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Abstract
Radiological findings play an essential and complementary role in diagnosing Covid-19, assessing its severity, and

managing its patients. Artificial intelligence technology based on medical imaging, which has made exciting developments

by being applied in many areas, has become an area of interest for the rapid and accurate detection of the disease in the

fight against the Covid-19 pandemic. The main difficulty is the inability to obtain a large dataset size with quality and

standard images that neural networks need to perform well. Aiming at this problem, this study proposes a Siamese neural

network-based deep learning framework for accurate diagnostics of Covid-19 using chest X-ray (CXR) images. The pre-

trained VGG16 architecture, based on the transfer learning approach, forms the backbone of the Siamese neural network.

The outputs of the backbones are joined together by a merging layer, and then the output passes through a fully connected

layer. Based on this structure, category-aware Siamese-based models are produced for each class. The predictions from the

models are combined using a voting mechanism to reduce the possibility of misclassification and to make better decisions.

The framework was evaluated using a publicly available dataset for the 4-class classification task for Covid-19 pneumonia,

lung opacity, normal, and non-Covid-19 viral pneumonia images. The findings reveal the high discrimination ability of the

framework, trained using only 10 images per class in less training time, achieving an average test accuracy of 92%. Our

framework, which learns a single Siamese-based pairwise model for each class, effectively captures class-specific features.

Additionally, it has the potential to deal with data scarcity and long training time problems in multi-class classification

tasks.
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1 Introduction

One of the most major catastrophes of the twenty-first

century, the Covid-19 pandemic, has resulted in more than

700 million cases and more than 6 million fatalities glob-

ally. To stop the spread of the virus, infected people must

be isolated and treated as soon as possible after being

identified through quick and accurate tests.

The real-time reverse transcription polymerase chain

reaction (RT-PCR) test, which analyzes the upper respi-

ratory tract specimen, is extensively utilized to diagnose

Covid-19. However, obtaining the results of the PCR test

could take hours or even days, depending on the hospital’s

or health institution’s workload. In addition to the various

available test kits, the development of dependable and

quick test kits continues, but the need for diagnostic kits

and insufficient production are among the limitations.

Another option for diagnosing infected individuals is to

evaluate individuals’ chest images using medical imaging

techniques such as X-rays, computed tomography (CT)

scans, and magnetic resonance imaging (MRI), which

provide information to physicians in numerous medical

fields. In addition to supporting the diagnosis, radiological

findings play an essential and complementary role in

determining the disease’s severity, guiding patient
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management decisions and treatment, and assessing the

patient’s response to treatment. Because respiratory prob-

lems and abnormalities detected using imaging methods

are among the primary symptoms of Covid-19 [1–3]. An

advantage of using images is that most hospitals and lab-

oratories already have the appropriate equipment and

imaging systems. However, the fact that the interpretation

of the images mainly depends on the personal experience

of the relevant radiologist or specialist and that Covid-19

reveals similar radiological findings to other lung diseases

make the clinical diagnosis of Covid-19 difficult [4–7]. In

addition, the disease has a wide range of radiographic

features [8, 9], and interpretation of chest images may be

challenging. With this motivation, numerous artificial

intelligence-based techniques with promising results have

been proposed to detect Covid-19 cases and assist spe-

cialists in diagnosing using radiological images. Most

studies have included classification tasks with two, three,

or more categories focused on distinguishing individuals

with Covid-19 pneumonia from individuals with other

pneumonia or healthy individuals. X-ray and CT images

constitute the two primary datasets used for classification.

Limitations and difficulties such as data scarcity, non-s-

tandard datasets, and non-repeatability restrict the proposed

models’ theoretical and clinical applications. Therefore,

efforts for generalization and improving robustness deter-

mine the direction of research.

One approach to dealing with the large training set

requirement and long training time problem is to apply to

the Siamese neural network (SNN) architecture, also

known as metric-based few-shot learning [10]. Examples

of distance metrics include cosine similarity, Euclidean,

and Manhattan distance. The goal of the network is not to

directly recognize or classify the input. The network aims

to determine the similarity (or difference) between the

input with the class label and the input whose class label is

unknown by learning their good encodings that provide

representations of the images. Extracting features based on

similarity and difference helps to train the model with

fewer examples [11]. For this reason, despite being limited,

SNNs were also discussed in Covid-19 researches. Li et al.

[12] provided a Siamese neural network-based algorithm

using DenseNet121 to measure COVID-19 disease severity

in chest radiographs. Shalu et al. [13] proposed an

approach for binary and multi-class classification scenarios

related to Covid-19. Their approach included a Siamese

network and achieved a testing accuracy of over 98%.

Jadon [11] applied to the Siamese network to detect Covid-

19 using chest radiographs and achieved an accuracy of

over 96%. Jiang et al. [14] proposed a Siamese network-

based method for the Covid-19 diagnostic task using CT

scans, addressing the domain shift issue. They used the

Xception network as the feature extractor and achieved

around 80% accuracy for the 5-shot image classification

task. Li et al. [15] used dual-Siamese channels consisting

of four encoders (Res2Net) to extract image features of

lesion regions while evaluating four clinical stages of

Covid-19 patients based on CT images and clinical meta-

data. Their method achieved 86.7% accuracy. Shorfuzza-

man and Hossain [16] reached over 95% accuracy with a

deep Siamese network model they proposed to diagnose

Covid-19 from chest radiographs. Abugabah et al. [17]

proposed a Siamese convolutional neural network model

using X-ray images to classify images with Covid-19, non-

Covid-19, and pneumonia. They achieved 96.70% test

accuracy. Al Rahhal et al. [18] proposed an approach based

on a vision transformer that uses a Siamese encoder to

separate the categories of normal, Covid-19, and non-

Covid-19 pneumonia. Nneji et al. [19] used the Siamese

network in their proposed approach for binary and four-

class classification tasks for Covid-19 identification.

Although the relevant literature is growing rapidly,

using non-public data or an unknown subset of publicly

available data without a specific set of rules or not dis-

closing experimental details causes the inability to repro-

duce published results, and the proposed methods suffer

from generalizability to new data. We considered these

issues sensitively, presented the proposed framework’s

data organization scheme in detail, and tried to provide

experimental details meticulously to ensure that the

experiments in the study were reproducible. To the best of

our knowledge, earlier SNN-based Covid-19 studies

mainly dealt with two- or three-class classification tasks

considering Covid-19, healthy/normal, and other pneumo-

nia categories. However, there is still a need to enhance

disease diagnostic systems based on medical images for

other datasets with more challenging categories. This paper

examines categories different from those considered in

previous Siamese network-based approaches regarding

Covid-19. We propose a framework containing category-

aware Siamese-based models combined by majority voting

for a four-class classification task related to the categories

Covid-19 pneumonia, lung opacity, normal, and non-

Covid-19 viral pneumonia. For this purpose, we employ

chest X-rays from an open-source dataset. The framework

uses four pairwise models, each containing a Siamese

neural network. As the backbones of the Siamese network,

we use the VGG16 deep learning architecture, pre-trained

on images from ImageNet, and then fine-tuned on the task-

specific dataset after a few modifications. The training of

traditional Siamese neural networks mainly includes dis-

tance metric and distance-based triplet loss and contrastive

loss. We incorporate structural changes to the Siamese

neural network, such as concatenation instead of the

commonly used distance metric and binary entropy loss

instead of triplet and contrastive loss. In the testing phase,
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we combine the predictions of the models included in the

framework with the majority vote. In order to demonstrate

the main contribution of the proposed framework, we first

compare it with a traditional VGG16 and a single Siamese-

based pairwise model adapted to the four-class classifica-

tion task and its distance metric-used version. Next, we

compare it with ten state-of-the-art models to show its

superiority.

The main contributions of the article are summarized as

follows:

• The proposed framework, which can also be trained on

small amounts of data, involves using feature conjunc-

tions across the two examples via concatenation of

image pairs examples’ feature vectors.

• The proposed approach assigns the final class label

using class-specific Siamese-based pairwise models and

majority voting.

• When the proposed framework is applied by concate-

nating the feature vectors of the images, an average of

92% test accuracy is reached in the four-class

classification.

• The suggested approach distinguishes Covid-19 from

other viral pneumonia and lung opacity.

The organization of the remainder of the paper is as fol-

lows. The second section introduces the proposed frame-

work with all its components. The third section provides

the CXR dataset used, the pre-processing applied to the

CXR images, the data organization scheme, and other

experimental details and results. In the last section, the

article concludes with potential directions for further

research and conclusions.

2 Materials and methods

In this section, we tried to explain the proposed method-

ology in four separate sections in accordance with the

progress of the main framework. We will first consider the

training of the pre-trained models used, then, based on pre-

trained models, we detail the pairwise model based on a

Siamese network, and finally, a specific majority vote

system that combines all these.

2.1 Transfer learning

Transfer learning is the use of knowledge gained by a

model from a task with a large amount of labeled training

data in a new task that contains less data or, equivalently,

the reuse of the pre-trained model on a new task. This

paper includes transfer learning using the VGG16 model

trained on the ImageNet-1K dataset [20], commonly used

for pre-training deep learning models. ImageNet-1K is a

subset of the ImageNet dataset designed for visual object

recognition research. It is an extensive visual database

containing 1.2 million labeled images of 1000 object

classes we encounter daily. The VGG16 network [21],

whose parameters are initialized with the weights obtained

from the ImageNet-1K training, is used as the baseline

network. Only the upper layers of the VGG16 network, that

is, the fully connected layers, are removed, and the fully

connected layer with the sigmoid activation function is

added. Since the pooling layer produces a matrix as output,

a flatten layer is also added, transforming the matrix into a

vector that will be the input for the dense layer. The output

layer in the network is revised to have two nodes. Within

the proposed framework, VGG16, modified as described

above, is trained for binary classifications of Covid-19 vs.

others, lung opacity vs. others, normal vs. others, and non-

Covid-19 viral pneumonia vs. others. In this way, it is

aimed to learn each category separately and, therefore,

more accurately. The network is optimized based on

accuracy and Adam optimizer, which minimizes the cross-

entropy loss. The training is conducted for 140 epochs with

a batch size of 16. The learning rate is fixed to 10�5. An

example of a pre-trained VGG16 network for the class

Covid-19 is given in Fig. 1. Models obtained after fine-

tuning take place in a separate Siamese-based pairwise

architecture for each of the four classes labeled Covid-19,

lung opacity, normal, and viral pneumonia.

2.2 Siamese-based pairwise model (SbPM)

This study introduces a novel pairwise classifier that draws

inspiration from the Siamese model but differs significantly

in structure. To understand this concept, we must first

define positive and negative pairs. For a reference class like

Covid-19, a positive pair is a pair in which both images

belong to the reference class (Covid-19), while a negative

pair comprises one image from the reference class and the

other from a different class. The Siamese-based pairwise

classifier (SbPC) aims to identify whether a pair is a pos-

itive pair based on the reference class.

Figure 2 illustrates this idea; let ðxi; xjÞ be defined as the

pair of xi and xj images where xi 2 Rd�h�w

i 2 M :¼ f1; 2; . . .;mg, d is the number of channels, h the

height, and w the width, respectively. The image pairs,

cij ¼ ðxi; xjÞ�Rd�h�w � Rd�h�w, are fed to the proposed

Siamese neural network to get feature pairs, fi; fj
� �

. The

Siamese neural network comprises two backbones with the

same configuration and weights. Each backbone consists of

a pre-trained model. The last layers’ outputs of the pre-

trained architectures are fed into a concatenation layer.

Next, a fully connected layer with 128 neurons, sigmoid

function, L2 regularization, and an output layer with
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sigmoid activation are added. The proposed architecture

aims to obtain pairwise predictions for each class. Based on

the output of the network, pij, pairs are labeled according to

whether or not the examples of the input images given in

pairs belong to the same class. If the examples of the pair

belong to the same class pij [ 0:5
� �

, the pair, cij, is called a

positive pair, and the corresponding binary label ŷij is 1. On

the contrary, if the examples of the pair, cij, do not belong

to the same class pij\0:5
� �

, this pair is called a negative

pair, and ŷij is 0. With these goals, the described network

(Fig. 3) is optimized by minimizing the binary cross-en-

tropy loss using training and validation pairs. We used the

latex code [22] to illustrate the convolutional neural net-

work architectures in Figs. 1 and 3.

2.3 Loss function

The traditional Siamese network branches result in differ-

ent encodings as the parameters of the conventional Sia-

mese network change. Therefore, the target is to learn the

network parameters that provide good encodings. Distance-

based loss functions are widely implemented during

training to learn the parameters of the network that provide

better encoding of images. Since we try to solve the multi-

class classification problem by transforming it into binary

classification problems for each class separately, the loss

function used in the proposed Siamese-based pairwise

model is the binary cross-entropy loss function:

L ¼ �yijlog pij
� �

þ ð1� yijÞlog 1� pij
� �

; ð1Þ

where yij is the true label and pij the probability of ith and

jth examples being from the same class.

2.4 Final class prediction

Once we have SbPC for each class, the classification of a

new image x from the test set follows a specific process.

Firstly, a query set is generated by randomly selecting a

predetermined number of rð Þ examples from all classes in

the training set. Next, a paired query set is created by

matching the image x with the examples in the query set.

This pairing process is repeated for each example in the test

set, resulting in a pairwise test set.

We then present these pairwise test images to all trained

SbPCs and obtain the pairwise predictions. A pairwise

Fig. 1 Architecture of a pre-trained VGG16 model for Covid-19 class

Fig. 2 A simple schema of the

proposed Siamese-based

pairwise classifier (SbPC) for a

specific class (e.g., Covid)
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prediction determines whether the images that make up the

pair come from the same class. In other words, each

training image we match with the new (test) image gives a

vote for this new image as to whether it belongs to the class

of the training image or not.

Pairwise predictions from all SbPCs are combined via

the majority voting rule. The set of voting pairs is

QðxÞ ¼ fqi :¼ ðx; xki Þ : i ¼ 1; . . .; r; k ¼ 1; . . .; lg. The vot-

ing method described below [23] is used to make the final

prediction about the class of the new image:

MkðxÞ ¼
X

qi2Q
vðpkðqiÞÞ ð2Þ

vðtÞ ¼
1; t[ 0:5;

�1; otherwise:

�
ð3Þ

Here, pk qið Þ represents the probability that the unknown

test example x in the pair qi belongs to the kth class, and

v tð Þ maps pk qið Þ to �1; 1f g for each test pair. Since the

class label of the training example in each pair is known, it

generates a vote for the test example to which it is matched.

If pk decides that the examples of a pair are not from class k

ðpk\0:5), it contributes -1 as its vote to MkðxÞ, otherwise,
it contributes ?1. After collecting votes from all classifiers

and completing the voting process, the class label of image

x is decided as follows:

class of x ¼ argmaxk¼1;...;lMkðxÞ: ð4Þ

That is, x is assigned to the class with the highest number

of votes.

We have provided the details of the approach we sug-

gested in the above four sections. We call this multi-class

classification technique ‘‘MultiCOVID’’, which combines

pre-trained models, SbPMs, and a special majority voting

scheme.

3 Experiments

In this section, we evaluate MultiCOVID for the multi-

class classification task on the dataset described in Sect.

3.2. We compare the suggested framework with three

methods to highlight its contributions. The first is a version

of MultiCOVID where we use the elementwise absolute

difference of feature vectors as the merge layer in SbPMs

instead of concatenation. For simplicity, we call this ver-

sion MultiCOVID_AbsDiff and our proposed model

MultiCOVID_Concat. The second is VGG16, whose

architecture for two classes is shown in Fig. 1, and the

experimental setup is provided in Sect. 2.1. Only the

classification layer was changed to adapt the architecture to

the 4-class classification problem. In our suggested

framework, each SbPM learns to discriminate one of the

four classes from the others. As the third model, a single

SbPM trained for four classes is considered, which is

compatible with the traditional similarity learning task of

Siamese networks. After relevant evaluations, the experi-

mental results are concluded by comparing the proposed

framework with ten available state-of-the-art models.

Fig. 3 A detailed view of a Siamese-based pairwise model for a specific class (e.g., Covid)
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When comparing models, two essential points were

considered. First, depending on the initial values of the

parameters, we observed that the trained network con-

verges to different solutions. Second, since the objective of

the suggested approach is to enable the network to learn

with a limited number of examples, at the beginning of the

training, 10 examples from each class are chosen randomly

and used to train the models. Therefore, the solution to

which the network converges at the end of the training

varies depending on the selected examples at the begin-

ning. Considering these two critical points, network train-

ing and testing were performed 10 times for each model to

compare the techniques accurately. In each trial, the net-

work was initialized with distinct initial parameters. Fur-

thermore, ten different examples were drawn randomly

from each class, provided that the chosen example was not

re-selected in another trial. These examples were then used

to generate pairwise training and validation sets. The pro-

vided results include the mean and standard deviation of 10

trials for relevant performance metrics when comparing

models. Thus, the models are compared in a manner that

ensures fairness.

When the studies in the literature were examined, it was

seen that the processes related to the experiments were not

explained enough, and the critical points we discussed

above were not handled with sensitivity. However, we have

observed in our experiments that these details significantly

impact the training. Therefore, since the MultiCOVID

technique we recommend has its data organization, it is

necessary to outline the training and testing process step by

step as follows:

• First, the data set is separated into three categories:

training, validation, and testing.

• To create pairwise training data sets, the first step is to

randomly select ten examples from each class in the

training set. Since there are four classes, a total of 40

examples are selected. Then, each example is paired

with one positive (from the same class) and one

negative (from a different class) example from the

training set. As a result, 40 x 2 = 80 training pairs are

created for all classes, that is, pairwise training sets for

four classes.

• All examples in the validation set are utilized for

constructing pairwise validation sets. Each example in

each class is paired with one positive (from the same

class) and one negative (from a different class) example

from the validation set. As a result, the number of

examples in that class x 2 pairs are formed for each

class, and the total number of examples in the validity

set x 2 validity pairs are created for all classes. This

meticulous process ensures a balanced representation of

positive and negative pairs within the pairwise training

and validation datasets across the Covid-19 pneumonia,

lung opacity, normal, and non-Covid-19 viral pneumo-

nia classes.

• An individual SbPM (Fig. 3) is trained for each class

using these training and validation pairs.

• Once the training of SbPMs is completed, a pairwise

test set is formed. Each example in the test dataset is

matched with a specified number r ¼ 10ð Þ of examples

(query set) from each class in the training dataset while

constructing the pairwise test dataset. Therefore, the

number of examples in the test set x 10 test pairs is

generated.

• The created pairwise test dataset is fed into SbPMs,

each specially trained for only one class, to yield

pairwise predictions.

• Finally, the class of the test example is determined by

pairwise test set predictions and majority vote, as

described in Sect. 2.4.

3.1 Experimental setup

All training and tests were conducted on a system with two

Nvidia Tesla P100 GPUs, one 20-core Intel Xeon Scalable

6148 processor, and 384 GB of ECC 2600Mhz memory.

The proposed model was trained with the Python 3.8

compiler, Tensorflow 2.3.0, and Keras 2.4.3 libraries.

Framework networks were trained on a batch size of 20

using Adam optimization with a learning rate of 10�4 for a

maximum of 500 epochs to minimize the binary cross-

entropy loss function. In addition, the validation loss was

monitored throughout the training. When the validation

loss increased for a specified number of steps (5), early

stopping was implemented, and the training was termi-

nated. In this process, the network parameters of the model

with the lowest validation loss were automatically saved

for test evaluation. Similarly, benchmarking methods were

trained for a maximum of 500 epochs using the (online)

Adam optimizer and binary cross-entropy loss. All the

experiments were performed using TUBITAK ULAKBIM,

High Performance, and Grid Computing Center.

3.2 Dataset and pre-processing

We used the publicly available Covid-19 Radiography

Database [24, 25]. This dataset was created from published

papers, online resources, and publicly available datasets by

researchers from Qatar University and the University of

Dhaka, their collaborators from Pakistan and Malaysia, and

with the help of medical doctors. The dataset includes chest

images in four categories: Covid-19 positive case, lung

opacity, normal, and non-Covid-19 viral pneumonia. Of the

chest X-rays, 3616 belong to individuals with Covid-19,

Neural Computing and Applications

123



6012 to individuals with lung opacity, 10192 to normal

individuals, and 1345 to individuals with other viral

pneumonia. The training dataset includes 2531, 4208,

7134, and 941 CXR images for Covid-19, lung opacity,

normal, and other viral pneumonia categories, respectively.

The validation dataset includes 542, 1528, 901, and 201

CXR images for Covid-19, lung opacity, normal, and other

viral pneumonia categories, respectively. The test dataset

includes 543, 903, 1530, and 203 CXR images for Covid-

19, lung opacity, normal, and other viral pneumonia cate-

gories, respectively. From the training dataset, 14,814

images were used to train the model, and 3,172 images

were used to validate the model. But first, all images were

resized 100� 100ð Þ, and pixel values were normalized

between 0 and 1.

3.3 Evaluation metrics

The classification performances are reported using four

metrics. These are recall, precision, F1_score, and accu-

racy, defined as follows:

Recall ¼ TP

TP + FN
ð5Þ

Precision ¼ TP

TP + FP
ð6Þ

F1 score ¼ 2� Precision� Recall

Precision + Recall
ð7Þ

Accuracy ¼ TP + TN

TP + TN + FP + FN
: ð8Þ

Here, TP denotes true positive, TN true negative, FP false

positive, and FN false negative. In addition, the average

weighted by the support and unweighted mean for metrics,

precision, recall, and F1_score is among the results.

3.4 Experimental results

Table 1 presents the average accuracy and training time

from 10 trials of the proposed MultiCOVID framework and

benchmarking techniques for the classification problem,

including Covid-19 pneumonia, lung opacity, normal and

non-Covid-19 viral pneumonia categories. The findings

show that training for the MultiCOVID framework takes

significantly less time than training for the VGG16 and

single SbPM. Furthermore, the suggested framework

trained with ten training images from each class achieves

better accuracy than other models trained with the whole

training images.

The average performance metrics of the approaches

derived from 10 trials are shown in Table 2. The proposed

MultiCOVID framework shows better classification per-

formance compared to other methods, especially single

SbPM. Even though VGG16, a classical multi-class clas-

sification technique, performed well, it used all examples in

the training phase while making this classification. In

contrast, MultiCOVID completed its training using only 10

examples from each class. Furthermore, when the stability

of the methods was assessed, that is, looking at the clas-

sification accuracy values from 10 trials, VGG16 was the

most stable method with a standard deviation of 0.001.

Based on ten replications for each compared model,

Fig. 4 depicts a composite of box plots accompanied by

scattered data points, showcasing between-subjects designs

and incorporating statistical information within the visu-

alization. Statistical analyses and demonstrations were

performed using the ggstatsplot package in R [26]. All the

data were tested for normality before the analysis, and

normality assumptions were satisfied. Therefore, the

models’ classification accuracies were compared using

Welsch’s analysis of variance (ANOVA). The Games-

Howell test was used for pairwise comparisons, and Bon-

ferroni was used as an adjustment method for p-values.

A statistically significant difference p\0:001ð Þ exists

between the proposed models (MultiCOVID_Concat and

MultiCOVID_AbsDiff) and the other models under com-

parison (VGG16 and Single_SbPM). MultiCOVID_Concat

and MultiCOVID_AbsDiff exhibited notably superior

classification performance compared to the other models.

Conversely, there is no statistically significant difference

between the proposed models MultiCOVID_Concat and

MultiCOVID_AbsDiff.

Table 3 presents the classification performance metrics

of SbPMs to see the effect of adopting vertical concate-

nation or absolute difference for merge layer in the Mul-

tiCOVID framework on the resulting pairwise predictions.

Table 1 Comparison of models

for the four-class classification

task

Model Training dataset Merge layer Training time (min) Accuracy

MultiCOVID_Concat 10 images per class Concatenation 37 0:92� 0:007

MultiCOVID_AbsDiff 10 images per class Absolute difference 33 0:92� 0:004

VGG16 Entire dataset – 329 0:89� 0:001

Single_SbPM Entire dataset Absolute difference 321 0:70� 0:007
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The results reveal that MultiCOVID implemented with the

concatenation operator performs better regarding pairwise

predictions.

Figure 5 displays the confusion matrix for each

approach. The confusion matrices in Fig. 5a, b demonstrate

the proposed framework’s remarkable performance in

unhealthy CXR image classes. MultiCOVID framework

with concatenation operator correctly diagnoses 521 of 543

Covid-19 patients but incorrectly diagnoses nine as lung

opacity and 13 as normal. Of the 543 Covid-19 patients, the

MultiCOVID framework with absolute difference operator

accurately classifies 513; nevertheless, it misdiagnoses 12

as lung opacity, 17 as normal, and one as viral pneumonia.

With 966 CXR images, a single SbPM has the highest

misclassification score in the entire dataset and the highest

misclassification score per class.

Figure 6 depicts the training and validation losses of the

proposed framework and benchmarking methods. Training

and validation for both implementations of MultiCOVID

appear to be stable, and the spread of curves is quite low.

Our proposed MultiCOVID_Concat converges signifi-

cantly faster than benchmark approaches. Even VGG16,

which has good performance metrics, requires 370 epochs.

Finally, the comparative performance evaluation of Mul-

tiCOVID with ten state-of-the-art models for the four-class

classification task is presented in Table 4. The experi-

mental results indicate the superiority of our proposed

framework, MultiCOVID, over the existing state-of-the-art

models.

Table 2 Classification performances for the proposed framework and benchmarking techniques

Metric Class Metric Score

Covid-19 Lung opacity Normal Viral pneumonia

MultiCOVID_Concat Precision 0:84� 0:029 0:91� 0:021 0:95� 0:009 0:96� 0:015 Macro average 0:91� 0:008

Weighted average 0:92� 0:005

Recall 0:96� 0:006 0:89� 0:015 0:92� 0:021 0:94� 0:012 Macro average 0:93� 0:004

Weighted average 0:92� 0:007

F1_score 0:89� 0:015 0:90� 0:004 0:93� 0:007 0:95� 0:005 Macro average 0:92� 0:006

Weighted average 0:92� 0:007

Support 543 903 1530 203 Accuracy 0:92� 0:007

MultiCOVID_

AbsDiff

Precision 0:91� 0:017 0:91� 0:02 0:94� 0:008 0:92� 0:033 Macro average 0:92� 0:01

Weighted average 0:92� 0:004

Recall 0:95� 0:007 0:89� 0:016 0:93� 0:016 0:97� 0:009 Macro average 0:93� 0:002

Weighted average 0:92� 0:004

F1_score 0:93� 0:008 0:90� 0:004 0:93� 0:005 0:94� 0:014 Macro average 0:93� 0:006

Weighted average 0:92� 0:004

Support 543 903 1530 203 Accuracy 0:92� 0:004

VGG16 Precision 0:88� 0:006 0:87� 0:008 0:89� 0:004 0:96� 0:005 Macro average 0:90� 0:003

Weighted average 0:89� 0:001

Recall 0:88� 0:004 0:84� 0:007 0:92� 0:007 0:90� 0:008 Macro average 0:88� 0:003

Weighted average 0:89� 0:001

F1_score 0:88� 0:002 0:85� 0:002 0:90� 0:001 0:93� 0:004 Macro average 0:89� 0:002

Weighted average 0:89� 0:001

Support 543 903 1530 203 Accuracy 0:89� 0:001

Single_SbPM Precision 0:51� 0:02 0:67� 0:011 0:78� 0:006 0:63� 0:016 Macro average 0:65� 0:009

Weighted average 0:69� 0:007

Recall 0:43� 0:024 0:71� 0:008 0:76� 0:005 0:80� 0:015 Macro average 0:68� 0:01

Weighted average 0:70� 0:007

F1_score 0:47� 0:021 0:69� 0:009 0:77� 0:005 0:70� 0:014 Macro average 0:66� 0:009

Weighted average 0:69� 0:007

Support 543 903 1530 203 Accuracy 0:70� 0:007
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4 Discussion and conclusions

In pandemic crises, it is crucial to quickly make the right

decisions regarding the disease with minimal resources.

Problems with the RT-PCR test and the symptoms of

Covid-19 have led to the use of medical imaging

techniques that provide information in a shorter time in the

diagnosis and management of the disease. Therefore, the

combination of deep learning and image processing to

support the assessment of Covid-19 has received consid-

erable attention.

Fig. 4 Box-plot of replications of models with analysis of variance

Table 3 Evaluation results of

pairwise predictions
Model Class Accuracy Precision Recall F1_score Roc Auc

MultiCOVID_ Concat Covid-19 0.98 0.98 0.98 0.98 0.96

Lung opacity 0.94 0.94 0.94 0.94 0.93

Normal 0.93 0.93 0.93 0.93 0.93

Viral pneumonia 0.99 0.99 0.99 0.99 0.98

MultiCOVID_ AbsDiff Covid-19 0.96 0.96 0.96 0.96 0.94

Lung opacity 0.90 0.90 0.90 0.90 0.88

Normal 0.91 0.91 0.91 0.91 0.91

Viral pneumonia 0.99 0.99 0.99 0.99 0.98
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In studies on Covid-19, deep learning methods have

been mainly applied to classification tasks with 2 or 3

classes, while less attention has been paid to applications

for four or more classes. So far, when out of the six papers

addressing the same categories and the same dataset are

reviewed, it is seen that four of them applied to data aug-

mentation and reported accuracy ranges between 92% and

96%. Brima et al. [35] suggested a framework with a

ResNet-50 CNN architecture that achieved 94% accuracy

using 15,241 training, 3809 validation, and 2115 test chest

X-ray images. Senan et al. [36] reported 95% accuracy in

their approach when they applied the data augmentation

technique to the same data set and used ResNet-50 as a

feature extractor. They reported 92% accuracy when they

employed AlexNet. They stated the training time as 674

min 32 sec for ResNet-50 and 81 min 5 sec for AlexNet.

Bashar et al. [37] achieved 95.63% classification accuracy

through the VGG16 transfer learning algorithm using an

enhanced augmented normalized dataset. Khan et al. [38]

developed a technique based on EfficientNetB1, NasNet-

Mobile, and MobileNetV2 pre-trained deep learning

models. They applied an image augmentation approach to

the dataset containing 21,165 images to increase the

amount of data and balance the classes. With a classifica-

tion accuracy of 96.13%, the regularized EfficientNetB1

model outperformed other models. Sanida et al. [39]

Fig. 5 Performance results of all techniques. a Confusion matrix of MultiCOVID_Concat. b Confusion matrix of MultiCOVID_AbsDiff.

c Confusion matrix of VGG16. d Confusion matrix of single_SbPM
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proposed a model based on the MobileNetV2 architecture.

They achieved 95.8% accuracy with 14,813 images for

training, 4232 images for validation, and 2120 images for

testing. Using W-RESNET-50, Basu et al. [40] achieved

92.65% accuracy with a data set comprising 21,165 images

and 94.57% accuracy with the second data set containing

27,790 images.

This paper proposes a framework for the multi-class

classification task of X-ray images, named MultiCOVID. A

pairwise model based on a Siamese neural network is

addressed to each class. The framework is implemented in

two ways, depending on how subnetworks’ outputs’ of the

pairwise models are combined. One of these merging ways

is done as a vertical concatenation of feature vectors, the

other as the absolute difference of the corresponding

elements in the extracted feature vectors of the two images

of each pair. For the final classification, a majority vote is

used based on the results of the pairwise models, each

learning only one class.

MultiCOVID, which includes four class-specific SbPMs

using vertical concatenation for subnetwork encodings,

achieved approximately 92% classification performance.

Furthermore, it is observed that the proposed models per-

form much better compared to single SbBM, which uses

the same underlying structure (SbPM). This is because

single SbPM relies on a single SbPM model to solve the

multi-class classification problem. It attempts to learn a

single model to identify similar pairs for all classes. While

this may seem like a good idea initially, it becomes a more

complex problem as the number of classes increases. On

Fig. 6 Train versus validation loss curves reported for all techniques. a Loss curves of MultiCOVID_Concat. b Loss curves of

MultiCOVID_AbsDiff. c Loss curves of VGG16. d Loss curves of single_SbPM
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the other hand, the proposed models learn a separate SbPM

model for each class, thereby capturing class-specific fea-

tures better. This demonstrates the effectiveness of the

proposed approach for multi-class classification problems,

but there are still aspects that can be further improved.

Another critical point is that the proposed models achieve

this performance with only 10 examples from each class

and, therefore, in a much shorter time. In contrast, VGG16

and single SbPM have not attained this performance even

though they use all of the training data and much more

training time. The results demonstrate the potential of the

proposed framework, which reduces a large amount of data

dependency and training time. These benefits become

essential in choosing an approach that can quickly adapt to

the problem, especially in the early stages of new health

emergencies, when data are lacking and quick decision-

making is required. However, it can be said as a limitation

that CT or other image datasets are not considered in the

study.

Future studies may consider integrating different pre-

trained models and other hyperparameter tuning methods

into the proposed framework. Although many approaches

have already been developed to recognize Covid-19 dis-

ease from image data, the need to create assistive systems

for more sensitive assessments with different datasets

remains. In this context, the proposed framework can be

used in follow-up radiographs to classify changes related to

the course or severity of the disease. In this way, the right

treatment decisions will further increase the benefit of

imaging technologies. Efforts for automatic and accurate

detection of Covid-19 based on medical images will

undoubtedly lead to significant advances in using artificial

intelligence technology to fight against other diseases or

pandemics.
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