
Neural Comput & Applic (2002)11:90–102
Ownership and Copyright
 2002 Springer-Verlag London Limited

Forecasting Financial Time Series using Neural Network
and Fuzzy System-based Techniques

V. Kodogiannis1 and A. Lolis2

1Mechatronics Group, Department of Computer Science, University of Westminster, London, UK; 2Ford Motor Company, R&D
Center, Dunton, Essex, UK

Forecasting currency exchange rates are an
important financial problem that is receiving
increasing attention, especially because of its intrin-
sic difficulty and practical applications. During the
last few years, a number of nonlinear models have
been proposed for obtaining accurate prediction
results, in an attempt to ameliorate the performance
of the traditional linear approaches. Among them,
neural network models have been used with encour-
aging results. This paper presents improved neural
network and fuzzy models used for exchange rate
prediction. Several approaches, including multi-layer
perceptions, radial basis functions, dynamic neural
networks and neuro-fuzzy systems, have been pro-
posed and discussed. Their performances for one-
step and multiple step ahead predictions have been
evaluated through a study, using real exchange daily
rate values of the US Dollar vs. British Pound.

Keywords: Exchange rates; Finance; Forecasting;
Neural networks; Neuro-fuzzy systems

1. Introduction

An estimation problem of particular importance in
the field of financial engineering is the problem of
forecasting or predicting trends in the foreign
exchange market. The forecasting of exchange rates
is actually a very difficult task because of the many
correlated factors that become involved. These fac-

Correspondence and offprint requests to: Dr V. Kodogiannis,
Mechatronics Group, Department of Computer Science, University
of Westminster, London HAI 3TP, UK. Email: kodogiv
�wmin.ac.uk

tors could be economic, political and even psycho-
logical. Thousands of academic researchers and busi-
ness practitioners have developed many types of
forecasting methods in an attempt to find a reliable
explanation of the movement of exchange rates.
All these methods could be categorised into two
broad classes:

� the fundamental analysis, and
� the technical analysis.

The former and most powerful approach depends
upon exact knowledge of the various factors that
influence the economy. When this knowledge is
expressed in terms of precise Eqs, which can in
principle be solved, it is possible to predict the
future behaviour of the system. The main problem
with this approach is that knowledge of the rules
governing the behaviour of the system is not readily
available. On the other hand, the second and less
powerful method for prediction relies on the dis-
covery of strong empirical regularities by analysing
a set of past data. There are problems, however,
with the latter approach, as regularities are not
always evident, to be masked with noise.

Many techniques have been proposed in the last
few decades for exchange rate prediction. The tra-
ditional statistical forecasting methods have relied
on linear models such as the Box-Jenkins method,
the exponential smoothing and the autoregression
(AR) method. The Box-Jenkins method [1] requires
the autocorrelation function for identifying proper
autoregressive integrated moving average models
(ARIMA). However, a major obstacle of this tech-
nique is its slow performance. The AR model is used
to describe the stochastic behaviour of a system, and
assumes that the rate at a specific time period can

91Forecasting Financial Time Series

be estimated by a linear combination of the previous
time periods. Generally, the larger the data set, the
better is the result in terms of accuracy, though
with an increase in computational cost. Exponential
smoothing is a convenient way of expressing the
forecast in terms of exponentially smoothed stat-
istics. The main problem with it is that it performs
piece-wise linear approximation, and finds it quite
difficult to model ‘volatile’ time series. An
additional obstacle is that a priori estimates of the
degree of nonlinearity of time series are required to
select the order of smoothing. In practice, however,
this is not always readily available. The drawbacks
of the linear methods, as well as the development
of artificial intelligence, have led to the development
of alternative solutions utilising nonlinear modelling.

Two of the forecasting techniques that allow for
the detection and modelling of nonlinear data are
rule induction and neural networks, as described in
Kingdom [2]. Rule induction identifies patterns in
the data and expresses them as rules. Expert systems
are an example using this technique. The effective-
ness of this method, however, depends upon the
quality of the attributes used in classification, and
suffers from a number of drawbacks. First, the
algorithm upon which rule induction is based pro-
duces a decision tree, which is difficult to interpret.
Secondly, it is aimed at analysing small data sets.
Thirdly, it fails to extract all the knowledge from
the data; and finally, it presumes the existence of
an expert capable of making accurate forecasts that
will train the system. However, it is extremely
difficult to transform the knowledge of an expert to
mathematical rules.

Fuzzy logic systems are a generalisation of the
rule-based systems. One of the most active research
areas on the modelling and identification of nonlin-
ear systems using fuzzy logic systems is in the
fields of financial forecasting [3]. A Fuzzy Logic
System (FLS) is a combination of linguistic vari-
ables and a set of IF-THEN rules using fuzzy logic
principles [4]. It is a system that utilises fuzzy set
theory and its operations. The most commonly used
fuzzy logic system consists of a fuzzifier, inference
engine, fuzzy rule base and defuzzifier. An Adaptive
Fuzzy Logic System (AFLS) can be defined as the
fuzzy logic system whose rules are extracted from
numerical data through training, i.e. a FLS equipped
with training algorithms so that all its parameters
(e.g. centres, spreads) can be adapted in the same
manner as with neural networks. AFLSs have been
proved to be universal function approximators [5].

Li developed a fuzzy learning system which com-
bined expert knowledge and machine learning to
achieve competent performance in various appli-

cations. However, the results presented are question-
able, as during the learning period the proposed
system had not been capable of approximating accu-
rately the real data set [6]. In an alternative
approach, Pellizzari concluded that fuzzy logic tech-
niques could give satisfactory results only when the
volatility of the data is low. Real exchange rates
between the US dollar and the Italian Lira have
been used, but some crisis periods where the rate
changed in an unpredictable descending way have
been removed without giving sufficient explanation.
This fact makes his proposed approach unsuitable
for use in real exchange rate prediction, where
volatility is extremely high and periods of crisis are
the most important to be predicted [7]. Ghroshray
[8] developed a system based on fuzzy regression,
and tried to show its effectiveness in exchange rate
prediction. It was proved that the prediction based
on real data is not efficient for linear modelling,
especially in the case when the market is moving
in an unpredictable way.

Neural Networks (NNs) have recently gained
popularity as an emerging and challenging compu-
tational technology, and they offer a new avenue
to explore the dynamics of a variety of financial
applications. NNs can simulate fundamental and
technical analysis methods using fundamental and
technical indicators as inputs. Consumer price index,
foreign serve, GDP, export and import volume, etc.
could be used as inputs. For technical methods, the
delayed time series data, moving average, relative
strength index, etc. could be used as inputs. The
main focus of this research is forecasting as an
example of function estimation and approximation.
However, NNs as models for forecasting exchange
rates, have been investigated in a number of pre-
vious studies [9,10]. Research conducted by Yao
and Poh [11] has showed that without the use of
extensive market data or knowledge, useful predic-
tion can be done and significant paper profit can be
achieved by utilising a simple NN with three layers.
His proposed network was trained with the Basic
backpropagation (BP) algorithm, and was used to
predict one-step ahead, weekly exchange rates
between the US dollar and five other major cur-
rencies. The output results were compared with those
taken using the ARIMA model. Focusing on the
gradients, the ARIMA methods can achieve 50% of
correctness, while up to 73% can be achieved using
neural network models. Refenes et al. [12] described
a nontrivial application in forecasting exchange
rates, and its implementation using a Multi Layer
Perceptron (MLP) network. They showed that with
careful network design, the BP learning procedure
is an effective way of training three-layered neural

92 V. Kodogiannis and A. Lolis

networks for time series prediction. The results taken
from the various NNs for one-step ahead predictions
were quite satisfactory, and outperformed all the
linear models. On the other hand, for multiple step
a-head prediction, the networks had a poor perform-
ance, mainly due to the inherent structure of the
MLP.

The main characteristic of the studies mentioned
above is the use of a simple three-layered MLP
using the basic BP algorithm for training. Addition-
ally, weekly data have been used, although it is
well known that such data contains substantially
less noise and is less volatile than real daily data.
Researchers striving to develop a method to outper-
form NNs have tried to analyse time series data
using the chaos theory. In many previous studies,
chaotic models have been used for exchange rate
prediction [13,14]. Lisi et al. [15] compared chaotic
models vs. NNs, and found that the latter performed
slightly better. However, as in the previous cases-
studies, monthly data have been used.

In this paper, algorithms that follow the time
series approach are been considered. In this case,
NNs trace previous ‘currency’ patterns and predict
a ‘currency’ pattern using recent data. The datasets
of two currencies studied in this research comprise
1000 daily rates from the end of 1997 to the end
of March 2000. For the purposes of this study, the
first 800 values were reserved from a total of 1000
as training patterns, while the last 200 were the
testing ones. Figure 1 illustrates these ‘currency’
patterns. For a univariate time-series forecasting
problem, the inputs of the network are the past
lagged observations of the data series, and the out-
puts are the future values. Each input pattern is
composed of a moving window of fixed length along
the series. The proposed network is a mapping
function of the form:

yt�1 � F(yt, yt�1, %, yt�p) (1)

where yt is the observation at time t and p is the
dimension of the input vector or the number of past
observations related to the future value. In this
sense, the feedforward network used for time series
forecasting is a general AR model. The balance of

Fig. 1. Exchange rates $–£ for the period 1997–2000.

this paper contains a comparative study of various
prediction techniques used to develop a forecasting
tool for exchange rate prediction.

2. Nonlinear Modelling

2.1. Multi-layer Perceptron Architectures

Some artificial neural network architectures exhibit
the capability of forming complex mappings between
input and output that enable the network to approxi-
mate general nonlinear mathematical functions. The
MLP neural network, trained by the standard BP
algorithm, is probably the most widely used net-
work, and its mathematical properties for nonlinear
function approximation are well documented [16].
The generalised delta rule is applied for adjusting
the weights of the feedforward networks to minimise
a predetermined cost error function. The rule of
adjusting weights is given by the Eq.

wp
ij(t � 1) � wp

ij(t) � ��p
j yp

j � ��wp
ij(t) (2)

where � is the learning rate parameter, � the
momentum term, and � is the negative derivative
of the total square error with respect to the neuron’s
output. To provide sufficient information for model-
ling using an MLP, a structure with two hidden
layers and five inputs was used.

An alternative representation, called Spread Enco-
ding (SE), has been shown to enable a network to
maintain a higher degree of accuracy [16]. In the
SE technique, each data value is represented as the
mean value of a sliding Gaussian pattern of exci-
tation over several nodes at the network input and
output. A similar and reverse procedure is applied
at the network output to decode the output back
into the original variable range. This approach has
similarities with data fuzzification techniques, where
the scalar dimensional space of each variable is
fuzzified to a space of higher dimensions. Also,
decoding of the network output using the SE method
consists of computing a weighted summation of the
node excitations that is analogous to the conven-
tional centre of gravity defuzzification technique.
Thus, a network utilising spread encoding can be
considered as a fuzzy-neural-type network. The SE
method is also in keeping with the heritage of neural
networks from biological systems, where information
is often represented by the combined activity of a
population of receptors, as in the retina of the eye.
Figure 2 illustrates the internal architecture of this
technique. Analytically, this data conditioning
method of SE consists of mapping each network
variable, x�[xmin, xmax], onto a sliding Gaussian

93Forecasting Financial Time Series

Fig. 2. Spread encoding neural architecture.

activation pattern of N network nodes, which
includes additional nodes at either side of the vari-
able range to contain overspill resulting from the
use of a mapping function with wide support. The
level of activation of each node is confined to be
in the range [0.1, 0.9], similar to the conventional
normalisation technique. Each node is assigned a
value, �i, linearly spaced by a distance, �, to span
the range of x, and the centre of the Gaussian
excitation pattern corresponds to the value coded
[17].

The SE algorithm is derived by creating a discrete
map which represents the mean value of a continu-
ous probability distribution, �(�), within each class
interval. This then provides a simple mechanism for
retrieving the original coded value as a sum of the
activity of the node excitations, each weighted by
the values at the centres of the class intervals �i.
For a particular value of x the excitation of each
node is defined by

	i(x) �

��i��/2

�i��/2

��(� � x)d�

�i

(3)

which satisfies the requirement that

�N
i�1

�i	i(x) � � �
(��x)d� � �̄ � x (4)

It is assumed that the distribution �(�) has unit
area. The activation of a particular node can be
evaluated from Eq. (3) by integration by parts:

�i	i(x) � [��(� � x)]�i��/2
�i��/2 (5)

� ��i��/2

�i��/2

�(� � x)d�

where �(�) is a parent cumulative distribution with
�(�) � ��(�). In the investigations reported in this

paper, the integral term in Eq. (5) was approximated
using the first two terms in the trapezium rule,
resulting in

	i(x) � �(�i � �/2 � x) � �(�i � �/2 (6)
� x)

which was found to provide sufficient accuracy in
these studies. The relationship between this coding
technique and conventional fuzzification techniques
is illustrated by considering a first approximation of
the integral term in Eq. (5) resulting from a Taylor
series expansion of the cumulative function about
the interval centre, �i, and keeping the linear term
in the expansion. This leads to

	i(x) �
(�i � x) (7)

which is analogous to the use of membership func-
tions in fuzzy logic [18].

The practical advantage of spread encoding is that
it leads to more accurate models using static feed-
forward neural networks than representing normal-
ised physical variables using single nodes. The main
reason for this is that signal noise is reduced in the
spread encoding representations by suitable matching
of the coding function with the interval width
spanned by each node, exploiting hence the net-
work’s fault tolerance. The spread encoding algor-
ithm was implemented by initially scaling the data
to a normalised range where the original data range
r � [rmin, rmax] was represented by x � [0, N�2N0],
with N the total number of nodes, and N0 the
number of nodes on either side of the variable range
and ��1. The The data coding is performed using
the following relation:

	i(x) � �(�i�1/2 � x) � �(�i � 1/2 (8)
� x), i � 1, % N

where

�i � i � N0 � c (9)

and the cumulative Gaussian distribution function
was approximated by the sigmoidal function centred
at x:

(10)

�(� � x) �
1

1 � e�(��x)

In Eq. (9), c is an offset term that shifts the position
of the range limits on the nodes. The width of
the node excitations is inversely controlled by the
parameter in Eq. (10). Errors arise in decoding
using a straightforward application of Eq. (4),
because the node excitations, 	i(x), are calculated
by an approximation, Eq. (6). The accuracy of

94 V. Kodogiannis and A. Lolis

decoding is improved by dividing the weighted sum
by the sum of the node excitations. Thus, the net-
work output is decoded back to the normalised
range using

x �

�N
i�1

�i	i(x)

�N
i�1

	i(x)

(11)

that is analogous to the conventional centre of grav-
ity defuzzification technique.

In this study, the parameters used in the spread
encoding algorithm were N�6, N0�2, c�0.7 and
�2.9, which were found to provide sufficiently
accurate coding and decoding in the application
reported. Formal techniques for determining an opti-
mum number of nodes in the hidden layers are still
an area of current research, and presently, this task
is often achieved by experimentation. The resulting
MLP network topology with the spread encoding
applied to the network data was 24 input nodes, 34
and 18 nodes for the two hidden layers and six
output nodes.

2.2. Radial Basis Functions

An alternative model to multilayer networks for
the time series identification is a neural network
employing Radial Basis Functions (RBFs). An RBF
is a function which has an in-built distance criterion
with respect to a centre. A typical RBF neural
network consists of three layers (input, hidden,
output). The activation of a hidden neuron is determ-
ined in two steps: the first is computing the distance
(usually by using the Euclidean norm) between the
input vector and a centre ci that represents the ith
hidden neuron. Secondly, a function h that is usually
bell-shaped is applied, using the distance obtained,
to get the final activation of the hidden neuron. In
our case, the well known Gaussian function G(x)

G(x) � exp ��
x2

�2� (12)

was used. The parameter � is called ‘unit width’,
and is determined using the heuristic rule global
first nearest-neighbour [19]. It uses the uniform
average width for all units using the Euclidean
distance in the input space between each unit m and
its nearest neighbour n. All the widths in the net-
work are fixed to the same value �, and this results
in a simpler training strategy. The activation of a
neuron in the output layer is determined by a linear

combination of the fixed nonlinear basis functions,
i.e.

F*(x) � �M
i�1

wi
i(x) (13)

where
i(x) � G(�x � ci�) and wi are the adjustable
weights that link the output nodes with the appropri-
ate hidden neurons. These weights in the output
layer can then be learnt using the least-squares
method.

The present study adopts a systematic approach
to the problem of centre selection. Because a fixed
centre corresponds to a given regressor in a linear
regression model, the selection of RBF centres can
be regarded as a problem of subset selection. The
Orthogonal Least Squares (OLS) method can be
employed as a forward selection procedure that con-
structs RBF networks in a rational way. The algor-
ithm chooses appropriate RBF centres one by one
from training data points until a satisfactory network
is obtained. Each selected centre minimises the
increment to the explained variance of the desired
output, and so ill-conditioning problems occurring
frequently in random selection of centres can auto-
matically be avoided. In contrast to most learning
algorithms, which can only work if a fixed network
structure has first been specified, the OLS algorithm
is a structural identification technique, where the
centres and estimates of the corresponding weights
can be simultaneously determined in a very efficient
manner during learning. The OLS learning procedure
generally produces an RBF network smaller than a
randomly selected RBF network [20]. Due to its
linear computational procedure at the output layer,
the RBF is shorter in training time compared to its
BP counterpart. A major drawback of this method
is associated with the input space dimensionality.
For large numbers of inputs units, the number of
radial basis functions required can become excess-
ive. If too many centres are used, the large number
of parameters available in the regression procedure
will cause the network to be over sensitive to the
details of the particular training set and result in
poor generalisation performance (overfit). To avoid
this problem, an efficient combination of the zero-
order regularisation and the OLS algorithm proposed
by Chen et al. [21]. Similarly, the new error criterion
for minimisation in the ROLS algorithm is

J � eTe � �gTg (14)

where g is the orthogonal weight vector which
satisfies the triangular system

g � AW (15)

and A is an upper triangular matrix computed

95Forecasting Financial Time Series

directly from the OLS regression procedure [20]. In
this current study, the ROLS algorithm was
employed to model the exchange rate problem. Best
results were obtained using five inputs. The proposed
‘global first nearest neighbour’ method for width
definition was found in practice to be inadequate
for our problem. A rather heuristic method by taking
the half the maximum Euclidean distance was finally
adopted for our simulations. Although an elegant
approach to the selection of the regularisation para-
meter � is to adopt Bayesian techniques, in this
work this parameter was set by trial and error to
small positive values (i.e. 0.0003), which satisfy the
optimal problem’s solution.

2.3. Autoregressive Recurrent Neural
Network

In the previous sections, the so-called windowed
input network has been applied for modelling the
exchange rate of US$ vs. GB£. Another approach
has been that of explicitly including the time deped-
ency into the network structure. The commonly used
BP algorithm contains no memory, hindering the
learning of temporal patterns. Here, the alternative
is to use a dynamic network that is given some
kind of memory to encode past history. In the
standard MLP structure, the input to a neuron are
multiplied by feedforward weights and summed,
along with a node bias term. The sum is then
passed through a smooth sigmoidal transfer function,
producing the neuron’s output value. This neural
model has no memory, because the output value
is not expilicitly dependent upon previous outputs.
Recurrent neural networks have important capabili-
ties such as attractor dynamics and the ability to
store information for later use. However, the fully
connected recurrent network, where all neurons are
coupled to one another, is difficult to train and to
make it converge in a short time.

A new model called the autoregressive recurrent
network (ARNN), which can converge in reasonable
training time, is proposed, and a generalised BP
algorithm is developed to train the ARNN. The idea
is that is still uses a recurrent neural network model,
but the recurrent neurons are decoupled so that
each neuron only feeds back to itself. With this
modification, the ARNN model is considered to
converge easier, and to need fewer training cycles
than the fully recurrent network [22]. The ARNN
is a hybrid feedforward/feedback neural network,
with the feedback represented by recurrent connec-
tions appropriate for approximating the dynamic sys-
tem. The structure of the ARNN is shown in Fig.

3. There are two hidden layers, with sigmoidal
transfer functions, and a single linear output node.
The ARNN topology allows recurrency only in the
first hidden layer. For this layer, the memory-less
BP model has been extended to include an autore-
gressive memory, a form of self-feedback where the
output also depends upon a weighted sum of pre-
vious outputs. A modified BP algorithm is developed
to train the ARNN [17]. The mathematical definition
of the ARNN is shown below:

y(t) � O(t) � �
1

WO
l Ql(t), Q1 (16)

� f(Sl), S1 � �
j

WH
jl Zj(t)

and

Zj(t) � f(Hj(t)), Hj(t) � �k�n

k�1

WD
jkZj(t � k) (17)

� �
i

WI
ijIi

where Ii(t) is the ith input to ARNN, Hj(t) is the
sum of inputs to the jth recurrent neuron in the first
hidden layer, Zj(t) is the output of the jth recurrent
neuron, Sl(t) is the sum of inputs to the lth neuron
in the second hidden layer, Ql(t) is the output of
the lth neuron in the second hidden layer, and O(t)
is the output of the ARNN. Here, f(•) is the sigmoid
function and WI, WD WH and WO are input, recurrent,
hidden and output weights, respectively. The mem-
ories in each node at the first hidden layer allow
the network to encode state information. The ARNN
was trained as a prediction model for currency
exchange using a structure of 4/16/8/1 nodes.

Fig. 3. ARNN architecture.

96 V. Kodogiannis and A. Lolis

2.4. Elman Network

Recurrent networks with feedback exhibit a dynamic
behaviour incorporating a temporal aspect not well
conveyed by feedforward networks. They also create
their own state variables and delays, thus requiring
less information about the system being modelled.
As an alternative to the ARNN architecture, the
recurrent network developed by Elman has a simple
architecture, and it can be trained using the standard
BP learning algorithm. The context units of the
Elman network memorise some past states of the
hidden units, so the output of the network depends
upon an aggregate of the previous states and the
current input. This is the reason why the Elman
network possesses the characteristic of a dynamic
memory. In this architecture, in addition to the input,
hidden and output units, there are also context units.
The input and output units interact with the outside
environment, while the hidden and context units do
not. The input units are only buffer units that pass
the signals without changing them. The output units
are linear units which sum the signals fed to them.
The hidden units have nonlinear sigmoidal functions.
The context units are used only to memorise the
previous activations of the hidden units, and there-
fore can be considered to function as one-step time
delays. The feedforward connections are modifiable,
but the recurrent are fixed. This network has been
proved to be effective for modelling nonlinear sys-
tems not higher than the first order [23]. For this
reason, an idea based on the work of Hertz et al.
[24] was employed to configure a modified Elman
network that is shown in Fig. 4. Here, self-connec-
tions are introduced in the context units of the
network in order to give these units a certain amount
of inertia. The introduction of self-feedback in the
context units increases the possibility of the Elman
network to model high-order systems [17]. Thus the

Fig. 4. Modified Elman architecture.

output of the jth context unit in the modified Elman
network (M.ELMAN) is given by

xcj(t � 1) � �xcj(t) � xj(t) (18)

It can be shown that

xcj(t � 1) � xj(t) � �xj(t � 1) � �2xj(t (19)
� 2) � %

Usually, � is between 0 and 1. A value of � nearer
to 1 enables the network to trace further back into
the past.

In this section, we use this network architecture
for the load-forecasting problem. For this purpose,
the output of the jth context unit in the modified
Elman network structure is given by

xcj(t�1) � xj(t) � �xj(t � 1) � �2xj(t
� 2) � �3xj(t � 3) � �4xj(t � 4) (20)
� �5xj(t � 5)

The five ‘memories’ in each node at the context
layer allow the network to encode state information
[25]. To enhance the network’s performance, an
extra hidden layer has been added, and the linear
output function was replaced with a standard sig-
moidal one. Therefore, a 4/16/24/1 Modified Elman
network was applied with self-feedback in the 16
context units, with � equal to 0.25.

2.5. Neuro-Fuzzy Inference System

The various neural architectures presented in the
previous sections illustrated their strength for model-
ling the forecasting problem. It is well known that
a number of complex systems are difficult to model
due to their nonlinear behaviour and imprecise
measurement information. Therefore, imprecise sys-
tems states and a set of imprecise heuristic rules
are needed. Zadeh introduced the linguistic approach
to system design based on fuzzy logic. The main
goal of a fuzzy inference system is to model human
decision making within the conceptual framework
of fuzzy logic and approximate reasoning [18]. Such
a system consists of four important parts: the fuzzi-
fications interface, knowledge base unit, decision-
making unit, and output defuzzification interface.

Recently, the resurgence of interest in the field
of NNs has injected a new driving force into the
‘fuzzy’ literature. The BP learning rule, which drew
little attention until its application to NNS was
discovered, is actually an universal learning para-
digm for any smooth parameterised model, including
fuzzy inference systems. As a result, a fuzzy infer-
ence system can now not only take linguistic infor-
mation (linguistic rules) from human experts, but

97Forecasting Financial Time Series

also adapt it, using numerical data (input/output
pairs) to achieve better performance. This gives
fuzzy inference systems an edge over neural net-
works, which cannot take linguistic information
directly. In this section a simple fuzzy logic system
implemented by using a multilayer feedforward NN
is presented for the prediction of foreign exchange
rates. A schematic diagram of the proposed fuzzy
neural network ‘N-Fuzzy’ structure is shown in
Fig. 5.

The system consists of four layers. Nodes in layer
one are input nodes, that represent input linguistic
variables. Nodes in layer two are membership nodes,
that act like membership functions. Each member-
ship node is responsible for mapping an input
linguistic variable into a possibility distribution for
that variable. The rule nodes reside in layer three.
Taken together, all the layer three nodes form a
fuzzy rule base. Layer four, the last layer, contains
the output variable nodes. The links between the
membership nodes and the rule nodes are the prem-
ise links, and those between the rule nodes and the
output nodes are the consequence links. For each
rule node, there is at most one premise link from a
membership node of a linguistic variable. Hence
there are �i�T(xi)� rule nodes in the proposed ‘N-
Fuzzy’ structure. Here �T(xi)� denotes the number
of fuzzy partitions of input linguistic variable xi.
Moreover, all consequence links are fully connected
to the output nodes and interpreted directly as the
strength of the output action. In this way, the conse-
quence of a rule is simply the product of the rule
node output, which is the firing strength of the
fuzzy rule and the consequence link. Thus, the
overall network output is treated as a linear combi-
nation of the consequences of all rules instead of

Fig. 5. ‘N-Fuzzy’ architecture.

the complex composition, a rule of inference and
the defuzzification process [26].

For an n-input, one-output system, let xi be the
ith input linguistic variable and aj the firing strength
of rule j, which is obtained from the product of the
grades of the membership functions �Aj

i
(xi) in the

premise part. If wj represents the jth consequence
link weight, then the inferred value y* is obtained
from the weighted sum of its inputs. Thus, the
inference in the proposed fuzzy neural network is
realising as

jth rule: IF x1 is Aj
1, %, xn is Aj

n, then y

� wj, j � 1, 2, %, m (21)

y* � �m
j�1

ajwj, aj � �n

i�1

�A�i(xi)

The class of fuzzy inference systems under consider-
ation is a simplified type that uses a singleton to
represent the output fuzzy set of each fuzzy logical
rule. Thus, wj is the consequence singleton of the
jth rule. We now consider the basic function of
each node in each layer.

Layer 1: layer 1 is an input layer whose nodes
represent input variables. The nodes just transmit
input values to the next layer directly. Hence, for
the jth node of layer 1, the net input and output
are represented respectively as

net1j � x1
i , i � j, y1

j � net1
j (22)

Layer 2: this is an input term (partition) layer
whose nodes represent the membership functions
associated with each linguistic term of the input
variable. The Gaussian function, a particular
example of radial basis functions, is adopted here
as a membership function. Hence, the output of the
jth term node associated with xi is

net2j � �Aij
(mij, �ij) � (23)

�
(x2

i � mij)2

(�ij)2 , y2
j � exp(net2

j)

where mij and �ij are, respectively, the mean and
the variance of the Gaussian function in the jth term
of the ith input linguistic variable x2

i .

Layer 3: layer 3 is a rule node layer, where each
node represents a rule of the fuzzy system. Thus
the nodes in Layer 3 form a rule base. The links
in this layer are used to implement the antecedent
matching. The matching operations or the fuzzy
AND aggregation operation is chosen as the simple
PRODUCT operation, instead of the MIN operation.
Thus, for the jth rule node

98 V. Kodogiannis and A. Lolis

net3
j � �n

i

x3
i , y3

j � net3j (24)

Layer 4: this is an output layer, whose nodes
represent the partitions of the output variables. All
consequence links are fully connected to the output
nodes and interpreted directly as the strength of the
output action. This layer performs centroid defuzz-
ification to obtain the numerical output:

net4
j � �n

i

w4
ij x4

i , y4
j � net4j (25)

where the link weight w4
ij is the output action

strength of the jth output associated with the ith
rule. Thus, the overall net output is treated as a
linear combination of the consequences of all rules,
instead of the complex composition of a rule of
inference and the defuzzification process.

The adjustment of the parameters in the proposed
‘N-Fuzzy’ system can be divided into two tasks,
corresponding to the IF (premise) part and THEN
(consequence) part of the fuzzy logical rules. In the
premise part, we need to initialise the centre and
width for Gaussian functions. To determine these
initial terms, a Self-Organisation Map (SOM) and
fuzzy-c-means algorithm are commonly used.
Another simple and intuitive method of doing this
is to use normal fuzzy sets to fully cover the
input space. Since the final performance will depend
mainly upon supervised learning, normal fuzzy sets
are chosen for this work. In the consequence part,
the parameters are output singletons. These single-
tons are initialised with small random values, as in
a pure neural network. For our problem, four inputs
were selected. Each input variable was assigned to
four fuzzy partitions. The main advantages of the
proposed method are the ability to learn from experi-
ence and a high computation rate. The average
percentage relative error approaches its optimal
value after a few epoch training. This is due to the
fact that the consequence parameters have con-
verged. This implies that the convergence of conse-
quence parameters play a dominant role in system
estimation accuracy. The remaining time is just for
fine-tuning the premise parameters. Thus, the train-
ing required to achieve acceptable accuracy was
very fast compared to the other techniques.

2.6. Adaptive Fuzzy Logic System (AFLS)

The development of a Fuzzy Logic System (FLS)
can be done in a trial-and-error style where the
initial properties of the FLS are specified by a
general implementation procedure known as the

straightforward fuzzy partitioning technique [27].
This implementation is usually done regardless of
the distribution of data in input/output space and
characteristic of the system at hand. However, this
is computationally expensive and time consuming.
A more promising approach to FLS is the adoption
of an Adaptive Fuzzy Logic System (AFLS), i.e. a
system having adaptive rules. Its structure is the
same as a normal FLS, but its rules are derived and
extracted from given training data. In other words,
its parameters can be trained like a neural network
approach, but with its structure in a fuzzy logic
system structure. Since we have general ideas about
the structure and effect of each rule, it is straightfor-
ward to effectively initialise each rule. This is a
tremendous advantage of AFLS over its NN counter-
part. The AFLS is one type of FLS with a singleton
fuzzifier and a defuzzifier. The centroid defuzzifier
cannot be used because of its computation expense,
and as it prohibits using the error BP-training algor-
ithm. The proposed AFLS consists of a new defuzz-
ification approach, Balance Of Area (BOA). This
AFLS has the same approach as the system
presented by Wang [4], and its feed-forward struc-
ture is shown in Fig. 6 with an extra ‘fuzzy basis’
layer. For this particular forecasting problem, six
input parameters proved to be adequate for model-
ling this financial time-series. The fuzzy basis layer
consists of fuzzy basis nodes for each rule. A fuzzy
basis node has the following form:

m(x̄) �
�m(x̄)

�L
l�1

�l(x̄)

(26)

where
m(x̄) is a fuzzy basis node for rule m and
�m(x̄) is a membership value of rule m. Since we
use a product-inference, the fuzzy basis node �m(x̄)
is in the following form:

m(x̄) � �n

i�1

�Fm
i
(xi) (27)

Fig. 6. AFLS architecture.

99Forecasting Financial Time Series

where �Fm
i
(xi) is a membership value of the ith input

of rule m. In our case, a Gaussian shape as a
membership function of each input of each rule has
been used, hence �Fm

i
(xi) will be in the following

form:

�Fm
ii
(xi) � exp 	�

(xi � cm
i)2

2(bm
i)2
 (28)

where cm
i and bm

i are the centre and spread para-
meters, respectively, of the membership function ith
input of the mth rule. The most popular defuzz-
ification methods are the Centroid Of Area (COA)
and Centre Average (CA). The former, although
more accurate than the latter, is well known for its
computational cost. Centroid calculation returns the
centroid of the area formed by the consequent mem-
bership function, the membership value of its rules
and the max-min or max product inference. How-
ever, since the COA method provides good perform-
ance, its main characteristics, centre of gravity and
use of the shape of membership function will be
preserved in the design of a new defuzzification
approach. The overall output of the system may be
the result of fuzzy union or the addition of rule
outputs, as in Kosko’s method. The proposed AFLS
uses Kosko’s method with product inference [28].
In general form, the calculation of the output, y,
will be

yp �

�M
m�1

�mLm
p ym

p

�M
m�1

�mLm
p

(29)

where yp is the pth output of the network, �m is
the membership value of the mth rule, Lm

p is the
spread parameter of the membership function in the
consequent part of the pth output of the mth rule,
and ym

p is the centre of the membership function in
the consequent part of the pth output of the mth
rule. For both Gaussian (and also triangular) shaped
membership functions, the BOA defuzzifier gives
results closer to the COA’s than other defuzzification
methods. This defuzzification approach can also be
adaptive like AFLS with CA defuzzification and
neural networks, and by using a BP technique, the
update Eq.s can be derived [29]. Figure 7 illustrates
the one-step ahead forecast for the exchange rate
prediction of US$ and GBP£.

3. Results

Several structures of neural networks with algor-
ithms ranging from simple MLP structures to neuro-

Fig. 7. One-step ahead prediction using AFLS-BOA system.

fuzzy ones were tested. The results and the statistics
of forecasts obtained from application of the
developed neural and fuzzy models for the one-and
multi-step ahead exchange rate prediction of US$
and GBP£ [29] are given.

There is no consensus on the most appropriate
measure to assess the performance of a forecasting
technique. Three specific indices, namely SED, PRE
and RMSE, have been used to evaluate the predic-
tive performance of the proposed systems. These
forecasting accuracy measures are listed as follows:

Standard Error Deviation (SED)

� � �1
N �N

i�1

[yi � ŷi]2

Percent Relative Error (PRE)

� �
1
N �N

i�1

�yi � ŷi� . 100/yi

Root Mean Square Error (RMSE)

�i � �1
N �N

i�1

[(yi � ŷi}/yi]2 . 100

These criteria are mean-based, and are frequently
used performance measures in the literature. The
complete one-step ahead results for the exchange
rate prediction problem of forecast are illustrated in
Table 1. For such an application, the widely used
standard MLP with BP learning algorithm was con-
sidered in this work as a test-bed case. In an alterna-
tive representation, the SE structure has been shown
to enable a network to maintain a higher degree of
accuracy compared with the classic MLP structure.
Although this considerable improvement in perform-
ance is generally at the expense of a larger network,
the use of the proposed structure has significant
advantages in applications requiring long-range pre-
dictions [25]. The performance of a classical MLP
will severely deteriorate when it is acting as a
recurrent model, because any errors of the predicted
output will tend to accumulate. This problem is
partly avoided in this specific structure by splitting

100 V. Kodogiannis and A. Lolis

Table 1. One-step ahead forecasting results.

1-step BP SE RBF ARNN ELM N-Fuzzy AFLS/gain over BP

PRE 0.31 0.2927 0.2646 0.2711 0.2683 0.272016 0.2567/�20.76%
RMSE 0.4215 0.4201 0.3905 0.4021 0.4010 0.39774 0.391
SDE 0.002597 0.0025 0.0023 0.0024 0.0024 0.002444 0.0024

the error into several nodes, thus exploiting the
network’s fault tolerance.

An alternative to the MLPs method could be a
neural model employing radial basis functions. Both
aspects of training time and improved accuracy were
satisfied with the use of ROLS. An additional advan-
tage of the specific algorithm was the overfitting
problem avoidance by using the regularised para-
meter �. Due to this factor, the RBF network enjoys
a very compact structure compared to the other
proposed neural architectures.

The use of dynamic neural networks presents an
innovation to the specific problem. Here, the objec-
tive was to use two dynamic networks (ARNN and
M.ELMAN) that were given some kind of memory
to encode past history, with the additional require-
ments of short training time. Compared to the stan-
dard MLP structures, the improved results reveal
the advantages of using memory neuron structures.
The inclusion of memories and the related recur-
rence in the first hidden layer enable the network
to carry out accurate predictions. Although this
method is dependent on the number of ‘memories’
in the ‘recurrent’ nodes, and therefore it can be
considered as a partially recurrent network, it proved
to be the one with the fastest in training time. From
the simulation results, it can be seen that the nonlin-
ear system identification using ARNN and
M.ELMAN are very promising. On the other hand,
the reduced number of training cycles makes this
technique a strong candidate for use in financial pre-
dictions.

However, the introduction of hybrid learning
algorithms imposed a new dimension to this specific
problem. The main advantages of the proposed
Neuro-Fuzzy (N-Fuzzy) and (especially) AFLS
methods are the ability to learn from experience and
a high computation rate. The average percentage
relative error approaches its optimal value after a
short time in training. This is due to the fact that
the consequence parameters have converged. This
implies that the convergence of consequence para-
meters play a dominant role in system estimation
accuracy. The remaining time is just for fine-tuning
the premise parameters. Thus, the training required
to achieve acceptable accuracy was very fast com-

pared to the other techniques. In modelling, AFLS
was used because of its trainability and generalis-
ation. A modified AFLS was developed in contrast
to the standard ‘Wang’s’ AFLSs. The system con-
sists of the same components except a different
defuzzifier, balance of area defuzzifier. The Balance
Of Area (BOA) defuzzifier uses the shape infor-
mation of fuzzy membership functions in the conse-
quence part of the IF-THEN rules to obtain the
result. Its output is close to the Centroid Of Area
(COA) defuzzification while requiring much less
computation. With these choices of components, the
AFLS can be trained by several training algorithms,
such as the BP or genetic algorithms. In this
research, the AFLS developed has been trained by
the standard BP algorithm. A graphical presentation
of the Percent Relative Error (PRE) index for the
various methods involved in the one-step ahead
forecasting is illustrated in Fig. 8. Compared with
the BP approach, the AFLS technique has an evident
20% improvement/gain.

As a next task, a k-step ahead prediction is perfor-
med. Although all systems have been trained in a
one-step ahead mode, it is desirable to investigate
their performance in a multi-step prediction. In this
particular case, the predicted outputs were fed back
into the networks to predict more values. As the
number of steps ahead increases, it is expected that
the prediction error variance should also increase.
Table 2 summarises the performed results for four-
step, eight-step and 12-step ahead predictions, while
Fig. 9 illustrates the differences between various
methods for the multiple step case. AFLS still out-
performs the other techniques, having a positive
gain over classical MLP using the BP algorithm.
As can be seen in Table 2, a positive

Fig. 8. One-step ahead comparison table.

101Forecasting Financial Time Series

Table 2. Multiple steps ahead forecasting results.

k-steps BP ELM N-Fuzzy AFLS/gain over BP

PRE 4 0.7436 0.6558 0.6297 0.6258/�18.82%
8 0.9266 0.8618 0.8042 0.7991/�15.95%

12 1.038 1.0619 1.0025 0.9726/�6.724%

RMSE 4 0.8952 0.8505 0.8024 0.8067
8 1.1348 1.0768 1.0498 1.0085

12 1.3120 1.3196 1.2972 1.2597

SDE 4 0.005473 0.005249 0.004944 0.004979
8 0.006927 0.006649 0.006463 0.006228

12 0.008 0.008153 0.007987 0.007786

Fig. 9. k-steps ahead comparison table.

gain/improvement exists for the various steps. Figure
10 illustrates the results for eight-step ahead predic-
tions using the AFLS technique. It seems, however,
that above a 12-step prediction, a convergence of
all techniques occurred. This may not be the result
of poor network performance, however. Financial
indexes, like exchange rates, can only be predicted
accurately in the short-term using pure time-series.
Using additional information, such as interest rates,
oil prices, and stock exchange indexes, can enhance
the present approach.

4. Conclusions

This study is based on the comparative analysis of
neural network and fuzzy systems. These methods

Fig. 10. Eight-steps-ahead prediction using AFLS-BOA system.

were developed for a one-step and multi-step ahead
prediction of US$ and GBP£ daily exchange rates.
Several neural architectures were tested, including
MLPs, fuzzy-neural-type networks, radial basis and
memory neuron networks. As an alternative to
classic MLPs structures, this paper adopts the intro-
duction of dynamics into the network by transferring
the regular network neuron state to another set of
duplication neurons called memory neurons. The
autoregressive and M.ELMAN neural networks are
examples of such an architecture. Their performance
is characterised by a high degree of accuracy, as
well as fast training time, similar to the performance
of the RBF network based on the ROLS algorithm.
The introduction of hybrid learning algorithms
imposed a new dimension on the exchange rate
prediction. The main advantages of the proposed N-
fuzzy algorithm, and especially the AFLS, with the
inclusion of an innovative defuzzification method
are the ability to learn from experience and a high
computation rate. In future work, the present
approach will be enhanced by using advanced neuro-
fuzzy models and additional information, such as
interest rates, oil prices and stock exchange indexes.

References

1. Box G, Jenkins G (1976) Time series analysis: fore-
casting and control. Holden-Day, San Francisco

2. Kingdom J (1997) Intelligent systems and financial
forecasting. Springer-Verlag, Berlin

3. Bojadziev G, Bojadziev M (1997) Fuzzy logic for
business, finance, and management. World Scientific

4. Wang LX (1994) Adaptive fuzzy systems and control.
Prentice Hall

5. Wang LX (1992) Fuzzy systems are universal approxi-
mators. IEEE Int Conf on Fuzzy Systems San Diego,
California, 1163–1170

6. Li T, Fang L, Guo D, Klasa S (1995) Predicting
exchange rates using a fuzzy learning system. Compu-
tational Intelligence for Financial Engineering: Proc
IEEE/IAFE, 103–107

102 V. Kodogiannis and A. Lolis

7. Pellizzari P, Pizzi C (1997) Fuzzy weighted local
approximation for financial time series modelling and
forecasting. Computational Intelligence for Financial
Engineering. Proc IEEE/IAFE, 137–143

8. Ghoshray S (1996) Application of fuzzy regression
models to predict exchange rates for composite cur-
rencies. Computational Intelligence for Financial
Engineering: Proc IEEE/IAFE, 264–270

9. Zhang G, Hu MY (1998) Neural network forecasting
of the British Pound/US Dollar exchange rate. Omega
Int J Manage Sci 26(4): 495–506

10. Zhang G, Patuwo B, Hu MY (2001) A simulation
study of artificial neural networks for nonlinear time-
series forecasting. Computers & Operations Research
28: 381–396

11. Yao J, Poh HL (1995) Forecasting the KLSE index
using neural networks. Int Conf on Neural Networks
2: 1012–1017

12. Refenes AN, Azema-Barac M, Chen L, Karoussos SA
(1993) Currency exchange rate prediction and neural
network design strategies. Neural Comput & Applic,
46–58

13. Ghoshray S (1996) Foreign exchange rate prediction
by fuzzy inferencing in deterministic chaos. Compu-
tational Intelligence for Financial Engineering: Proc
IEEE/IAFE, 96–102

14. Garliauskas A (1999) Neural network chaos and com-
putational algorithms of forecast in finance. IEEE Int
Conf on Systems, Man and Cybernetics 2: 638–643

15. Lisi F, Schiavo RA (1999) A comparison between
neural networks and chaotic models for exchange rate
prediction. Computational Statistics & Data Analysis
30: 87–102

16. Rumelhart D, McClelland TL (eds) (1986) Parallel
distributed processing: explorations in the microstruc-
ture of cognition. Vol. 1: Foundations. MIT Press

17. Kodogiannis VS (1994) Neural network techniques for

modelling and learning control of an underwater
robotic vehicle. PhD thesis, Liverpool University

18. Zadeh LA (1965) Fuzzy sets. Information and Control
8: 338–353

19. Moody J, Darken C (1989) Fast learning in networks
of locally tuned processing units. Neural Computation
1: 281–294

20. Chen S, Cowan CFN, Grant PM (1991) Orthogonal
least-squares algorithm for radial basis function net-
works. IEEE Trans Neural Networks 2(2): 302–309

21. Chen S, Chang ES, Alkadhimi K (1996) Regularised
orthogonal least squares algorithm for constructing
radial basis function networks. Int J Control 64(5):
829–837

22. Kodogiannis VS (2000) Comparison of advanced
learning algorithms for short-term load forecasting.
Intelligent & Fuzzy Systems 8(4): 243–261

23. Pham DT, Liu X (1993) Identification of linear and
non-linear dynamics systems using recurrent neural
networks. Artificial Intelligence in Engineering 8: 67–75

24. Hertz J, Krogh A, Palmer RG (1991) Introduction to
theory of neural computation. Addison-Wesley

25. Kodogiannis VS, Lisboa PJG, Lucas J (1996) Neural
network modelling and control for underwater
vehicles. Artificial Intelligence in Engineering 1:
203–212

26. Kodogiannis VS, Anagnostakis EM (1999) A study
of advanced learning algorithms for short-term load
forecasting. Engineering Appl of Al 12(2): 159–173

27. Mendel J (2001) Uncertain rule-based fuzzy logic
systems. Prentice Hall

28. Kosko B (1992) Neural networks and fuzzy systems:
a dynamical systems approach to machine intelligence.
Prentice Hall

29. Lolis A (2000) A comparison between neural network
and fuzzy system based techniques for exchange rate
prediction. MSc dissertation, University of Green-
wich, UK

