
ORIGINAL ARTICLE

Hybrid-Mode tracker with online SA-LSTM updater

Hongsheng Zheng1 • Yun Gao1 • Yaqing Hu1 • Xuejie Zhang1

Received: 28 February 2023 / Accepted: 29 July 2024
� The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2024

Abstract
The backbone network and target template are pivotal factors influencing the performance of Siamese trackers. However,

traditional approaches encounter challenges in eliminating local redundancy and establishing global dependencies when

learning visual data representations. While convolutional neural networks (CNNs) and vision transformers (ViTs) are

commonly employed as backbones in Siamese-based trackers, each primarily addresses only one of these challenges.

Furthermore, tracking is a dynamic process. Nonetheless, in many Siamese trackers, solely a fixed initial template is

employed to facilitate target state matching. This approach often proves inadequate for effectively handling scenes

characterized by target deformation, occlusion, and fast motion. In this paper, we propose a Hybrid-Mode Siamese tracker

featuring an online SA-LSTM updater. Distinct learning operators are tailored to exploit characteristics at different depth

levels of the backbone, integrating convolution and transformers to form a Hybrid-Mode backbone. This backbone

efficiently learns global dependencies among input tokens while minimizing redundant computations in local domains,

enhancing feature richness for target tracking. The online SA-LSTM updater comprehensively integrates spatial–temporal

context during tracking, producing dynamic template features with enhanced representations of target appearance.

Extensive experiments across multiple benchmark datasets, including GOT-10K, LaSOT, TrackingNet, OTB-100,

UAV123, and NFS, demonstrate that the proposed method achieves outstanding performance, running at 35 FPS on a

single GPU.
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1 Introduction

Visual object tracking [1–3], a subfield of computer vision,

holds significant importance across various real-world

applications, thus garnering substantial attention and

research efforts. In recent years, owing to advancements in

downstream tasks like object recognition and detection, the

field of object tracking has witnessed notable progress.

Nonetheless, despite decades of development, it continues

to encounter numerous challenges that necessitate resolu-

tion. These challenges include occlusion, blur, background

clutter, illumination changes, scale variations, target

deformation, and fast motion.

Trackers based on the Siamese architecture (SiamFC

[4], SiamFC?? [5], SiamOA [6], ESiamFC [7], etc.) are

prevailing methods to solve the visual tracking problem

recently. Typically, the Siamese tracker comprises two

primary branches: the template branch and the search

branch. The template branch initializes the target state,

followed by the selection of the candidate target with the

highest similarity to this initial state via similarity learning

in the search branch. This similarity-matching process

relies on target-related features extracted from the back-

bone architecture employed for both input branches. Most

of the current backbones use convolutional neural networks

such as ResNet50 [8], VGGNet [9], and GoogLeNet [10].

In these methodologies, the convolution operation assumes

a critical role in extracting feature representations for both
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branches through the convolution kernel. However, the

convolution operation encounters limitations stemming

from the size of its receptive field during the learning

process, restricting its capacity to employ a fixed kernel

view for localized modeling of the input image. To

establish global dependencies within the feature represen-

tations, continual deepening of the depth becomes imper-

ative, albeit this augmentation poses challenges in terms of

training complexity.

Recently, transformer [11] has exhibited significant

potential in computer vision (ViTs [12], Swin-T [13], and

PVT [14]), overcoming the limitations of traditional con-

volutions by employing an attention mechanism to capture

global dependencies. The transformer backbone initiates

from shallow layers to model the global representation of

input image patches using attention with a broader view

field compared to convolutions. However, it tends to be

more computationally intensive (O(N2C)) than CNNs,

cannot handle multiscale features [15], and demands more

training data to achieve desired outcomes. References

[16, 17] have highlighted that visual data exhibit certain

local domain similarities in the shallow layers of the net-

work. At this stage, utilizing attention for global feature

learning from shallow layers may result in excessive

redundant similarity comparisons.

On the flip side, achieving precise tracking necessitates

correlating target information across different patches to

model prolonged global dependencies effectively. There-

fore, in pursuit of more discriminative target appearance

features, we advocate for the design of distinct feature

learning operators tailored to the characteristics of various

depth levels within the backbone network. Specifically,

CNNs and transformer exhibit complementary attributes

and can be amalgamated into a novel backbone, enabling

the network to concurrently acquire local representations

between inputs and establish global dependencies more

efficiently. This integration can be seamlessly realized

through a cascading approach, forming a Hybrid-Mode

network. In the shallow layers of the backbone, detailed

target information is predominantly learned in the local

domain solely through convolution, thereby extracting

local dependencies while minimizing unnecessary ineffi-

ciencies and redundant comparisons to the fullest extent

possible. As the network depth increases and the image

resolution diminishes, leveraging the self-attention mech-

anism inherent in transformers becomes instrumental for

acquiring deeper global semantic information.

On the other hand, during the tracking process, using the

fixed initial template of the first frame may not accurately

provide reliable information about the current target due to

the deformation, occlusion, fast motion, similar interfer-

ence, and other factors of the appearance of the object. In

this case, it is particularly important to obtain more status

information about the target through template updating.

However, most current Siamese-based trackers either do

not perform template updates [18–23] or use simple

replacement updates [24–26] or linear updates [27].

The strategy of not updating the template can lead to

tracking failures as it fails to adapt to target changes. The

replacement update method, directly substituting the tem-

plate with an additional frame, overlooks the learning of

target features in intermediate states and disregards timing

information during tracking. While the linear cumulative

update approach preserves target features from previous

frames to some extent, it also accumulates error informa-

tion, leading to an overemphasis on recent frame content

and eventual loss of access to the initial template, exacer-

bating tracking drift.

To address these limitations, we propose the online SA-

LSTM updater, a template update method utilizing a self-

attention LSTM network to temporally and spatially model

historical feature sequences. This method generates an

online template with a broader range of target appearances,

operating independently and with minimal impact on

tracking timeliness.

We integrate these advancements into a unified tracker

and conduct extensive experimental validations across

multiple benchmark datasets. The results underscore the

superiority of our proposed method in both accuracy and

speed, achieving real-time performance on a single GPU

device. Figure 1 provides a qualitative comparison of our

tracking method with four other prominent trackers using

sequences from the OTB-100 dataset (Brid2, Diving,

MotorRolling, and Skating2). Our approach consistently

outperforms competing methods, delivering more precise

results and effectively managing challenges such as fast

motion, deformation, out-of-plane rotation, and scale

changes.

The main contributions of this paper are summarized as

follows:

• We introduce a novel Hybrid-Mode backbone designed

for feature extraction in Siamese-based trackers (sec-

tion 3.2). This backbone seamlessly integrates CNNs

and transformer, offering the capability to learn global

dependencies from inputs and mitigate local redun-

dancy, all while minimizing computational costs.

• We propose an innovative template update method

termed the online SA-LSTM updater (section 3.3). It

employs SA-LSTM to model the spatiotemporal

dynamics features over time, thereby generating an

online template that more closely resembles the target

when updates are necessary. The entire update process

operates independently online, ensuring minimal dis-

ruption to the timeliness of tracking.
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• Extensive experiments demonstrate that the proposed

tracker can achieve competitive results on multiple

benchmark datasets, including GOT-10K [28], LaSOT

[29], TrackingNet [30], OTB-100 [31], UAV123 [32],

and NFS [33], at a speed of 35 FPS on a single GPU

(Sect. 4).

2 Related works

2.1 Siamese tracker

Recently, Siamese-based trackers have become increas-

ingly popular in the tracking field due to their excellent

performance. SINT [34] is one of the pioneering works

focused on the Siamese structure in the tracking task. It

regards the target information in the first frame as a tem-

plate and learns a matching function for multiple candidate

target information and templates in each subsequent frame.

Then, it selects the highest score areas as the target by a

matching calculation. SiamFC [4] treats tracking as a

similarity learning problem. It calculates the similarity

between all candidate positions in the search and template

images by a full convolution and chooses the candidate

with the greatest similarity to the initial target. SiamRPN

[35] adds a region proposal network to Siamese trackers,

which can effectively solve the situation that SiamFC

cannot adapt to the change of target scale. SiamRPN??

[36] utilizes a position-balanced sampling strategy and

stacks multiple region proposal network (RPN) layers to

address the challenges of the target translation invariance.

SiamFC?? [5] proposes four tracking guidelines based

on SiamFC. It argues that tracking should be regarded as

classification and position estimation tasks. DaSimRPN

[37] adds an interferer sensing system based on SiamRPN,

which can effectively solve similar interferences in the

tracking process. SNL-RPN [38] takes full advantage of the

language description about the target and adds it to

SiamRPN?? using natural language processing. ATOM

(d) Skating2
OURS STARK-ST50 Keep_Track SiamBAN DaSiamRPNOURS STARK-ST50 Keep_Track SiamBAN DaSiamRPN

(a) Bird2(a) Bird2

(b) Diving(b) Diving

(c) MotorRolling(c) MotorRolling

Fig. 1 Qualitative results analysis of the proposed method and four other popular trackers (STARK-ST50, Keep_Track, SiamBAN, and

DaSiamRPN) on OTB-100 dataset
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[39] introduces IoU-Net in object detection into the

tracking field. ODTrack [40] presents a video tracking

pipeline that employs contextual relationships among video

frames in an online token propagation manner, enabling it

to handle video streams of varying lengths. EVPTrack [41]

leverages spatiotemporal markers for propagating infor-

mation between consecutive frames, diverging from tem-

plate updating. This strategy mitigates challenges regarding

when to update and circumvents hyperparameters related to

update policies.

2.2 Transformer tracker

Reference [11] first introduces the transformer to process

the natural language. Recently, ViTs [12] and others have

verified that it also has impressive capabilities in process-

ing visual data. TransT [22] designs ego-context augment

(ECA) and cross-feature augment (CFA) modules with an

attention mechanism. ECA and CFA can fuse features

between templates and search regions, and replace the

traditional operation using cross-correlation fusion.

STARK [24] proposes a transformer architecture for visual

tracking. It captures the global dependencies of temporal

and spatial information in video sequences by replacing the

original cross-correlation fusion network with an encoder–

decoder and adding a template update mechanism. TrSiam

and TrDiMP [42] divide the traditional transformer into

two parallel branches (encoder and decoder) that act on the

Siamese tracker and DCF tracker separately. The encoder

branch facilitates target templates through attention-based

feature augmentation, which facilitates the generation of

high-quality tracking models, while the decoder branch

simplifies the target search process by propagating tracking

cues from previous templates to the current frame.

UTT [43] develops a tracking framework using the

transformer for feature fusion, which unifies single-object

tracking and multi-object tracking tasks. Reference [44]

proposes a global transformer to encode object features in

all frames and use track query to group these encodings

into trajectories for tracking. Although these methods

proved the feature fusion processing capability of the

transformer in tracking tasks, they did not explore the

advantages it could bring to tracking in terms of feature

extraction. CiteTracker [45] enriches target modeling and

reasoning in tracking by establishing connections between

image and text descriptions. Its text generation module

converts image patches into descriptions that encompass

their respective categories and attributes. ARTrackV2 [46]

seamlessly integrates both localization and target appear-

ance analysis into the tracking process. This method can

concurrently simulate the trajectory of target motion while

capturing continuous changes in target appearance.

2.3 Tracker updating

Template updating can effectively tackle the challenges of

target deformation, occlusion, and rapid movement during

the tracking process. UpdateNet [27] introduces a convo-

lutional neural network to update the template. A new

template is obtained for prediction in the next frame by

performing convolutional modeling on the initial template,

the intermediate accumulated template, and the current

frame template. Reference [25] proposes using the LSTM

network to update the template. In this method, the LSTM

only sends control signals to the reading and writing of the

template pool and does not directly operate on the features.

LTMU [47] designs an offline-trained meta-learner to

decide when to update the model according to the changes

in the appearance, location, and classification confidence of

the target. AFAT [48] uses a quality prediction network,

which combines convolution and LSTM, to judge whether

the current needs to be updated. The starting point is

similar to LTMU and addresses the problem of when to

update rather than how to update. Reference [26] uses

reinforcement learning to determine whether to update the

template based on the quality of the predicted results, but it

only utilizes the simple replacement template. STARK [24]

provides more details of the target through dynamic

frames. During template updating execution, regions of the

current search frame surpassing a predetermined threshold

are delimited, and this delimited area substitutes the orig-

inal dynamic template.

3 The proposed method

3.1 Framework of proposed approach

In this section, we present the details of our proposed

tracker. As shown in Fig. 2, our tracker consists of four

components, Hybrid-Mode backbone, transformer fusion

module, prediction head, and online SA-LSTM updater. To

garner finer-grained intermediate state information amidst

target motion, we employ random sampling to obtain

additional dynamic frames. Both the initial frame and

additional dynamic frame constitute the shared input for

the template branch, while the search area is directed into

the search branch. The dynamic frame, initial frame, and

search region are concurrently fed into the Hybrid-Mode

backbone for feature extraction. This is described in

Sect. 3.2. The features extracted from the backbone

undergo concatenation before being inputted into a con-

ventional transformer [11] fusion module, facilitating the

learning of similarity between the search region and target

templates. Subsequently, a prediction head is employed for
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object classification and regression. Notably, the confi-

dence score produced by the classification head can serve

as a guiding metric for both the generation and refinement

processes of the online SA-LSTM template. For details of

the online template updater, see Sect. 3.3.

3.2 Hybrid-Mode backbone

The feature maps extracted by the backbone are the foun-

dation of tracking tasks. Although convolution-based neu-

ral networks (ResNet [8], AlexNet [49], etc.) have always

excelled in feature extraction, it is difficult for them to

obtain global dependencies in image information due to the

limitation of fixed kernel fields. Most methods address this

constraint by continuously stacking layers, which greatly

increases the training difficulty and parameters of the net-

work. Recently, transformer [11] has shown great potential

in visual tasks. The integration of an attention mechanism

facilitates the acquisition of enhanced feature representa-

tions and more profound semantic insights. Nevertheless,

the visual data often exhibit localized similarities within

the shallow layers of the network, thereby predisposing the

system to an influx of redundant computations if employ-

ing the full attention mechanism. Concurrently, it is nec-

essary to dynamically correlate targets across diverse

regions to establish long-term dependencies for effective

tracking purposes.

Convolutional operations inherently aggregate contex-

tual information within local, small neighborhoods, thereby

circumventing redundant global computations. Conversely,

self-attention mechanisms naturally establish associations

between distant targets by assessing global similarities.

Consequently, tailored feature learning operators ought to

be devised in alignment with the distinctive characteristics

of various levels of the backbone network. The convolu-

tional and self-attention can synergistically complement

each other. Specifically, convolutional layers excel at

capturing local similarities among input tokens, particu-

larly within the shallower backbone layers. However, as

the depth of the backbone increases, convolutional layers

may struggle to capture broader similarities and global

dependencies across tokens. At this time, we employ the

transformer with an attention mechanism to learn the

similarities among all inputs, fostering the establishment of

long-range dependencies within the deeper layers. Lever-

aging convolution in the shallow layers effectively miti-

gates numerous redundant computations and reduces the

output feature resolution. Consequently, the computational

overhead utilizing the transformer in the deeper layers is

also diminished. Hence, this well-designed architecture

achieves a commendable equilibrium between accuracy

and computational efficiency.

Hybrid architecture backbone networks (e.g., Uni-

Former [17]) have achieved good performance in other

downstream tasks such as image classification, object

detection, and instance segmentation.

Nevertheless, within these networks, the incorporation

of numerous transformer stages escalates computational

complexity, resulting in a significant reduction in the size

of the output feature map. However, the smaller feature

size is unsuitable for the accurate prediction of target

positions in tracking tasks. In response to these challenges

and the imperative to balance computational demands with

feature size requirements for tracking predictions within

the Siamese tracking framework, we devise a Hybrid-Mode

backbone network, drawing inspiration from [17].

Hybrid-Mode Backbone
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Fig. 2 Overview of the proposed framework encompasses several key

components: Hybrid-Mode backbone, transformer fusion module,

prediction head, and online SA-LSTM updater. In the Hybrid-Mode

backbone, DPE represents dynamic position embedding, and FFN

represents the feed-forward network. The local MHRA of the shallow

layers is implemented by pointwise convolution (PWConv) and

depthwise convolution (DWConv). The Global MHRA in the deep

layer is implemented through spatiotemporal self-attention
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This backbone consists of three stages, two convolu-

tional stages and only one transformer stage. As shown in

Fig. 3, there are three modules in each stage, including

dynamic position embedding (DPE), multi-head relation

aggregator (MHRA), and feed-forward network (FFN). In

MHRA, representation learning is performed on different

tokens by designing Local MHRA and Global MHRA.

Specifically, in the initial two stages, Local MHRA

employs pointwise convolution (PWConv) and depthwise

convolution (DWConv) to perform the representation

learning of the local target while concurrently mitigating

redundant comparisons. Subsequently, in the third stage,

Global MHRA employs spatiotemporal self-attention to

establish long-term dependencies across the input

sequence.

The image pairs are input into the backbone in a triplet

manner, which includes the initial frame: z0 2 R3�Hz�Wz ,

the dynamic frame: zt 2 R3�Hz�Wz , and the search region:

x 2 R3�Hx�Wx , where Hz, Wz Hx, and Wx represent the

height and width of the input image, respectively, and are

set to 256 simultaneously. We observe that adding a ran-

dom dynamic frame can provide more intermediate target

status features for online template update operation. The

feature maps output by the backbone are, respectively,

expressed as fz0
2 RC1�Hz

16
�Wz

16 , Tt 2 RC1�Hz
16
�Wz

16 and

fx 2 RC1�Hx
16
�Wx

16 , where C1 is the channel dimension. As

shown in formula (1), the features of the backbone output

are firstly concated and flattened in the spatial dimension to

obtain a new feature map, a 1�1 convolution is used to

reduce its channel dimension to C2, and the feature f 2
RC2�ð2�Hz

16
�Wz

16
þHx

16
�Wx

16
Þ is obtained. It can then be fed into the

fusion network for subsequent processing.

f ¼ Convðcatðfz0
; Tt; fxÞÞ ð1Þ

3.3 Online SA-LSTM updater

To address the problem that the initial template cannot

accurately express the current target state due to the rapid

movement, deformation, occlusion, and other factors. We

propose a novel template update method, named online

SA-LSTM updater. SA-LSTM is an LSTM network with a

self-attention mechanism. The time-series characteristic of

LSTM provides the probability for our updater to work in

an online style. Each dynamic frame can provide more

target intermediate state features for our updater. The self-

attention module aggregates and enhances features

extracted from the dynamic frames in the spatial dimen-

sion, augmenting the representation of Tt. These features

are then incrementally learned via the LSTM network,

forming an online template. This mechanism facilitates the

real-time update of the object template in the temporal

dimension, effectively leveraging temporal information

during tracking. In the update process, the conf_score

generated by the classification head serves as a crucial

metric, indicating the reliability of the current dynamic

template. In summary, the online SA-LSTM updater

encompasses two key functionalities: the online template

updater and the online template decision.

One is the online template updater. To make the online

template reflect the real appearance of the current target,

new information about the change in the target’s appear-

ance should be introduced dynamically. Therefore, we

introduce dynamic frames to provide more timing infor-

mation, and each dynamic frame can be randomly selected

in a set stationary sampling interval. The dynamic frame is

sent to the backbone for extracting features, and the feature

map can be output, which is denoted as Tt 2 RC1�Hz
16�

Wz
16 .

We propose a template update criterion based on the

conf_score, where judgments are made every n frames

within the sampling interval using predefined thresholds s.

If conf score[ shigh, it indicates a high degree of align-

ment between the current frame’s tracking result and the

target’s initial template, suggesting no immediate need for

updates. If slow � conf score� shigh, it indicates that while

the current results generally align with the initial template,

some noticeable changes have begun, potentially leading to

template offset if not promptly addressed. In such cases, Tt
is forwarded to the SA-LSTM network for online template

updating.

DWConv
Norm Norm Linear Linear

DPE
FFNSpatiotemporal Self-Attention

Global MHRA
Spatiotemporal Self-Attention

Global MHRA

PWConv-DWConv-PWConv

Local MHRA
PWConv-DWConv-PWConv

Local MHRA

Stage

Fig. 3 Details of the stages in Hybrid-Mode backbone. There are

three modules in each stage: DPE, MHRA, and FFN, which follow

the stage of [17]. In the first and second stages, Local MHRA (brown)

which is implemented by point-by-point convolution (PWConv) and

deep convolution (DWConv) is used to learn the local representations

of the target and eliminate redundant comparisons. In the third stage,

Global MHRA (blue) which is implemented by spatiotemporal self-

attention is used to build long-term dependencies

Neural Computing and Applications

123



As depicted in Fig. 4, the SA-LSTM module takes three

inputs, Tt;Ht�1;Ct�1, and produces two outputs, Ht;Ct.

Here Ht�1 and Ct�1 denote the output and cell state of the

module at the previous time step, while Ht and Ct represent

the output and cell state at the current time step, respec-

tively. Further elucidation is provided below. Ht signifies

the template refined and augmented by SA-LSTM,

encapsulating reliable cues regarding the target’s historical

temporal and spatial dynamics.

The SA-LSTM network is designed to capture long-

distance dependencies across a broader spatial and tem-

poral range. We integrate the self-attention module into the

original LSTM network in a cascaded manner to construct

the SA-LSTM network. At each time step, the self-atten-

tion module selectively aggregates input features from all

locations by computing weighted sums and outputs the

features x̂t and Ĥt�1. These features are then fed into the

LSTM network for temporal information processing. The

LSTM network depicted in Fig. 4 comprises three gating

mechanisms: the forget gate ft, input gate it, and output

gate ot, regulating the cell state and output of the network

unit.

Firstly, the forget gate ft, activated by a sigmoid layer,

determines which information in x̂t and Ĥt�1 is retained,

effectively filtering out unimportant features. Subse-

quently, the input gate it, also activated by a sigmoid layer,

identifies the feature information requiring updates. A new

candidate value gt, generated by the tanh layer, is intro-

duced to the current network as a potential addition to the

cell state. The old cell state Ct�1 is then updated by mul-

tiplying it with ft to discard obsolete information and

adding it � gt as the new candidate value, adapting

according to the decision to update each state.

Finally, the model’s output is determined. The output

gate ot, processed through a sigmoid layer, provides the

initial output, which is then scaled between -1 and 1 using a

tanh layer. A dot product operation is performed between

the scaled Ct and the initial output, yielding the historical

accumulated feature Ht. Given the structural attributes of

LSTM, only the output Ht;Ct needs to be stored at each

time step. These operations are represented in formulas (2)-

(8), where SA denotes the self-attention module, cat

denotes channel concatenation, and bf , bi, bc, and bo rep-

resent biases.

x̂t ¼ SAðTtÞ; Ĥt�1 ¼ SAðHt�1Þ ð2Þ

ft ¼ rðWf � catðx̂t þ Ĥt�1Þ þ bf Þ ð3Þ

it ¼ rðWi � catðx̂t þ Ĥt�1Þ þ biÞ ð4Þ

gt ¼ tanhðWg � catðx̂t þ Ĥt�1Þ þ bcÞ ð5Þ

Ct ¼ ft � Ct�1 þ it � gt ð6Þ

ot ¼ rðWo � catðx̂t þ Ĥt�1Þ þ boÞ ð7Þ

Ht ¼ ot � tanhðCtÞ ð8Þ

The other is the online template decision. Tt and Ht toge-

ther make up the online template. In a sampling interval, if

conf scoregtsupdate, then dynamic frame features can

reflect the current state of the target, and Tt is used as the

online template.

If consecutive N frames exhibit conf score\supdate, it

signifies that neither the initial template nor the dynamic

frame feature adequately represents the current state of the

target. Consequently, the feature Ht, accumulated from

historical information, is utilized as the online template in

such instances.

tQtQ

· +

1tC

1tH 1tH 1tH tKtK

tKtK

tVtV

tTtTtT

1tH

txtx

C C C

C

· +

·

·

tanh tanh

SA-LSTM

: Element-Wise Product : Element-Wise Addition

: Duplication C : Channel Concat

tC

tH

Self-Attention

LSTM

tQ

tQ

tVtV

Fig. 4 Architecture of SA-

LSTM, consisting of self-

attention module and LSTM in a

cascaded manner. Self-attention

can enhance the aggregation of

feature sequences in space and

then hand it over to LSTM to

process the temporal

information of features
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3.4 Training loss

In the first stage of training, the regression head loss

function combines L1 and DIoU [50], and the classification

head uses binary cross entropy (BCE) as the loss function.

The update module training uses the linear weighting of L1

and L2 as the loss function. This is shown in formulas (9)–

(11):

Ldiou ¼ 1 � IOU þ q2ðbi; bi0Þ
c2

ð9Þ

Lreg ¼ kdiouLdiouðbi; bi0Þ þ kL1
L1ðbi; bi0Þ ð10Þ

Lupdate ¼ kL1
L1 þ kL2

L2 ð11Þ

where kdiou, kL1
, and kL2

are hyperparameters, IOU is the

intersection over union, and bi and b0i represent the ground-

truth bounding box and the predicted box, respectively.

qð�Þ is the Euclidean distance, and c represents the diagonal

length of the minimum outer matrix of bi,b
0
i. Compared

with GIoU [51], DIoU considers both the overlapping area

and the center distance between bi and b0i, and the con-

vergence faster in the case where bi waps b0i.

4 Experiments

4.1 Implementation details

Model Settings We train the Hybrid-Mode backbone based

on the pre-trained result of UniFormer-small [17], the

channel dimension C1 varies from 64 to 128 to 320, and C2

is set to 256. The MHA of each encoder and decoder layer

in the transformer fusion module uses 8 heads, and the

channel dimension is set to 256, while the hidden dimen-

sion of the FFN is equal to 2048. The regression head is a

fully convolutional network composed of five stacked

Conv-BN-ReLU layers, and the classification head is a

three-layer perceptron with 256 hidden units in each layer.

To keep the output of the SA-LSTM module and the

original input features in the same size, the attention hidden

layer dimension, LSTM hidden layer dimension, and out-

put layer dimension are all set to 320. The SA-LSTM is

organized into a three-layer architecture with the addition

of LayerNorm [52].

Training details Our tracker is trained on the server with a

single NVIDIA-RTX3090 GPU with Python 3.8. A total of

600 epochs are trained in two steps. The former step

requires 500 epochs to train the first three components. The

latter only trains the online SA-LSTM updater and freezes

the parameters of the first three parts. Before the image pair

is input to the backbone, the size of the search region and

the template branch is processed into [320�320] and

[128�128], respectively. In the first step, AdamW is used

as the optimizer, and the weight decay rate and learning

rate are both set to 10�4, the weights kL1
and kdiou of the

loss function are 5 and 2, respectively, and the mini-batch

is 16. The learning rate drops by a factor of 10 after the

400th epoch. ADAM is used as the optimizer in the second

step, the learning rate is set to 10�3, kL1
and kL2

is both 1,

and the mini-batch is 32.

Testing details In the tracking stage, the sampling interval

of dynamic frames is set to 200, and n of the judgment

interval update is set to 20. Meanwhile, the thresholds N

and supdate for judging whether to update are set to 3 and

0.3, and the thresholds slow and shigh for controlling the

addition of online template generation and update are 0.5

and 0.7, respectively.

4.2 Results and comparisons

To verify the effectiveness of the proposed method, we

evaluate our tracker on multiple benchmark datasets GOT-

10K [28], LaSOT [29], TrackingNet [30], OTB-100 [31],

NFS [33], and UAV123 [32], and compared with current

state-of-the-art results.

GOT-10K. GOT-10K [28] is a large-scale dataset for short-

term object tracking, covering common real-world target

moving scenarios. It provides over 10,000 video sequences

for training and 180 sequences for testing. We evaluate the

performance according to the protocol proposed in [28].

The results are shown in Table 1, where our tracker

achieves an AO of 69.0%, SR0:5 of 78.3%, and SR0:75 of

64.3%. Compared to STARK-ST50 using ResNet50 as the

backbone and using updating with a simple replacement

strategy, they increased by 1.0%, 0.6%, and 2.0%,

respectively.

LaSOT. LaSOT [29] is a large-scale high-quality single-

object tracking benchmark dataset. It contains 1400 video

sequences, of which 1120 are used for training. The aver-

age number of frames per video sequence is over 2500

frames, which makes it more reflective of the actual per-

formance of the tracker. We test the tracker on its 280 test

sequences and obtain 67.3% AUC, 77.1% N.P, and 72.3%

Pre. Compared with DyTrack-Medi [53] and STARK-ST50

[24], gain effects of 0.8% and 0.8% are obtained in AUC,

respectively. The results are shown in Table 2 and Fig. 5.

The challenge attribute-based evaluation results of the

state-of-the-art six trackers on LaSOT are compared in

Fig. 6. Our method outperforms the others on several

properties, especially in partial occlusion, deformation,

motion blur, rotation, scale variation, and out-of-view.
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TrackingNet. TrackingNet [30] is a large-scale dataset

specifically designed for object tracking tasks that contain

more than 30,000 videos and more than 14 million anno-

tated boxes. We evaluate our tracker on 511 test sequences

provided by TrackingNet, and the results are listed in

Table 3. From the table, we can see that our tracker

achieves better performance than the others, with AUC

achieving 81.9% state-of-the-art results, which are 0.6%

and 0.5% higher than those of STARK-ST50 and TransT,

respectively.

OTB-100. OTB-100 [31] is a popular tracking bench-

mark consisting of 100 video sequences. We compare the

tracking results with 10 current state-of-the-art trackers:

KYS [56], DiMP [60], ATOM [39], SiamR-CNN [54],

SiamBAN [19], SiamRPN?? [36], PrDiMP [57], STARK-

ST50 [24], SiamFC?? [5], and CIResNet22 [61].

Figure 7 shows the precision and success plots of these

methods on the OTB-100. It can be seen that ours achieves

very competitive results, where the AUC achieves the best

result of 71.0%. When compared with STARK-ST50 and

SiamR-CNN, 2.5% and 1% gains were obtained,

Table 1 Comparison of results on GOT-10K

Ours STARK-

ST50 [24]

TransT

[22]

TrDiMP

[42]

DyTrack-

Medi [53]

TrSiam

[42]

Siam-RCNN

[54]

DCFST

[55]

KYS

[56]

PrDiMP

[57]

Ocean

[58]

AO (%) 69.0 68.0 67.1 67.1 66.2 66.0 64.9 63.8 63.6 63.4 61.1

SR0:5(%) 78.3 77.7 76.8 77.7 75.2 76.6 72.8 75.3 75.1 73.8 72.1

SR0:75(%) 64.3 62.3 60.9 58.3 59.4 57.1 59.7 49.8 51.5 54.3 47.3

(Bold: Top, Italic: Second, and Bold italic: Third)

Table 2 Comparison of results on LaSOT

Ours DyTrack-

Medi [53]

STARK-

ST50 [24]

TransT

[22]

Siam-

RCNN [54]

TrDiMP

[42]

TrSiam

[42]

PrDiMP

[57]

Auto-

Match [59]

DiMP

[60]

Ocean

[58]

AUC

(%)

67.3 66.5 66.4 64.9 64.8 63.9 62.9 59.9 58.2 57.9 52.6

N.Prec.

(%)

77.1 75.5 76.3 73.8 72.2 – – 68.8 – 65.0 –

Prec.

(%)

72.3 70.4 71.2 69.0 68.4 66.2 65.0 60.8 59.9 57.7 52.6

(Bold: Top, Italic: Second, and Bold italic: Third)

Fig. 5 Comparison of precision and success plots on LaSOT
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Fig. 6 AUC scores of all

attributes on LaSOT dataset

Table 3 Comparison of results on TrackingNet

Ours TransT

[22]

STARK-

ST50 [24]

Siam-

RCNN [54]

DyTrack-

Medi [53]

TrDiMP

[42]

TrSiam

[42]

PrDiMP

[57]

MAML

[62]

SiamFC??

[5]

DCFST

[55]

AUC

(%)

81.9 81.4 81.3 81.2 80.9 78.4 78.1 75.8 75.7 75.4 75.2

N.Prec.

(%)

86.8 86.7 86.1 85.4 85.5 83.3 82.9 81.6 82.2 80.0 80.0

Prec.

(%)

80.0 80.3 – 80.0 77.8 73.1 72.7 70.4 72.5 70.5 70.0

(Bold: Top, Italic: Second, and Bold italic: Third)

Fig. 7 Comparison of precision and success results on OTB-100
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respectively. In terms of precision, our tracker also out-

performs most others reaching 91.4%.

To further explore the ability of the tracker to deal with

various challenging scenarios, we also compared the per-

formance of the above trackers in different challenging

scenarios, and the results are shown in Fig. 8. The fig-

ure shows that our tracker achieves the best performance

under multiple challenges, including out-of-plane rotation,

fast motion, occlusion, out-of-view, and deformation, and

it is equally competitive in other challenges.

NFS. NFS [33] dataset also has 100 video sequences,

and each sequence contains fast-moving objects, which

better reflects the importance of template updating. From

Table 4, we can see that our tracker outperforms other

Fig. 8 Success plots for nine main challenge attributes on OTB-100 dataset

Table 4 Comparison of AUC (%) scores on NFS and UAV123 datasets

Ours TrDiMP

[42]

Keep-Track

[63]

TrSiam

[42]

TransT

[22]

Siam-RCNN

[54]

SiamRPN??

[36]

PrDiMP

[57]

SiamBAN

[19]

KYS

[56]

NFS 66.7 66.5 66.4 65.8 65.7 63.9 50.2 63.5 59.4 63.5

UAV123 69.6 67.5 69.7 67.4 69.1 64.9 61.3 68.0 63.1 –

(Bold: Top, Italic: Second, and Bold italic: Third)
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current methods, achieving a state-of-the-art result of

66.7% in AUC.

UVA123. UAV123 [32] is a video dataset collected by

drones, with a total of 123 sequences. The results of each

method are compared in Table 4. Our tracker achieves the

current second level with an AUC value of 69.6%.

4.3 Ablation study

In this section, we undertake a detailed exploration of the

distinct roles of each proposed component, accompanied

by an ablation analysis conducted on OTB-100 [31] and

GOT-10K [28].

First, we conduct a comparative analysis involving three

distinct backbone architectures for object tracking:

ResNet50 [8] with pure convolution, Swin Transformer

[13] with pure transformer, and our Hybrid-Mode network.

In this experiment, we choose STARK-S with ResNet50 as

the baseline, the 1st row in Table 5. Notably, solely the

backbone is adjusted across all trackers to ensure experi-

mental rigor and reliability; no template update mechanism

is added.

It can be seen that when replacing the convolutional

backbone with Swin-T in the 2nd row, the performance is

improved to some extent on both datasets, where AUC

increased by 0.2% on OTB-100 and AO also increased by

0.2% on GOT-10K. The attention mechanism facilitates

Table 5 Ablation experiments with different types of backbones on

OTB-100 and GOT-10K

Backbone OTB-100 GOT-10K Params(M#)

AUC Pre AO SR0:5 SR0:75

ResNet50 68.3 88.9 67.2 76.1 61.2 23.3

Swin-T 68.5 89.4 67.4 76.9 62.4 35.6

Hybrid-Mode 69.0 90.3 68.0 77.2 62.5 26.9

(Bold: Top, Italic: Second, and Bold italic: Third)

ResNet50 Swin-T Hybird-Mode

Fig. 9 Attention visualization of different backbones
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the generation of more compact feature representations and

deeper semantic information during feature extraction.

However, the inherent mechanism of Swin-T entails

attention computation across the global range of input

tokens, leading to a proliferation of redundant comparisons

and consequently a substantial increase in model parame-

ters (?12.3M). This phenomenon inevitably impacts

tracker speed adversely.

We observe a further enhancement in the overall net-

work performance for our proposed Hybrid-Mode back-

bone, in the 3rd row. Compared to ResNet50, where AUC

on OTB-100 improved by 0.7% and AO on GOT-10K

improved by 0.8%, the increase in the number of model

parameters was only marginal (?3.6M). Additionally,

compared to the Swin-T backbone, AUC on OTB-100

improved by 0.5% and AO on GOT-10K improved by

0.6%, while the model parameters were significantly

reduced (- 8.7M).

This is mainly because the shallow layers of the back-

bone learn to model the input tokens only in the local

domain by convolution, avoiding a large number of inef-

ficient computations when acquiring primary features

about the target.

On the other hand, in the deeper layer of the backbone,

spatiotemporal self-attention overcomes the limitation of

traditional self-attention, which tends to focus solely on

inter-tokens queries within the neighboring range. Spa-

tiotemporal self-attention exhibits the capability to estab-

lish long-term relationships across the feature space,

enabling it to learn more intricate semantic information and

produce more discriminative feature representations. Fur-

thermore, since the entire backbone can accommodate

variations in input size, it enables the attainment of a

favorable balance between accuracy and computational

efficiency. We visualize the feature attention maps

extracted from three backbones in Fig. 9, where the

Hybrid-Mode approach demonstrates superior focusing

ability and better localization of the target position.

In the second part of our analysis, we delve deeper into

the performance of the proposed online SA-LSTM updater.

Table 6 Ablation experiments of different update modules on OTB-

100 and GOT-10K

Tracker OTB-100 GOT-10K

AUC Pre AO SR0:5 SR0:75

Hybrid-Mode ? no updater 69.0 90.3 68.0 77.2 62.5

Hybrid-Mode ? replace updater 69.4 90.7 68.2 77.5 63.2

Hybrid-Mode ? UpdateNet 70.1 91.1 68.5 77.9 63.7

Hybrid-Mode ? SA-LSTM 71.0 91.4 69.0 78.3 64.3

(Bold: Top, Italic: Second, and Bold italic: Third)

---- Hybrid-Mode+no updater Hybrid-Mode+replace updater ---- Hybrid-Mode+UpdateNet Hybrid-Mode+SA-LSTM

Fig. 10 Visualization of different update strategies in fast motion, deformation, and other scenarios
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We compare four template update mechanisms based on

the Hybrid-Mode backbone: no updater, replace updater,

UpdateNet [27], and SA-LSTM. The results are summa-

rized in Table 6. We establish a baseline using the Hybrid-

Mode backbone without any template update mechanism,

denoted in the 1st row. Subsequently, we augment the

baseline with the replace updater mechanism, as shown in

the 2nd row. A slight improvement over the baseline is

observed, with gains of 0.4% and 0.2% on AUC for OTB-

100 and AO for GOT-10K, respectively. To further eval-

uate the efficacy of the proposed online SA-LSTM updater,

we integrate UpdateNet into the baseline for comparison,

as presented in the 3rd row. Compared to the baseline, we

observe an increase in AUC by 1.1% on OTB-100 and an

increase in AO by 0.5% on GOT-10K. Compared to the

replacement updater, AUC increased by 0.7% and AO

increased by 0.3%.

The performance enhancement is achieved when

incorporating the proposed Hybrid-Mode backbone and

online SA-LSTM updater, as depicted in the 4th row. Here,

we observe increases of 2.0% and 1.0% in AUC for OTB-

100 and AO for GOT-10K, respectively, compared to the

baseline. Compared to the replace updater, gains of 1.6%

and 0.8% are obtained. Moreover, compared to UpdateNet,

improvements of 0.9% and 0.5% are observed, respec-

tively. These results indicate that the SA-LSTM Updater

can effectively handle historical information in the tracking

process, modeling the historical sequence in spatiotemporal

aspects to capture apparent changes in the target, thus

enhancing robustness.

For a more comprehensive understanding of the per-

formance of different update strategies, Fig. 10 visualizes

their qualitative analysis results. Our SA-LSTM updater

outperforms other update methods, demonstrating superior

predictive ability, especially in scenarios involving fast

motion and deformation. When combined with the Hybrid-

Mode backbone, the SA-LSTM updater yields more

accurate predictions of target location.

5 Conclusion

In this paper, we propose an innovative Siamese tracking

framework. Initially, we argue that distinct feature learning

operators should be designed for distinct hierarchical

properties of the backbone. Thus, we develop a Hybrid-

Mode backbone, which organically integrates convolu-

tional and transformer components. This backbone is

thereby capable of extracting highly discriminative target

appearance features while concurrently minimizing com-

putational expenditure. Furthermore, conventional Sia-

mese-based trackers often rely on either a fixed template or

a simplistic linear update template throughout the tracking

process to characterize the state of the target object. To

address this limitation, we present an extensible online SA-

LSTM updater. This updater effectively leverages histori-

cal information to model target features both spatially and

temporally. Extensive experimental evaluations demon-

strate the superior performance of the proposed method

across multiple tracking benchmark datasets. Notably, our

approach excels in mitigating challenges such as out-of-

plane rotation, rapid motion, occlusion, out-of-view sce-

narios, and deformation, etc.
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