
Neural Comput & Applic (1999)8:226–234
 1999 Springer-Verlag London Limited

Application of MLP Networks to Bond Rating and House
Pricing

H. Daniels1,2 and B. Kamp1,3

1Department of Economics, Tilburg University, Tilburg, The Netherlands;2Rotterdam School of Management, Erasmus
University, Rotterdam, The Netherlands;3BDO CampsObers, Tilburg, The Netherlands

Feedforward neural networks are receiving growing
attention as a data modelling tool in economic
classification problems. It is well known that con-
trolling the design of a neural network can be
cumbersome. Inaccuracies may lead to numerous
problems in the application, such as higher errors
due to local optima, overfitting and ill-conditioning
of the network, especially when the number of obser-
vations is small. In this paper we provide a method
to overcome these difficulties by regulating the
flexibility of the network, and by rendering measures
for validating the final network. In particular, a
method is proposed to equilibrate the number of
hidden neurons based on 5-fold cross-validation. In
the validation process, the performance of the neural
network is compared with a linear model using 5-
fold cross-validation. In both case studies, the
degree of monotonicity of the output of the neural
network, with respect to each input variable, is
calculated by numerical differentiation. The out-
comes of this analysis are compared to what is
expected from economic theory. Furthermore, a spe-
cial class of monotonic neural networks and a corre-
sponding training algorithm are developed. It is
shown in the second case study that networks in
this class have less tendency to overfitting than
ordinary neural networks. The methods are illus-
trated in two case studies: predicting the price of
housing in the Dutch city of Den Bosch; and the
classification of bond ratings.

Keywords: Classification; Error estimation; Finance;
Monotonic neural networks

Correspondence and offprint requests to: H. Daniels, Tilburg
University, PO Box 90153, 5000 LE Tilburg, The Netherlands.

1. Introduction

There is a growing interest in neural networks as a
tool for data analysis. To a certain extent, the popu-
larity of neural networks compared to other statisti-
cal methods may be caused by the failure of statis-
ticians to communicate their methodologies and
algorithms to non-statisticians. The vast amount of
accumulated statistical knowledge erects a barrier
for consumers of their methods. Neural networks,
on the other hand, are in an embryonic phase, which
means that the accumulated knowledge is relatively
small. The language used within the neural network
community is another factor which may explain
the success of neural networks. However, the core
problems of data analysis do not change when the
techniques they are approached with are changed.
Therefore, difficulties statisticians have run into will
also affect neural network practitioners. The specifi-
cation of a neural network involves not only a
selection of the inputs, but also the selection of the
various components of a network, such as the type
of network to use, the squashing function, which
error criterion to use, which learning algorithm, the
number of hidden layers, and how many hidden
units per layer there should be. Once these network
components have been specified, the neural network
is presented with the data.

In many classification and prediction problems in
economics, data sets are small and special techniques
are needed to reliably estimate the prediction error
as well as to avoid overfitting. In particular, when
neural networks are applied to time series prediction,
where some of the input series are non-stationary,
overfitting is very likely [1], but also in simpler
classification tasks when no precautions are taken,
overfitting may occur [2]. Another problem, much



227Application of MLP Networks to Bond Rating

ignored, is the landing in local optima of the error
function during the training process [3]. These prac-
tical issues are important factors that determine the
success of neural network applications, therefore
they require careful investigation. The impact of
particular choices of the network components is
largest in small sample problems, where statistical
theory is of little help.

The aim of this paper is to lay down the choices
concerning the different aspects of neural network
modelling mentioned above, and to establish a gen-
eral network construction procedure. In particular,
we discuss how techniques such as cross-validation
and monotonicity analysis can be effectively com-
bined to optimise the neural network. There are
two main approaches to control the complexity and
flexibility of the neural network: model selection and
regularisation. Model selection for neural networks
involves choosing the number of hidden units, the
connections and the inputs. By regularisation the
neural network solution is smoothed by stop training
or (in this paper) by restricting the weights to
represent monotonic relations only.

The simplest approach is to stop training after a
predetermined number of ‘epochs’, which are com-
plete presentations of the complete training set. It
is obvious that this approach can only be suboptimal.
A more realistic approach is to use a test set of
data (set B) to indicate the error on ‘unseen’ cases;
these data may not be used during training. When
the error on the test set starts to increase, training
is terminated. To measure the degree of generalis-
ation, a third independent set (C, the validation set)
is necessary to estimate the out-of-sample perform-
ance of the network. Sets B and C are not used in
training the network, which incurs a loss of costly
information for problems with limited data. In prac-
tice, C should be taken as large as possible to
ensure a low variance prediction error estimator, but
on the other hand, as many observations as possible
should be used to reliably estimate the network
weights.

In many economic problems we expect a mono-
tonic relation (but not necessarily linear) of the
output with respect to some or all of the inputs [4–
6]. In this paper, we introduce a class of monotonic
neural networks that can be applied successfully to
problems where the input/output relation is to a
large extent monotonic. To compute the degree of
monotonicity of the output with respect to each of
the input variables, we derive an index between 0
and 1. The index is computed by numerical differen-
tiation of the output of the original neural network.
If the index is close to 1 for all (or the most
important) input variables, monotonic neural net-

works will probably outperform ordinary neural net-
works. The restriction to a class of monotonic net-
works is similar to adding bias and suppresses
(spurious) oscillations. If the problem is essentially
monotonic, this will lead to better generalisation
properties, as illustrated in the second case study
below.

The remainder of this paper is organised as fol-
lows. The first part, Sections 2.1–2.5, deals with the
Bond Rating case. In Sections 2.1–2.4 we describe
a neural network model to classify companies into
seven bond rating classes based on their financial
characteristics. The performance of the neural net-
work model is compared with a linear model using
5-fold cross-validation in Section 2.4. The monoton-
icity index is defined in Section 2.5. The second
part of the paper, Sections 3.1–3.4, deals with the
second case study: modelling house prices in a
medium-sized Dutch town. The hedonic house price
model is derived in Section 3.1. In Section 3.2–3.4
the results of the simulation studies of ordinary
neural networks and monotonic neural networks are
presented and evaluated. In the appendix, the train-
ing algorithm for monotonic neural networks is
briefly outlined.

2. Bond Rating Classification

2.1. Description of the Case Study

Bond ratings are subjective opinions on the ability
to service interest and debt by economic entities
such as industrial and financial companies, or
municipals, and public utilities. Bond ratings are
published by two major bond rating agencies,
Moody’s and Standard & Poor’s, in the form of a
letter code, ranging from AAA–for excellent finan-
cial strength–to D for entities in default. Bond rat-
ings are based on extensive financial analysis by
the bond rating agencies. The exact determinants of
a bond rating, however, are unknown, since the
interpretation of financial information relies heavily
on professional judgement.

During the last 30 years, several attempts have
been made to model corporate (industrial) bond
ratings. The methods employed include linear
regression, multiple discriminant analysis–linear and
quadratic–and neural networks. Linear regression
models were proposed by Horrigan [7], Pogue and
Soldofsky [8] and West [9]. Pinches and Mingo
[10], Peavy [11] and Belkaoui [12] employed discri-
minant analysis. Moody [13], Dutta and Shekhar
[14] and Kim et al. [15] recommended neural net-
works to model bond ratings. These studies were



228 H. Daniels and B. Kamp

directed to general corporate bond ratings. In other
studies [16], models of bond rating classification
within specific industries are described.

2.2. Formulation of the Empirical Model

The aim of the model as described here is to classify
companies into the distinctive bond rating classes,
based on their financial characteristics. Publications
of bond rating agencies offer some insight into the
relevant factors that determine bond ratings. Bond
rating analysis recognises the following areas of
attention [17]:

I Profitability;
I Liquidity;
I Asset protection;
I Indenture provisions;
I Quality of management.

Bond rating models use independent variables, often
calculated as ratios, which are predominantly derived
from public financial statements. However, not all
of the above-mentioned areas can be covered by
financial statement figures. Aspects like quality of
management, market positions and asset protection
can only be captured to a limited extent. Also
for indenture provisions, like subordination status,
financial ratios are not applicable. Most of the ratios
that are used in bond rating models can also be
found in the literature on general financial statement
analysis [18].

2.3. Empirical Study Set Up

In the study set up, we follow the methodology
described by Moody [13]. Two alternative
approaches to model the classification of bond rat-
ings are examined: a neural network with one hidden
layer; and a linear model. The neural network
weights are determined by error-backpropagation,
the coefficients in the linear model are estimated
by OLS. Comparing neural networks with multiple
discriminant analysis would require a multiple output
architecture of neural networks. Although neural
networks are suitable for more than one output,
we restrict our study to a one output architecture.
Theoretically, these architectures are equivalent,
since every function can be approximated arbitrarily
well by a neural network with one hidden layer.

From the Standard & Poor’s Bond Guide (April
1994), 256 companies were selected. The bond rat-
ings of these companies range from AAA to D.
The ratings are not homogeneously distributed. The
largest classes are A, BBB and B. Only very few

selected companies have ratings lower than CCC.
Therefore, we decided to remove all ratings below
CCC. As in other studies, the+ and − signs were
omitted (for example, AA+, AA and AA− are all
considered as AA). The bond ratings are quantified
by assigning from 1 to AAA to 7 to CCC.

From the S&P Bond Guide, several financial fig-
ures have been obtained. From Datastream additional
financial figures and ratios relating to leverage,
coverage, liquidity, profitability and size were down-
loaded. These figures have been restated to five
year averages and trend indicators, resulting in 45
explanatory variables. For each variable the linear
correlation with the quantified bond rating was cal-
culated. Occasionally, a linear correlation test may
not find possible non-linear correlations between
input and output, although this will occur rarely in
practice. The problem with measuring non-linear
correlation is that it is highly arbitrary, since the
nature of non-linearity between the variables is
unknown.

It was found that neural networks trained on all
45 variables resulted in lower quality models than
models based on only a carefully selected subset of
these variables. Eight variables with the highest
correlation are presented in Table 1. The variables
represent the level and stability of profits and cash
flow, liquidity and subordination status (indenture).
Cross-correlations between all attributes are accept-
able low (,0.60).

Several neural network architectures were evalu-
ated, varying the number of hidden neurons (2, 4,
8, 12, 20), the learning rate (0.1, 0.01), the momen-
tum term (0.8, 0.1, 0.01), the type of activation
function in the output layer (sigmoid, linear) and
batch or online weight update. The performance of
the neural network is measured by two indicators,
namely the Mean Squared Error (MSE) and Percent-
age of Correct Classification (PCC). The MSE is
defined by

MSE(C) =
1

uCu O
p«C

(tp−yp)2 (1)

Table 1. Definition of the model variables.

Symbol Definition

D/C Debt to capital ratio
CF/D 5 years average cash flow to debt ratio
CF 5 years average cash flows (in 100 millions)
Cov 3 years average interest coverage ratio
Vol/Cov 3 years volatility of interest coverage
Sr Senior status [0,1]
SrSub Limited senior status [0,1]
Sub Subordinated status [0,1]



229Application of MLP Networks to Bond Rating

Here C denotes the testset,tp is the target pattern
and yp the actual outcome of the neural network.

To compute the Percentage of Correct Classi-
fication (PCC), the prediction of the neural network
was rounded to the nearest discrete value (4/5
rounding). This value was compared to the actual
class value.

The overall performance of the neural network is
measured as the average of MSE or PCC on test
sets as used in the cross-validation procedure. They
are denoted by MSEcv and PCCcv, respectively. For
this purpose, the total set of patterns was divided
into five mutually exclusive subsets, each containing
(about) 50 patterns. The relative distribution of the
subsequent classes are approximately equal for all
subsets. For each neural network architecture, five
different training runs were executed, each with
another set serving as a test set. Training was
accomplished on the remaining four subsets. During
the training process, the performance was measured
on both the training set and the test set. Training
was stopped as soon as the lowest MSE on the test
set was reached.

2.4. Results

The final results show that the lowest average error
occurs in a neural network with eight hidden neu-
rons. The MSE varies between 0.290 and 0.421,
and PCC varies between 60% and 76% (see
Table 2). Note that MSE and PCC will not correlate
perfectly. This can be explained by the fact that the
PCC only refers to errors smaller than 0.5. Errors
larger than 0.5 receive equal weights, since both
large and medium errors are considered to be false
classifications, regardless of the magnitude of the
error. Nevertheless, in former studies the PCC is
regarded as the main performance indicator. How-
ever, the PCC is not suitable as an error function
in backpropagation neural networks, since such a
function does not have a continuous first derivative.

Table 2. PCC calculated using 5-fold cross validation.

CV set Data set Holdout sample

neural network (%) linear (%) neural network (%) linear (%)

1 47 57 60 48
2 51 55 60 52
3 51 54 76 57
4 48 53 69 61
5 50 56 72 48

67 55 67 53

An important result is that the architecture can
be kept fairly simple. A neural network with eight
hidden neurons, sigmoid squashing functions, a
learning rate of 0.1 and a momentum of 0.1 has an
MSEcv of 0.334 and a PCCcv of 67%. The results
on the training set do not differ from the results on
the test set, indicating that overfitting in this case
does not occur. When the number of instances in
the training set was limited to 50, the MSE on the
training set dropped to 0.111 and the PCC conse-
quently rose to 90%. The performance on the hold-
out sample, however, was very bad (MSE: 1.455,
PCC: 32%), clearly showing the effects of over-
fitting.

To evaluate the results of our model with respect
to earlier studies, we also employed linear regression
models. These models are based on the same data
set as used for the neural network model. Also for
this regression analysis, the 5-fold cross-validation
method was implemented, resulting in five equations,
that were tested on five holdout samples. The results
are presented in Table 2. The signs of the coef-
ficients correspond to what is expected on the basis
of economic plausibility. The t-statistics range
between 3.13 and 9.58.

The results clearly show the advantage of apply-
ing cross-validation. If training was performed using
a single holdout sample, the values of the PCC
would fluctuate between 60% and 76%, depending
on whether subset 1, 2 or 3 was chosen as the
holdout sample.

2.5. Monotonicity Index

In this section, we introduce a measure for the
degree of monotonicity of the neural network with
respect to each input variable. For every explanatory
variable we compute the partial derivativedf/dxi at
each data pointxp. Heref denotes the neural network
solution. The degree of monotonicityin xi is
defined as



230 H. Daniels and B. Kamp

mon(xi) =
1
n |O

n

p=1

I+ S­f
­xi

(xp)D − I− S­f
­xi

(xp)D| (2)

where I+(z) = 1 if z. 0 and I+(z) = 0 if z# 0 and
I−(z) = 1 if z# 0 and I−(z) = 0 if z.0. n is the
number of observations, andxp is thepth observation
(vector). Note that 0# mon(x) # 1. A value of this
index close to zero indicates a non-monotonic
relationship, a value close to 1 indicates a montonic
relationship. The value of sign indicates whether the
relation of f with respect to x is increasing or
decreasing. The results for the bond rating model
are presented in Table 3.

Some interesting conclusions can be drawn from
Table 3. The sign of the relationship between D/C,
CF/D and the rating is as expected. However, the
relative non-montone relationship of the rating with
respect to D/C and CF/D cannot easily be explained
by theories on financial statement analysis. The mon-
otonicity indices of Cov and Vol-Cov correspond to
what is expected from general theories on financial
statement analysis. The more interest that is covered
by excess earnings (Cov), the lower is the risk of
insufficient available cash to service debt. Secondly,
bond rating analysts favour stable coverage ratios
(Vol-Cov), so high volatility results in a higher
rating class (e.g. a higher estimated default risk).
The monotonicity of the rating with respect to CF
is more difficult to explain. There are two counter-
acting effects that occur as a consequence of vari-
ations in CF. In general, more cash flows results in
more collateral value to support the repayment of
debt. On the other hand, large cash flows are more
likely to be found for large firms, which often also
have large amounts of debt. Firm size is not con-
sidered to be an important rating determinant, there-
fore the sign of CF cannot be predicteda priori.

The observed non-monotonicity of the problem
does not support the use of monotonic networks. By
using monotonic networks, structural non-monotonic
relations cannot be modelled, which will result in

Table 3. Monotonicity indices of the bond rating model.

Variable Mon(xj) Sign

D/C 0.51 +
CF/D 0.52 −
CF 1.00 −
Cov 0.96 −
Vol/Cov 0.77 +
Sr 0.79 +
SrSub 0.73 +
Sub 0.71 +

lower performance of the model. Therefore, no mon-
otonic neural network model was developed. In the
Den Bosch case, we will see thata priori assumed
monotonicity and observed monotonicity of the
model does support the use of monotonic neural
networks.

3. Den Bosch House Price Estimation

3.1. Description of the Case Study

In this section we want to compare the performance
of an ordinary neural network model and a mono-
tonic neural network to estimate house prices in
Den Bosch, a city with approximately 110,000
inhabitants in the Netherlands.

The basic principle of the hedonic approach to
economics is that each consumer good is regarded
as a bundle of characteristics for which an implicit
valuation exists [19]. Harrison and Rubinfeld [20]
regard each house as a bundle of characteristics,
and the price of each house as reflective of the
value of its characteristics. So the price of a house
is estimated by the equation

Hp = g(x1,...,xq) (3)

where eachxi denotes a characteristic of the house.
In this case, there is no theoretical knowledge of
what the functiong should look like. We therefore
employ a data driven approach to specify Eq. (3).
In a similar study of Harrison and Rubinfeld [20],
their interest was to estimate the impact of air
pollution on the price of houses. However, the model
may serve many different purposes. For example,
in many countries the local tax authorities require
house values to calculate the amount of property
tax due. The data are of cross-sectional type, i.e.
the attributes are measured across various suburbs
of Den Bosch at a particular time point.

3.2. Empirical Study Set Up

The explanatory variables were selected on the basis
of interviews with experts of local house broker
offices, and advertisements offering real estate in
local magazines. The most important variables that
came out of this study are listed in Table 4.

The data set consists of 118 instances, and was
collected from several local house broker offices.
Cross-correlations between all attributes are
acceptably low. The correlation matrix suggests, for
example, that the volume of the house (VOL) and
the surface (SURF) are the most important determi-



231Application of MLP Networks to Bond Rating

Table 4. Definition of model variables.

Symbol Definition

DISTR type of district, four categories ranked from bad to good
SURF total area including garden
RM number of bedrooms
TYPE 1. apartment

2. row house
3. corner house
4. semidetached house
5. detached house
6. villa

VOL volume of the house
GARD type of garden, four categories ranked from bad to good
GARG 1. no garage

2. normal garage
3. large garage

nants of the housing value. The direction of influ-
ence corresponds to common sense: more volume
and surface will in general result in a higher hous-
ing value.

3.3. Results

In the simulation study, we applied ordinary neural
networks with 5, 10, 15 and 20 neurons in the
hidden layer. The lowest average error occurs in a
neural network with five hidden neurons. R2 varies
between 0.8089 and 0.9288 on the holdout sample
(see Table 5).

The performance on the test set is comparable to
the performance on the training set, indicating that
the models have reasonable generalisation power.
However, this does not imply that the internal rep-
resentation of the neural network model is consistent
with the presupposed relationships within the
hedonic problem. The degree of monotonicity of
each of the explanatory variables is presented in
Table 6.

Table 6 shows that the network output behaves
monotonically with respect to almost all variables.

Table 5. R2 calculated using 5-fold cross-validation.

CV set Data set Holdout sample

1 0.9010 0.9031
2 0.7894 0.8089
3 0.9267 0.9288
4 0.8404 0.8410
5 0.7607 0.8057

0.8430 0.8575

Table 6. Monotonicity indices of the Den Bosch house
price model.

Variable mon(xi) Sign

DISTR 1.00 +
SURF 1.00 +
RM 1.00 +
TYPE 1.00 +
VOL 1.00 +
GARD 1.00 +
GARG 0.56 +

With respect to CARG (garage), the observed non-
monotonicity cannot be explained by plausible econ-
omic arguments. Sensitivity analysis with respect to
individual variables suggests that the importance of
CARG is relatively low. The non-monotonicity in
the model may be the result of noise. To take
advantage of the monotonic nature of the problem,
a monotonic neural network was trained using the
algorithm described in Section 1. Using the same
number of hidden neurons (five), the monotonic
neural network reached a performance of R2 =
0.8679 on the training set and R2 = 0.8815 on the
test set. Thus, the monotonic neural network slightly
outperforms the ordinary network.

To study the effect of monotonic neural networks
on overfitting, we compared the divergence in per-
formance on the training set and the test for ordinary
neural networks and monotonic neural networks
when varying the number of hidden neurons. For
this purpose, we trained both types of neural net-
works using 5, 10, 15 and 20 hidden neurons. The



232 H. Daniels and B. Kamp

standard deviations between R2 on the training set
and R2 on the test set are presented in Table 7.

Table 7 shows that monotonic neural networks are
less sensitive to overfitting when the number of
hidden neurons is increased than ordinary (non-
monotonic) neural networks. For monotonic neural
networks, the performance on the test set remains
close to the performance on the training set, even
if the number of hidden neurons is increased to 20.
For non-monotonic neural networks there is a clear
effect of overfitting.

4. Software

In our experiments we used the neural network
simulation software Neuroshell2, Brainmaker and
the Matlab neural network toolbox. The implemen-
tation of monotonic neural networks and the training
algorithm was done in Matlab. Matlab and Excel
provided an interactive computing environment for
graphical data analysis, statistics and simple calcu-
lations. All neural networks used are feedforward
neural networks with one hidden layer, and one
output unit; the activation functions of the hidden
units sigmoid, the activation function of the output
sigmoid or linear. Estimation of the weights is done
by backpropagation. All software runs on a Windows
PC-platform.

5. Conclusions

We applied standard statistical techniques and neural
networks to two economic classification problems. In
particular, we addressed different aspects of neural
network modelling that are essential to obtain
reliable predictions. The flexibility and the degree
of non-linearity of the network are optimised by
calibrating the number of hidden neurons.

In the first case, a model was developed to class-
ify companies in different bond rating classes, using

Table 7. Variance of R2 of ordinary and monotonic neural networks.

Number of hidden neurons Variance of R2 between training and test set

Ordinary NN Monotonic NN

5 0.01 0.01
10 0.06 0.03
15 0.12 0.04
20 0.15 0.03

a linear and neural network approach. It was found
that the neural network clearly outperformed the
linear model on the percentage of correct classi-
fications (67% versus 53%). These results are in
line with previous observations of other authors.
Sensitivity analysis revealed that the neural network
classifier clearly shows non-linear behaviour in the
data set. It was shown that derivatives of the clas-
sifier with respect to firm’s leverage and cash flow
to debt ratio have different signs in the domain of
the data set. This non-monotonic behaviour prohibits
a meaningful application of monotonic neural net-
works.

In the second case study, house prices in a
medium sized Dutch town are estimated by neural
networks and monotonic neural networks. The out-
put variable behaves monotonically with respect to
all the important input variables. There is strong
evidence that the non-monotonic behaviour with
respect to less significant inputs is due to noise in
the data. Experiments with increasing numbers of
hidden neurons show that monotonic neural net-
works are far less sensitive to overfitting compared
to ordinary non-monotonic neural networks. It was
shown that the goodness of fit of monotonic net-
works is better compared to non-monotonic net-
works. It was also shown that overfitting does not
occur using monotonic networks, even with a larger
number of neurons.

In both cases it was shown that the response
function behaves monotonically with respect to
several input variables. This is not surprising, since
one expects that most classification problems in
economics and accounting possess monotonicity
properties. It is therefore natural to impose mono-
tonicity constraints on neural network architecture,
because it reflects the generic properties of the
underlying domain. This approach is particularly
useful if the neural network tends to overfit the
data by ‘spurious’ oscillations near the classification
boundary. This behaviour typically occurs if the
number of hidden neurons is larger. These spurious



233Application of MLP Networks to Bond Rating

oscillations can be suppressed by the addition of
monotonicity constraints, using a special class of
inherently monotonic neural networks. In cases
where the monotonicity index of the most important
explanatory variables is close to one, it is likely
that monotonic neural networks have better out-
of-sample performance. Currently, we are studying
mixtures of neural networks that are monotonic with
respect to a subset of the explanatory variables.
These can be applied to problems that are partially
monotonic, as in the first case study.

Acknowledgements. Part of the research presented
in this paper was done within an EC-funded network
of the SPES programme, contract number 0065,
which the authors gratefully acknowledge. The SPES
(Stimulation Plan for Economic Science) project,
entitled ‘Artificial Intelligence approaches to
modelling in Economics’, is a joint research project
with participants from Heriot-Watt University
(United Kingdom), Tilburg University (The
Netherlands), Politecnico Milano (Italy),
ABN/AMRO Bank (The Netherlands), and Digital
Equipment Europe (France).

References

1. Verkooijen WJH. Neural Networks in Economic
Modelling, An Empirical Study. CentER dissertation,
1996

2. Geman S, Bienenstock E, Doursat R. Neural networks
and the bias/variance dilemma. Neural Computation
1981; 4: 817–823

3. Ripley BD. Flexible non-linear approaches to classi-
fication. In From Statistics to Neural Networks; Theory
and Pattern Recognition Applications. Springer-Ver-
lag, 1993

4. Farley AM, Lin KP. Qualitative reasoning in econom-
ics. Journal of Economic Dynamics and Control 1990;
14: 465–490

5. Berndsen R, Daniels H. Causal reasoning in economic
systems. Journal of Economics and Control 1994; 18:
251–271

6. Daniels HAM, Kamp B, Verkooijen WJ. Modelling
non-linearity in economic classification with neural
networks. International Journal of Intelligent Systems
in Accounting, Finance and Management 1997; 3:
287–308

7. Horrigan JO. The determination of long-term credit
standing with financial ratios. Journal of Accounting
Research 1966 4 (supplement): 44–62

8. Pogue TF, Soldofsky RM. What’s in a bond rating?
Journal of Financial and Quantitative Analysis 1969;
4: 201–228

9. West RR. An alternative approach to predicting cor-
porate bond ratings. Journal of Accounting Research
1970; 7: 118–125

10. Pinches GE, Mingo KA. A multivariate analysis of

industrial bond ratings. The Journal of Finance 1973;
28: 1–17

11. Peavy JW. Long run implications of industrial bond
ratings as risk surrogates. Journal of Bank Research
1982; 34: 331–341

12. Belkaoui A. Industrial bond ratings: A New Look.
Financial Management 1980; 9: 44–50

13. Moody J. Architecture selection strategies for neural
networks: application to corporate bond rating predic-
tion. Neural Networks in the Capital Market. Wiley,
New York, 1994

14. Dutta S, Shekhar S. Bond rating: A non-conservative
application of neural networks. Proceedings of the
IEEE Conference of San Diego, 1988

15. Kim JW, Weistroffer HR, Redmond RT. Expert sys-
tems for bond rating: a comparative analysis of statisti-
cal, rule-based and neural network systems. Expert
Systems 1993; 10: 167–188

16. Altman E, Katz S. Statistical bond rating classification
using financial and accounting data. Proceedings of the
Conference on Topical Research in Accounting, 1976

17. Hawkins DF. Rating industrial bonds. Financial Execu-
tives Research Foundation, Morristown, NJ, 1983

18. Lev B. Financial Statement Analysis: A new approach.
Prentice Hall, Englewood Cliffs, 1974

19. Janssen J. De prijsvorming van bestaande koopwon-
ingen. PhD thesis, Catholic University Nijmegen, 1992

20. Harrison O, Rubinfeld D. Hedonic prices and the
demand for clean air. Journal of Environmental Eco-
nomics and Management 1978; 53: 81–102

21. Archer NP, Wang S. Application of the back propa-
gation neural network algorithm with monotonicity
conditions for two-group classification problems.
Decision Sciences 1993; 24: 60–75

22. Wang S. A neural network method of density esti-
mation for univariate unimodal data. Neural Compu-
tation & Applications 1994; 2: 160–167

Appendix on Monotonic Neural
Networks

The implementation of certain monotonicity con-
straints in neural networks and learning algorithms
has been studied in Archer and Wang [21] and
Wang [22]. In this paper, we apply a different class
of monotonic neural networks. This class is obtained
by considering multilayer neural networks with posi-
tive (non-negative) weights. It can be shown that
the elements of this class can approximate any
monotonic increasing functionf of n-variables on
compact subsets ofRn.

Note that without loss of generality, we may
assume thatf is increasing with respect to all vari-
ables. This can be achieved by simple linear trans-
formations of the inputs.

The maximum number of layers needed is equal
to the number of inputs. The proof of this result
is beyond the scope of this paper, and will be
given elsewhere.



234 H. Daniels and B. Kamp

In the many simulation studies performed on arti-
ficially generated data-sets, it turned out that in
practice less thann-layers were needed to get good
fit. In all cases studies, 1 or 2 hidden layers were
sufficient.

The training algorithm for monotonic neural net-
works that we have developed is a modification of
the standard backpropagation algorithm. We have
studied two ways of enforcing positive weights. The
first one is to set all negative weights equal to zero
in each training step. This algorithm is sketched
below. In the second method, we add a bias term
to the error function of the neural network such that
negative weights are penalised. During the training
process the weight of the penalty term is increased
gradually, until in the final network all weights are
non-negative.

Sketch of Backprop Algorithm with
Non-negative Weights

1. Initialisation: start with a reasonable network
configuration and set all weights and threshold
(bias) levels to small, uniformly distributed ran-
dom numbers.

2. Presentation of training patterns: compute for
each data pattern the output value using the
current weight structure.

3. Weights update: using the backprop algorithm,
determine the weight adjustments.

4. Monotonicity correction: change all negative
weight values to zero.

5. Repeat steps 3 and 4 for all hidden layers.
6. Repeat steps 1 to 5 until the error is acceptable.


