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A Comparison of State-of-the-Art Classification Techniques
with Application to Cytogenetics
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Several state-of-the-art techniques – a neural net-
work, Bayesian neural network, support vector
machine and naive Bayesian classifier – are exper-
imentally evaluated in discriminating fluorescencein
situ hybridisation (FISH) signals. Highly-accurate
classification of valid signals and artifacts of several
cytogenetic probes (colours) is required for detecting
abnormalities in FISH images. More than 3100
FISH signals are classified by each of the techniques
into colour and as real or artifact with accuracies
of around 98% and 88%, respectively. The results
of the comparison also show a trade-off between
simplicity represented by the naive Bayesian clas-
sifier, and high classification performance rep-
resented by the other techniques.
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1. Introduction

In recent years, fluorescencein situ hybridisation
(FISH) has emerged as one of the most significant
new developments in the analysis of human chromo-
somes. FISH offers numerous advantages compared
with conventional cytogenetic techniques, since it
allows numerical chromosome abnormalities to be
detected during normal cell interphase. One of the
most important applications of FISH is dot counting,
i.e. the enumeration of signals (also called dots)
within the nuclei, as the dots in the image represent
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the inspected chromosomes. Dot counting is used
for studying numerical chromosomal aberrations in,
for example, haematopoietic neoplasia, various solid
tumours, prenatal diagnosis and for demonstrating
disease-related chromosomal translocations [1].

However, a major limitation of the FISH tech-
nique for dot counting is the need to examine large
numbers of cells. This is required for an accurate
estimation of the distribution of chromosomes over
cell population, especially in applications involving
a relatively low frequency of abnormal cells. As
visual evaluation by a trained cytogeneticist of large
numbers of cells and enumeration of hybridisation
signals is expensive and time-consuming, FISH
analysis for dot counting can be expedited by using
an automatic procedure [2].

One approach to dot counting relies on an auto-
focusing microscope to select the ‘clearest’ image
for the analysis [2]. However, basing dot counting
on auto-focusing has some shortcomings [3]. Instead,
it has been recently proposed [3] to base FISH
dot counting on a Neural Network (NN) classifier,
discriminating between in and out-of-focus images
taken at different focal planes of the same Field-
Of-View (FOV), as an alternative to the use of
auto-focusing mechanism. Images at different focal
planes of a specific FOV compose a stack of images
that represents this FOV. Each stack image is ana-
lysed, and its signals are classified by the NN as
valid data or artifacts, which are the result of out-
of-focusing. Following the discrimination of valid
signals and artifacts in each stack image, the image
that contains no artifacts is selected as the in-focus
image to represent the stack (FOV), whereas the
other stack out-of-focus images are rejected. The
procedure is then repeats itself for other FOVs until
the entire slide is covered or the required number
of (in-focus) images (or nuclei) are collected. Pro-
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portion estimation of the number of cells having
specific numbers of signals can be then performed
using these images as in auto-focusing-based dot
counting methods [2]. The suggested method enables
overcoming most of the shortcomings of auto-focus-
ing, since it does not depend upon a single image.
Moreover, the method shortens the length of image
acquisition, as stack images are captured coarsely
without the necessity to find the exact location of
the in focus image. Combining with multi-spectral
analysis (Section 2.2), the suggested methodology
also shortens the length of image analysis. However,
as the system is required to classify valid signals
and artifacts, its ability to discriminate between
focused and unfocused signals should be more
accurate than that of the discriminating element of
a system employing an auto-focusing mechanism,
as the latter encounters only valid signals. Therefore,
the proposed methodology depends upon two
components: well-discriminating features to rep-
resent valid and artifact signal data and a highly-
accurate technique to classify the signals.

Our previous work has investigated feature rep-
resentation for FISH signals [4] and the application
of an NN to signal classification [3]. The suggested
methodology enables the replacement of the NN by
any other classifier. Therefore, we experimentally
compare in the present work state-of-the-art classifi-
ers in discriminating valid and artifact signals of
two fluorophores (colours) in order to find the most
accurate classification technique. To facilitate the
task, we divide the classification procedure into two:
classification of signals into colour; and classification
of signals as ‘real’ and ‘artifact’. In both cases,
two-class classifiers are sought.

Section 2 of the paper describes stages of FISH
image analysis that precede signal classification.
Section 3 presents the four two-class trainable classi-
fiers: a neural network, Bayesian neural network,
support vector machine and naive Bayesian classifier
that are evaluated for FISH signal classification. The
experimental study is summarised in Section 4,
while conclusions for this work are drawn in Sec-
tion 5.

2. FISH Image Analysis

2.1. Image Acquisition

The process of preparing, hybridising and screening
FISH samples, as well as the procedure of capturing
FISH images, were described in Lerner et al. [3]. A
total of 400 images were collected from five slides
and stored in TIFF (Tagged Image File Format)

format. An example of a FISH image used for dot
counting is shown in Fig. 1, where red and green
fluorophores (signals), corresponding to chromo-
somes 21 and 13, respectively, are seen on blue
stained nuclei.

2.2. FISH Colour Image Processing and
Segmentation

By analysing each of the three colour channels –
Red, Green and Blue (RGB) – of a FISH image
separately, image processing and segmentation can
be facilitated [3] compared with the conventional
intensity-based FISH image analysis [2]. Nuclei can
be analysed using the blue channel of the RGB
image, whereas red and green signals are analysed in
the red and green channels, respectively. Preliminary
segmentation on each of the three channels using
global thresholds yields the image nuclei and red
and green signals. Noise elimination and boundary
smoothing of nuclei, as well as spatial correlation
between nuclei and signals, complete the segmen-
tation [4]. Finally, colour image analysis does not
only facilitate pre-processing and segmentation, but
it also yields hue-based features, which are found
very efficient for FISH signal representation and
classification [4]. Furthermore, it allows the analysis
of multiple probes.

2.3. Signal Feature Measurement

Following segmentation, signals are characterised by
sets of pixel intensities. A set (signal) can include

Fig. 1. An example of a FISH image used for dot counting.
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one or many members (contiguous pixels). Since
the content and dimension of each set can vary
dramatically from signal to signal, raw data
(intensities) are not considered discriminating
enough to act as features for classification. It is
therefore necessary to determine a more discriminat-
ing and compact representation of the data. One
representation can be derived by measuring a set of
features of the signal. The features include area (a
size measure) and eccentricity (a shape measure),
which have been previously suggested [2]. In
addition, we measure a number of spectral features
[4]. We compute, at the specific colour plane, three
RGB intensity-based measurements: the total and
average channel intensities and the channel intensity
standard deviation. Following the conversion of
RGB to HSI (hue, saturation, intensity) colour for-
mat, we can also compute four HSI-based measure-
ments: maximum hue, average hue, hue standard
deviation, and delta hue. Delta hue is the difference
between the maximum and average hue normalised
by the average hue. This feature has been added to
the set because it was observed that the difference
between values of the average and maximum hue
for real signals is usually near zero, whereas for
some kinds of artifacts (e.g. overlap of two different
fluorophores) this difference is substantially large.
Two additional features of the set are the two
coordinates of the eigenvector corresponding to the
largest eigenvalue of the red and green intensity
components of the signal. The last feature is the
signal average grey intensity (I1 = (R 1 G 1 B)/3,
where R, G and B are the intensities in the red,
green and blue channels, respectively). More details
about these features and a motivation for their selec-
tion are given in Lerner et al. [4]. Table 1 lists the
twelve features used in the work.

Table 1. The set of features studied in the work. Texture
indicates standard deviation of the channel intensity (5)
or hue (8). Eigenvector 1, 2 are the two coordinates of
the eigenvector corresponding to the largest eigenvalue of
the red and green intensity components of the signal.

No. Feature No. Feature

1 Area 7 Average hue
2 Eccentricity 8 Hue texture
3 Total channel intensity 9 Delta hue
4 Average channel 10 Eigenvector 1

intensity
5 Texture 11 Eigenvector 2
6 Maximum hue 12 Average grey

intensity

3. An Overview of Several State-of-
the-Art Two-Class Classifiers

Consider a training datasetD which consists ofN
data points with binary class labels {t1 . . . tN} and
vectors of inputs {x1 . . . xN}. We assume that the
data was generated by some true underlying function
y(x). Our objective is to learn the parametersu of
some approximating functionf(x, u) whose form is
dependent on our model choice,}, so that we may
make ‘good predictions’ about our class labels.

3.1. Neural Networks

For a Neural Network (NN), we choose a model
which predicts the posterior probability of class
membership. We define alikelihood function as [5]

p (Duu) = PN
n=1

f(xn,u)tn [1 − f(xn,u)](1−tn) (1)

The approximating functionf is represented by the
output of an NN withH hidden nodes in its single
hidden layer

f(xn,u) = s SOH
h=1

vhg(uT
hxn)D (2)

The parametersu have been split into the input to
hidden weights represented byH vectors uh, each
vector being the weights that ‘fan-in’ to hidden node
h, andv, the vector of the hidden to output weights,
consisting ofH elementsvh. We have omitted biases
for notational simplicity. We take the activation
function g to be a hyperbolic tangent, ands(·) is
the logistic sigmoid function

s(z) =
1

1 + exp (−z)
(3)

which constrains the output of the network to be
between 0 and 1, allowing us to interpretf as the
probability P(C1ux) that an input vectorx belongs
to classC1.

We may now define an ‘error function’ as the
negative log likelihood leading to the cross entropy
error function

−lnp(Duu) = − ON
n=1

{ tn ln(f(xn,u)) (4)

+ (1 − tn) ln(1 − f(xn,u))}

This error function may be minimised by a gradient-
based optimisation method.

By using enough hidden units, we may obtain a
training error of zero. However, the resulting net-
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work will not generalise well on previously unseen
data. We need to resort to a sub-partition of the
training data known as a validation set to determine
an appropriate number of hidden units. The unseen
data are then tested on a network with that number
of hidden units.

3.2. Bayesian Neural Networks

In the previous section, we reviewed maximum like-
lihood learning for NNs. Now we briefly introduce
the Bayesian approach for inferring parameters of
an NN. In Bayesian learning we take our parameters
to be random variables, and we aim to determine
their posterior distribution* for use in making pre-
dictions

p(uuD) =
p(Duu)p(u)

e p(Duu)p(u)du
(5)

where the likelihoodp(Duu) has already been defined
in Eq. (1), and we must specify aprior distribution
p(u) for the weights. The use of the prior is the
main area of controversy in the Bayesian approach,
since it requires an interpretation of probabilities
as being equivalent to ‘beliefs’ [6]. The classical
frequency-based definition of probabilities does not
allow for such an interpretation. The prior represents
our belief about what the weights should be before
we see the data. A zero mean Gaussian prior is
often used

p(u) = 1 SO,
1
a

ID (6)

where a is a ‘hyper-parameter’ which specifies the
inverse width of the prior. This prior reflects a
belief that negative weights are as likely as positive
weights, and that smaller weights are more probable
than larger weights, leading to smoother functions
and better generalisation. Once the prior has been
selected the integration in Eq. (5) may be performed.
To make predictions, we look at the expected output
of the network under the posterior distribution

kf(x,u)l = E f(x,u)p(uuD)du (7)

which is the posterior probability ofC1 for a new
input vectorx.

Unfortunately for neural networks, the integrals
required are non-analytic to compute and we must
resort to approximations. There are various

* This posterior distribution should not be confused with the
posterior probability of class membership.

approaches, in particular the Laplace approximation
[7,8], variational approaches [9–11] and Monte-
Carlo sampling [12]. We follow the latter approach
which involves obtaining samples {u1 . . . uS} from
the posterior distribution, and using them to make
sample-based approximations to the required expec-
tations,

kf(x,u)l <
1
SO

S

s=1

f(x,us) (8)

In particular, we can employ hybrid Monte-Carlo
techniques, which make use of gradient information
in the sampling.

3.3. The Support Vector Machine

The support vector machine is a technique for classi-
fication and regression which arises from the field
of statistical learning theory. In this work, we only
give a brief overview of the support vector machine
(for a more detailed introduction, see Burges [13]
and Haykin [14]). We define a ‘loss function’L,
which is the penalty for a classification mistake.
Consider first the risk functional, which is the
expected value of the loss function under the joint
probability of the data

R(u) = E L(t,f(x,u))p(t,x)dtdx (9)

Ideally, to obtain the best approximationf(x,u) we
would minimise the risk functional with respect to
u. Unfortunately, the probability distribution of the
data p(t,x) is unknown. Instead, we can look to a
sample-based approximation to Eq. (9) known as the
empirical risk,

Remp(u) =
1
N ON

n=1

L(tn,f(xn,u)) (10)

where we have assumed that our observed data
points are independently drawn from the same distri-
bution. The empirical risk may be minimised to
obtain an approximation toy(x). This is equivalent
to the maximum likelihood approach for neural net-
works discussed in Section 3.1.

Statistical learning theory relies on notions of
capacity which reflects the number of patterns that
a classifier may store. If the capacity of our classifier
is not infinite, the value of the empirical risk will
converge to that of the risk functional as the number
of data points tends to infinity [15]. Furthermore, it
is possible to place bounds on the rate of conver-
gence which hold with a certain confidence, nor-



43A Comparison of State-of-the-Art Classification Techniques

mally taken to be 95%. These bounds are functions
of the model capacity which is often quantified in
terms of theVC dimension[16]

R(u) # Remp(u) + Rstruct(}) (11)

whereRstruct is known as thestructural riskof model
}, and is a function which increases with increasing
model capacity. The principle of structural risk mini-
misation is to minimise not only the empirical risk,
but also the structural risk, through capacity
reduction, to obtain the best classifier. This is the
underlying theory of the support vector machine.

In the case of two-class classification, the support
vector machine aims to place a separating hyper-
plane between the two classes. Naturally, there are
cases where a linear decision boundary does not
exist, and for these cases we must look tokernel
functions. The kernel functions allow us to project
the data onto a very high-dimensional feature space
in which it may be separable by a hyper-plane. This
has the side effect of also giving the model a very
high capacity which increases the structural risk.
Fortunately, we may control this capacity by increas-
ing the margin, thereby decreasing the structural

Fig. 2. Two different separating hyper-planes which classify all training examples correctly. The diagram on the right shows the
maximum margin. The margin size is denoted byg. Data points on the margin (circles) are used to define the classifier and are
known as support vectors.

Fig. 3. Depending on the penalty assigned to errorsC, different solutions will be found. The left-hand figure is a low error penalty,
the right-hand figure is a high error penalty. Bold data points are within the margin. The classifier pays a penalty,Cji (Cjj), for
these data points.

risk. As increasing the margin also decreases the
capacity, we select the solution with the maximum
margin (see Fig. 2). We may increase the margin
further by allowing errors in the training set. If a
training error is made, the classifier pays a penalty
which is proportional to the extent of the error. The
constant of proportionality is often denoted byC.
Different solutions will then be found depending on
our choice ofC (Fig. 3).

A common kernel choice is a radial basis func-
tions. This kernel is based upon a Gaussian, and
requires the specification of a width parameters.
The width parameter and the error penaltyC may
be set through the use of a validation set.

3.4. The Naive Bayesian Classifier

For problems where the task is to minimise the
probability of misclassification, the Naive Bayesian
Classifier (NBC) provides a simple and clear
method, while still enabling impressive performance.
The NBC is termed naive, since it makes use of a
simplifying assumption that its observable variables,
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which represent the pattern features, are con-
ditionally independent given the class variable. The
classifier can be viewed as a special form of a
Bayesian network [17], in which all the edges are
directed from the class variable to the observable
variables (Fig. 4).

The NBC consists of a finite set
U = { X1,X2,. . .,Xm,C} = { X,C} of random variables,
where X1, . . .,Xm are the observable variables that
represent the features, andC is the class variable
with K states. The NBC assigns a test patternx to
the class Ck (k = 1, . . .,K) with the highest pos-
terior probability

P(Ckux) =
p(xuCk)P(Ck)

p(x)
~ p(X = xuCk)P(Ck) (12)

= Pm
i=1

p(Xi = xiuCk)P(Ck)

where p(xuCk) is the class-conditional probability
density, P(Ck) is the prior probability for class
(Ck), p(x), the unconditionaldensity, normalises the
posterior probability such thatSk P(Ckux) = 1, X = x
represents the event thatX1 = x1 ` X2 = x2 ` . . . `
Xm = xm and Pm

i=1p(Xi = XiuCk) is the likelihood for x.
To derive this equation, we have omittedp(x) which
is common to all the states of the class variable
and used the NBC independence assumption. Both
P(Ck) and p(xuCk) can be estimated from the data.
P(Ck) is the relative frequency of patterns belonging
to Ck out of all the patterns in the data. The data
can also be used to estimateP(xuCk) – the one-
dimensional class-conditional probability for discrete
variables andp(xuCk) – the one-dimensional class-
conditional probability density for continuous vari-
ables. Modelling of probabilities is given by the
sample frequency for each value of the variable
(that is, the number of times the value is observed
divided by the total number of observations). Den-
sities are estimated using different techniques, for
example, single density estimation (a parametric
method), kernel density estimation (a non-parametric

Fig. 4. The naive Bayesian classifier depicted as a Bayesian
network in which the observable variables (X1,X2, . . .,Xm) are
conditionally independent given the class variable (C).

method) or a Gaussian mixture model (a semi-
parametric method) [5].

It has been found [18] that Kernel Density Esti-
mation (KDE) of the class-conditional probability
densities of the FISH data is more accurate than
the other two estimation methods. We model here
densities for each classCk and observable variable
Xm using a finite number of data pointsxn,
n = 1,. . .,Nk, where Nk is the number of training
patterns in classCk. KDE models the one-dimen-
sional class-conditional density as a linear combi-
nation of kernel (usually Gaussian) functions

p(xuCk) =
1
Nk

ONk

n=1

1
(2ph2)1/2 (13)

expH−
ix − xni2

2h2 J
with width h centred around each of the training
data pointsxn of classCk.

KDE, as other non-parametric methods, models
non-normal distributed data more accurately than
parametric techniques, but at the cost of storage
and computational complexities, as the number of
variables in the model grows linearly with the num-
ber of training data points.

4. The Experimental Study

Before beginning the experiments, we established a
database of 400 FISH images, which were captured
from five slides (Section 2.1). Following nucleus
and signal segmentation (Section 2.2), 3144 objects
were identified as potential signals and features were
measured for them. Based on labels provided by
expert inspection (see below), 1145 of the signals
were considered as ‘reals’ (among them 551 were
red) and 1999 as ‘artifacts’ (among them 1224
were red).

Experiments to compare the accuracy of the four
classification techniques on signals represented by
the twelve features of Section 2.3 (Table 1) were
conducted. The normalised (N(0,1)) signal features
were classified in the first experiment into their
colour (red or green), and in the second experiment
as real or artifact. Therefore, the input and output
spaces in both the experiments were twelve and one-
dimensional, respectively. Labels for the patterns, as
belonging to each of the classes, were needed to
train and evaluate the classifiers, and they were
obtained by an expert cytogeneticist using a custom-
built graphical environment for labelling FISH
images [19].
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The first technique, the NN classifier, was a two-
layer perceptron trained by the scaled conjugate
gradient algorithm [5]. Classification was based on
the approximation of the network outputs to the
posterior probabilities for the classes. To achieve
the highest generalisation capability, the number of
hidden units (H) in each classification experiment
was determined by the NN configuration achieving
the highest accuracy on a validation set. This set
was also used to insure that no over-training is
performed during the 200 epochs of the training
session. Finally, the classifier accuracy was averaged
over three random initialisations (committee).

For the Bayesian Neural Network (BNN), the
weights were split into four groups: the input to
hidden weights, the hidden to output weights, the
hidden layer biases and the output layer bias. A
hyper-parametera was associated with each group.
For the output layer bias the hyper-parameter was
fixed at 1× 10−4. The hyper-parameters for the other
three groups were treated in a Bayesian manner
using a gamma prior specified acrossa:

p(a) =
abaa−1 exp (−ba)

G(a)
(14)

For the input to hidden layer weights, the hidden
layer biases and the hidden to output layer weights
the parametera was taken to be 0.25, and the
parameterb was taken to be 6.25× 10−4, 6.25× 1024

and 3.9× 1029, respectively. These values provided
very broad hyper-priors, and were used in both
the classification experiments. Two hundred samples
were drawn from the posterior distribution using
hybrid Monte-Carlo sampling [20]. The last 150
samples were used for making predications on the
test set. Since a prediction for a test pattern is the
integral (average) network prediction over all the
models considered under the prior (Eq. (8)), there is
no need for validation; any necessary model selec-
tion takes place through the Bayesian framework.

For the support vector machine, two parameters
needed to be set using a validation set. We con-
sidered models with an error penaltyC of 1, 10,
100 and 1000, and widths of radial basis function
kernelss of 5, 10, 50, 100, 500 and 1000. These
values provided exhaustive ranges of parameters to
test the FISH data. We used in the experiments the
SVMlight implementation of Joachims [21].

Defining a two-class classification task and setting
the feature set to include all twelve features, we
also determined the NBC structure. By selecting the
class and observable variables of the NBC to rep-
resent these classes and features, respectively, we
employed the NBC for FISH signal classification.
Then, we only needed to estimate the class-con-

ditional probability densities for each variable given
each of the two states of the class variable. For the
variable that represented the signal area, which was
the only discrete feature in the set, we modelled the
class-conditional probability using the feature sample
frequency. For all the other (continuous) features,
class-conditional probability densities were modelled
using KDE. Different width parameters (h) of the
Gaussian kernels that were equal toT/√Nk (where
Nk was the number of training data points inCk

andT was in the range 0.01 to 10,000) were checked
on the validation set. This choice guarantees that
the width parameter shrinks to zero as the number
of instances goes to infinity, and density estimation
becomes increasingly local as the number of training
points increases [17].

The experiments to evaluate the classification
accuracy were conducted using the hold out method
[22]. This method is applicable for large data sets
like the FISH data, which contains more than 3100
data points. We partitioned the data randomly into
training and test sets in proportion 70%/30%,
respectively. We then selected a model –H, h or
C and s for each of the classifiers – NN, NBC or
SVM, respectively, using a validation set drawn
from the training set and a five-fold cross-validation
(CV-5) experiment. That is, we divided the training
set into five disjoint sets using four sets for training
the model and the remaining set for validation. We
repeated this procedure five times using all the
different possible validation sets and averaged the
classification accuracy of the five experiments for
the model. The procedure was iterated for all the
examined models. The model that obtained the high-
est average classification accuracy on the validation
set was selected. This procedure was repeated using
the same partitions of the data for all the classifiers
(except for the BNN that needed no validation).
Figures 5 and 6 present results of model selection
experiments performed with the NN and NBC,
respectively. The classification accuracy on the train-
ing and validation sets is plotted for different models
of the two techniques when the patterns are classi-
fied into their colour and as ‘reals’ and ‘artifacts’.
Following the selection of the ‘optimal’ model, each
of the classifiers was re-trained using its own opti-
mal model andall the training data points and then
evaluated on the test set.

Table 2 compares the accuracy of each of the
four techniques, using its own selected model, in
classifying test FISH signals. Signals are discrimi-
nated by a classifier of colour (into red or green)
and a classifier into real or artifact. The comparison
reveals that the BNN is the most accurate technique
in both cases (although not always significantly),
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Fig. 5. The classification accuracy of the NN measured on the
training and validation sets in the two experiments (classification
into colour (‘Colour’) and into real and artifact (‘Real’)) for
increasing numbers of hidden units. Model selection is based on
the highest accuracy on the validation set.

Fig. 6. The classification accuracy of the NBC measured on the
training and validation sets in the two experiments (classification
into colour (‘Colour’) and into real and artifact (‘Real’)) for
increasing kernel width parameters (h) (on a log scale).h is
equal toT/√Nk (where Nk is the number of training data points
in Ck and T is in the range 0.01 to 10,000). Model selection is
based on the highest accuracy on the validation set.

and the NN and SVM are comparable and second
best. The inferiority of the NBC compared with the
other techniques is attributed to the relatively large
amount of dependency among features of the set
(e.g. average and maximum hue, total and average
channel intensities). This dependency violates the
independence assumption of the NBC and thereby
decreases the classifier accuracy. However, due to
their higher complexities, the other techniques can
extract additional discriminating information from

Table 2. Classification accuracies of the four techniques
measured on the FISH test set compared with that of a
linear model.

Model Real/artifact Colour
(%) (%)

Neural Network (NN) 86.4 98.1
Bayesian Neural Network (BNN) 88.2 98.8
Support Vector Machine (SVM) 87.2 98.4
Naive Bayesian Classifier (NBC) 83.0 94.0
Linear classifier 84.1 94.6

these correlated features. Finally, the results were
compared with those based on a linear classifier
[22]. Table 2 shows that a linear classifier is less
accurate compared with the top three techniques,
but it outperforms the NBC. Although not accurate
enough, these two latter techniques provide sim-
plicity which is sometimes vital.

5. Conclusions

Highly-accurate signal classification is required for
precise dot counting in FISH images that are cap-
tured without an auto-focusing microscope. To cope
with this requirement, we apply in this paper state-
of-the-art classification techniques – a neural net-
work, Bayesian neural network, support vector
machine and naive Bayesian classifier to the FISH
data.

The four trainable classifiers discriminate data
based on different approaches. NN training is based
on maximum likelihood which is equivalent to the
minimisation of an error function. Since the lowest
training error does not necessarily represent the
model that provides the best generalisation, we are
required to draw a validation set from the training
set in order to perform model selection. This compli-
cates the experiment and affects the accuracy of the
NN as less data is employed for training. Instead
of choosing a specific model, the BNN considers a
probability distribution function over model space.
It uses the data and Bayes’ theorem to convert an
initial prior distribution for the models to a posterior
distribution. This posterior is then used as a weight-
ing function for the predictions made by the network
using the different models that are under the prior.
The SVM uses capacity control through the max-
imisation of the margin between the support vectors
to improve generalisation performance. However, a
validation set is still required to select necessary
parameters for this technique. The main difference
between the three techniques and the naive Bayesian
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classifier is that the latter cannot model correlation
between inputs, since it assumes that the observable
variables are independent given the class variable.
The advantage of kernel density estimation in mod-
elling the class-conditional densities for the NBC is
that it is not constrained to any particular func-
tional form.

The first three techniques are found to be highly-
accurate compared with the fourth technique and a
linear classifier in classifying FISH signals into their
colour, as well as into real and artifact. The slight
difference in the performance of the BNN and the
NN can be attributed to the finite (although large)
number of samples leading to different maximum
likelihood and maximuma posterior solutions. The
inferior accuracy of the NBC compared with that
of the other techniques can be attributed to the
assumption of conditional independence, and to the
additional inherent feature extraction stage perfor-
med by the other classifiers. However, this inferiority
should be weighted against the simplicity offered by
the NBC (and also the linear classifier). Moreover, if
the features are known to be independent from each
other, the simple NBC could be our first choice.

Finally, this research can be extended by evaluat-
ing other classifiers for the same data and by com-
paring the classification techniques on other artificial
and real-world databases.
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