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Abstract
Conventional authentication methods, such as passwords and PINs, are vulnerable to multiple threats, from sophisticated

hacking attempts to the inherent weaknesses of human memory. This highlights a critical need for a more secure, convenient,

and user-friendly approach to authentication. This paper introduces M2auth, a novel multimodal behavioral biometric

authentication framework for smartphones. M2auth leverages a combination of multiple authentication modalities,

including touch gestures, keystrokes, and accelerometer data, with a focus on capturing high-quality, intervention-free data.

To validate the efficacy of M2auth, we conducted a large-scale field study involving 52 participants over two months,

collecting data from touch gestures, keystrokes, and smartphone sensors. The resulting dataset, comprising over 5.5 million

action points, serves as a valuable resource for behavioral biometric research. Our evaluation involved two fusion scenarios,

feature-level fusion and decision-level fusion, that play a pivotal role in elevating authentication performance. These fusion

approaches effectively mitigate challenges associated with noise and variability in behavioral data, enhancing the robustness

of the system. We found that the decision-level fusion outperforms the feature level, reaching a 99.98% authentication

success rate and an EER reduced to 0.84%, highlighting the robustness of M2auth in real-world scenarios.
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1 Introduction

In an era where digital interactions shape our daily lives,

securing personal devices, especially smartphones, has

become a critical priority. As smartphones seamlessly

integrate into various aspects of our daily routines, from

communication to financial transactions, ensuring the

confidentiality and integrity of personal data has emerged

as a substantial concern. The increasing reliance on

smartphones for sensitive tasks, such as mobile banking

and accessing confidential information, has heightened the

need for robust security measures. Traditional authentica-

tion methods, such as passwords and PINs, are vulnerable

to diverse threats, ranging from sophisticated hacking

attempts to the limitations of human memory [1–6]. Con-

sequently, many smartphone users choose not to secure

their devices with locks, primarily due to perceived moti-

vational shortcomings and the inconvenience associated

with implementing locking mechanisms [7, 8].

Previous research was conducted to address these vul-

nerabilities by exploring various approaches, including

& Ahmed Mahfouz

ahmed.m@aou.edu.om; e.ahmedmahfouz@mu.edu.eg

Hebatollah Mostafa

e.hebaelkaiaty@gmail.com

Tarek M. Mahmoud

tarek@fcai.usc.edu.eg

Ahmed Sharaf Eldin

profase2000@yahoo.com

1 Faculty of Computer Studies, Arab Open University, Muscat,

Oman

2 Computer Science Department, Minia University, Minya,

Egypt

3 Faculty of Computers and Information, Minia University,

Minya, Egypt

4 Faculty of Computers and Artificial Intelligence, Sadat City

University, Sadat City, Egypt

5 Faculty of Information Technology and Computer Science,

Sinai University, Arish, Egypt

6 Information Systems Department, Helwan University,

Helwan, Egypt

123

Neural Computing and Applications
https://doi.org/10.1007/s00521-024-10403-y(0123456789().,-volV)(0123456789().,-volV)

http://crossmark.crossref.org/dialog/?doi=10.1007/s00521-024-10403-y&amp;domain=pdf
https://doi.org/10.1007/s00521-024-10403-y


physiological biometrics like Iris [9] and Face [10]), as

well as behavioral traits like gesture [11], sensors [5], and

keystrokes [12]. However, the common behavioral bio-

metric systems in the existing literature adhere to a uni-

modal-based framework, relying on a single source of

information for user authentication. Unfortunately, these

proposed unimodal systems encounter different challenges

such as non-universality and noisy data [13].

In response to these challenges, novel approaches are

emerging, leveraging cutting-edge technologies to enhance

security without compromising user convenience [14, 15].

Behavioral biometrics, encompassing a range of user

actions from touch gestures to keystrokes, is at the fore-

front of this evolution [16, 17]. However, this field faces

several significant challenges that necessitate innovative

solutions [4, 18]. One challenge lies in the dynamic and

context-dependent nature of user behaviors on smart-

phones, posing difficulties in developing authentication

systems that can effectively adapt to diverse scenarios [19].

Moreover, ensuring the accuracy and reliability of behav-

ioral biometrics in real-world settings is a persistent chal-

lenge, as the presence of noise and variability in user

actions can impact authentication performance [20].

Additionally, there is a need for comprehensive datasets

that reflect authentic user behavior across various appli-

cation contexts, addressing a crucial gap in current

research [21, 22].

To address this critical need for enhanced security and

user convenience, this paper introduces M2auth, a multi-

modal behavioral biometric authentication framework for

smartphones. Unlike conventional methods, M2auth inte-

grates three distinct modules: a data collection module, a

data analysis and feature extraction module, and a decision

fusion module. By fusing multiple authentication modali-

ties, each capturing unique features from user interactions,

M2auth creates a robust defense against potential

threats [6, 20]. These interactions are diverse, influenced

by contextual factors such as texting or connecting to

specific networks. We report our findings from an exten-

sive field study involving 52 participants over two months,

collecting data from touch gestures, keystrokes, and

smartphone sensors. The resulting dataset, comprising over

5.5 million action points, stands as an evaluation dataset to

M2auth’s reliability and relevance in real-world scenarios.

Evaluation through feature-level and decision-level fusion

scenarios demonstrates M2auth’s exceptional performance,

achieving an AUC of 99.98% with an equal error rate

(EER) of 0.84%.

The core innovation in the proposed method, M2auth,

lies in its comprehensive multimodal approach to behav-

ioral biometric authentication, which integrates data from

three distinct sources: touch gestures, keystroke dynamics,

and sensor readings. Our contributions from this work are

as follows:

• Our work presents a significant contribution through the

creation of a comprehensive dataset encompassing 5.5

million events. This dataset, reflecting real-world user

behavior across various application contexts, is a

cornerstone in achieving M2auth ’s exceptional perfor-

mance and ensuring both accuracy and relevance in

authentication.

• M2auth offers a dependable feature vector derived from

genuine user-level activities. This ensures the accuracy

and reliability of the behavioral traits considered for

user authentication.

• M2auth makes a significant contribution by introducing

an advanced framework that combines gestures, key-

strokes, and accelerometer data for smartphone user

authentication. This innovative integration of diverse

behavioral modalities sets a new benchmark for accu-

racy and efficiency in authentication systems.

• M2auth presents a distinctive contribution with the

introduction of two strategic fusion scenarios—feature-

level fusion and decision-level fusion. These fusion

approaches play a pivotal role in elevating authentica-

tion performance, effectively mitigating challenges

associated with noise and variability in behavioral data.

The rest of the paper is organized as follows: In Sect. 2, we

discuss the related works about authentication systems.

Section 3 presents the threat model followed by a details

description of the M2auth framework modules in Sect. 4.

We provide the evaluation and results of M2auth in Sect. 5.

Section 6 presents the discussion. Finally, Sect. 7 provides

the conclusion and future work.

2 Related work

The landscape of behavioral biometric authentication has

witnessed significant evolution, leveraging various traits

such as touch gestures, keystroke dynamics, and sensor-

based data [14]. In this section, we provide a more detailed

review of related work in the field of behavioral biometrics,

including recent advancements for each behavioral bio-

metric traits.

2.1 Implicit authentication based on touch
gesture

Behavioral biometric authentication methods leverages

various behavioral traits for authentication, including ges-

ture, keystroke, and sensors. The integration of touch

gestures as a behavioral trait in implicit authentication
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represents a significant advancement in the biometric

authentication [2, 23, 24]. Touch gestures exhibits two

important characteristics: continuity and transparency. The

acquisition process of touch gesture is unobtrusive,

allowing for data collection during the regular device

usage [15, 25, 26]. This noninvasive nature is one of the

key advantages, as it enhances user experience by not

interrupting normal device interactions, making the

authentication process virtually invisible to the user.

Touch gesture-based authentication operates continu-

ously in the background, monitoring user behavior without

requiring explicit input, thereby offering a high level of

convenience. This transparency is particularly valuable for

maintaining a seamless user experience, as it does not

require active user participation during authentication

[15, 25, 26]. Features extracted from touch gestures, such

as speed, pressure, and trajectory, have been shown to be

highly discriminative. These features capture subtle dis-

tinctions in how different users interact with their devices,

making touch gesture biometrics effective in accurately

distinguishing individual users [5, 27, 28]. This level of

specificity is a significant advantage in enhancing the

security of the authentication system, as it reduces the

likelihood of false acceptances. The non-intrusive nature of

touch gesture data collection is a major benefit. Users are

not required to perform specific actions solely for the

purpose of authentication; instead, their routine interactions

with the device are used for this purpose. This passive data

collection reduces user burden and increases the likelihood

of widespread adoption [25, 26].

Despite its strengths, touch gesture-based authentication

can be susceptible to variations in environmental condi-

tions. Factors such as screen moisture, temperature chan-

ges, or user stress levels can affect the accuracy of the

biometric readings, potentially leading to increased false

rejection rates [16]. These environmental sensitivities can

limit the reliability of the system, especially in less con-

trolled settings. Another challenge is the issue of template

aging, where the user’s biometric profile changes over time

due to variations in behavior or physical conditions (e.g.,

changes in finger pressure due to injury or stress). This can

degrade the system’s performance over time, necessitating

periodic updates or retraining of the model to maintain

accuracy [11]. Touch gesture-based authentication sys-

tems are inherently tied to the device on which they are

implemented. This means that the system’s effectiveness

can vary significantly between different devices, depending

on factors like screen size, touch sensitivity, and device

orientation. This limitation restricts the generalizability of

the system across different platforms and devices [28].

Although touch gestures are unique to each user, they are

not immune to mimicry attacks. Skilled attackers who

observe a user’s interactions could potentially replicate the

gestures with sufficient accuracy to bypass the authenti-

cation system. While this risk is lower than with traditional

password-based systems, it remains a concern that must be

addressed through additional security layers or combined

modalities [16].

2.2 Implicit authentication based on keystroke
dynamics

Keystroke dynamics, an established behavioral biometric

trait for authenticating users on computers [29], has also

found application in smartphones. It involves analyzing the

unique rhythm, timing, and pressure applied during a user’s

keyboard input, creating a personalized and distinguishable

authentication signature [12, 30]. Similar to the touch

gesture, keystroke dynamics support the continuity and

transparency, allowing for implicit acquisition without

causing any interruption for users while typing [30].

Keystroke dynamics-based authentication operates

continuously and transparently in the background, moni-

toring typing behavior without requiring active input from

the user for authentication purposes. This allows for

seamless integration into the user’s normal interactions,

enhancing convenience and reducing friction in the

authentication process [30]. The individual typing patterns

captured by keystroke dynamics are highly unique, making

them effective for distinguishing between users. Features

such as typing speed, key hold time, and key release

intervals create a biometric signature that is difficult to

replicate, thereby improving the security of the sys-

tem [12]. Keystroke dynamics can be easily integrated into

existing systems without the need for specialized hardware.

Since most devices already have built-in keyboards, the

implementation primarily requires software algorithms to

capture and analyze the keystroke data, making it a cost-

effective solution for enhancing security [30].

A key challenge with keystroke dynamics is the vari-

ability in typing patterns, which can be influenced by

factors such as user mood, physical condition (e.g., fatigue

or injury), and environmental conditions (e.g., different

keyboards or devices). This variability can lead to false

rejections, where the system fails to recognize the legiti-

mate user [30]. Over time, a user’s typing behavior may

change due to factors such as learning effects, changes in

typing habits, or even age-related motor skill alterations.

This phenomenon, known as template aging, can degrade

the performance of the authentication system, necessitating

periodic retraining or updating of the user’s keystroke

profile to maintain accuracy [12]. While keystroke

dynamics are unique, they are not entirely immune to

mimicry attacks, where an attacker attempts to replicate the

typing patterns of a legitimate user. Additionally, keystroke

dynamics can be vulnerable to shoulder surfing, where an
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attacker observes the user’s typing and attempts to replicate

it, potentially compromising the system’s security [30].

2.3 Implicit authentication based on sensors
data

Various studies have demonstrated the versatility of using

sensor data for implicit authentication, showing its ability

to capture user behavior [31–33]. For instance, Lee

et al. [31] showed the potential of using smartphone sen-

sors for implicit authentication by achieving a good per-

formance with a low false rejection rate (FRR) of 0.9% and

a modest false acceptance rate (FAR) of 2.8%. This study

highlights the efficacy of sensor-based biometrics in dis-

tinguishing genuine users from impostors. Shen et al. [32]

conducted a comprehensive evaluation using sensor data

and ten one-class detectors, resulting in an impressive

equal error rate (EER) of 2.21%. As the field progresses,

further exploration and refinement of sensor-based

authentication methods promise to enhance both the secu-

rity and user experience in the landscape of mobile device

technology.

Sensor-based authentication leverages a wide array of

data sources, such as accelerometer, gyroscope, and mag-

netometer, which capture detailed information about user

movements, device orientation, and environmental context.

This rich data enables the system to build a comprehensive

profile of the user’s behavior, enhancing its ability to

accurately distinguish between legitimate users and

impostors [31, 33]. One of the key advantages of sensor-

based authentication is its ability to operate continuously in

the background without requiring explicit actions from the

user. This continuous monitoring allows the system to

detect anomalies in real time, providing ongoing authen-

tication that increases security without interrupting the user

experience [32].

A significant challenge with sensor-based authentication

is its susceptibility to environmental factors that can

introduce noise or variability into the data. Changes in the

user’s environment, such as riding in a vehicle or walking

on uneven terrain, can affect the sensor readings, poten-

tially leading to increased false rejection or acceptance

rates [31]. The collection and processing of sensor data for

authentication purposes raise potential privacy concerns.

Users may be wary of the extent to which their movements

and behaviors are being monitored, even if the data is used

solely for security purposes. Ensuring that data collection

practices are transparent and handled securely is essential

to mitigate these concerns [32].

In comparison with the previous work, most proposed

implicit authentication methods are unimodal based

[12, 15, 23], facing different challenges such as the intra-

class variations and the noisy data [13]. Our proposed

framework M2auth introduces unique features and capa-

bilities that works toward addressing these problems by

integrating different modalities together. While acknowl-

edging previous work achievements, we recognize the

dynamic nature of the field and the continuous evolution of

state-of-the-art methods. Our work support in enhancing

multimodal behavioral biometric authentication, and we

envision further improvements and refinements based on

emerging technologies and methodologies. Additionally,

our work contributes to the field by introducing a new

fusion strategy that can be applied to other domains

requiring secure and continuous authentication. We believe

that these innovations provide a significant advancement

over existing methods, and we have included a more

detailed explanation of this in the revised manuscript.

3 Threat model

We presume the attacker has physical access to the victim’s

device. This unauthorized access could be gained by in-

sider attacks, which come from someone who is related to

the user such as family member or friend, or stranger

attacks, which come from someone who does not know the

user [34]. We do not consider unauthorized access that

happened by malicious apps [35] or the apps that access

data without the user intention [36].

The potential of an attacker is to obtain access to

applications and private data or steal private information.

We focus on detecting and preventing these types of

attacks as described next by our developed framework

M2auth.

4 The proposed framework

M2auth is a framework that encompasses three main

modules as depicted in Fig. 1: the data collection module,

the data analysis and feature extraction module for each

authentication modality, and the decision fusion module.

This framework aims to authenticate smartphone users by

calculating authentication scores based on multiple

modalities that extract relevant features from user inter-

actions with the device. These interactions vary depending

on the context, such as typing or network connectivity.

M2auth employs an ensemble method of classifiers to

calculate authentication scores for each modality, and a

decision fusion technique is utilized to integrate the scores

from all modalities and formulate the final authentication

decision.
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4.1 Instrumentation

We instrumented the Android Open Source Project with a

monitoring tool that records events relevant to touchscreen,

keystrokes and profile sensors in a real-life settings without

intervention. We used Phonelab test bed [37] to deploy our

instrumentation and facilitate the data collection process.

The test bed consists more than 200 LG Nexus 5 Android

smartphone users who agreed to use custom build devices

(i.e., Android 5.1.1). The instrumentation distributed

transparently over the air to the smartphones. Participants

have the ability to accept or deny the instrumentation at

different times during the experiment period which was for

two months. We collected three types of events: touch

screen events, keystroke events, and sensory events. These

events are going to reflect the user behavior, and conse-

quently, it has the ability to differentiate between the owner

and the imposter [14].

4.2 Data collection

For our study, we used the Phonelab test bed for data

collection [37]. This test bed provided a robust platform for

conducting experiments with smartphone users. To collect

behavioral biometric data, we conducted a field study

involving 133 participants, primarily students and staff

from the University of Buffalo. The data collection span-

ned two months, ensuring a substantial period for capturing

varied behavioral patterns. Before running the study, we

obtained consent from all participants, emphasizing pri-

vacy and following the ethical guidelines approved by our

university’s research ethics board.

Data was gathered continuously as participants inter-

acted with their smartphones naturally, without any specific

instructions or interventions. This approach ensured the

collection of authentic usage data. Throughout the study,

data was logged from three primary sources: touch screen

interactions, virtual keyboard inputs, and inertial mea-

surement units (IMUs) encompassing accelerometer,

gyroscope, and magnetometer sensors.

In order to ensure the quality and reliability of the data,

we conducted data cleaning procedures and excluded par-

ticipants who were not actively using their smartphones

throughout the entire experiment period. Our final analysis

focused on 52 participants who consistently utilized their

phones for at least 30 days or more. It is worth noting that

each participant had the freedom to use their smartphone

without any intervention, allowing the data to be logged

and subsequently uploaded to a backend server.

As shown in Table 1, we collected approximately 3

million interaction points from touch gestures, 1 million

from keystrokes, and 1.5 million from sensors, totaling

around 5.5 million action points. Each participant con-

tributed over 3500 action points on average per day.

The large volume of high-quality data collected without

any intervention further enhances the value of the formu-

lated dataset. The substantial amount of data enables a

more comprehensive and detailed analysis, capturing a

wide range of user behaviors and interactions. With a large

dataset, we can uncover intricate patterns, detect rare

events, and gain deeper insights into user behavior. The

extensive data also facilitates the training of machine

learning models and algorithms, improving their accuracy

and performance.

Fig. 1 M2auth behavioral

biometric authenticate

framework: It consists of three

modules: data collection module

that collects actual users’

behavior; data analysis and

feature extraction module that

constructs a discriminative

feature vector for each

modality; and decision fusion

module that combines all

decisions from modalities to

predict the final decision

Table 1 Number of user interactions in the dataset

Modality # of interaction points

Touch gesture 2969975

Keystrokes 1004735

Sensor 1560096
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4.3 Data preprocessing

Data preprocessing is a fundamental step in the develop-

ment of a reliable and accurate multimodal biometric

system. It involves cleaning and organizing raw data to

ensure that it is in the best possible condition for feature

extraction and analysis. Given the diversity and complexity

of data sources such as touch gestures, keystrokes, and

sensor readings, effective preprocessing is crucial for

mitigating noise, handling variability, and ensuring con-

sistency across different data modalities.

Touch gesture data is prone to noise from unintended

screen interactions or device sensitivities. To address noise

and variability in touch gesture data, we implemented a set

of filtering criteria aimed at cleaning the raw data. These

criteria include removing duplicated touch events to

eliminate redundancy and ensure that the data accurately

represents the user’s intentional interactions. By focusing

on these preprocessing strategies, we enhance the robust-

ness of the system, enabling more accurate feature

extraction and reliable biometric authentication. This

approach ensures that the processed data is a true reflection

of user behavior, reducing the potential for errors during

the authentication process.

Keystroke data often contains irregularities such as

accidental key presses or variations in typing speed. These

anomalies can distort the analysis if not properly managed.

To address this, we use outlier detection methods to

identify and remove such irregularities, resulting in a

dataset that more accurately represents the user’s typical

typing behavior. This step is essential for ensuring that the

extracted features are both relevant and reliable.

Processing raw sensor data involves reducing noise and

enhancing the accuracy of the data to improve the

authentication model’s performance. We employ a for-

ward–backward digital filtering technique, which effec-

tively removes noise and eliminates unwanted gravitational

forces that might interfere with the analysis. After filtering,

the sensor signals are segmented into smaller, predefined

time windows. This segmentation step is critical for orga-

nizing the data and ensuring that the subsequent feature

extraction phase operates on consistent and meaningful

chunks of sensor readings. By dividing the data into time

windows, we capture the temporal dynamics and patterns

within specific intervals, enabling more accurate and con-

textually relevant feature extraction.

Given the inherent variability in data collected from

different devices and users, normalization is essential. We

standardize data across all modalities, touch gestures,

keystrokes, and sensors, to ensure consistency. This

involves adjusting the data to a common scale, making it

comparable across modalities, and enhancing the

effectiveness of subsequent feature extraction and fusion.

Furthermore, to ensure that all features contribute equally

to the analysis, we apply feature scaling techniques such as

min–max scaling or standardization. This alignment is

particularly important when combining data from different

modalities, where the value ranges can vary significantly,

facilitating more effective integration and classification.

To capture broader behavioral patterns and reduce the

impact of transient noise or anomalies, we aggregate data

over specified time windows or user sessions. This

approach helps smooth out short-term fluctuations and

provides a more comprehensive view of the user’s behav-

ior. Aggregated data is inherently more robust, making it

better suited for accurate feature extraction and improving

the overall reliability of the biometric system.

Effective data preprocessing is vital for enhancing the

performance of a multimodal biometric system. By clean-

ing, normalizing, and organizing the data from various

sources, we reduce the likelihood of errors during feature

extraction and classification. This process ensures that the

data accurately reflects genuine user behavior, leading to

more reliable and consistent biometric authentication.

Preprocessed data forms the foundation for building robust

models that perform well in real-world scenarios, ulti-

mately contributing to the system’s overall effectiveness

and user trust.

4.4 Feature extraction

4.4.1 Gesture features

Touch gesture in M2auth refers to a hand-drawn shape

created by the user’s fingers on a touch screen. It comprises

a sequence of touch points, where each point is defined by

its x and y coordinates. Figure 2 illustrates examples of

touch gestures. During data collection, the following raw

data is recorded for each touchpoint: timestamp (indicating

the time of the touch), coordinates (the x and y positions on

the touch screen), pressure (the amount of pressure

applied), size (the size of the touch area), touch_down (a

flag indicating the beginning of a touch), touch_up (a flag

indicating the end of a touch), touch_move (a flag indi-

cating movement during the touch), and action_code (a

code representing the touch state). These raw data elements

provide detailed information about the user’s touch inter-

actions, enabling subsequent analysis and authentication

within the M2auth framework.

In M2auth, the action_codes are utilized to identify and

delineate a stroke, denoted as S. A stroke is characterized

by a sequence of touch points, represented by their corre-

sponding xi and yi coordinates. It begins with the touch_-

down action and concludes with the touch_up action. Each

touchpoint in the stroke is associated with additional
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information: pi denotes the touch pressure, ai represents the

size area of the touch, and ti indicates the timestamp. The

index i ¼ 1; . . .; n, where n signifies the total number of

touch points within the stroke S. These attributes provide

essential details about the touch interactions, enabling

subsequent analysis and authentication processes within the

M2auth framework.

In order to extract features from strokes, we employed

both geometric and motion dynamics analysis techniques.

For geometric analysis, we extracted six features that

focus on stroke geometry. Four features were derived from

touch_down and touch_up locations, namely

xdown; ydown; xup; yup. These represent the coordinates of the

initial touch and the final release points. Additionally, two

features, stroke length Slength and the curvature Scurvature,

were calculated. Slength measures the length of the stroke

and is calculated by summing the Euclidean distances

between consecutive touch points, following the formula:

Slength ¼
Xn

i¼2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxi � xi�1Þ2 þ ðyi � yi�1Þ2

q
ð1Þ

where n represents the number of points in the stroke S.

Stroke curvature Scurvature quantifies the deviation of the

stroke from a straight line. It is determined by calculating

the curvature for each touchpoint in the stroke, as shown in

Fig. 2b. The curvature (K) is computed using the

formula [38]:

K ¼ jX0Y 00 � Y 0X00j
ðX02 þ Y 02Þ

3
2

ð2Þ

where X and Y represent the vectors of the touchpoints in

the stroke. Their primes refer to the first and second order

of derivatives. K is the curvature row vector for each

touchpoint in the stroke. Then we calculate the Scurvature by

taking the mean of the K as follows:

Scurvature ¼
1

N

XN

i¼1

Ki ð3Þ

These geometric features provide insights into the shape,

length, and curvature of the stroke, contributing to the

multimodal behavioral biometric authentication process in

M2auth.

In the dynamic analysis of strokes, we focused on the

motion dynamics and extracted four features. As the finger

moves on the touchscreen, the stroke is formed by a

sequence of touchpoints. We detected these touchpoints

based on the finger’s motion, which is often curvilinear

rather than linear. Consequently, we calculated the dis-

placement of the stroke, represented by the straight line

length between the touch_down and touch_up points, as

Fig. 2 Different stroke samples

from two different users. Both

strokes were from down to up
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shown in Fig. 2b. Additionally, we computed the velocity

of the stroke at each touchpoint using the following

equation:

V ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ððX0Þ2 þ ðY 0Þ2Þ

q
ð4Þ

where X and Y are sets of touchpoints in the stroke and V

represents the velocities vector at each touchpoint. From

these velocity values, we extracted two features: the mean

velocity SmeanðVÞ and the maximum velocity SmaxðVÞ. Fur-

thermore, we analyzed the acceleration of the stroke using

the following equation [38]:

A ¼ d2s

dt2
T þ k

ds

dt

� �2

N ð5Þ

Here, s represents the stroke, d denotes the derivatives with

respect to the time, and T and N represent the tangent and

normal vectors, respectively.

By examining the dynamic aspects of the stroke,

including displacement, velocity, and acceleration, we

extracted features that capture the motion characteristics.

These features provide valuable information about the

dynamic behavior of the stroke, contributing to the multi-

modal behavioral biometric authentication process in

M2auth.

In addition to the geometric and dynamic features,

M2auth also includes temporal features and pressure/size

features for stroke analysis.

The temporal features capture the timing aspects of the

stroke. The duration of a stroke, denoted as Sduration, rep-

resents the time spent by the user’s finger to perform the

stroke. This feature provides insights into the speed or

deliberate nature of the gesture. Additionally, the inter-

stroke duration, Sinterduration, measures the time duration

between the previous stroke and the current one. This

temporal information can be useful in understanding the

rhythm or pattern of user interactions.

The pressure and size features focus on the touch pres-

sure and size associated with each touchpoint in the stroke.

For every touchpoint, we extract ten features, including

touch_down and touch_up values. These features encom-

pass the average, maximum, and minimum values of touch

pressure and size. By analyzing the variations in pressure

and size throughout the stroke, we can gain insights into

the user’s touch behavior and potentially identify unique

patterns or characteristics.

Together, the temporal features and pressure/size fea-

tures provide additional dimensions for characterizing

strokes in M2auth. By considering these aspects, the

framework can capture a more comprehensive representa-

tion of user behavior and enhance the accuracy of

authentication.

4.4.2 Keystroke features

In the context of keystroke analysis, different applications

require users to interact daily by entering inputs via a

keyboard, such as messaging apps. Each user’s input is

characterized by a specific typing rhythm, which describes

their unique way of typing. A keystroke session, illustrated

in Fig. 3, represents the sequence of keystrokes starting

from the key press p1 and ending with the last key release

event rn before the soft keyboard disappears. Each press

and release event represents a keystroke k, and multiple

keystroke sessions were collected while users interacted

with various apps.

The feature extraction process for keystrokes involves

analyzing their geometry, dynamics, spatial characteristics,

temporal properties, size, and pressure. These features are

divided into two groups: one for individual keystrokes (ki)

and the other for the keystroke session (Skeystrokes), where

the session features rely on the individual keystroke

features.

From spatial analysis, we extract four features based on

the coordinates of the press (pi) and release (ri) events:

xpress, ypress, xrelease, and yrelease. Although there is no

dynamic movement within a single keystroke, we extract

the displacement (kdisplacement) as a feature, representing the

distance between the previous and current keystrokes.

Temporal analysis provides two features: the duration (di),

calculated as the time difference between the press and

release of the current key (ri � pi), and the latency (li),

calculated as the time difference between the press of the

current key and the release of the previous key (pi � rði�1Þ)

as shown in Fig. 3. Additionally, we extract the average

size and average pressure of the keystroke as features.

The keystroke session, which consists of a sequence of

keystrokes, enables the extraction of temporal features. The

duration (D) represents the total time between the first key

press (p1) and the last key release (rn). The average dura-

tion per keystroke (daverage) provides insights into the typ-

ical duration of individual keystrokes within the session.

The average latency (laverage) represents the average time

interval between keystrokes in the session. These temporal

features capture the timing and rhythm of the user’s typing

behavior during a keystroke session.

4.4.3 Sensor features

In sensor modality, we authenticate smartphone users

based on a discriminative set of features that execrated

from off-the-shelf motion sensors on the smartphone.

These features helped us to build a user behavior profile

that reflects the user interactions with the mobile sensors

and services [39]. We use three different sensors to make
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authentication: accelerometer, gyroscope, and magne-

tometer [26]. During the filed study, we collected sensor

events of the instantaneous reading of sensors’ axes, x, y,

and z for every subtle action that user did on the

smartphone.

For feature extraction, two types of analysis are con-

ducted: time-domain analysis and frequency-domain anal-

ysis. In the time-domain analysis, statistical features are

extracted from the raw sensor data over time. These fea-

tures provide valuable information about the distribution

and characteristics of the sensor readings. As illustrated in

Table 2, the feature vector includes statistical measures

such as mean, median, maximum, minimum, standard

deviation, variance, kurtosis, skewness for each of the three

axes (x, y, z), as well as the magnitude. These statistical

features effectively capture the identity of the users based

on their sensor interactions [26].

In the frequency-domain analysis, the goal is to capture

the intensity of user activities on the smartphone. This is

achieved by applying the fast Fourier transform (FFT) to

the sensory data, transforming it from the time domain to

the frequency domain. From the frequency domain, energy

and entropy features are extracted. The energy feature

reflects the distribution of signal energy across different

frequency components, indicating the intensity or strength

of user actions. The entropy feature provides insights into

the complexity or randomness of the sensor data in the

frequency domain. These frequency-domain features are

particularly useful in capturing the fine-grained movements

and actions performed by the user, such as tapping or

swiping on the phone [40].

By combining both time-domain and frequency-domain

analysis, a comprehensive feature set is obtained, capturing

various aspects of the user’s sensor interactions. These

features significantly contribute to identifying and authen-

ticating users based on their unique behavioral patterns and

movements recorded by the sensors.

4.5 Fusion and decision module

In the fusion and decision module, using only a single

source of information to authenticate the user presents

several limitations and problems [13]. These include noisy

data affected by impreciseness in measurements, non-uni-

versality, incorrect interaction with sensors, intraclass

variations, changes in behavioral characteristics at different

time instances, lack of uniqueness to differentiate between

two users, and vulnerabilities such as spoofing and robot

attacks.

The goal is to differentiate between legitimate user and

impostors based on information acquired from multiple

behavioral biometric traits. Fusing these different traits to

perform authentication offers several advantages in over-

coming the aforementioned limitations. This includes

improving the performance and reliability of the authenti-

cation process, increasing protection against attacks, as it

becomes harder for impostors to spoof multimodal bio-

metric traits compared to unimodal ones, enhancing data

availability, and reducing data ambiguity (Fig. 4).

Fig. 3 Keystroke session events: during the Soft keyboard shown

event, the virtual keyboard pop up to enable users enter characters.

The p1 represents the first press, r1 represents the first release, d1

represents the consumed time between press and release, l1 represents
the latency, the time between the release and the press of the previous

and the next key, respectively

Table 2 Extracted time- and frequency-domain features

Domain Features

Time domain Max, Min, Mean, Median, Standard deviation, Variance, Mean crossing rate Jitter, Skewness, Kurtosis

Frequency domain Energy, Entropy
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4.5.1 Fusion levels

Different fusion levels can be applied to the behavioral

biometric framework modules to enhance the robustness

and accuracy of authentication systems. These fusion levels

include the followings [41, 42]:

• Sensor-level fusion: involves combining the raw data

from different sensors for the same biometric traits.

This approach integrates the initial data streams,

allowing for a more comprehensive capture of the

biometric signals before any feature extraction occurs.

• Feature-level fusion: merges different feature vectors

extracted from multiple biometric modalities into a

single new feature vector. By integrating features at this

level, the system can utilize a richer set of character-

istics derived from the raw sensor data, enhancing the

discriminatory power of the authentication process.

• Score-level fusion: applies the combination based on

the matching scores generated by each authentication

modality. Each biometric modality produces a score

indicating the likelihood of a match, and these scores

are then combined to improve the overall authentication

accuracy.

• Decision-level fusion: involves combining the decisions

made by multiple classifiers to make the final authen-

tication decision. This method aggregates the outputs of

various classifiers, leveraging the strengths of each to

achieve a more reliable and robust final decision.

The first and second levels of fusion classified as fusion

before matching, but the third and fourth levels classified

as fusion after matching. The main distinction between

them is that the fusion after matching has abstract summary

about the input pattern and easier to access and combine

than the fusion before matching. Consequently, after

matching fusion is the most common used fusion in mul-

timodal biometric systems [41]. By employing these dif-

ferent fusion levels, a behavioral biometric framework can

significantly enhance its performance, leveraging the

strengths of various data integration strategies to improve

both security and user experience.

4.5.2 Feature-level fusion

In our multimodal biometric framework, we implemented

feature-level fusion to enhance the accuracy and robustness

of the system. Feature-level fusion involves combining

feature vectors extracted from different biometric modali-

ties into a single, comprehensive feature vector. This

approach is more effective than matching score or deci-

sion-level fusion because it retains richer information from

the input biometric data [43].

In our study, we extracted three distinct feature vectors

from each behavioral profile, specifically from gesture

features, keystroke features, and sensor features. To

leverage the complementary information provided by these

different modalities, we employed multiple fusion strate-

gies. We conducted fusion in three binary combinations,

where we combined pairs of feature vectors (e.g., gesture

with keystroke, gesture with sensor, and keystroke with

sensor). Additionally, we performed a trinary fusion, which

involved combining all three feature vectors (gesture,

keystroke, and sensor) into a single, unified feature vector.

Let F1;F2 and F3 represent the feature vectors extracted

from different biometric modalities, such as gesture fea-

tures, keystroke features, and sensor features, respectively.

These feature vectors can be defined as:

F1 ¼ f11 f12 . . . f1p½ �T ; F2 ¼ f21 f22 . . . f2q½ �T ;
F3 ¼ f31 f32 . . . f3r½ �T

ð6Þ

where p, q, and r are the dimensions of the respective

feature vectors. One of the simplest and most common

methods of feature-level fusion is linear vector concate-

nation [44]. In this approach, the feature vectors from

different modalities are concatenated to form a single,

unified feature vector:

1. Binary Combination:

• Gesture and keystroke feature fusion:

F12 ¼ FT
1 FT

2

� �T¼ f11 f12 . . . f1p f21 f22 . . . f2q½ �T

ð7Þ

• Gesture and sensor feature fusion:

Fig. 4 Feature-level fusion on

behavioral profiling traits
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F13 ¼ FT
1 FT

3

� �T¼ f11 f12 . . . f1p f31 f32 . . . f3r½ �T

ð8Þ

• Keystroke and sensor feature fusion:

F23 ¼ FT
2 FT

3

� �T¼ f21 f22 . . . f2q f31 f32 . . . f3r½ �T

ð9Þ

2. Trinary Combination:

F123 ¼ FT
1 FT

2 FT
3

� �T¼

f11

f12

. . .

f1p

f21

f22

. . .

f2q

f31

f32

. . .

f3r

2
666666666666666666666664

3
777777777777777777777775

ð10Þ

In this formulation, F12;F13;F23 and F123 are the fused

feature vectors that combine the information from the

selected modalities. The fused vector retains the compre-

hensive information from all contributing modalities, pro-

viding a more discriminative representation of the

biometric traits.

This method of feature fusion aims to create a more

discriminative representation of the user’s behavior by

integrating diverse data sources. By addressing challenges

such as data diversity and feature incompatibility, and by

applying normalization techniques, we ensured that the

fused feature vectors were consistent and ready for further

processing. The resulting fused vectors were then used to

improve the detection accuracy of our multimodal bio-

metric system, supporting real-time authentication and

robust user recognition.

4.5.3 Decision-level fusion

In our multimodal biometric system, decision-level fusion

plays a critical role in enhancing the accuracy and relia-

bility of the authentication process. Unlike feature-level

fusion, where features are combined before classification,

decision-level fusion involves aggregating the decisions

made by classifiers for each biometric modality. This

approach leverages the strengths of each modality while

mitigating the weaknesses that may arise from relying on a

single source of biometric data.

As illustrated in Fig. 5, in this scenario, we combine the

local decisions obtained from each modality, such as ges-

ture, keystroke, and sensor features. The combination is

performed using the majority voting method. We use this

method because (i) it is the simplest combination method to

implement, and (ii) it is effective as more complicated

schemes perform to improving the results.

The majority voting method operates by evaluating the

local decisions dij generated by each modality’s classifier.

Each classifier outputs a decision that either accepts or

rejects the authentication attempt. The final decision D is

determined by taking the plurality vote of these local

decisions [45]:

D ¼ *maxCj

XL

i¼1

dij ð11Þ

where j represents the class dimension, typically between 0

and 1 (i.e., accept or reject) and i represents the number of

modalities, with L being the total number of modalities

involved.

Our goal of combining different modalities is to improve

the detection accuracy, given that every modality has a

unique mechanism to make a decision. One modality could

fail to classify a sample but others not. By observing the

complementarity of decisions across modalities, we are

able to achieve a more reliable and accurate overall

decision [45, 46].

Instead of relying on a single modality for authentica-

tion, decision-level fusion ensures that the system benefits

from the combined expertise of multiple classifiers. Each

classifier is cross-validated and trained independently, and

the final authentication decision is made by applying the

majority voting method to the local decisions. This

approach significantly boosts the performance of the

authentication process, providing a robust mechanism for

user verification.

5 M2auth evaluation results

Evaluating the multimodal behavioral biometric frame-

work is a challenging task, due to (i) the diversity of per-

formance measures under various conditions [41], and (ii)

the lack of performance evaluations standards in the liter-

ature, where the majority of the existing standards are

established to evaluate single traditional biometric modal-

ity [47, 48]. We perform the evaluation of M2auth based

on a matching performance framework.
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5.1 Dataset

We formulated a dataset from the collected data of

M2auth as described in Sect. 4.2. The dataset contains

three different feature vectors extracted from gesture,

keystroke, and accelerometer as described in Sects. 4.4.1,

4.4.2 and 4.4.3. The dataset contains more than 5.5M

events collected in the wild from 52 participants who used

the phones for 30 days or more in unconstrained environ-

ment as shown in Table 1. Participants used the smart-

phones without any intervention; consequently, all

collected events reflect the behavior of using the smart-

phone in a real-world manner.

5.2 Matching model

Any biometric systems can use two types of matching:

verification and identification [41, 48]. Both are different

and depend on the context of application that the biometric

system will operate on. Consequently, the evaluation is

different based on the chosen one.

In the verification process, which is a one-to-one

matching scenario, the model validates the claimed bio-

metric identity by comparing it with the stored template,

where the matching algorithm either accepts or rejects the

claimed identity using a matching score and a predefined

threshold.

In the identification process, which involves one-to-

many matching, the model recognizes the presented bio-

metric identity by comparing it with all stored templates

for each user. The matching algorithm estimates the iden-

tity of the sample by selecting the highest match score from

the multiple matching scores generated, and this decision is

made based on a predefined threshold.

In this study, we assessed the M2auth framework in a

single-user context, where each mobile device is exclu-

sively used by one user. Our primary objective is to thwart

unauthorized access by distinguishing between the legiti-

mate owner and potential impostors, effectively framing

this as a binary-class classification problem. As such, our

evaluation centers on the matching system within the ver-

ification mode.

5.3 Classification model

Verification is essentially a binary classification task. For

every user, denoted as ui, the classifier computes an

authentication score, denoted as pðuiÞ, which falls within

the range of (0, 1). This score reflects the likelihood of ui
being a valid user, and it is determined in relation to a

predefined threshold, a, also within the range (0, 1). To

execute this classification, we employed a one-vs-all

scheme, where data from other users was utilized to rep-

resent impostors in the evaluation.

A random forest (RF) classifier [49] was used, and it is

one of the best performed classifiers in the literature of

biometric authentication [25]. RF operates through an

ensemble classification approach, wherein it fits decision

tree classifiers on various subsamples of the dataset. Sub-

sequently, it aggregates the predictions from these sub-

classifiers through averaging, thereby enhancing accuracy

and mitigating overfitting. The selection of RF was based

on its superior performance relative to other classifiers in

the existing literature.

5.4 Validation model

For classifier evaluation, we partitioned the dataset into

training set and testing set (i.e., unseen data). Then we

performed tenfold cross-validation where the data is divi-

ded into 10 subsets. One subset is used as a test set, and the

other 9 subsets are used as a training set. This procedure is

repeated 10 times. Then the mean error across all folds is

calculated. This was used with the grid search to determine

the best hyper-parameters. Table 3 shows the search space

for random forest hyper-parameters in addition to the

Fig. 5 The fusion was applied

on the decision level on multiple

biometrics traits (i.e., we have

three biometric traits, gesture,

keystrokes and behavioral

profile)

Table 3 Search Space for hyper-parameters

Parameter Search space Optimal value

# of estimators 10, 50, 100, 200 200

Tree depth 2, 4, 5, 6, 7, 8 8

# of features sqrt, log2 sqrt
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determined optimal value of each parameter. These values

were used to set up the model for testing.

5.5 Performance metrics

To evaluate the behavioral biometric performance, we used

receiver operating characteristic (ROC) curve. It shows the

trade-off between the true accept rate (TAR) and the false

accept rate (FAR) at various threshold. Also, we used the

area under the curve (AUC) to measure the quality of the

model as an alternative to the accuracy, which is useful

even when there is an imbalanced dataset (i.e., one of the

classes dominates). When the TAR equal to one and FAR

equal to zero, the performance of the model that measured

by AUC will equal to 100% and the plot will hit the top left

corner.

5.6 Experimental results

We present the performance of each biometric modality

individually followed by the results of the fusion scenarios

on feature level and decision level.

5.6.1 Biometric modalities

In our experiment, we measured the performance of each

authentication modality using the AUC and EER metrics.

We cross-validated and trained a RF classifier for each

participant. The experimental results were conducted on a

test set and averaged over all participants. Figure 6 shows

ROC curves for each authentication modality. The best

performed one is keystroke modality as shown in Fig. 6b,

and its AUC reached 97.59% with an EER of 8.21%. This

indicates that the typing rhythm scenario could be con-

sidered as a strong behavioral biometric traits for authen-

ticating smartphone users. The extracted feature vector of

this modality contains highly discriminative features that

can differentiate between two identities. The flooding of

accelerometer sensory data that were used to train a RF

classifier achieved a reasonable accuracy with an AUC of

89.17% and EER of 19.83% as shown in Fig. 6d. Given

that these data were collected in the background without

any explicit interaction with the user, the smallest per-

formed one was the gesture modality, where the result of

the developed classifier that was trained on feature set

extracted from the touch gesture was 85.29% and 23.07%

for AUC and EER, respectively, as shown in Fig. 6a.

Table 4 presents a summary of all results.

Fig. 6 Performance of

authentication modalities. ROC

Analysis plots TAR against

FAR over different thresholds

using RF classifier for gesture,

keystroke, and accelerometer
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5.6.2 Feature-level fusion results

We extracted three feature vectors from each behavioral

profile, as shown in Sects. 4.4.1, 4.4.2, and 4.4.3. We fused

these vectors together in three binary combination, in

addition to a trinary one. The first combination was done

by adding the gesture features with the keystroke features

together, let us call it (G ? K) and it contained 41 features.

Cross-validation and training were conducted on an RF

classifier. The evaluation was done on unseen data, the test

set, and the performance of the classifier was 96.77% and

9.51% for AUC and EER, respectively, as shown in

Fig. 7a. This combination has improved the performance

compared to the gesture unimodal one, whose AUC was

85.29%, and EER was 23.07%. On the other hand, if we

compare this combination with the gesture and keystroke,

its performance was slightly smaller than the performance

of the keystroke unimodal alone, as shown in Table 4. This

means that adding the gesture features penalized the stroke

features and downgraded its performance from 97.59 to

96.77% as shown in Figs. 6b and 7a, respectively.

The second combination was conducted by adding the

features of gesture and accelerometer modalities (G ? A).

The combined feature vector contained 70 features, and an

RF classifier was cross-validated and trained. The evalua-

tion result of this combination was 92.47% and 15.86% for

AUC and EER, respectively. Even though the performance

of (G ? A) is worse than the performance of (G ? K), its

performance is better than the performance of each indi-

vidual modality alone, where the AUC of gesture was

85.29% and AUC of accelerometer was 89.17%. This

means the fusion of (G ? A) has improved the performance

by 7.18% compared to the unimodal gesture modality and

by 3.3% compared to the unimodal accelerometer

modality.

The last binary combination was between the keystroke

features and the accelerometer features (K ? A). This

fusion formulated a feature vector of 67 features and the

performance result of this fusion is similar to the perfor-

mance of (G ? K), which is 96.77% and 9.58% for AUC

and EER, respectively. Hence, we can see that adding the

keystroke features has improved the accelerometer

Table 4 Results for all modalities using RF classifier

Gesture Keystrokes Accelerometer

AUC (%) 85.29 97.59 89.17

EER (%) 23.07 8.21 19.83

Fig. 7 Performance of

authentication modalities. ROC

Analysis plots TAR against

FAR over different thresholds

using RF classifier for gesture,

keystroke, accelerometer, and

majority voting
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modality performance by 7.6%. Fusing all features of all

modalities together helped us to formulate a feature vector

of 89 features. Similarly, we cross-validated and trained an

RF classifier; then, we evaluated this classifier on a com-

bined test set of unseen data. The performance of this

combination (G ? K ? A) was 96.56% and 9.48% for

AUC and EER, which is similar to all other combination

that contained the keystroke features. Tables 4 and 5 show

a summary of individual and fused results.

5.6.3 Decision-level fusion results

Instead of relying on only one modality to perform the

authentication process, we use the decision fusion scenario

as described in Sect. 4.5.3 to make the authentication. So,

the classifier of each modality is cross-validated and

trained. A decision fusion scenario is applied to boost the

performance of the authentication process. The decision of

the authentication was conducted by applying the majority

voting method on the local decision of each modality. This

fusion scenario increased the performance of the authen-

tication to reach 99.98% for AUC with 0.84% EER. Fig-

ure 7 shows the fusion results for decision level and feature

level, as you can see the magenta line that represents the

performance of the decision fusion which outperform all

other feature fusion scenarios. In comparison with the

unimodal ones, the decision fusion performance has

increased the results by 14.69%, 10.81%, and 2.39% for

gesture, accelerometer and keystroke modalities, respec-

tively. This perfect result was achieved based on the

hypothesis, if one modality failed to classify a sample,

others may not. We leveraged the notion of complemen-

tarity to lead us to this perfect decision.

6 Discussion

M2auth provides a high accurate detection rate to differ-

entiate between legitimate user and imposters as shown in

the previous section. In this section, we discuss different

aspects of the framework, in terms of datasets, extracted

features, and comparison with other systems.

6.1 Real-world datasets

The majority of the state-of-the-art (e.g., 89% of experi-

ments reported by Teh et al. [50]) behavioral biometric

systems that achieve very low error rates are tested on

samples acquired under controlled conditions with cooper-

ative users, which tends to be far from the real-world sce-

narios [50, 51]. Some of these datasets were conducted in a

laboratory study [52, 53], and others used some specific

applications [23, 54–56]. Our dataset was collected in

unconstrained environment without any form of interven-

tion. Remarkably, we did not confine the data collection to

specific applications; instead, we instrumented the Android

OS, granting users complete freedom to install and cus-

tomize their devices as they saw fit. This approach ensured

that our dataset encapsulates authentic user behavior across a

diverse range of application contexts, rendering it highly

realistic and representative of real-world usage scenarios.

6.2 The influence of feature vector

Feature engineering is a challenging process and takes a lot

of time. It requires a comprehensive analysis of the raw

data and a solid background in the problem domain. The

most common proposed behavioral authentication methods

were built using simple features that are not strongly cor-

related with the users [51]. On the other hand, some

methods used large feature sets such as in [23], but

unfortunately, the extraction process takes a lot of time

because of the high correlation in the generated feature set.

In this paper, we conducted a comprehensive analysis to

extract and select an informative and independent feature

vector as described in Sect. 4.4.

6.3 User experience and usability

The implementation of M2auth brings significant

advancements in security through multimodal behavioral

biometric authentication, but it also presents certain user

experience challenges that need to be addressed to ensure

widespread adoption. One key usability challenge is the

potential learning curve for users unfamiliar with multi-

modal systems. Additionally, the continuous nature of data

collection may be perceived as intrusive, raising concerns

about privacy. Response time is another critical factor; any

delays in the authentication process could frustrate users

Table 5 Results for fusion

modalities using RF classifier
Feature fusion Decision fusion

G ? K G ? A K ? A G ? K ? A Majority

AUC (%) 96.77 92.47 96.77 96.56 99.98

EER (%) 9.51 15.86 9.58 9.48 0.84
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and hinder adoption. Moreover, compatibility across a

wide range of devices and operating systems is essential to

ensure a seamless user experience.

To mitigate these challenges, several strategies can be

employed. First, an effective onboarding process, including

tutorials and user education materials, can help users

quickly become comfortable with the system. Offering

customization options allows users to tailor the frequency

and types of biometric checks to their preferences, reducing

the perceived intrusiveness of the system. Ensuring that

M2auth is optimized for speed and minimal impact on

device performance is also crucial for maintaining a

smooth user experience. Broad device compatibility can be

achieved through extensive testing and adaptation, ensur-

ing that all users have a consistent experience.

To further enhance user acceptance and adoption, it is

important to emphasize strong privacy protections, such as

data encryption and minimal data retention. Implementing

feedback mechanisms will allow users to report their

experiences and suggest improvements, fostering a sense of

involvement and trust.

M2auth offers robust security benefits, and addressing

usability challenges and actively improving the user

experience are critical for ensuring its acceptance and

adoption. By focusing on user education, customization,

performance optimization, and privacy, M2auth can

achieve a balance between security and usability, leading

to broader adoption across diverse user groups.

The main goal of M2auth is to accept the benign and

reject the imposter. The problem lies when the framework

reject a valid user (i.e., false rejection) raising a usability

issue or incorrectly accept an imposter (i.e., false accep-

tance) raising a security issue. The decision-level fusion

did a great job in decreases these errors as shown in Fig. 7

and Table 5. Moreover, to address these issues, we avoid

using all-or-nothing scheme that simply accepts or rejects a

user, as this approach tends to reduce usability for the

users [57]. We can use a continuous trust score to

authenticate users based on the context-aware applica-

tions [58]. For instance, in case of security, we can allow

access to a banking app with a very high trust score (i.e.,

decrease FAR and increases the security). On the other

hand, for usability, we can allow access, might be a game

app, with a low trust score (i.e., decreases FRR and

increases the usability).

6.4 Comparative analysis

Table 6 presents a performance comparison of M2auth with

several state-of-the-art benchmark models in the field of

behavioral biometric authentication. This comparison high-

lights the effectiveness of different authentication methods

across various modalities, including gestures, keystrokes, and

accelerometer data, as well as their fusion results.

BehavePassDB [22], which uses an LSTM RNN model,

shows moderate performance with an AUC of 87.20% in

the fusion of gesture, keystroke, and accelerometer data.

However, its individual modality accuracies reached

73.22% for gestures, 57.48% for keystrokes, and 66.23%

for accelerometer data, indicate a limitation in handling the

complexity of multimodal biometric data.

MMauth [16] employs a deep learning-based support

vector data description (DeSVDD) algorithm, focusing on

one-class learning, but reports an EER of 14.9% without

providing detailed modality-specific accuracy metrics. This

suggests challenges in achieving high accuracy and low

error rates, possibly due to the limitations inherent in one-

class learning models.

IncreAuth [11] uses a gradient boosting decision tree

supported by a neural network (GBDTNN) model,

achieving a high overall accuracy (ACC) of 95.96% in its

fusion results. However, the lack of specific performance

data for individual modalities limits a detailed comparison.

SBAS (swipe-based authentication system) [59] relies

on random forest (RF) and support vector machine (SVM)

classifiers, achieving an AUC of 96.9% through the fusion

of swipe data. Although this shows strong performance, it

does not incorporate other modalities such as keystrokes or

accelerometer data, which could enhance overall accuracy.

BioGamesAuth [60] utilizes LSTM and MLP models to

combine touch gesture and keystroke dynamics, achieving

an accuracy of 98.3% in its best fusion scenario with MLP.

This high accuracy reflects the system’s effectiveness, par-

ticularly in keystroke dynamics, where it records an accu-

racy of 97.17%. However, the absence of accelerometer data

limits its ability to fully capture diverse user behaviors.

Table 6 Performance

comparison of M2auth with

other benchmark models

Model Method Gesture Keystroke Accelerometer Fusion

BehavePassDB [22] LSTM RNN 73.22 57.48 66.23 AUC: 87.20

MMauth [16] DeSVDD – – – EER: 14.9

IncreAuth [11] GBDTNN – – – ACC: 95.96

SBAS [59] RF, SVM – – – AUC: 96.9

BioGamesAuth [60] LSTM, MLP 77.5 97.17 – ACC: 98.3

M2auth (AUC) RF 85.29 97.59 89.17 AUC: 99.98

Neural Computing and Applications

123



In comparison, M2auth significantly outperforms these

models. It achieves an AUC of 85.29% for gesture-based

authentication, 97.59% for keystroke dynamics, and

89.17% for accelerometer data. Most notably, M2auth

excels in the fusion of all modalities, reaching an impres-

sive AUC of 99.98%. This outstanding performance is

largely attributed to the high-quality data that M2auth

leverages, which accurately reflects real-world user

behavior. M2auth’s dataset is comprehensive, capturing a

wide range of user interactions in diverse scenarios,

ensuring that the behavioral biometric traits it extracts are

not only accurate but also representative of natural user

engagement with their devices. In Table 6, the bold values

indicate M2auth’s performance, emphasizing its results

across different modalities and fusion scenarios to show-

case the method’s superior accuracy and effectiveness.

M2auth’s advanced multimodal integration and its

superior fusion performance position it as a leading solu-

tion in behavioral biometric authentication. Compared to

the other benchmark models, M2auth offers enhanced

security and accuracy, making it an ideal choice for secure

and user-friendly authentication in real-world applications.

This analysis highlights the importance of a comprehensive

multimodal approach, particularly in achieving high levels

of performance in behavioral biometric systems.

7 Conclusions and future work

We studied how the combination of multiple authentication

modalities optimize the authentication accuracy and

addressed some problems that attached with the unimodal

systems such as noisy data. We conducted a large-scale

field study on Android phone users where we collected

more than 100 GB of actual user behavioral data. We

developed a multimodal behavioral biometric authentica-

tion framework M2auth to authenticate smartphone users

over different contexts. We developed three modalities,

gesture modality, keystroke modality, and behavioral pro-

filing modality. Our evaluation results show that M2-

auth framework outperforms the single-modal systems in

terms of the error rate and the accuracy.

In the future, we are looking forward to develop and

evaluate other modalities by leveraging more sensors, in

addition to evaluating the framework in a real-time manner

and measuring its usability.
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