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Abstract
Click-through rate (CTR) prediction aims to estimate the probability of a user clicking on a particular item, making it one

of the core tasks in various recommendation platforms. In such systems, user behavior data are crucial for capturing user

interests, which has garnered significant attention from both academia and industry, leading to the development of various

user behavior modeling methods. However, existing models still face unresolved issues, as they fail to capture the complex

diversity of user interests at the semantic level, refine user interests effectively, and uncover users’ potential interests. To

address these challenges, we propose a novel model called knowledge-enhanced Interest segment division attention

network (KISDAN), which can effectively and comprehensively model user interests. Specifically, to leverage the

semantic information within user behavior sequences, we employ the structure of a knowledge graph to divide user

behavior sequence into multiple interest segments. To provide a comprehensive representation of user interests, we further

categorize user interests into strong and weak interests. By leveraging both the knowledge graph and the item co-

occurrence graph, we explore users’ potential interests from two perspectives. This methodology allows KISDAN to better

understand the diversity of user interests. Finally, we extensively evaluate KISDAN on three benchmark datasets, and the

experimental results consistently demonstrate that the KISDAN model outperforms state-of-the-art models across various

evaluation metrics, which validates the effectiveness and superiority of KISDAN.
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1 Introduction

With the rapid development of recommendation systems,

click-through rate (CTR) prediction, which is capable of

estimating the probability of a user clicking on a particular

item, has emerged as a core module. CTR ranks items’

click probabilities to generate a list of candidate items that

users may be interested in. This approach helps users avoid

direct exposure to a massive amount of information and

assists them in finding valuable and relevant content.

Moreover, CTR has become a crucial metric for business

evaluation in various applications.

In recent years, user behavior sequence modeling has

become popular for CTR prediction. Several models have

been proposed [1–12], which have achieved promising
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performance in the research community and industry field.

These models treat behavior sequences as fixed-length

vectors that represent user interests, which are then fed into

deep neural networks for CTR prediction. The key feature

of these models is their effective utilization of attention

mechanisms, which enable the aggregation of user behav-

ior toward the target item. Although these models have

greatly advanced the study of CTR prediction, there are

still several major challenges that need to be addressed:

C1: How to accurately capture the complex diversity of

user interests? Existing models usually employ attention

mechanisms to calculate the relevance between the target

item and each behavior in user behavior sequence, enabling

the adaptive differentiation of contribution scores for each

behavior concerning user interests. However, user behavior

sequence typically consists of multiple interest segments,

with each segment representing the user’s preferences in a

particular interest domain. Taking movie recommendation

systems as an example, a user may be interested in specific

actors, directors, or particular movie genres. These aspects,

namely actors, directors, and movie genres, can be seen as

user interest segments, each containing relevant movies.

Therefore, existing models fail to segment user behavior

sequence into multiple interest segments, limiting their

capability of accurately modeling user preferences in dif-

ferent interest domains.

C2: How to effectively capture the different levels of

user interests and the associations among them? Existing

models usually represent the user behavior sequence with a

single interest vector. However, user interests often have

different levels, and there are associations and mutual

influences among user interests. For example, a user may

be an enthusiast of electronic products but occasionally

browse through home decor products. An e-commerce

platform should recommend not only the latest smart-

phones, computers, and related accessories but also some

smart home products. Therefore, compressing user behav-

ior sequence into a single user interest vector may not

capture different levels of user interests.

C3: How to utilize items that users may be interested in

but have not clicked on? Existing models overlook items

that users may be interested in but have not clicked on.

Typically, user behavior is limited to clicked or purchased

items, while the unclicked items are often ignored. How-

ever, these unclicked items may represent potential interest

domains for users. Ignoring these unclicked items means

that the recommendation system cannot fully understand

users’ interest preferences, limiting the diversity and

exploration capability of personalized recommendation

systems.

Recently, some models have been proposed to alleviate

these issues [4, 7, 8]. These models propose some rules to

partition user behavior sequence into multiple parts so

that they can extract interests at a finer granularity. DSIN

[4] defines interactions occurring within a certain time

interval as a session and observes that user behavior is

highly homogeneous both within and across sessions. This

suggests that users typically have a clear and unique

intent within each session, and their interests may change

drastically when they start a new session. Consequently,

DSIN segments user behavior sequence into multiple

parts based on sessions. TGIN [7] samples two additional

items in different orders within the item–item graph for

each item in the user behavior sequence, forming a tri-

angular shape. These triangles are considered the funda-

mental units of user interests, leading TGIN to segment

user behavior sequences into multiple triangles. RACP [8]

assumes that a user’s feedback is correlated with the

browsed page and is influenced by surrounding items and

the overall page context. Furthermore, user interest is

considered a gradually converging process, where later

interactions are more relevant to the final decision.

Therefore, RACP segments user behavior sequence into

multiple parts based on page numbers. However, these

models solely rely on the interactions between users and

items. Consequently, they fail to capture implicit seman-

tics in user behavior sequences, such as a user’s click on

a movie possibly reflecting an interest in a certain movie

director, which is critical for discovering a user’s inter-

ests. In recommendation system scenarios, knowledge

graphs not only contain items (such as movies and books)

but also contain entities related to these items (such as

directors, actors, and authors) and their semantic associ-

ations. Specifically, a knowledge graph is a graph com-

posed of nodes and edges, where nodes represent entities

or items, and edges represent semantic relationships

between them. For example, in a movie recommendation

scenario, a node might represent a movie, while other

nodes might represent directors, actors, or genres related

to that movie, with edges indicating the ‘‘directed by’’

relationship between the movie and the director, the

‘‘acted in’’ relationship between the movie and actors, and

the ‘‘belongs to’’ relationship between the movie and its

genres. Since knowledge graphs can provide rich auxiliary

information to help discover user interests, they have

gained increasing attention in the field of recommendation

systems [11–27]. However, most knowledge graph-based

models focus on learning representations of users and

items based on the user–item interaction graph and the

knowledge graph, rather than considering the items not

clicked by a user, which may imply a user’s potential

interests. This motivates us to employ the knowledge

graph to mine user interests in user behavior sequences.

To address the above challenges, we propose a knowl-

edge-enhanced interest segment division attention network

(KISDAN). Firstly, to accurately capture the complex
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diversity of user interests (C1), KISDAN proposes an

interest segment division method. KISDAN segments user

interests by identifying entities in the knowledge graph that

is adjacent to items within the user behavior sequence.

Specifically, when an item in a user behavior sequence is

connected to an entity in the knowledge graph, it is con-

sidered to belong to an interest segment related to that

entity. In this way, a user behavior sequence can be divided

into multiple interest segments, each reflecting the user’s

interest preferences in a specific domain. For example, a

user behavior sequence includes multiple movies, through

the knowledge graph, can be identified as belonging to

different directors, actors, or genres. Thus, KISDAN can

segment the user behavior sequence into multiple interest

segments, such as ‘‘liking movies by a certain director’’,

‘‘preferring movies starring a certain actor’’, or ‘‘favoring a

certain genre of movies’’. Additionally, an item may appear

in multiple interest segments, representing different pref-

erences of the user toward that item. In contrast to methods

focusing solely on explicit patterns of user behavior,

KISDAN utilizes the knowledge graph to explore the

implicit semantics of user behavior sequences. This reveals

the deep structure of user interests and uncovers the diverse

domains and themes inherent in user interests.

Secondly, to effectively capture the different levels of

user interests and the associations among them (C2),

KISDAN categorizes interests into strong interests and

weak interests. Strong interests are defined as the explicit

interests that users demonstrate during interactions, such as

frequently watching movies by a certain director. These

interests usually feature in user behavior sequence and

exhibit strong associations with specific entities in the

knowledge graph. In contrast, weak interests typically

reflect domains users occasionally explore, representing

interests that have not yet been explicitly expressed

through frequent interactions. KISDAN also introduces a

strong-to-weak attention mechanism that leverages strong

interests to extract weak interests while taking account of

the relationships and interactions between user interests.

This mechanism enables KISDAN to pay more attention to

a user’s strong interests while filtering out key information

related to strong interests from weak interests.

Lastly, to effectively utilize items that users may be

interested in but have not clicked on (C3), KISDAN

extracts users’ potential interests from two perspectives,

i.e., the item co-occurrence graph and the knowledge

graph. The knowledge graph facilitates the understanding

of the complex structure of user interests by revealing the

deep semantic relationships underlying user behaviors,

while the item co-occurrence graph reveals potential con-

nections between items by analyzing the similarity rela-

tionships among different items. Utilizing these two

graphs, we model the relationship between items that users

have clicked on and target items. By finding the shortest

path between them, we can uncover implicit interests that

the user may not have directly expressed. KISDAN also

introduces a contrastive learning method to explore the

complementary relationship between potential interests,

which can help us better understand users’ interests.

Compared to existing methods that extract user interests

using attention mechanisms or GNN models, KISDAN

distinguishes itself by its comprehensive utilization of both

the knowledge graph and the item co-occurrence graph.

Attention mechanisms mainly adjust the model’s focus on

different information by identifying key items in user

behavior sequence, while GNN models focus on capturing

the complex relationships between items as well as

between items and entities through the graph structure.

KISDAN not only delves into users’ historical behavior

patterns but also explores users’ potential interests, which

may not have been fully expressed. By combining the

knowledge graph and item co-occurrence graph, KISDAN

provides a more comprehensive method for modeling user

interests. This approach enables KISDAN to reveal the

diversity and complexity of user interests, thereby facili-

tating recommendation systems in exploring more per-

sonalized recommendation strategies. The main

contributions of this paper are summarized as follows:

1. We effectively explore the construction of interest

segments in user behavior sequence and propose an

interest segment division method based on the con-

nections between entities and items in the knowledge

graph. This method captures user preferences in

different interest domains, revealing the diversity of

user interests. Furthermore, we identify strong interests

from interest segments that contain more items than a

given threshold and extract weak interests from the

remaining interest segments. Strong interests represent

the core interests of users, while weak interests reflect

their broader interests. This refines user interests and

captures interactions between interests.

2. We propose a method for constructing potential

interest segment sequences based on the semantic

associations between items and entities in the knowl-

edge graph, as well as the similarity between items in

the item co-occurrence graph. From these sequences,

we extract both semantic-based potential interests and

similarity-based potential interests. This method intro-

duces items that users may be interested in but have not

clicked on, thus enhancing the exploration capability of

the recommendation system. Additionally, we design a

novel contrastive learning method that takes two

different types of potential interests as input and learns

their complementary relationships, providing a more
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comprehensive understanding of a user’s potential

interests from different perspectives.

3. We conduct extensive experiments on three public

datasets. The experimental results demonstrate that

KISDAN outperforms all baseline models. In addition,

we conduct ablation experiments to validate the

effectiveness of different components of KISDAN.

Finally, we conduct parametric experiments to evaluate

the impact of some hyperparameters on the overall

performance of KISDAN.

2 Related work

2.1 Click-through rate prediction

One critical issue of click-through Rate (CTR) prediction is

the high sparsity of input features. Directly using raw

features often yields suboptimal results. Moreover, con-

ventional linear models only consider each feature inde-

pendently without modeling the interactions between

features. To explore feature interactions, some models

combine sparse features to generate new dense feature

representations and capture nonlinear relationships

between input features. FM [28] utilizes low-dimensional

vectors to represent each feature field and learns second-

order feature interactions through inner product operation,

leading to significant improvements over linear models.

With the development of deep learning, deep neural net-

works have been able to model complex feature interac-

tions. Models based on deep neural networks, such as

DeepFM [29] and xDeepFM [30], have been widely

adopted in industrial recommendation systems.

Since user’s historical behaviors contain rich informa-

tion for inferring user preferences, some models attempt to

mine user interests from users’ historical behaviors, in

addition to learning feature interactions. DIN [1] is the first

model that introduces attention mechanisms in user

behavior modeling. It adaptively calculates embeddings of

user interest by evaluating the relevance between candidate

items and users’ historical behaviors. Subsequently, GIN

[2] builds an item co-occurrence graph to mine user

intention through multi-layer graph propagation. DIEN [3]

introduces GRU networks and auxiliary losses to mine the

dependencies between user behaviors. DIEN also proposes

an AUGRU structure to learn the evolution of user inter-

ests. DSIN [4] segments a user’s behavior sequence into

multiple sessions based on interaction time and then tries to

capture the relationships within and between sessions.

MIMN [5] utilizes a neural turing machine to compress a

user’s long-term behaviors. Then, it uses a joint online-

offline design optimization scheme to model long-term

user behavior sequences. DMIN [6] employs the multi-

head self-attention to capture representations of users’

historical behaviors and utilizes another multi-head self-

attention to transform each behavior in the sequence into

multiple heads. Furthermore, attention units are employed

to capture the relevance of each head’s output with respect

to the target item, enabling the extraction of multiple

interests of the user. TGIN [7] introduces triangle struc-

tures in the item co-occurrence graph for each clicked item

in a user behavior sequence. This model treats these tri-

angles as basic units of user interests and reflects user

interests at different levels through multi-order triangles.

RACP [8] captures specific user preferences by incorpo-

rating contextual information within a page and interest

variations between pages. SAM [9] computes the user

interest vector at each step and feeds it into a GRU to

obtain the memory vector for the next iteration. It proposes

a point-wise dual-query attention mechanism and applies it

to each user behavior. This attention mechanism treats the

target item and the memory vector as dual queries to learn

the importance of each behavior. DBPMaN [10] constructs

the behavior paths, matching a user’s current path with

their historical paths to depict the dependency relationships

before and after user path decisions. Although these models

have made significant improvements, they still do not fully

leverage the semantic information latent in user behavior

sequences and rely solely on historical behaviors to sum-

marize user interests, thus lacking the ability to explore

users’ potential interests.

2.2 Knowledge-aware recommendation

As knowledge graphs contain rich auxiliary information,

some research works have started incorporating knowledge

graphs into recommendation systems. Existing knowledge-

enhanced recommendation models can generally be divi-

ded into three categories: embedding-based models, path-

based models, and graph-based models. Embedding-based

models utilize the relationships and entities in knowledge

graphs to enhance the semantic representations of items

and users. CKE [13] designs three components to extract

semantic features from the knowledge graph’s structural

content, textual content, and visual content of items,

respectively. DKN [14] enriches the information in news

content by associating each word with relevant entities in

the knowledge graph. It designs a knowledge-aware con-

volutional neural network that integrates word-level and

knowledge-level representations of news, resulting in

knowledge-aware embeddings for each news article.

However, these models cannot fully utilize the higher-order

connectivity information in knowledge graphs, thereby

limiting their ability to explore the complex relationships

among entities.

Neural Computing and Applications

123



Path-based models explore various connection patterns

among items in the knowledge graph to provide additional

guidance for recommendations. PER [15] and MCRec [16]

generate effective meta-paths and learn representations of

users and items along different types of relation paths.

KPRN [17] automatically extracts paths between users and

items from the knowledge graph, where each path consists

of relevant entities and relationships. Then, a LSTM net-

work is employed to model the sequential dependencies

among entities and relationships. Path-based models

mainly involve the design of meta-paths to generate

meaningful connection patterns. However, the construction

of meta-paths can be a challenging and time-consuming

task, as it requires domain experts to manually define and

validate the relevant paths.

In recent years, graph neural networks (GNNs) have

shown great potential in learning high-order node infor-

mation through information propagation between adjacent

nodes. RippleNet [18] utilizes GNNs to propagate users’

latent preferences and explore users’ hierarchical interests

on the knowledge graph. KGCN [19] obtains item

embeddings by iteratively aggregating neighborhood

information of items in the knowledge graph. It can obtain

the high-order dependency information among items

through graph convolutions. KGAT [20] merges the user-

item graph with the knowledge graph into a unified

heterogeneous graph and updates the embeddings of nodes

based on the embeddings of their neighboring nodes,

recursively propagating embeddings. It utilizes attention

mechanisms to learn the weights of each neighbor during

the propagation process, where the cascaded attention

weights can reveal the importance of higher-order con-

nections. CKAN [21] integrates the explicitly encoded

collaborative signals from user–item interactions and the

auxiliary knowledge from the knowledge graph. By

leveraging these two critical pieces of information, it

effectively represents the latent semantics of users and

items in the vector space. KGIN [22] introduces intent

nodes and utilizes the knowledge graph to explore the user

intents behind user–item interactions. It proposes a graph

propagation mechanism that is aware of relation paths,

distinguishing different knowledge graph relations, and

emphasizing the contributions of different knowledge

graph relations to node embeddings. This mechanism

improves the performance and interpretability of recom-

mendations. CG-KGR [23] encapsulates historical inter-

actions as interactive information summaries. It then

utilizes these summaries as guidance to aggregate the

information from interactive data and the knowledge graph

through graph convolutions. By employing different

learning strategies, CG-KGR masks irrelevant information

from the knowledge graph, resulting in more accurate

personalized recommendations. KGIC [24] constructs both

local and non-local graphs. The local graph comprises the

first-order components from the user–item interaction

graph and knowledge graph. The non-local graph includes

the higher-order components from both graphs, facilitating

intragraph and intergraph contrastive learning between the

local and non-local graphs. MCCLK [25] considers three

different graph views, including a global structural view, a

local collaborative view, and a semantic view. It performs

contrastive learning on these three views at both the local

and global level to mine comprehensive graph structure

information. HAKG [26] embeds users and items, as well

as entities and relations into a hyperbolic space. It designs a

hyperbolic aggregation scheme to gather related context on

the knowledge graph and introduces an angular constraint

to preserve item characteristics in the embedding space.

DCLKR [27] disentangles the knowledge graph and user–

item interaction graph into multiple aspects. It then per-

forms intraview contrastive learning to learn the differ-

ences between representations in these two views and

applies interview contrastive learning to transfer knowl-

edge between these two views. Although these graph-based

models utilize GNNs to aggregate neighborhood informa-

tion between the target user and target item, they lack the

ability to capture the mutual influence between user

behavior and target item during the information aggrega-

tion process.

Recent research has begun to combine knowledge

graphs with user behavior modeling. ATBRG [11] explores

multi-layer neighbors on the knowledge graph for each

item involved in the user behavior sequence as well as the

target item, constructing an adaptive target-behavior rela-

tional graph. It employs a relationship-aware attention

mechanism to aggregate structural knowledge of each user

behavior and target item on the relational graph, effectively

representing the structural relationship between a given

target user and target item. MTBRN [12] constructs mul-

tiple paths between user behavior and target item on the

knowledge graph and item–item similarity graph. It cap-

tures multiple relationships through a graph search algo-

rithm and encodes each path using Bi-LSTMs. Finally,

MTBRN utilizes an attention mechanism to aggregate

different path representations into the final representation

that reveals user preferences for target item from different

perspectives. However, these models only enrich the rep-

resentation of user behavior using auxiliary information

from the knowledge graph. They still face the challenge of

effectively capturing user’s potential interests in items that

they have not interacted with from the user’s historical

behavior.
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2.3 Contrastive learning

Contrastive learning [31], as a self-supervised learning

method, has been proven effective in computer vision [32]

and natural language processing [33]. Contrastive learning

constructs positive and negative samples without manual

annotation and then uses these samples as the supervisory

signal for representation learning. There is also a growing

trend of introducing contrastive learning into the field of

recommendation systems.

For instance, some methods have proposed new data

augmentation techniques for contrastive learning. CL4Srec

[34] proposes three data augmentation methods (i.e.,

cropping, masking, and reordering). It randomly applies

two of these three strategies to obtain two augmented views

of a user behavior sequence. Then, CL4Srec maximizes the

consistency between the two augmented views derived

from the same user behavior sequence through contrastive

learning. SGL [35] introduces three data augmentation

methods: node dropout, edge dropout, and random walk.

These methods are applied to the user–item interaction

graph, resulting in different augmented views. Subse-

quently, GCN is employed to extract representations of

individual nodes within these augmented views. Further-

more, a contrastive learning loss is utilized to maximize the

consistency between representations of the same node in

different views.

In addition, some studies have designed more complex

contrastive learning methods based on user behaviors.

CLCRec [36] uses contrastive learning to address the cold-

start problem. GDCL [37] proposes a diffusion-based graph

contrastive learning method to learn implicit feedback from

users. CLSR [38] generates self-supervisory signals from

long-term and short-term interests. GCL4SR [39] con-

structs a weighted item transfer graph (WITG) from all

user interaction sequences. By sampling its neighborhoods,

two augmented views of a user behavior sequence are

obtained. It proposes two auxiliary tasks. One task aims to

maximize the consistency between the two augmented

views, while the other aims to minimize the discrepancy

between the two augmented views and the user behavior

sequence. MISS [40] transforms user behavior sequence

into a matrix, where the horizontal direction represents

sequences of items with the same features, while the ver-

tical direction represents different features of the same

item. Different sizes of convolutional kernels are employed

to compute representations at both the interest level and

feature level through horizontal and vertical convolutions,

respectively. From the representations computed with the

same convolutional kernel, a pair of representations is

randomly selected to serve as two distinct augmented

views corresponding to the same interests. CCL4Rec [41]

designs a difficulty-aware data augmentation method. This

data augmentation method treats the items that users did

not click on as substitutes and the items within the user

behavior sequence as replaced items and calculates the

importance between replaced items and the relevance

between substitutes. Then, CCL4Rec replaces important

items with highly correlated substitutes to generate nega-

tive samples, while replacing unimportant items with

unrelated substitutes to generate positive samples.

CL4CTR [42] introduces three self-supervised learning

signals: contrastive loss, feature alignment, and field uni-

formity. It constructs positive feature pairs through data

augmentation and minimizes the distance between repre-

sentations of each positive feature pair through contrastive

loss. The feature alignment constraint brings feature rep-

resentations from the same domain close, while the field

uniformity constraint pushes apart feature representations

from different domains. These self-supervised learning

signals enable CL4CTR to generate high-quality feature

representations.

Although these contrastive learning-based models have

achieved significant improvement, they mainly focus on

generating augmented user behavior sequences for learning

self-supervised signals. However, user behavior sequences

only reflect the user–item interaction information and

cannot provide the semantic information that elucidates the

reason why user clicks on items. Therefore, these models

have limitations in their ability to learn high-quality user

interest vectors.

3 Preliminaries

In recommendation scenarios, such as e-commerce plat-

forms and news platforms, we typically have a series of

historical interaction records between users and items, such

as purchase and click behaviors. Let U represents a set of

users, I represents a set of items, and we denote the

interaction records as H ¼ u; v;Bu; yð Þ j u 2 U ; v 2 Vf g.
Here, Bu 2 I represents historical behavior (i.e., item lists)

for user u, and y 2 0; 1f g represents the implicit feedback

of user u toward item v when item v is recommended to the

user u. If user u interacts with item v, then y ¼ 1; other-

wise, y ¼ 0. To effectively incorporate auxiliary informa-

tion about items (i.e., item attributes and external

knowledge) into recommendation, we define the recom-

mendation task on the knowledge graph and item co-oc-

currence graph as follows:

Definition 1 (Knowledge Graph). The knowledge graph

describes the semantic relationships between items and

real-world entities and can be represented as

Gkg ¼ ðh; r; tÞ j h; t 2 Vkg; r 2 R
� �

, where Vkg is the set of
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items and entities in the knowledge graph, and R is the set

of relations between entities, and each triple (h, r, t) rep-

resents there is a relation r between the head entity h and

the tail entity t.

For example, the triple ðJ:K:Rowling;Authorof ;
Harry PotterÞ represents that J.K.Rowling is the author of

the novel Harry Potter.

Definition 2 (Item Co-occurrence Graph). The item co-

occurrence graph is an undirected graph denoted as

Gcf ¼ ðVcf ;EcfÞ, where Vcf is the set of nodes and Ecf is the

set of edges. Each node v 2 Vcf represents an item. The

graph is constructed based on the user behavior sequence

of all users in the user set U. If there exists at least one user

u 2 U, whose user behavior sequence Bu contains both

items vk and vj, then an edge is established between these

two items, i.e., vk; vj
� �

2 Ecf .

According to the definition of interaction records,

knowledge graph, and item co-occurrence graph, the rec-

ommendation task is to predict the probability ŷu;i of user u

clicking on item v given the historical interaction record H,

as well as the knowledge graph Gkg and item co-occurrence

graph Gcf .

4 Model

4.1 Model overview

In this section, we introduce the KISDAN model, which

aims to leverage the knowledge graph and item co-occur-

rence graph to improve recommendation. The overall

framework of KISDAN is shown in Fig. 1. KISDAN

consists of four layers: The interest segment division layer,

the feature embedding layer, the interest refinement layer,

and the potential interest contrastive learning layer.

The interest segment division layer divides the user

behavior sequence into multiple user interest segments

based on the knowledge graph and item co-occurrence

graph. These interest segments semantically reflect the

users’ diverse interests, enabling the layer to accurately

capture the complex diversity of user interests.

The feature embedding layer reduces data dimension-

ality and learns feature representations by transforming

high-dimensional sparse features into low-dimensional

dense vectors.

The interest refinement layer refines user interests into

four categories: strong interests, weak interests, semantic-

based potential interests, and similarity-based potential

interests. This layer learns the interaction relationships

between strong interests and weak interests, emphasizing

the dominant role of strong interests and the

complementary role of weak interests, which ultimately

improves the accuracy of interest extraction.

The potential interest contrastive learning layer employs

contrastive learning to maximize the consistency between

two types of potential interests for the same user. By

leveraging this layer, KISDAN effectively learns the

complementary relationships between these two types of

potential interests, thereby enhancing its ability to explore

the diversity of user interests. In the following subsections,

we provide a detailed description of these four layers.

4.2 Interest segment division layer

To accurately capture the complex diversity of user inter-

ests, previous works mainly adopt two strategies. The first

strategy uses the target item as the query for the attention

mechanism to extract important user behaviors. However,

this strategy neglects modeling behaviors belonging to the

same interest domain. The second strategy segments the

user behavior sequence based on rules such as interaction

time [4] or page numbers [8] to simulate different interest

domains of users. However, this strategy only considers

user behaviors within a certain time window as belonging

to the same interest, lacking semantic guidance for

extracting interests from the user behavior sequence.

Therefore, these strategies can only achieve suboptimal

recommendation performance.

Relying solely on user behavior sequences may not

unearth implicit information, whereas knowledge graphs

and item co-occurrence graphs offer semantic information

between items and entities, as well as similarity informa-

tion between items. Semantic information guides KISDAN

in understanding why users click on specific items, while

similarity information recommends items similar to those

clicked by users. Therefore, KISDAN introduces an inter-

est segment division algorithm, which searches the

knowledge graph and the item co-occurrence graph to

divide the user behavior sequence into fine-grained interest

segments: strong interest segments, weak interest seg-

ments, and potential interest segments. These interest

segments accurately reflect users’ behavior patterns and

preferences in various interest domains. Thus, KISDAN

can extract user interest characteristics in more detail. The

interest segment division algorithm is given in

Algorithm 1.

Lines 1–7: Firstly, in order to divide a user’s behavior

sequence into multiple interest segments, we traverse each

clicked item b in a user’s behavior sequence Bu. Then, for

each item b, we further traverse each entity o adjacent to

item b in the knowledge graph Gkg, and then obtain an item

set oadj containing all items that are adjacent to entity o in

the knowledge graph Gkg. We define the item set oadj as an
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interest segment and consider the items within the same

interest segment as belonging to the same interest. Finally,

KISDAN obtains an interest segment sequence Su
seg for a

user.

Lines 8–15 : We categorize interest segments into strong

interest segments and weak interest segments, where strong

interest segments represent domains in which the user

frequently exhibits preferences, while weak interest seg-

ments indicate less frequent user interest. We traverse

through each interest segment s in the interest segment

sequence Su
seg. For each interest segment s, if the number of

items in it exceeds the given threshold s, it will be cate-

gorized as a strong interest segment. Otherwise, it will be

categorized as a weak interest segment. Subsequently, the

strong interest segments and the weak interest segments are

added to the strong interest segment sequence Su
strong and

the weak interest segment sequence Su
weak, respectively.

Lines 16–22: Existing models have a notable limitation

in modeling user interest because they ignore items that

users may be interested in but have not yet clicked on.

These items may reflect user interests that have not been

explicitly expressed. Therefore, the recommendation

diversity and exploration ability of existing models is

limited. To address this problem, KISDAN intends to

obtain a user’s potential interests from two perspectives:

the knowledge graph Gkg and the item co-occurrence graph

Gcf . For each item b in the user behavior sequence Bu, to

explore its association with the target item v, we search for

the shortest path between it and the target item v in the

knowledge graph Gkg. There are direct semantic associa-

tions between items adjacent to the same entity in the

knowledge graph. Furthermore, the shortest path between

the item clicked by the user and the target item can reveal

implicit semantic associations. Thus, KISDAN considers

all items within the shortest path to form a semantic-based

potential interest segment and adds this potential interest

Fig. 1 Framework of the proposed KISDAN model
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segment to the semantic-based potential interest segment

sequence Su
kg. Similarly, as the item co-occurrence graph

contains similarity relationships between items, KISDAN

performs the same operation on Gcf to obtain the similarity-

based potential interest segment sequence Su
cf . Based on

these two potential interest segment sequences, KISDAN

can utilize a series of unclicked items to discover user’s

potential interests.

After interest segment division, KISDAN can obtain

various types of interest segment sequences, which enables

a more comprehensive understanding of users’ interest

preferences.

4.3 Feature embedding layer

In the real-world recommendation scenarios, both users

and items have multiple types of features. KISDAN

encodes the following types of features, namely the user

profile, the strong interest segment sequence Su
strong, the

weak interest segment sequence Su
weak, the semantic-based

potential interest segment sequence Su
kg, the similarity-

based potential interest segment sequence Su
cf , and the

target item, into low-dimensional dense vectors, which are

represented as eu 2 Rd; es 2 RLs�Ns�d; ew 2 RLw�Nw�d; ek 2
RLk�Nk�d; ec 2 RLc�Nc�d and et 2 Rd, respectively. Here

Algorithm 1 Interest segment division algorithm
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Ls; Lw; Lk, and Lc respectively, represent the maximum

number of interest segments in the strong interest segment

sequence Su
strong, weak interest segment sequence Su

weak,

semantic-based potential interest segment sequence Su
kg,

and similarity-based potential interest segment sequence

Su
cf . Ns;Nw;Nk, and Nc represent the maximum number of

items in the strong interest segment, weak interest segment,

semantic-based potential interest segment, and similarity-

based potential interest segment, respectively. d is the

embedding size.

4.4 Interest refinement layer

The core of a recommendation system is to provide per-

sonalized recommendations to users. Each user behavior

(e.g., clicks, purchases, comments, etc.) directly or indi-

rectly reflects how much a user prefers a certain item.

Recommendation systems rely on user behaviors to infer

their interests on items. Therefore, KISDAN utilizes an

interest refinement layer to extract user interests from user

behaviors. Compared to existing models, KISDAN refines

user interests and categorizes them into strong interests,

weak interests, and potential interests, thereby enhancing

the accuracy of interest extraction.

Each item in the strong interest segment has its unique

contribution and importance relative to the target item.

KISDAN incorporates a two-layer attention mechanism to

accurately estimate the relationship between the item in the

strong interest segment and the target item. Specifically,

KISDAN treats the target item as the query to estimate the

importance of each item within the strong interest segment

to get the intra-aggregated representation of each strong

interest segment. The intra-aggregated representation xsi for

the i-th strong interest segment is calculated as follows:

asi;j ¼
exp esi;jW1e

t
� �

PNs

l¼1 exp esi;lW1et
� � ð1Þ

xsi ¼
XNs

j¼1

asi;je
s
i;j ð2Þ

where asi;j is the attention weight, e
s
i;j is the representation of

the j-th item in the i-th strong interest segment, and W1 2
Rd�d represents the learnable parameters.

KISDAN further uses an attention mechanism to dis-

tinguish the influence of different strong interest segments

on the target item. In this way, KISDAN aggregates vari-

ous intra-aggregated representations of strong interest

segments, and the representation of the strong interest us

can be calculated as follows:

bsi ¼
exp xsiW2e

t
� �

PLs
j¼1 exp xsjW2et

� � ð3Þ

us ¼
XLs

i¼1

bsi x
s
i ð4Þ

where bsi is the attention weight, and W2 2 Rd�d represents

the learnable parameters.

Existing models usually use the target item as the query

to estimate the importance of various items within the user

behavior sequence and capture the user’s overall interest.

However, this approach ignores the fact that user interests

are divided into different levels, and interactions occur

between these different levels of interests. Therefore,

KISDAN divides user interests into strong interests and

weak interests. Strong interests predominate in both cate-

gories, while weak interests provide supplementary infor-

mation and may also contain some noise. Consequently,

KISDAN proposes a strong-to-weak attention mechanism.

This attention mechanism concatenates the strong interest

us with the target item et to create a joint query. This joint

query encapsulates the information from both the strong

interest and target item, allowing for the effective utiliza-

tion of the strong interests to extract information related to

the weak interests and reducing the contribution score of

noise information within the weak interests. Using this

strong-to-weak attention mechanism, KISDAN can esti-

mate the relevance between each weak interest segment

and the strong interest, thereby obtaining the intra-aggre-

gated representation for each weak interest segment. The

intra-aggregated representation xwi for the i-th weak interest

segment is calculated as follows:

awi;j ¼
exp ewi;jW3Concat u

s; etð Þ
� �

PNw

l¼1 exp ewi;lW3Concat us; etð Þ
� � ð5Þ

xwi ¼
XNw

j¼1

awi;je
w
i;j ð6Þ

where awi;j is the attention weight, e
w
i;j is the representation of

the j-th item in the i-th weak interest segment, W3 2 Rd�d

represents the learnable parameters, and Concat is the

concatenation operation.

After obtaining the intra-aggregated representation of

each weak interest segment, an attention mechanism fur-

ther uses the target item et as the query to distinguish the

influence of different weak interest segments on the target

item. In this way, KISDAN aggregates different intra-ag-

gregated representation of weak interest segments and

obtains the representation uw of the weak interests:
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bwi ¼
exp xwi W4e

t
� �

PLw
j¼1 exp xwj W4et

� � ð7Þ

uw ¼
XLw

i¼1

bwi x
w
i ð8Þ

where bwi is the attention weight, andW4 2 Rd�d represents

the learnable parameters.

Previous models only consider items in the user

behavior sequence. However, items that the user with may

still reflect the user’s potential interests. For instance, if a

user clicks on an item in a certain category, it is plausible

that other items in that same category, even if unclicked by

the user, may also match their interests. To better capture

the user’s potential interests, KISDAN introduces the item

co-occurrence graph and the knowledge graph. These two

graphs implicitly contain similarity information and

semantic information between items, respectively. In other

words, nodes in these two graphs that are adjacent to those

items with which the user has interacted can reflect the

user’s potential interests. Therefore, KISDAN uses the

semantic-based potential interest segment sequence Sukg and

the similarity-based potential interest segment sequence Sucf
extracted from these two graphs as a bridge to learn the

user’s potential interests.

First, KISDAN uses the target item et as the query to

compute the relevance scores for each item within a

semantic-based potential interest segment. Thus, the intra-

aggregated representation xki for the i-th semantic-based

potential interest segment is calculated as follows:

aki;j ¼
exp eki;jW5e

t
� �

PNk

l¼1 exp eki;lW5et
� � ð9Þ

xki ¼
XNk

j¼1

aki;je
k
i;j ð10Þ

where aki;j is the attention weight, e
k
i;j is the representation of

the j-th item in the i-th semantic-based potential interest

segment, and W5 2 Rd�d represents the learnable

parameters.

In the semantic-based potential interest segment

sequence Sukg, interest segments include items that users

have not clicked on and may contain some noise. Then,

KISDAN utilizes multi-head self-attention to capture the

interactions between different potential interest segments

and reduce the noise. The input of the self-attention module

includes three parts: query, key, and value, all of which are

identical. Multi-head self-attention is an attention mecha-

nism that performs multiple attention functions in parallel

and can learn relationships in different representation

subspaces [43]. Specifically, KISDAN denotes the output

of h-th attention function as headh and calculate it as

follows:

xk ¼ Concat xk1; x
k
2; . . .; x

k
Lk

� �
ð11Þ

headh ¼ Attention xkWQ
h ; x

kWK
h ; x

kWV
h

� �

¼ Softmax
xkWQ

h xkWK
h

� �T
ffiffiffiffiffi
dh

p xkWV
h

 ! ð12Þ

where WQ
h ;W

K
h ;W

V
h 2 Rd�dh are weight matrices for the

query, key, and value of the h-th attention function,

respectively, dh is the dimension of each head, and

h 2 1; nhead½ �.
Then, the output vectors from nhead attention functions

are concatenated to generate the refined intra-aggregated

representation Hk for the semantic-based potential interest

segment sequence Skg, which is defined as follows:

Hk ¼ MultiHead xk
� �

¼ Concat head1; head2; . . .; headnheadð ÞW6

ð13Þ

where nhead is the number of heads or parallel attention

functions, and W6 2 Rd�d is the learnable parameter.

Finally, KISDAN uses the target item et as the query to

estimate the importance of each semantic-based potential

interest segment and obtains the representation uk of the

semantic-based potential interests as follows:

bki ¼
exp Hk

i W7e
t

� �

PLk
j¼1 exp Hk

j W7et
� � ð14Þ

uk ¼
XLk

i¼1

bki x
k
i ð15Þ

where Hk
i is the refined intra-aggregated representation for

the i-th semantic-based potential interest segment, bki is the

attention weight, and W7 2 Rd�d represents the learnable

parameters.

Similarly, KISDAN applies the same mechanism to

obtain the representation uc of the similarity-based poten-

tial interests.

In this layer, KISDAN refines user interests by modeling

strong interests, weak interests, and potential interests,

allowing it to learn user behaviors from different per-

spectives comprehensively.

4.5 Potential interest contrastive learning layer

The item co-occurrence graph and the knowledge graph

contain different implicit information. Therefore, the sim-

ilarity-based potential interests and the semantic-based

potential interests extracted from these two graphs may

exhibit differences. Contrastive learning is a representation
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learning method that can learn high-quality representations

by comparing the similarities and differences between

positive and negative samples. To identify the comple-

mentary information between these two potential interest

segment sequences, KISDAN employs contrastive learning

to compare the similarities and differences between them.

Traditional contrastive learning methods often generate

positive samples and negative samples by random masking,

replacing, and inserting. However, samples produced in

this way have limited diversity in terms of the information

they contain. In contrast, KISDAN can generate high-

quality samples from two types of potential interests and

has a certain level of interpretability. KISDAN treats these

two potential interests of the same user as positive samples,

while those from different users are considered as negative

samples. The contrastive loss Lcl is defined as follows:

Lcl ¼ �
XNu

i¼1

log
exp uci

� �T
uki

� �

exp ucið ÞTuki
� �

þ
PNu

j¼1 exp ucið ÞT ~ukj
� �

ð16Þ

where Nu is the number of users, uci represents the simi-

larity-based potential interests for the i-th user, uki repre-

sents the semantic-based potential interests for the i-th user,

and ~uki denotes the negative sample randomly sampled

from the different user’s potential interests segment

sequences within one mini-batch.

4.6 Model training

We use a multiple layer perceptron (MLP) to achieve better

feature interactions and obtain the predicted click-through

rate:

f xið Þ ¼ r MLP Concat eu; et; us; uw; uk; uc
� �� �� �

ð17Þ

where r is the sigmoid function.

Since the CTR prediction task is a binary classification

task, the chosen loss function is cross-entropy loss, typi-

cally defined as:

Ltarget ¼ � 1

N

XN

i¼1

yi log f xið Þð Þ þ 1� yið Þ log 1� f xið Þð Þ

ð18Þ

where N is the size of the training set, yi 2 0; 1f g is the

click label, and f(x) is the predicted output of our network.

As we use contrastive loss to capture complementary

information between potential interest segment sequences,

the overall loss can be defined as:

Lall ¼ Ltarget þ kLcl ð19Þ

where k is a hyperparameter that balances the two subtasks.

5 Experiments

In this section, we first introduce the benchmark datasets

and the experimental settings. Then, we conduct extensive

experiments to address the following research questions:

• RQ1 : How does KISDAN perform compared to

baseline models?

• RQ2 : How do the main components of KISDAN affect

the performance of KISDAN?

• RQ3 : How do different hyperparameters affect the

performance of KISDAN?

• RQ4 : How efficient is KISDAN compared to baseline

models?

• RQ5 : How dose KISDAN provide meaningful inter-

pretation of the prediction results?

5.1 Datasets

We evaluate the performance of KISDAN on three com-

monly used datasets: Amazon-Book,1 MovieLens-1 M2

and Last.FM.3 The Amazon-Book dataset is selected from

the widely used product recommendation dataset Amazon-

review. The MovieLens-1 M is a movie dataset consisting

of movie ratings. Each person expresses their preferences

for a movie using scores ranging from 1 to 5. The prefer-

ences between users and movies are defined as implicit

feedback. The Last.FM dataset is a music listening dataset

collected from Last.FM online music systems. We pre-

process the datasets as follows: (i) We generate the nega-

tive samples required for training and testing by randomly

selecting unseen items for each user, maintaining the same

size as the positive samples. (ii) We construct a knowledge

graph for each dataset following previous works [20, 25].

For Amazon-book, following the methodology of KGAT

[20], items are mapped to Freebase entities through title

matching if a mapping is available. Additionally, to ensure

data quality, we employ a 10-core setting [20], which

retains users and items with at least 10 interactions and

filters out KG entities with fewer than 10 triples. Movie-

Lens-1 M and Last.FM follow the approach of MCCLK

[25] and employ Microsoft’s Satori for their construction.

By matching the names of movies or musicians with the

tail of triples, all valid Satori IDs are collected, and then,

the item IDs are matched with the head of all triples. This

process selects all well-matched triples, where each triple

has a confidence level exceeding 0.9. (iii) For each dataset,

assuming a user’s entire sequence of behaviors as

ðb1; b2; . . .; bk; . . .; bnÞ, the task is to predict whether the

1 http://jmcauley.ucsd.edu/data/amazon/.
2 https://grouplens.org/datasets/movielens/1m/.
3 https://grouplens.org/datasets/hetrec-2011/.
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k þ 1ð Þ-th item will be clicked by the user based on the first

k interacted items. We generate training datasets and test

datasets for each user. In the training dataset, k is set to

n� 2ð Þ. In the test set, given the first n� 1ð Þ behaviors, we
aim to predict the last one. The statistics of the three

datasets is shown in Table 1.

5.2 Parameter settings and evaluation metrics

KISDAN is implemented under the TensorFlow framework

and trained on NVIDIA Tesla P100 GPU. For the baseline

models, we follow the official hyperparameter settings

provided in the original paper and the default settings in the

corresponding code. As for KISDAN, the dimensions of

user and item embeddings are set to 18 and the head

number in multi-head self-attention is set to 4. To avoid

excessive connections in the item co-occurrence graph, we

retain only the edges with co-occurrence counts exceeding

a threshold, which are set to 4, 11, and 3 for the Amazon-

Book, MovieLens-1 M, and Last.FM datasets, respectively.

During training, the hyperparameter k in the loss function

is set to 2, s in the interest segment division layer is set to

2, 5, 2 for the Amazon-Book, MovieLens-1 M, and

Last.FM datasets, respectively. The batch size is set to 16.

We employ the Adam optimization algorithm as the

training optimizer with a learning rate of 0.001. For KGIC,

the contrastive loss weight is set to 1� 10�6, 1� 10�7 and

1� 10�6, and the L2 regularization weight is set to

1� 10�4, 1� 10�5 and 1� 10�4 for the Amazon-Book,

MovieLens-1 M and Last.FM datasets, respectively. For

MCCLK, the local collaborative aggregation depth is set to

2, 2, and 3, and the local semantic aggregation depth is set

to 1, 1, and 2 for the Amazon-Book, MovieLens-1 M, and

Last.FM datasets, respectively. For HAKG, the number of

negative samples per user is set to 200, 400, and 200, and

the margin of contrastive loss is set to 0.7, 0.8, and 0.6 for

the Amazon-Book, MovieLens-1 M and Last.FM datasets,

respectively. For DCLKR, the aggregation depth is set to 2,

3 and 2, the intraview contrastive loss weight is set to 0.1,

0.01, and 0.01, and the interview contrastive loss weight is

set to 0.1, 0.01, and 0.01 for the Amazon-Book, Movie-

Lens-1 M, and Last.FM datasets, respectively.

In terms of evaluation metrics, we follow previous

research such as [1, 23]. We assess the comparative per-

formance of different methods using widely adopted met-

rics in the field of click-through rate (CTR), namely AUC

(Area under the ROC curve) and F1. Higher AUC and F1

indicates better performance. Moreover, we follow previ-

ous studies such as [44, 45] and run KISDAN and the best-

performing baseline models (HAKG and DCLKR) for five

times using random seeds and perform a two-tailed

unpaired t-test to calculate p-values for significance

analysis.

5.3 Baseline models

To verify the effectiveness of KISDAN, we compare it

with some state-of-the-art models on the Amazon-Book,

MovieLens-1 M, and Last.FM datasets. We consider two

kinds of representative click-through rate prediction mod-

els: user behavior-based models and knowledge graph-

based models. DIN, DIEN, DMIN, and DBPMaN are user

behavior-based models, while CG-KGR, KGIC, MCCLK,

HAKG, and DCLKR are knowledge graph-based models.

These baseline models are listed below:

1. DIN [1]: DIN employs attention mechanism to learn

adaptive representations of user behavior related to the

target item.

2. DIEN [3]: DIEN designs an auxiliary network to

capture user’s temporal interests and introduces

AUGRU to model interest evolution.

3. DMIN [6]: DMIN incorporates a behavior refinement

layer to capture enhanced user historical item repre-

sentations and applies a multi-interest extraction layer

to extract multiple user interests.

4. DBPMaN [10]: DBPMaN designs a deep neural

network for behavior path matching and takes into

account the influence of sequential behaviors that

include user decision trajectories.

5. CG-KGR [23]: CG-KGR encapsulates historical inter-

actions into interactive information summaries. Then,

utilizing it as a guide, CG-KGR extracts information

from the knowledge graph to achieve comprehensive

and coherent learning of both the knowledge graph and

user-item interactions.

6. KGIC [24]: KGIC constructs local and non-local

graphs for users/items in the knowledge graph. It

performs intragraph contrastive learning within each

local/non-local graph and conducts intergraph con-

trastive learning between the local and non-local

graphs. Therefore, KGIC can effectively integrate

sparse interactions and redundant facts from the

knowledge graph.

7. MCCLK [25]: MCCLK performs contrastive learning

on three views at both the local and global levels to

self-supervise the exploration of comprehensive graph

features and structural information. MCCLK also

designs a k-nearest neighbor item–item semantic graph

construction module to capture important item–item

semantic relationships.

8. HAKG [26]: HAKG embeds users and items, as well as

entities and relations, in the hyperbolic space. It

designs a hyperbolic aggregation scheme to gather
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relationship contexts on the KG and introduces a novel

angle constraint to preserve item features in the

embedding space.

9. DCLKR [27]: DCLKR disentangles the item knowl-

edge graph into multiple aspects for the knowledge

view, and the user–item interaction graph for the

collaborative view. DCLKR performs intraview con-

trastive learning to learn differences among disentan-

gled representations in each view. It also performs

interview contrastive learning to transfer knowledge

between both the knowledge view and collaborative

view.

5.4 Main results (RQ1)

The performance results of KISDAN and all baseline

models on three benchmark datasets are shown in Table 2.

Here, bold� denotes a p-value less than 0.005. KISDAN

achieves AUC values of 0.9273, 0.9360, and 0.8735, F1

values of 0.8575, 0.8638, and 0.7914 on the Amazon-Book,

MovieLens-1 M, and Last.FM datasets, respectively.

Among all baseline models, DCLKR performs best with

the AUC values of 0.9214, 0.9219, and 0.8702, F1 values

of 0.8453, 0.8302, and 0.7827 on the Amazon-Book,

MovieLens-1 M, and Last.FM datasets, respectively.

Firstly, it is obvious that KISDAN outperforms all

models, surpassing DCLKR by 0.64%, 1.53%, and 0.38%

in AUC values, 1.44%, 4.05%, and 1.11% in F1 values on

the Amazon-Book, MovieLens-1 M, and Last.FM datasets,

respectively. In contrast, compared to HAKG, which per-

forms the second best among baseline models, DCLKR

only surpasses HAKG by 0.25%, 0.67%, and 2.93% in

AUC values, and 0.25%, 1.07%, and 2.76% in F1 values on

the same datasets. The statistical comparison of the per-

formance improvement between KISDAN, DCLKR, and

HAKG shows that KISDAN achieves significant perfor-

mance improvements over the best-performing existing

models. The p-values are well below 0.05, indicating that

KISDAN achieves statistically significant improvement

over the best-performing baseline models: HAKG and

DCLKR.

Secondly, compared to those user behavior-based

baseline models, KISDAN effectively utilizes the knowl-

edge graph to divide user behavior sequence into multiple

interest segments, fully leveraging the implicit semantic

information within the knowledge graph. KISDAN can

also distinguish the difference between strong interests and

weak interests so that it can effectively evaluate the

importance of interactions between different user interests.

Furthermore, KISDAN introduces items that users have not

clicked on to reveal potential interests. Compared to those

knowledge graph-based models, KISDAN can seamlessly

integrate the knowledge graph with the item co-occurrence

graph to model user behavior sequence. In addition, KIS-

DAN employs attention mechanisms to capture the mutual

influence between user behavior and target item. Thus, it

can capture personalized user interests more effectively

than those knowledge graph-based models.

Thirdly, we can also observe that knowledge graph-

based models generally perform better than user behavior-

based models. The performance gap between knowledge

graph-based models and user behavior-based models may

be attributed to the fact that knowledge graph-based

models leverage the rich semantic information in the

knowledge graph to learn relationships between users and

items. In contrast, user behavior-based models solely rely

on user’s historical behaviors to extract user interests and

cannot fully understand user interests.

From a conceptual perspective, KISDAN outperforms

all baseline models on three benchmark datasets, validating

its effectiveness of KISDAN in capturing the diversity of

user interests. By defining the concept of interest segment

and dividing user behavior sequence into multiple interest

segments, KISDAN accurately models a user’s interests in

different interest domains. This highlights the importance

of utilizing the knowledge graph to mine implicit semantic

information in user behavior sequence. Additionally, it also

demonstrates the necessity of distinguishing a user’s strong

and weak interests and exploring users’ potential interests

from different perspectives.

From a practical perspective, KISDAN excels in cap-

turing user interest in a much finer granularity. It utilizes

items that have not been clicked to mine user’s potential

interest, enhancing the model’s exploration capabilities.

Table 1 Statistics of three

datasets
Datasets Amazon-Book MovieLens-1 M Last.FM

User–item interaction #Users 70679 6036 1872

#Items 24915 2445 3846

#Interactions 847733 753772 42346

Knowledge graph #Entities 88572 182011 9366

#Relations 39 12 60

#Triplets 2557746 1241996 15518
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This approach enables recommendation systems to more

accurately predict content that users may be interested in,

thereby enhancing user satisfaction. This not only can

improve user experience but also can help businesses

achieve their marketing objectives more effectively. Fur-

thermore, experiments in the domains of books, movies,

and music offer new possibilities for the application of

recommendation systems across different fields.

5.5 Ablation study (RQ2)

In this section, we conduct experiments on several ablation

models to analyze the contribution of different modules on

the overall performance of KISDAN. We introduce six

ablation models, including KISDAN w/o SI, KISDAN w/o

WI, KISDAN w/o KGI, KISDAN w/o CFI, KISDAN w/o

SWAT, and KISDAN w/o CL. Specifically, KISDAN w/o

SI, KISDAN w/o WI, KISDAN w/o KGI, and KISDAN

w/o CFI indicate the removal of strong interest, weak

interest, semantic-based potential interest, and similarity-

based potential interest, respectively, from the input of the

final MLP. KISDAN w/o SWAT removes the strong-to-

weak attention mechanism and directly uses the target item

as the query. KISDAN w/o CL removes the potential

interest contrastive learning layer. The experimental results

on Amazon-Book, MovieLens-1 M, and Last.FM datasets

are shown in Table 3.

Strong interests represent the core interests of users.

Identifying users’ strong interests helps the model to pro-

vide more relevant content accurately, increasing user

satisfaction. From Table 3, we can see that KISDAN w/o

SI performs the worst among all ablation models. Com-

pared to KISDAN, the AUC values of KISDAN w/o SI

drop by 3.82%, 3.46%, and 4.79% on the Amazon-Book,

MovieLens-1 M, and Last.FM datasets, respectively. This

indicates that strong interests have a significant impact on

learning user interests, as strong interests represent the

preferences that users often exhibit.

Similarity-based potential interests are extracted from

the item co-occurrence graph, reflecting the similarity

relationship between each item interacted with by the user

and those not clicked, thereby expanding the diversity of

recommendations. KISDAN w/o CFI performs the second

worst among the ablation models. The AUC values of

KISDAN w/o CFI drop by 3.10%, 3.19%, and 3.70% on

the Amazon-Book, MovieLens-1 M, and Last.FM datasets,

respectively. The performance drop proves that incorpo-

rating the similarity information from the item co-occur-

rence graph is crucial for mining user’s potential interests.

Contrastive learning methods are used to explore the

complementary relationship between potential interests.

This approach leads to a comprehensive understanding of

user interests. As for KISDAN w/o CL, it performs slightly

better than KISDAN w/o SI and KISDAN w/o CFI.

Compared to KISDAN, KISDAN w/o CL exhibits a drop

of 2.06%, 2.72%, and 2.49% in AUC values on the Ama-

zon-Book, MovieLens-1 M, and Last.FM datasets,

respectively. This performance gap indicates that con-

trastive learning can capture complementary information

between semantically-based potential interests and simi-

larity-based potential interests, leading to a more compre-

hensive understanding of user interests.

The knowledge graph is employed to mine semantic-

based potential interests, KISDAN can understand the deep

semantic relationships behind user behaviors. As for KIS-

DAN w/o KGI, it achieves a better performance than

KISDAN w/o CFI. This indicates that the similarity-based

potential interest learned from the item co-occurrence

graph is more important than the semantic-based potential

interests learned from the knowledge graph.

Weak interests represent interests not explicitly

expressed through frequent interactions. However, weak

interests may also have an indirect connection with strong

interests and influence the user’s clicking behaviors. As for

KISDAN w/o WI, the performance gap between KISDAN

w/o WI and KISDAN is relatively smaller, indicating that

weak interests play a supplementary role in learning user

interests.

Strong-to-weak attention mechanism is designed to

effectively utilize strong interests to extract information

related to weak interests, reducing the impact of noise

within weak interests. Finally, KISDAN w/o SWAT per-

forms the best among the ablation models. Compared to

KISDAN, it only exhibits a drop of 0.28%, 0.81%, and

0.70% in AUC values on the Amazon-Book, MovieLens-

1 M, and Last.FM datasets, respectively. However, the

performance gap between KISDAN w/o SWAT and KIS-

DAN still highlights the importance of exploring the

interaction between strong interests and weak interests.

5.6 Parameter analysis (RQ3)

In this section, we conduct some experiments to analyze

the impact of some hyperparameters on the performance of

KISDAN.

5.6.1 Threshold for interest segment division s

In the interest segment division layer of KISDAN, the

hyperparameter s is used to determine the number of items

within the strong interest segments and the weak interest

segments. This hyperparameter helps KISDAN to learn a

user’s different levels of interests and the correlations

between these interests. Thus, the hyperparameter s is one

of the main factors affecting the overall performance of

KISDAN. We evaluate the performance of KISDAN with s
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ranging from 1 to 8. The experimental results are shown in

Fig. 2a and b. On the Amazon-Book dataset and the

Last.FM dataset, the AUC value and F1 value reaches its

peak when s is set to 2 and then gradually decreases as s
increases. On the MovieLens-1 M dataset, the AUC value

and F1 value reaches its peak when s is set to 5 and then

gradually decreases as s increases. We attribute it to the

reason that a small s value may result in too many interest

segments being classified as strong interest segments.

Consequently, these strong interest segments, which con-

sists of a small number of items, may not adequately rep-

resent a user’s strong interests. Conversely, if s is set too

high, KISDAN may only extract an insufficient number of

strong interest segments, potentially overlooking some of

the core interests of users. In addition, the optimal values of

s for the Amazon-Book, MovieLens-1 M, and Last.FM

datasets are different. KISDAN achieves the best perfor-

mance when s is set to 2, 5, and 2 on the Amazon-Book,

MovieLens-1 M, and Last.FM datasets, respectively. This

could be attributed to the fact that the MovieLens-1 M

dataset has a longer average user behavior sequence length,

so each interest segment needs to contain more items to be

considered as a user’s strong interests.

5.6.2 Loss weight k

KISDAN introduces contrastive learning loss as an auxil-

iary loss in the training process, and the weight of the

contrastive learning loss influences its role in CTR pre-

diction. Therefore, we evaluate the performance of KIS-

DAN by setting the loss weight k to 0.2, 1, 2, 4, and 8,

respectively. The experimental results are shown in Fig. 2c

and d. We observe that KISDAN achieves the best per-

formance on both datasets when k is set to 2. When k is too

small or too large, KISDAN’s performance is not optimal.

This indicates that the contrastive learning loss plays a

supportive role in CTR prediction. A too small contrastive

learning loss cannot fully leverage the benefits of con-

trastive learning to effectively capture complementary

information between user’s two potential interests. Con-

versely, a too large contrastive learning loss may reduce

the impact of the main task and lead to model bias.

5.7 Complexity analysis (RQ4)

In this section, we comprehensively analyze the model

complexity exhibited by KISDAN and some typical base-

line models. Specifically, among these baseline models,

Table 2 Performance results of

KISDAN and baseline models

on three benchmark datasets

Models Amazon-Book MovieLens-1 M Last.FM

AUC F1 AUC F1 AUC F1

DIN 0.8294 0.7396 0.8196 0.7479 0.8201 0.7314

DIEN 0.8431 0.7607 0.8402 0.7645 0.8308 0.7410

DMIN 0.8531 0.7635 0.8611 0.7786 0.8372 0.7657

DBPMaN 0.8649 0.7796 0.8763 7842 0.8396 0.7760

CG-KGR 0.9060 0.8256 0.8819 0.7868 0.8263 0.7334

KGIC 0.8907 0.8104 0.9011 0.8147 0.8529 0.7787

MCCLK 0.9078 0.8259 0.9050 0.8153 0.8459 0.7647

HAKG 0.9191 0.8432 0.9158 0.8214 0.8454 0.7617

DCLKR 0.9214 0.8453 0.9219 0.8302 0.8702 0.7827

KISDAN 0:9273� 0:8575� 0:9360� 0:8638� 0:8735� 0:7914�

Table 3 Performance of

KISDAN and its ablation

models on three datasets

Models Amazon-Book MovieLens-1 M Last.FM

AUC F1 AUC F1 AUC F1

KISDAN 0.9273 0.8575 0.9360 0.8638 0.8735 0.7914

KISDAN w/o SI 0.8932 0.8098 0.9047 0.8388 0.8336 0.7523

KISDAN w/o WI 0.9238 0.8542 0.9205 0.8520 0.8636 0.7855

KISDAN w/o SWAT 0.9247 0.8404 0.9285 0.8551 0.8674 0.7920

KISDAN w/o KGI 0.9164 0.8358 0.9182 0.8598 0.8585 0.7734

KISDAN w/o CFI 0.8994 0.8176 0.9071 0.8346 0.8423 0.7567

KISDAN w/o CL 0.9086 0.8257 0.9112 0.8410 0.8523 0.7657

The bold values represent the best values for each evaluation metric
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DIN, DIEN, DMIN, and DBPMaN are user behavior-based

models, while CG-KGR, KGIC, MCCLK, HAKG, and

DCLKR are knowledge graph-based models. Leveraging

the official codebases provided by the authors, these

models are executed with default settings on the Last.FM

dataset, and the complexity results are presented in Table 4.

Additionally, Table 5 represents the training time and

inference time of KISDAN and several best-performing

baseline models. The training time concerns one epoch,

while the testing time concerns one batch. All models are

trained with a batch size of 16 on a NVIDIA P100 GPU.

From Table 4, it is evident that KISDAN has more

parameters than most user behavior-based models. This

discrepancy arises from the fact that user behavior-based

models only consider the user behavior sequence. In con-

trast, the knowledge graph-based models need to perform

multi-hop propagation on the user–item interaction graph

and the knowledge graph using GNNs, thus requiring more

parameters. Furthermore, KISDAN applies attention

mechanisms to both the knowledge graph and the item co-

Fig. 2 Effect of some hyperparameters on the performance of KISDAN

Table 4 Complexity of

KISDAN and some typical

baseline models

Models Params

DIN 165217

DIEN 194949

DMIN 287488

DBPMaN 208045

CG-KGR 197792

KGIC 611520

MCCLK 751872

HAKG 997632

DCLKR 743552

KISDAN 259840

Neural Computing and Applications

123



occurrence graph, rather than performing multi-hop prop-

agation using GNNS. This allows KISDAN to effectively

leverage the rich information from the knowledge graph

and item co-occurrence graph while maintaining a balance

between model complexity and model performance.

From Table 5, it can be observed that KISDAN

improves both training and inference efficiency while

achieving superior performance. Knowledge graph-based

baseline models, such as KGIC, MCCLK, HAKG, and

DCLKR, utilize GNNs to perform feature propagation.

Therefore, these baseline models are computationally

expensive for both training and inference. KISDAN divides

user behavior sequence into multiple interest segments and

applies attention mechanisms to these segments to directly

weigh important information. This approach avoids the

need for feature propagation across the entire graph.

Therefore, it can reduce computational complexity while

maintaining model performance. This demonstrates the

advantages of KISDAN in terms of model complexity and

effectiveness.

5.8 Case study (RQ5)

In this section, we further analyze the effectiveness of the

proposed interest segment division strategy through case

studies. Specifically, we select one user behavior sequence

from the Amazon-Book dataset for detailed analysis. To

analyze the importance of both strong and weak interest

segments in click-through rate prediction, we visualize the

attention weights assigned by KISDAN to each strong

interest segment and weak interest segment. The X-axis

represents the entities corresponding to each interest seg-

ment, and the results are shown in Figs. 3 and 4. Addi-

tionally, we select DIN as the comparison model in this

case study. DIN is a classic model, which uses the target

item as the query and applies attention mechanisms to each

item in the user behavior sequence to assess the impact of

each item on user interests. In contrast, KISDAN evaluates

the impact of each interest segment on user interests.

Through the comparison, we can demonstrate the differ-

ences between modeling user interests using interest seg-

ments and items. Figure 5 illustrates how DIN allocates

attention weights to each item in the user behavior

sequence, with the X-axis representing the items. In these

figures, a deeper color indicates a higher attention weight

assigned and vice versa. The target item that the user

intended to click on is ‘‘Luring A Lady’’ authored by Nora

Roberts.

As shown in Fig. 3, it is apparent that the user demon-

strates a frequent preference for clicking on other books

authored by Nora Roberts. Notably, KISDAN assigns sig-

nificant attention to ‘‘Nora Roberts’’. As Nora Roberts is a

romance novelist, KISDAN also assigns a higher weight to

‘‘Romance novel‘‘. Similarly, as illustrated in Fig. 4,

KISDAN assigns higher weights to other romance novelists

such as ‘‘Lisa Kleypas’’ and ‘‘Julie Garwood’’, indicating

that the user’s other interests also influence his/her clicks

on ‘‘Luring A Lady’’. We attribute this result to the fact

that KISDAN incorporates semantic information from the

knowledge graph, so KISDAN can uncover the user’s

complex interests and accurately predict the user’s clicking

behaviors. Figure 5 shows that DIN only assigns higher

weights to some books by Nora Roberts (‘‘Bed of Roses’’

and ‘‘Whiskey Beach’’), while other books by Nora

Roberts (‘‘Pride of Jared Mackade’’, ‘‘Happy Ever After’’,

and ‘‘Vision in White’’) are assigned lower weights. This

discrepancy results in DIN’s inability to accurately capture

the user’s interest in the author Nora Roberts. Therefore,

DIN fails to accurately predict the user’s click on ‘‘Luring

A Lady’’. We attribute this result to the fact that DIN relies

solely on user interaction data to learn user interests,

without incorporating semantic information from the

knowledge graph. This prevents DIN from learning deeper

user interests.

6 Conclusion and future work

In this paper, we propose a novel and effective model

called knowledge-enhanced interest segment division

attention network (KISDAN) for click-through rate pre-

diction tasks. For user behavior sequences, we divide them

Table 5 Training speed and inference speed of KISDAN and several

best-performing baseline models

Models Training time (s) Inference time (s)

KGIC 130.91 0.0271

MCCLK 1043.84 0.3575

HAKG 632.32 0.0938

DCLKR 1423.39 0.0899

KISDAN 62.47 0.0178

Fig. 3 One case with visualized attention weights assigned by KISDAN to each strong interest segment
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into multiple interest segments based on the information

from the knowledge graph, considering these segments as

fundamental units for modeling user interests. These

interest segments provide crucial clues for capturing the

preferences exhibited by users in multiple interest domains.

KISDAN offers a comprehensive and accurate approach to

modeling user interests by refining them into strong and

weak interests, as well as introducing items that a user has

not interacted with as potential interests. This contributes

to expanding the exploration capability of KISDAN and

improving the performance of click-through rate predic-

tion. Extensive experiments on three commonly used

benchmark datasets demonstrate the efficacy of KISDAN

compared to several state-of-the-art models.

Although KISDAN performs well in capturing diverse

and complex interests of users, refining user interests, and

learning user’s potential interests, there are still several

avenues for future research and improvement. Firstly, the

effectiveness of KISDAN depends on the quality and

completeness of the knowledge graph. If information in the

knowledge graph is missing or erroneous, it may impact the

accuracy of interest segmentation. Secondly, the interest

segment division method may overlook some complex

relationships between user interests. For instance, different

interest domains of a user may intersect with or influence

each other. Lastly, the decision-making process of users

may be influenced by multiple factors, such as temporal

elements, which KISDAN has not yet comprehensively

considered. Future work will focus on exploring how to

reduce dependency on high-quality knowledge graphs and

mine user interests in a more granular way. Furthermore, it

is also urgent to explore how to capture temporal infor-

mation within interest segments to reflect real-time inter-

ests of users at different time points.
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