ〉

=
n∑

α,k=1

|bαk∇ϕα|2 � 0.

Inserting (9.6) in (9.5) gives

−
∫

X

〈∇λ,∇(w ◦ ϕ)〉dµ � 2c
∫

X

λe(ϕ)dµ � 0 (9.7)

for every Lipschitz function λ � 0 on X . In particular, the function w ◦ ϕ =
v2(·, q) (cf. (8.7)) is weakly subharmonic, [EF, Definition 5.2]. Furthermore, ϕ is
quasicontinuous according to (i) in Definition 2.

For the proof that ϕ is Hölder continuous (after correction on a nullset) suppose
first that B is closed, i.e., B = BN (q,R). If R < π/4 then B has diameter
� 2R < π/2, and the proof of (9.7) carries over with q replaced by any point
z ∈ B, i.e., with w ◦ ϕ = d2

N (ϕ(·), z). This plays the role of [EF, Lemma 10.2];
but note that we do not require in the present setting that B be convex. The rest of
the proof of [EF, Theorem 10.2] (slightly modified as in the proofs of Theorems 1
and 2 above) therefore carries over and shows that ϕ in the present setting is indeed
Hölder continuous whenR < π/4. The caseR � π/4 reduces to the caseR < π/4
exactly as in the second part of the proof of Theorem 2 above, beginning with the
paragraph containing (8.6), while replacing Y by N and the weakly subharmonic
function − cos v, v = dY (ϕ(·), q), by the present weakly subharmonic function
w ◦ ϕ = v2.

As at the end of the proof of Theorem 2 this allows us to reduce the case of an
open ball B in Theorem 4 to that of a closed ball.
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