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Abstract
The fundamental objective of a modern power system lies in ensuring reliable and effective energy access for its cus-

tomers. The assessment and determination of optimal operating conditions for power systems involve the utilization of the

optimal power flow (OPF) tool. By considering critical factors such as generator power, bus voltages, and line power flow

limits while satisfying the power balance equations, the OPF tool enables the identification of the most favorable con-

figuration for efficient power system operation. Traditional optimization methods have limitations in addressing complex

power system problems due to poor convergence and long computational times. As a result, computational intelligence

tools have gained popularity in recent years. These tools are versatile and enable efficient solution of power system

problems by effectively handling qualitative constraints. This paper presents a well-organized and comprehensive review

of the algorithms used in power system optimization in the existing literature, encompassing the most recent developments

in the field. Specifically, it examines the application of various population-based artificial intelligence techniques that have

gained widespread adoption over the past decade (2012–2022). The aim of these techniques is to resolve an OPF problem.

This paper organizes the reviewed papers into various types of population-based metaheuristic algorithms, each one

implemented sequentially to deal with the OPF problem in the same chronological order in which they appeared in the

literature.
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1 Introduction

The first and most significant prerequisite for a modern

power system network is that it functions reliably and

securely to provide adequate, efficient, and cost-effective

service to all customers. The restructuring of the electricity

industry has further developed interest towards the optimal

power flow (OPF) for the optimal deployment of resources.

The OPF problem finds considerable importance in the

operation, planning, economic scheduling, security

monitoring as well as in the energy management systems

(EMSs) of the modern power system networks. Further-

more, with the increasing size and complexity of the power

system and the continuing trend toward integration of

renewable energy sources (RES) leading to hybrid gener-

ation scenarios, the importance of OPF becomes even more

apparent.

OPF solution aims to find the optimized schedule for

each generator so that overall generation cost can be

minimized while satisfying diverse constraints. The OPF

study prioritizes the minimization of total generation fuel

costs (FCM) as a primary objective due to its direct impact

on the economy. Furthermore, several other objectives hold

equal significance, such as active power loss minimization

(PLM), reactive power loss minimization (RPLM), voltage

stability enhancement (VSE), voltage deviation minimiza-

tion (VDM), and emission minimization (EM) from the

generating units, due to increasing environmental concerns.

For practical systems, these objectives need to be
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considered simultaneously, which in turn requires con-

ducting multi-objective OPF (MOOPF) studies. Conse-

quently, the OPF problem can be perceived as a heavily

constrained, highly nonlinear, mixed-integer, and typical

nonconvex power system optimization problem (PSOP),

while satisfying a combination of continuous and discrete

control variables. The OPF problem formulation traces

back to Carpentier’s pioneering work in 1962 [1].

Previously, many classical optimization methods (de-

terministic methods) have been successfully employed for

solving OPF efficaciously. Among these classical methods,

the most popular were gradient-based techniques, New-

ton’s techniques, interior point methods (IPMs), sequential

linear programming (SLP), and sequential quadratic pro-

gramming (SQP) [2]. These conventional techniques,

which rely on derivatives and gradients, may be unable to

find the global optimal function and are prone to con-

verging to local solutions if the original prediction is close

enough to a local solution. Unfortunately, the practical

OPF conditions give rise to OPF that is strongly non-linear,

non-smooth, and fundamentally multi-modal. Conventional

techniques, therefore, lack accuracy in accurately modeling

discrete control variables, essentially voltage regulating

transformer tap positions and the switching of shunt com-

pensators. Furthermore, the incorporation of multiple

steam valves in the turbines of thermal generating units

introduces additional modifications to the fuel cost char-

acteristics of the generator, incorporating the absolute

value of a sinusoidal function. As a result, optimization

approaches that only locate local optima are found to be

inappropriate for addressing real-world problems in mod-

ern power systems, as they fail miserably to cope with the

nonlinearity inherent in the power system and perform

unsatisfactorily due to the involvement of multiple-objec-

tive functions optimized simultaneously, the majority of

which are conflicting in nature.

Recently, the fast evolution of various modern compu-

tational intelligence (CI) tools and techniques has encour-

aged researchers to apply them to find global optimal

solutions. In contrast to conventional tools and techniques,

which often get stuck in local optima, such tools demon-

strate powerful global search capabilities. A large portion

of the CI tools are population-based strategies that can

significantly lessen the computation time of OPF. During

the last two decades, researchers have shown a rapid shift

in focus towards such population-based metaheuristics in

solving the power system problems. Pandya et al. [3]

presented a review of various classical optimization

methods as well as a few AI methods for solving OPF

problems. AlRashidi et al. [4] provided an extensive cov-

erage of population-based CI tools applied until 2008 to

resolve OPF problem. In [5], Frank et al. conducted a

survey on both classical and stochastic optimization

techniques widely applied to deal with OPF problems up

until 2011. In the second of their two-part review, the

authors looked at the development of non-deterministic

methodologies and hybrid approaches for OPF. They pro-

vided an overview of the benefits, drawbacks, and com-

putational attributes associated with each approach. Niu

et al. [6] presented a detailed survey of OPF related

research work carried out between the years 2000 and

2014, including frequently used heuristic optimization

algorithms (HOAs) like evolutionary programming (EP),

genetic algorithm (GA), differential evolution (DE), and

particle swarm optimization (PSO). The authors also sur-

veyed the literature on few hybrid methods on OPF. In

2017, Maskar et al. [7] made a brief survey on conventional

and AI methodologies used to solve OPF and provided a

literature coverage till 2016. In [8], the authors conducted a

comprehensive review and comparison of OPF techniques

for the most prevalent metaheuristics recorded in the lit-

erature until 2020.

In the context of the current study, OPF challenges are

tackled through traditional metaheuristic and CI tech-

niques. Nonetheless, it’s crucial to acknowledge the

increasing impact of machine learning (ML) in the OPF

domain. ML offers promise for more efficient and reliable

OPF in power systems through end-to-end learning and

learning-to-optimize approaches. While the primary focus

of this paper is on metaheuristic methods, the OPF domain

has witnessed promising applications of ML approaches

such as Deep Belief Networks (DBNs) for demand fore-

casting, Graphical Neural Networks (GNNs) for modeling

complex relationships, Support Vector Machines for fault

detection, and Random Forest for various power system

optimization tasks.

This study endeavors to present a chronological and

comprehensive review of population-based metaheuristic

algorithms, with a specific focus on artificial intelligence

(AI)-based algorithms, utilized for addressing OPF prob-

lems as documented in the literature until 2022. The study

focuses on the salient features of diverse algorithms as they

are applied to different power system networks. It takes

into account a diverse range of objective functions, made

up of both single-objective optimization (SOO) and multi-

objective optimization (MOO) problems in the context of

OPF. This provides a comprehensive understanding of the

effectiveness of these algorithms in addressing OPF chal-

lenges. This study also examines the current trend towards

implementation of hybrid algorithms which exploit the

strength of each constituent algorithm to discover the best

possible OPF solution. A broad and all-inclusive coverage

of the significant research contributions, published in

highly reputed peer-reviewed international journals (in-

dexed in SCI and SCIE), has been presented in this article.

It focuses on the application of modern CI tools for solving
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OPF problems. However, it is worth noting that the ‘‘No

Free Lunch’’ (NFL) theorem serves as a poignant reminder

that no single method can be universally regarded as the

best solution for all optimization problems [9]. It empha-

sizes the critical importance of carefully evaluating and

selecting tailored strategies that are effective for the

specific problem at hand.

The graph depicted in Fig. 1 illustrates the cumulative

number of OPF articles published in SCI-indexed journals

has steadily increased over the years from 2012 to 2022,

indicating a growing interest and recognition of OPF in the

scientific community. A steep rise in the years 2021 and

2022 indicates a significant acceleration in OPF research.

2 OPF problem: mathematical structure

The OPF mathematical formulation is presented in the

following subsection, while the constraints are detailed in

the subsequent subsection [10].

2.1 General structure of OPF

OPF problem typically comprise of objectives and con-

straints. The OPF solution optimizes a predefined objective

function by finding optimal settings for control variables.

The optimized configuration of the power system is

governed by variables, namely state variables. The power

system must operate under two sorts of constraints:

equality constraints and inequality constraints. All condi-

tions of constraint satisfaction have to be followed to for-

mulate a realistic problem. The formulation of single-

objective OPF (SOOPF) problems is as follows:

Min : f ðx; uÞ ð1Þ

subject to:

giðx; uÞ ¼ 0 i ¼ 1; 2; 3; . . .. . .;m ð2Þ

and

hjðx; uÞ� 0 j ¼ 1; 2; 3; . . .. . .; n ð3Þ

The objective function is represented by Eq. 1, which is

a function of the state variables x and the control variables

u. Equation 2 represents the inequality constraints, while

Eq. 3 represents the equality constraints. Here m denotes

the count of equality constraints, while n denotes the count

of inequality constraints.

In contrast, a MOOPF problem involves optimizing

multiple objectives simultaneously, expressed as Eq. 4.

Min : f ðx; uÞ ¼ f1ðx; uÞ; f2ðx; uÞ; . . .. . .. . .; fkðx; uÞ½ �T

ð4Þ

Fig. 1 Cumulative number of

OPF articles published in SCI/

SCIE-indexed journals from

2012 to 2022
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here k represents the number of objective functions that are

simultaneously optimized, while ensuring adherence to the

constraints outlined in Eqs. 2 and 3.

The state vector i.e., the vector of dependent variables is

given by Eq. 5 where PG is the generator voltage,VL is the

load bus voltage, QG is the generated reactive power and

Sline is the apparent power flow of the transmission line.

xT ¼ PG1
; VL1 . . .;VLNPQ ;QG1

. . .. . .;QGNG
;Sline1 . . .. . .;SlineNL

� �

ð5Þ

here PG1
represents slack bus power. The notations NPQ,

NG, and NL indicate the respective counts of load buses,

generating units, and transmission lines. The status of the

power system is represented by the vector of state variables

(or dependent variables) which is given by Eq. 6.

uT ¼ PG2
. . .;PGNG

;VG1
. . .;VGNG

;QC1
. . .;QCNC

; T
1
. . .; T

NT
½ �

ð6Þ

here VG symbolizes voltage at the generator bus, QC

symbolizes shunt VAR compensation with NC representing

the count of compensators, and T represents the tap

changing transformer with NT representing the count of tap

changing transformers.

2.2 Objective functions

The existing literature encompasses a range of objectives,

including the ones detailed here. In the examined literature,

these objective functions have been optimized both indi-

vidually and simultaneously.

2.2.1 Fuel cost minimization (FCM)

The cost-related objective is fundamental in OPF and has

been extensively analyzed in the literature. Equation 7

illustrates the approximate quadratic relationship between

fuel cost ($/hr) and PG (MW).

FCM ðPGÞ ¼
XNG

i¼1

aiP
2
Gi
þ biPGi

þ ci

 !

$/hrð Þ ð7Þ

For the ith generator, with an active power output of PGi
,

the fuel cost coefficients are denoted by ai, bi and ci.

a) FCM with valve-point loadings (FCM-VPL): In real-

world power systems, multiple steam turbine valves

can significantly impact the fuel cost characteristics

of generators. This phenomenon is incorporated into

mathematical models by adding a recurring rectify-

ing sinusoidal term to the existing quadratic fuel cost

(QFC) characteristics of selected generator units.

Equation 8 depicts the modified cost function, with

sine component, for ith generator demonstrating

valve-point loading (VPL) effect.

FCMVPL ¼
XNG

i¼1

aiP
2
Gi
þ biPGi

þ ci

 !

þ di sin ei Pmin
Gi

� PGi

� �� ����
��� ð8Þ

where ai, bi, ci, di and ei are the fuel cost coefficients

of ith generating unit exhibiting VPL effect, with di
and ei particularly representing VPL effect. Pmin

Gi

represents the ith generator’s minimum allowable

active-power-generation limit. The same basic fuel

cost curves of Eq. 7 apply to all other units.

b) FCM considering prohibited operating zones (FCM-

POZ): Thermal and hydro generators have prohibited

operating zones (POZs) due to component limita-

tions, like vibrations or resonance in generator

components and associated equipment such as

pumps or boilers, which could cause potential

damage. Units with these zones exhibit discontinu-

ous input–output characteristics, and operating

within these zones is avoided for economic effi-

ciency. The generation of units should remain within

upper and lower limits of POZ. The fuel cost

function taking POZ into account is either a

quadratic function in Eq. 7 or function with VPL

effect in Eq. 8. The operating constraints for ith

generator unit to ensure operation outside the POZ

are defined in Eq. 9 as follows:

PGi
2

Pmin
Gi

�PGi
�Plower

Gi;1

Pupper
Gi;k�1

�PGi
�Plower

Gi;k

Pupper
Gi;Npoz

�PGi
�Pmax

Gi

8
><

>:
k ¼ 2; 3; ::::;Npoz

� �

ð9Þ

where Npoz is the number of prohibited zones for the

ith unit, k represents the index of prohibited zones of

ith unit, Plower
Gi;k

and P
upper
Gi;k

denote the lower and upper

bounds (MW), respectively, of kth prohibited zone of

ith unit.

c) Fuel cost considering multiple fuel sources (FCM-

MFS): In practice, thermal generators can operate

using various fuel sources like oil and natural gas.

With multiple fuel options, the cost function of

generation units becomes a piecewise polynomial

function, where each piece corresponds to a specific

fuel type. This piecewise quadratic fuel cost (piece-

wise-QFC) for the ith generator can be mathemati-

cally modelled by Eq. 10 as follows:

17884 Neural Computing and Applications (2024) 36:17881–17929

123



FCMMFS ¼
XNG

i¼1

aif P
2
Gi
þ bif PGi

þ cif

 !

for fuel type f

ð10Þ

The bounds on PGi
of ith unit are defined as

Pmin
Gif

�PGi
�Pmax

Gif
; for each specific fuel type f.

2.2.2 Active power loss minimization (PLM)

This objective seeks to reduce the cumulative active power

losses PLossð Þ in the system, which are computed as the

discrepancy between overall generation and consumption.

PLoss in transmission lines is calculated using Eq. 11.

PLoss ¼
XNL

L¼1

GL½V2
i þ V2

j � 2ViVj cosdij� ð11Þ

where GL is used to designate the conductance of line L

between nodes i and j. Vi and Vj are the voltages at nodes

i and j respectively, while dij signifies the voltage angle

difference between the two nodes.

2.2.3 Reactive power loss minimization (RPLM)

This objective aims to reduce the total reactive power

losses QLossð Þ within the system. These losses primarily

result from the reactance of transmission lines and play a

crucial role in assessing system stability and voltage reg-

ulation. Minimizing QLoss is crucial for efficient power

system operation. The calculation of QLoss is performed

according to the following Equation:

QLoss ¼
XNL

L¼1

BL V2
i þ V2

j � 2Vi Vj cos dij
h i

ð12Þ

where BL represents the susceptance of line L that con-

tributes to reactive power flow between nodes i and j.

2.2.4 Voltage stability enhancement (VSE)

Ensuring acceptable voltage levels at all load buses under

nominal operating conditions is vital for power system

operation, highlighting the significance of voltage insta-

bility prediction. The voltage stability indicator (L-index)

reflects the closeness to a voltage collapse condition at a

bus. A reduction in the L-index can increase voltage sta-

bility. Typically, the L-index ranges from 0 (indicating no-

load) to 1 (representing a voltage collapse state). L-index is

defined based on local indicator Li as presented in Eq. 13:

L� index ¼ maxðLiÞ ð13Þ

where Li represents the individual L-index for ith load bus.

Further information can be found in [10].

a) VSE during contingency Maintaining voltage stabil-

ity is critical for power systems, particularly during

unexpected events such as line outages or generator

failures. Enhancing voltage stability during transmis-

sion line contingencies involves simulating scenarios

in which the outage of one (N-1 contingency) or

more transmission lines is used to assess the system’s

response and identify critical lines. The objective of

VSE in such contingency conditions is frequently

explored and addressed in OPF literature.

2.2.5 Severity index minimization

The severity index (SI) measures the severity of line

overloads in the power system. Contingencies are screened

based on the severity index, where a higher index value

indicates a greater degree of severity of the contingency.

The SI is determined according to the formula provided in

Eq. 14:

SIline ¼
XNL

i¼1

line 2L0
Slinei
Smax
linei

 !2m

ð14Þ

where Slinei and Smax
linei

both in MVA represent the actual and

maximum power flows in the ith transmission line,

respectively; L0 denotes the collection of overloaded lines,

and m is an integer coefficient. System operators can use

the SI to prioritize actions to address critical issues,

ensuring system stability and minimizing the risk of fail-

ures. The Equation in 14 is commonly used for SI mini-

mization in OPF literature.

Unlike the Severity Index (SI), which focuses solely on

line overloads, the severity value minimization (SVM)

function offers a comprehensive formulation. SVM aims to

reduce the overall severity of violations in the power sys-

tem by considering factors such as line power flows

(overloading) and bus voltage deviations. By minimizing

this severity function, the power system can operate more

securely within its operational limits, effectively handle

contingencies, and maintain overall system stability.

2.2.6 Voltage deviation minimization (VDM)

Bus voltage stands out as a paramount indicator for

maintaining safety and ensuring the effective operation of

the power system. Improving the voltage profile involves

minimizing voltage deviations at all load buses, i.e., PQ

buses, from the reference value (VD) of 1.0 p.u., achievable

through the optimization of the objective function provided

in Eq. 15:
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VDM ¼
XNPQ

i¼1

Vi � VDj j ð15Þ

where VD is the desired voltage at all load buses.

2.2.7 Voltage security index (VSI)

VSI serves as a performance index to evaluate a power

system’s ability to maintain voltage levels within a pre-

defined acceptable range, thereby indicating the system’s

stability and security. VSI is calculated using the formula

provided in Eq. 16:

VSI ¼
Xn

i¼1

Vij j � Vavg

dV

	 
2n

ð16Þ

where Vavg is the average of the maximum and minimum

voltages, dV is half the voltage range, and n is set to 1.

Minimizing VSI indicates that the voltages across the

system are closer to the average voltage, implying less

fluctuation and greater stability.

2.2.8 Emission minimization (EM)

OPF aims to minimize emissions by optimizing the control

variables of the system, which leads to a reduction of

noxious gases in the atmosphere. The concentration of

these gases in the atmosphere is directly linked to the

active power generated in megawatts (MW), as depicted in

Eq. 17:

EM ¼
XNG

i¼1

ðaiP2
Gi
þ biPGi

þ ci þ xi exp liPGi
ð Þ(ton/hrÞ

ð17Þ

where ai, bi, and ci represent emission coefficients, while

xi and li are associated with the exponential term, all

pertaining to the same ith generating unit.

2.3 Constraints

2.3.1 Equality constraints

In the OPF problem, the load flow equations are incorpo-

rated as equality constraints. The mathematical formulation

is presented below:

PGi
� PDi

¼ Vi

XNPQ

j¼1

Vj Gij cos hij þ Bij sin hij
� �

QGi
� QDi

¼ Vi

XNPQ

j¼1

Vj Gij sin hij � Bij cos hij
� �

9
>>>>>=

>>>>>;

ð18Þ

In Eq. 18, i = 1, 2, …, n, where n signifies the total

count of buses in the network. Here, Gij signifies the

mutual conductance between any bus i and jth load bus,

while Bij signifies the mutual susceptance between the

same buses.

2.3.2 Inequality constraints

The operating bounds of the power system are determined

through the following constraints:

a) Generation constraints For stable operation, the

generators must operate within the following ranges

of real power, reactive power, and voltages:

Pmin
Gi

�PGi
�Pmax

Gi
i ¼ 1; 2; . . .;NG

Qmin
Gi

�QGi
�Qmax

Gi
i ¼ 1; 2; . . .;NG

Vmin
Gi

�VGi
�Vmax

Gi
i ¼ 1; 2; . . .;NG

9
=

;
ð19Þ

here active power generation at ith generator bus

PGi
ð Þ is bounded by Pmin

Gi
and Pmax

Gi
, while the reactive

power generation QGi
ð Þ is bounded by Qmin

Gi
and

Qmax
Gi

. Additionally, bus voltage VGi
ð Þ of ith generator

must stay within the limits of Vmin
Gi

and Vmax
Gi

.

b) Shunt compensator constraints There must be spec-

ified limits on the lower and upper ranges of shunt

compensation.

Qmin
Ci

�QCi
�Qmax

Ci
i ¼ 1; 2; . . .;NC ð20Þ

c) Transformer constraints There is a range of tap

settings for transformers that must be adhered to. The

lower and upper limits are as follows:

Tmin
i � Ti � Tmax

i i ¼ 1; 2; . . .;NT ð21Þ

d) Security constraints These constraints pertain to the

maximum MVA limits on line flows and the

permissible ranges of voltage magnitudes at load

buses as expressed in Eq. 22:

Slineij j � Smax
linei

i ¼ 1; 2; . . .;NL

Vmin
Li

�VLi �Vmax
Li

i ¼ 1; 2; . . .;NPQ

�
ð22Þ

3 Overview of artificial intelligence (AI)-
based OPF solution methodologies

Several population-based metaheuristic techniques, which

are a type of AI-based methodology, have been effectively

employed to address power system optimization problems

(PSOPs). These techniques have shown the capability to

effectively explore the search area and identify optimal or

near-optimal solutions. They are non-deterministic or
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stochastic search techniques capable of solving SOO

problems and can be extended to handle MOO problems

effectively. These techniques use population-based strate-

gies for iterative solution finding and have shown

promising results in discovering optimal or highly com-

petitive solutions for PSOPs.

In this study, a temporal categorization approach is

employed to organize and comprehend the development of

various works over time. The reviewed works have been

categorized into different groups based on population-

based metaheuristics, which are optimization algorithms

(OAs) that find their foundation in AI principles. Figure 2

presents an illustrative schematic diagram that provides an

overview of the diverse OAs documented in the literature,

with their year of inception, for solving OPF problems,

including their classifications and subclassifications.

4 Evolutionary algorithms (EAs) for OPF
solution

EAs are recognized as one of the earliest AI-based

approaches applied to PSOPs. An evolutionary algorithm

employs principles inspired by biological evolution to

iteratively search for optimal solutions, such as mutation,

crossover, and selection. Algorithms falling under this EA

category strictly adhere to these principles.

4.1 Evolutionary programming (EP) based OPF

The EP is a stochastic optimization approach in evolu-

tionary computing that employs evolutionary mechanics to

produce optimal solutions to a given problem. Yuryevich

et al. [11] first developed an algorithm based on EP

methodology to address the OPF challenge. The authors

utilized gradient information to enhance their suggested

algorithm, resulting in increased convergence speed and

improved handling of large-scale systems. Kahourzade

et al. [12] compared three extensively employed OAs

published in the literature, namely PSO, EP and GA, to

evaluate their effectiveness in solving the OPF problem.

They evaluated the algorithms on nine objective functions,

which included both single-objective functions (SOFs) and

multi-objective functions (MOFs), to capture the objectives

of FCM, PLM, VSE, and EM. A fuzzy decision-making

(FDM) mechanism was utilized to extract the optimal

trade-off solution from each set of Pareto optimal solutions.

The authors employed 30-bus IEEE test system to execute

Fig. 2 Schematic overview depicting categorization of OPF algorithms and their inception over time
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the three methods for conducting a comparative study.

Depending on the overall cost of generation and the rate of

convergence of the objective function, the best optimiza-

tion scheme was selected for each case. The results proved

the effectiveness of EP among other algorithms to offer

best price in most of the cases. In short, the EP algorithm

shows promise for addressing PSOPs. However, evaluating

its performance on the specific problem at hand is crucial

before making a final decision. Thorough comparisons with

other relevant algorithms are necessary to ensure an

informed choice.

4.2 Genetic algorithm (GA) based OPF

The GA is a metaheuristic population-based method

developed by Holland [13] in the early 1970s. GA has been

one of the most popular and widely used evolutionary tools

to find optimal solutions to search problems. It relies on the

principle of biological evolution, which happens through

natural selection. In [14], Attia et al. utilized the Adapted

Genetic Algorithm (AGA) with a variable population size

(POP) based on different fitness functions to resolve OPF.

Three distinct SOFs were selected: minimizing the fuel

cost (FCM) function, FCM function considering multiple

fuel sources for generating units (FCM-MFS), and mini-

mizing voltage deviation (VDM). The validation of the

proposed AGAPOP approach was conducted using the

30-bus IEEE test network, showcasing its feasibility and

demonstrating a notable decrease in the required number of

generations. For the FCM objective, total fuel cost was

reduced to 799.8441 $/hr (11.33% reduction from the base

case), with population size varying from 400 to 312. The

comparison with other OAs in the published works, such as

improved GA (800.805 $/hr), PSO (800.41 $/hr), and DE

(799.289 $/hr), established the efficacy of the proposed

AGAPOP approach. However, the waning popularity of

GAs to solve OPF can be attributed to various factors,

including the emergence of problem-specific algorithms

with lesser algorithm-specific parameters, high computa-

tion costs, sensitivity to hyperparameters, scalability limi-

tations, advancements in AI and optimization techniques,

and the absence of well-established theoretical foundations.

As a result, specialized algorithms are now preferred for

more effective solutions.

4.3 Differential evolution algorithm (DEA) based
OPF

Rainer Storn and Kenneth Price invented the DEA, a

stochastic, population-based OA, in 1997 [15]. DEA stands

out primarily due to its simplicity, robustness, and rapid

convergence features, which are achieved by utilizing a

minimal set of control variables. In [16], a DEA-based

approach was applied, considering the objectives of FCM,

PLM, RPLM, and VSI on a 30-bus IEEE test system. The

study also focused on the FCM objective for the larger

118-bus IEEE test system. The research effectively

resolved the MOOPF problem for the 30-bus system by

considering various combinations of these objective func-

tions. An optimal feasible solution was determined using

the fuzzy-based Pareto front method for the MOOPF

problem, considering trade-offs among multiple objectives.

In addition to this, the given literature presented the inau-

gural application of a novel approach utilizing the grey

wolf optimizer (GWO) algorithm to address the SOOPF

challenge (described later in the article) in the 30- and

118-bus IEEE test networks. However, the DE algorithm

was found to be exhibiting higher computational efficiency

when tested on large 118-bus system as compared to the

GWO algorithm for solving SOOPF problem. For a par-

ticular case of a single FCM objective in an IEEE 118-bus

system, the proposed DE achieved a fuel cost of 129,582 $/

hr as compared to 129,720 $/hr (the proposed grey wolf)

with better convergence characteristics. In [17], a forced

initialization multi-objective DEA (MODEA) was pro-

posed, integrating a novel DE variant and the epsilon-

constraint approach. The proposed approach for optimizing

power flow, evaluated for both SOFs and MOFs consid-

ering objectives including FCM, VDM, VSE, and PLM,

demonstrated robustness and exhibited excellent conver-

gence characteristics. The authors in [18] introduced a

multi-objective DE (MDE) algorithm, utilizing Pareto

ranking approach in the selection operator to obtain a

modified DE variant of mutation. The proposed DE variant,

in conjunction with the epsilon-constraint approach,

enhanced the best compromise solution through iterative

fine-tuning in each generation using fuzzy logic. This

refined solution was then utilized as input for the mutation

operator. The efficacy of MDE algorithm was assessed on a

57-bus IEEE test network for mono-, bi-, tri-, and quad-

objective OPF formulations. The authors also considered a

118-bus IEEE test network to evaluate the effectiveness of

MDE in handling larger systems. S.S. Reddy in [19]

implemented a new efficient MOO approach using DEA to

optimize mixed control variables, encompassing continu-

ous and discrete variables. The objectives for the MOOPF

problem included FCM with a QFC function, QFC incor-

porating VPL & POZ, QFC considering a voltage-depen-

dent load model, and PLM. The proposed approach

outperformed Non-dominated Sorting GA-2 (NSGA-II) in

terms of the spread and spacing of its solutions on the

Pareto front, while achieving approximately ten times

faster computation speed compared to NSGA-II. The fea-

sibility of the suggested strategy for both the considered

IEEE 30 and IEEE 300-bus networks in terms of execution

time was confirmed through the simulation results. The
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proposed MOO approach on the 30-bus IEEE network

achieved the FCM objective (basic QFC) in shorter com-

putational time, i.e., in 17.0209 s, surpassing the perfor-

mance of NSGA-II (183.2 s) and weighted summation

(69.8 s). A notable outcome emerged for FCM objective

with voltage dependent load on the same system, where the

efficient MOO approach yielded a best compromise solu-

tion, characterized by a cost of electricity generation of

801.2480 $/hr and power losses in the transmission net-

work of 6.174 MW. In contrast, the NSGA-II algorithm

had a generation cost of 812.6738 $/hr and transmission

losses of 5.9362 MW. Additionally, on the IEEE-300 bus

system for voltage-dependent load FCM, the proposed

approach achieved a better compromise solution with a

generation cost of 809,027.9451 $/hr and transmission

losses of 628.3249 MW while being 10.83 times faster than

NSGA-II (generation cost: 801,163.0894 $/hr, transmission

losses: 630.8413 MW). In short, DEA’s prowess in han-

dling multi-objective tasks, complex constraints, and

mixed control variables makes it an excellent and reliable

optimization tool for power systems.

4.4 Harmony search algorithm (HSA) based OPF

Geem et al. proposed harmony search (HS) in 2001 [20]

based on the concept of musicians improvising music in

pursuit of a better harmony. Sinsuphan et al. [21] intro-

duced an improved harmony search (IHS) method for

solving augmented cost function with penalty terms as SOF

and validated it by testing on different small and large-

scale standard IEEE systems having 6, 14, 30, 57 and 118

buses for smooth cost functions (basic QFC) and 6, 14 and

30-bus systems for cost functions with VPL effect. In a

performance comparison with 30 computational trials for

each test case, IHS demonstrated superior robustness and

effectiveness over SQP and GA. It outperformed them in

terms of objective value and computational efficiency,

particularly in large-scale systems with non-smooth fuel

cost functions. SQP was found well-suited for small-scale

systems (6, 14, and 30-bus) with non-smooth cost func-

tions, offering faster computation times. But IHS was

found to be the best algorithm in terms of both execution

time and minimum objective function value. IHS outper-

formed GA by achieving a better objective value in sig-

nificantly less CPU time, being approximately five times

faster, especially for smooth fuel cost cases. For instance,

in the FCM objective (basic QFC) on the 30-bus IEEE

network, IHS achieved a lower average fuel cost of

463.5480 €/hr in just 92.6 s, outperforming GA which

achieved 464.0290 €/hr in 457.5 s of CPU time. In [22],

Pandiarajan et al. proposed the fuzzy-based HSA (FHSA)

method that incorporates the fuzzy logic system (FLS) and

HSA technique. In their work, the authors addressed the

SOOPF problem with a focus on the FCM objective, while

also aiming to minimize the severity index. They achieved

this by determining the location for the strategic installa-

tion of a thyristor-controlled series capacitor (TCSC). The

impact of using FLS to automatically adjust algorithm

parameters, such as ‘‘pitch adjustment rate’’ and ‘‘band-

width’’, was investigated. The proposed approach demon-

strated superior performance compared to the traditional

HSA method when applied to solving OPF in 30, 57 and

118-bus IEEE test networks. It exhibited improved optimal

generation fuel cost and faster convergence to high-quality

solutions. In [23], Abbasi et al. proposed an innovative

differential-based HSA (DH/best algorithm) with three

objectives of VDM, PLM, and active power generation

reduction (MW/hr). The suggested approach was evaluated

on the IEEE test networks consisting of 118 and 57 buses,

formulating the objective functions as SOFs and MOFs.

The HSA incorporates features like the DH/best algorithm,

eliminating the need for a pitch adjustment parameter. The

proposed DH/best algorithm offers advantages such as

improved initialization compared to traditional random

initialization methods and enhanced search capabilities due

to an effective updating procedure. The proposed approach

was simulated against NSGA-II, PSO, and the original

HSA to validate its effectiveness.

4.5 Bio-geography based optimization (BBO)
based OPF

Simon introduced BBO [24] in 2008, and the algorithm

was implemented successfully in [25] to address a large

complex economic dispatch problem. A novel adaptive

real-coded BBO (ARCBBO) technique is presented in [26]

to improve population diversity and exploration capabili-

ties in the OPF problem by integrating an adaptive Gaus-

sian mutation. ARCBBO was tested on IEEE test systems

with 30 and 57 buses, evaluating objectives of FCM, VDM,

VSE (normal and contingency), PLM, and EM. The 57-bus

system was specifically examined for the FCM objective.

Based on the achieved outcomes, it was confirmed that

ARCBBO algorithm effectively and accurately mitigated

premature convergence of solutions. When considering the

FCM objective on the 30-bus system, ARCBBO demon-

strated superior performance by achieving a fuel cost of

801.5159 $/hr. This result surpassed the basic BBO, ABC,

GSA, and MDE algorithms, although some algorithms like

PSO, DE, enhanced GA (EGA) showed slightly better

results. However, it’s worth noting that these better results

were deemed infeasible due to violations of the voltage

magnitude limits of the load buses.
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5 Swarm intelligence-based algorithms
for OPF solution (non-hybrid)–inspired
by natural phenomena

These algorithms have shown promise in solving OPF

problems by mimicking the collective swarm intelligence

and adaptive behavior of natural systems. As research in

this area continues, researchers might be able to solve even

more complex PSOPs through swarm intelligence

algorithms.

5.1 Classification based on movement patterns
& collective behavior in migration

5.1.1 Particle swarm optimization (PSO) based OPF

PSO, pioneered by Kennedy and Eberhart in 1995, is a

population-based OA specifically designed for addressing

global optimization problems. In [27], the PSO algorithm

was first employed to deal with OPF issues with various

SOFs, and its effectiveness was examined and evaluated on

a 30-bus IEEE test network. Niknam et al. [28] introduced

an improved PSO (IPSO) technique to address the OPF

with single and multiple objectives, aligned with FCM,

EM, PLM, and VSE objectives. To accelerate convergence,

the authors employed chaos theory to fine-tune the inertia

weight factor (x) and utilized a self-adaptive approach to

adjust the cognitive and social coefficients (c1 and c2,

respectively) of the PSO algorithm. To prevent becoming

stuck in local optima, the authors implemented a ‘‘mutation

operator’’, thereby enhancing the algorithm’s search

capability. The fuzzy decision-making approach was

employed to extract non-dominant solutions from the

Pareto-optimal set, enabling the identification of the opti-

mal feasible solution. The proposed IPSO achieved the best

generation cost of 801.978 $/hr compared to basic PSO

(802.205 $/hr), EP (802.62 $/hr), improved EP (802.465 $/

hr), enhanced GA (802.06 $/hr), fuzzy GA (802 $/hr),

modified DE (802.376 $/hr), and other popular approaches

for the SOOPF scenario. Furthermore, the bi- and tri-ob-

jective formulations for the considered objectives (MOOPF

cases) also yielded superior results compared to the basic

PSO and NSGA-II when tested on the 30-bus test system.

However, in recent years, researchers have increasingly

combined PSO with other algorithms to address its draw-

backs, particularly the issue of being trapped in local

optima.

5.1.2 Glowworm swarm optimization (GWSO) algorithm
based OPF

In 2005, Krishnanand and Ghose presented the GWSO

algorithm, an innovative OA based on swarm intelligence

[29]. This algorithm emulates the flashing behavior of

glow-worms, where the glow-worms can dynamically

adjust the release intensity of luciferin molecules, resulting

in their glow appearing at different intensities. Each ran-

domly generated glow-worm in the exploration domain

signifies a potential solution of the objective function and

carries a specific amount of luciferin along with it. An

individual’s fitness value depends on the level of luciferin

associated with their position, with brighter individuals

representing better positions or better solutions. In [30],

GWSO was applied to solve SOOPF and MOOPF prob-

lems. The MOOPF problem was formulated by considering

the FCM and EM as objective functions. The proposed

GWSO algorithm was assessed for its effectiveness in

minimizing generation cost in a SOOPF problem on the

30-bus IEEE system and practical 75-bus Indian grid sys-

tem. It was compared to PSO algorithm with dynamically

tuned parameters. In addition, the proposed GWSO was

designed for the MOOPF problem on 30-bus system to

minimize cost (FCM) and emission (EM). The comparison

of test results revealed that GWSO outperformed PSO in

terms of providing better results with lesser number of

iterations required to converge, as well as a reduced need

for computational memory.

5.1.3 Firefly algorithm (FA) based OPF

Drawing inspiration from the blinking patterns and

behavior of fireflies, the firefly algorithm was developed in

[31] to enhance exploration at both local and global levels.

In [32], the authors applied this algorithm for the first time

to address OPF problems. They proposed the Gaussian-

based Bare Bones Lévy Flight Firefly Algorithm (GBLFA)

and its modified counterpart, the Modified GBLFA

(MGBLFA), considering thermal units and RES such as

wind and solar. To evaluate their approach, the authors

conducted 10 case studies on the 30-bus IEEE network,

focusing on objectives like FCM, EM, PLM, and VDM.

The study showcased the potential influence of RES on

optimizing the design of thermal generators, enabling cost-

effective and low-emission solutions. The OPF cost func-

tion encompassed the fuel cost of thermal generators,

carbon tax expenses linked to emissions from these thermal

units, direct costs associated with RES, reserve costs, and

penalty costs. GBLFA achieved an overall cost of 792.7272

$/hr, while an even better overall cost of 792.6354 $/hr was

obtained from MGBLFA. The results demonstrated that

MGBLFA outperformed previously reported methods in
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the literature by providing a superior carbon tax value for

the 30-bus system.

5.1.4 Differential search algorithm (DSA) based OPF

The DSA, developed by Pinar Civicioglu [33], is a popu-

lation-based metaheuristic inspired by nature. It draws

inspiration from the random walk pattern observed in the

migration of living organisms, specifically characterized by

Brownian random-walk movement. However, DSA does

not explicitly simulate the mechanisms of biological evo-

lution. The algorithm emulates collective movement and

migration of organisms in search of improved solutions.

During migration, organisms form a superorganism com-

prising numerous individuals that gravitates towards areas

rich in high-quality resources, such as the global optimum.

In [34] DSA addressed the SOOPF problem with objectives

of FCM (basic QFC, piecewise QFC, QFC with VPL

effect), VDM, VSE (normal and contingency condition).

The proposed DSA was validated on IEEE test networks

consisting of 30 and 118 buses, with a single FCM

objective implemented on the 118-bus network. DSA out-

performed DE, GSA, and PSO on the 30-bus system,

achieving a fuel cost of 799.094 $/hr compared to 799.289

$/hr, 798.675 $/hr, and 800.41 $/hr, respectively. Further-

more, DSA demonstrated superior scalability and outper-

formed GA and PSO when applied to the 118-bus system.

In [35], an innovative DSA-based approach was suggested

and applied to deal with SOOPF and MOOPF problems.

The implemented approach utilized standard IEEE test

systems with 9, 30, and 57 buses, incorporating objectives

of FCM, VDM, PLM, VSE, and EM. For a specific FCM

objective on the 57-bus system, the proposed approach

successfully achieved a reduce fuel cost of 41,686.82 $/hr.

This result outperformed the outcomes obtained from

alternative techniques such as ABC (41,693.95 $/hr) and

GSA (41,695.87 $/hr), demonstrating the effectiveness and

robustness of the suggested approach.

5.1.5 Animal migration optimization (AMO) based OPF

Li et al. introduced AMO in [36] taking inspiration from

the animal migration behavior. As an approach to address

the OPF, Dash et al. [37] introduced a new form of AMO

called Boundary Assigned AMO (BAAMO). The proposed

method underwent evaluation on IEEE test systems fea-

turing 30, 57, and 118 buses, while considering the

objectives of FCM, PLM, and VDM. The proposed

approach demonstrated remarkable performance in terms

of cost function compared to widely used approaches like

PSO, GA, DE, ABC, and Gravitational Search Algorithm

(GSA). The fuel costs for the 30, 57, and 118-bus systems

were 798.012 $/hr, 41,665.5 $/hr, and 129,550.8 $/hr,

respectively. However, the computation time was some-

what high compared to other methods because the pro-

posed approach updates the variables twice in one iteration.

5.1.6 Moth flame optimization (MFO) algorithm/moth
swarm algorithm (MSA) based OPF

The MFO algorithm is a recently introduced population-

based OA, presented by Mirjalili in 2015 [38], and imitates

the special navigation mechanism, referred to as ‘‘trans-

verse orientation’’, a navigation strategy adopted by moths

during nighttime. The MFO algorithm draws inspiration

from this mechanism observed in moths. These insects are

deceived by artificial human-made light sources, leading

them to fly in spiral paths that ultimately converge towards

the light. In [39], the MFO was validated on a standard

IEEE test system having 30 buses with 5 different SOFs

considering objectives of FCM having QFC curve, QFC

with VPL effect and piecewise QFC (with multifuel

options), objective of EM and objective of PLM. Con-

trasting with other popular algorithms like PSO, GWO,

ABC, etc., the proposed MFO showcased its effectiveness

in addressing the OPF issue through consistently discov-

ering superior and legitimate solutions. To further evaluate

the effectiveness of MFO and verify the significance of the

obtained results, the authors conducted four distinct sta-

tistical tests that compared MFO with other OAs. These

non-parametric tests validated the run-wise performance of

MFO and confirmed its dominance over other similar

algorithms. In [40], an improved MFO (IMFO) algorithm

was introduced, featuring modified paths of moths spiraling

around the flame. The proposed IMFO was validated on

IEEE test networks consisting of 30, 57, and 118 buses. It

was utilized to deal with SOOPF and MOOPF problems

involving fifteen different objective functions. The simu-

lation outcomes were compared to those obtained from

other well-established OAs such as basic MFO, GA, PSO,

and TLBO. The proposed IMFO was demonstrated to be

effective in achieving precise, superior OPF solutions with

rapid convergence. Buch et al. in [41] proposed an

enhanced version of the basic MFO, namely Adaptive

MFO (AMFO), to address large scale OPF issues. In the

suggested approach, an adaptive mechanism for adjusting

the direction of moths around the flame was contrasted

with the basic MFO for optimizing fourteen well-known

benchmark test functions. The authors utilized a large

IEEE test system with 118 buses to illustrate the efficacy of

suggested AMFO algorithm. They considered 13 different

case studies for this purpose, reflecting SOFs like FCM

(QFC function, QFC with VPL effect, piecewise QFC, and

QFC with POZ), EM, VSE, VDM, PLM, and RPLM. For

each objective function, the authors conducted three sta-

tistical checks to assess the performance of AMFO in
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comparison to other OAs in the literature, including basic

MFO, grey wolf optimization algorithm, sine–cosine

algorithm, and others. This study validated the effective-

ness of the suggested approach in providing accurate OPF

solutions with an improved convergence rate. The authors

proposed that developing a multi-objective version of the

algorithm could be pursued as future research work to

address MOOPF problems.

Mohamed et al. in 2017 introduced the moth swarm

algorithm (MSA) [42] using the conventional MFO algo-

rithm as a foundation. The MSA, inspired from the orien-

tation of moths towards moon light, features improved

exploration and exploitation capabilities by utilizing new

optimization operators to imitate a set of moth behavioral

patterns observed in nature. The authors in this work pro-

posed a novel MSA based approach where a variety of

optimization techniques were combined to simulate moth

swarm behavioral patterns. The proposed approach intro-

duced new optimization operators, including adaptive

crossover with Lévy-mutation for exploration and an

immediate memory-based associative learning mechanism

for exploitation. A comprehensive analysis consisting of 14

case studies was conducted, addressing various objectives

such as FCM (QFC, piecewise QFC, QFC with VPL), EM,

PLM, VSE (normal and contingency condition), and VDM.

A comparative analysis between the suggested MSA and

other existing OPF solution methods on 30, 57 and 118-bus

IEEE networks established the superiority of MSA over

previously proposed algorithms in the literature (modified

PSO, modified DE, MFO, etc.). Bentouati et al. [43] pro-

posed enhanced version of MSA (EMSA) incorporating

‘‘quasi-opposition-based learning’’ and validated on 30, 37

and 118-bus IEEE systems for a total of 12 cases having

single and multi-objective formulations comprising tech-

nical, economical and emission objectives. EMSA showed

better performance than basic MSA in terms of fast con-

vergence ability and enhanced voltage profiles. Authors

further suggested the scope of improving MSA to enhance

the exploration performance with less computational time.

5.1.7 Salp swarm algorithm (SSA) based OPF

The Salp Swarm Algorithm (SSA) is a highly efficient and

readily implementable OA that draws inspiration from the

collective behavior of salp chains in the deep sea. Sattar

et al. [44] introduced an improved SSA called ISSA,

aiming to improve the search performance in original SSA

by enhancing both exploration and exploitation for effec-

tively addressing the challenges of the OPF problem. The

OPF objective reflected the three types of QFC: basic QFC,

piecewise QFC, and QFC with VPL effect and POZ. The

proposed ISSA was evaluated on IEEE test networks

consisting of 30, 57, and 118 buses and compared to SSA,

MFO, GA, and other popular algorithms, revealing supe-

rior convergence characteristics. In a specific case on the

30-bus system, ISSA achieved the most economical solu-

tion regarding the FCM (QFC) objective, with a fuel cost of

800.4752 $/hr, outperforming other algorithms such as

basic SSA (801.1653 $/hr), MFO (800.7134 $/hr), and GA

(800.5272 $/hr) reported in the literature.

5.2 Classification based on social behavior &
foraging/hunting behavior

5.2.1 Bacterial foraging optimization (BFO) algorithm
based OPF

Passino introduced the BFO algorithm in 2002 [45], which

is driven by the foraging patterns of E. coli bacteria found

in the intestines of humans and animals. After going

through number of generations, the genes of organisms

showing poor foraging strategies get rejected and only

those with superior strategies are naturally selected.

Amjady et al. [46] put forward an improved version of

bacterial foraging (IBF) to address problem of security

constrained OPF (OPF-SC). The classical BFO algorithm

was enriched with innovative search mechanisms and

solution strategies to improve its search efficiency, explo-

ration capacity, and convergence performance. Simulation

results for the various test cases considering 26-bus test

system with six generating units and standard IEEE test

systems having 30 and 118 buses, for 20 trial runs for the

IBF, were presented. The proposed IBF algorithm was

evaluated by comparing its simulation results to those

obtained from over 20 other OAs previously testified in the

literature (including basic BFO, EP, PSO, and others) for

solving OPF and OPF-SC problems. A comparative anal-

ysis of the proposed IBF algorithm, in comparison to

alternative approaches, substantiated its robustness, sim-

plicity, and improved computational efficiency.

5.2.2 Artificial bee colony (ABC) algorithm based OPF

The ABC algorithm, introduced by Adaryani et al. [47], is

a heuristic OA that is inspired by the efficient foraging

strategies employed by honey bee swarms. In the ABC

algorithm, the position of a food source metaphorically

represents a potential solution to an optimization problem,

while the nectar content associated with that position

determines the fitness of the solution. The proposed

approach was utilized to tackle the MOOPF problem with

diverse objectives involving FCM (basic QFC, piecewise

QFC, QFC with VPL), PLM, EM, and VSE (normal and

contingency states), and tested through a simulation study

on IEEE test networks with 9, 30, and 57 buses. For the

57-bus system, only the objective of FCM was considered.
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In the case of FCM objective on a 30-bus system, the ABC

algorithm achieved the best fuel cost of 800.6600 $/hr,

outperforming linearly decreasing inertia weight PSO

(800.739 $/hr) and GSA (805.175 $/hr) in the same study.

The results confirmed its effectiveness in generating

accurate solutions, particularly for large power systems,

while also exhibiting quick convergence features. While

other published works achieved better fuel cost values, the

authors justified them as unfeasible because of either

reactive power limit violations or load bus voltage mag-

nitude violations. Khorsandi et al. [48] presented a fuzzy-

logic based modified ABC (MABC) algorithm for OPF,

incorporating a mix of discrete and continuous variables

for SOO of four competing objectives, viz. FCM with

ripple effects of VPL, EM, PLM and VDM and simulta-

neous fuzzy-based optimization considering all four

objectives. The suggested MABC approach was executed

on IEEE test networks consisting of 30 and 118 buses,

considering SOOPF and multi-objective mixed-integer

OPF problems. Simulation outcomes demonstrated the

efficacy of MABC in global search exploration and rapid

convergence to higher quality solutions in a comparatively

lesser number of iterations than several other OAs previ-

ously documented in the literature. Chen et al. [49] pre-

sented a multi-hive multi-objective bee algorithm

(M2OBA) to deal with real world MOOPF problem. The

suggested method expands the basic ABC algorithm to an

interacting multi-hive model by including interaction

exchange topologies. A multipopulational cooperative

search mechanism was used in conjunction with multi-

objective tactics to scale up the effectiveness of the bee

foraging algorithm. The effectiveness of the proposed

M2OBA was evaluated through implementing and testing

it on a 30-bus IEEE test network. A comparative analysis

was conducted with three well-known multi-objective

optimizers, namely NSGA, MOPSO, and multi-objective

ABC, in order to solve complex MOO problems. He et al.

[50] suggested an improved ABC (IABC) algorithm to

offer a solution for a fuzzy MOOPF model. The IABC

algorithm incorporates the mutation and crossover opera-

tors from the DE algorithm for enhancing exploration

capabilities and generating novel solutions. The SOOPF

and MOOPF problems, which involve objectives such as

FCM, EM, VDM, and PLM, were addressed using the

proposed approach on 30, 57, and 300-bus IEEE test sys-

tems. The obtained results revealed that the optimizing

scheme obtained by the suggested model was able to pro-

vide quick and stable convergence characteristics in com-

parison with ABC algorithm and other popular OAs like

GA, PSO etc., resulting in more reliable and economic

power system operations. Jadhav et al. [51] introduced a

g-best guided ABC (GABC) for addressing both standard

OPF problem and temperature dependent OPF (TDOPF).

By incorporating the term representing the global best

solution into the search equation, the authors succeeded in

enhancing the exploitation characteristics of ABC. The

robustness of the GABC in exploring the global optimum

point was demonstrated through IEEE test networks con-

sisting of 30 and 57 buses, considering single FCM

objective (basic QFC function). The TDOPF was examined

on the identical 30-bus IEEE test network to assess the

influence of temperature (25 �C temperature rise) on both

generation cost and power loss. The findings showcased

promising prospects for addressing multi-objective TDOPF

problems in the future. Bai et al. [52] implemented an

improved ABC (IABC) based on orthogonal learning (OL)

to tackle the complex OPF problem with objectives

including FCM, FCM-VPL and PLM. The proposed IABC

technique demonstrated increased exploitation capabilities

and superior convergence characteristics when imple-

mented on IEEE test networks consisting of 30 and 118

buses. The IABC approach showcased faster convergence

and superior results in minimizing fuel costs for the 30-bus

system. Compared to other methods like basic ABC, GSA,

EGA, and MDE, the proposed IABC significantly lowered

the total cost to 799.321 $/hr.

5.2.3 Group search optimization (GSO) algorithm based
OPF

In 2009, He et al. introduced a novel nature-inspired swarm

intelligence OA called Group Search Optimization (GSO)

[53], drawing inspiration by the producer-scrounger

behavior observed in group-living animals. The algorithm

incorporates strategies used by animals to balance explo-

ration and exploitation during foraging activities. In [54],

GSO algorithm was evaluated on IEEE test networks with

30, 57, and 118 buses, considering objectives related to

FCM, EM, VDM and VSE, resulting in the formulation of

four SOOPF problems and two compound-objective prob-

lems. The simulation findings validated the efficacy of the

examined approach in providing promising solutions with

improved convergence characteristics within 100 itera-

tions. In [55], an adaptive GSO (AGSO) algorithm was

proposed to handle the issues of the MOOPF problem,

which involved incorporating the objectives of EM and

security index along with the primary objective of FCM.

The authors utilized the fuzzy decision-making method to

handle these multiple objectives of conflicting nature. The

AGSO was created by making certain adjustments to the

conventional GSO, wherein the ranging process was fur-

ther organized by assigning the vision ability to other select

members of the group. This adjustment enhances both the

convergence behavior and accuracy of the algorithm,

leading to more precise and efficient solutions. The AGSO

algorithm was evaluated using 7 benchmark test cases and
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realized on IEEE networks with 30 and 57 buses, demon-

strating its superiority over conventional GSO. Moreover,

it ensured the secured operation of the networks in the

event of a contingency.

5.2.4 Krill herd algorithm (KHA) based OPF

Gandomi and Alavi proposed KHA, a novel bio-in-

spired population-based algorithm in 2012 [56]. The

algorithm is inspired by a very small sea animal krill and

its style of living. Krill individuals navigate a multidi-

mensional search area in their quest for the densest food

sources. During this journey, they adjust their positions

based on the movements of other krill individuals, as well

as their own foraging behavior and random physical dif-

fusion. In [57], the performance of basic KHA method was

improved by incorporating the concept of chaos theory. It

was found that the proposed chaotic KHA, which combines

the basic KHA and chaos theory, was able to achieve

enhanced computational speed and faster rate of conver-

gence. The proposed approach was tested and validated on

a standard 26-bus system and an IEEE test network of 57

buses. The results confirmed its superiority over recent CI-

based techniques in terms of convergence rate and the

identification of global optimal solutions for FCM, PLM,

and VDM objectives. Roy et al. [58] presented a newly

developed KH algorithm to address SOOPF and MOOPF

problems. The foundation of the proposed approach rested

upon the herding instinct of krill individuals and was

successfully executed on IEEE test systems consisting of

30, 57, and 118 buses. The study encompassed the objec-

tives of FCM, VDM, PLM, and VSE to formulate three

distinct SOOPF problems and two distinct MOOPF prob-

lems. The authors incorporated genetic operators (cross-

over and mutation) in basic KH to augment the

effectiveness of the suggested algorithm and to achieve an

optimal equilibrium between its local and global search

abilities. The suggested approach significantly improved

the solution quality and provided faster convergence and

superior computational efficiency in comparison to other

OAs documented in the literature. In [59], a novel bio-

logically inspired algorithm known as the stud krill herd

(SKH) algorithm was first time used for the solution of

SOOPF problems. Authors, herein, proposed a hybrid

approach in which they hybridized KH algorithm with a

stud genetic algorithm (SGA) to reach near-global opti-

mum solution. They incorporated the concept of ‘‘stud

selection and crossover operator’’ in the original KHA for

extracting good OPF solutions and preventing local optima

traps. The performance analysis on standard IEEE systems

having 14, 30 and 57 buses demonstrated the feasibility of

the proposed algorithm in obtaining superior optimum

values when compared to other evolutionary algorithms

examined in the same work.

5.2.5 Social spider optimization (SSO) algorithm based OPF

Erik Cuevas et al. developed the SSO algorithm in 2013

[60], which is swarm intelligence-inspired and mimics the

cooperative behavior of social spiders while seeking food

together. A novel improved SSO (NISSO) algorithm was

introduced in [61] to deal with OPF issue considering

independent SOFs. The proposed algorithm underwent

three enhancements, involving modifications to the posi-

tion change of female spiders (ISSO1), position change of

male spiders (ISSO2), and adjustments to the quantity of

females and males (ISSO3). These enhancements (together

yielding NISSO) surpassed the conventional SSO

approach, resulting in a faster convergence and higher

quality solutions. The proposed methodology was verified

on IEEE test networks with 30 and 57 buses, as well as a

larger 118-bus system, considering the objectives of FCM

(basic QFC, QFC with VPL effect, and piecewise QFC),

PLM, EM, VDM, and VSE for SOOPF formulation. The

proposed NISSO approach demonstrated its effectiveness

in delivering superior optimum solutions and achieving

faster convergence compared to the original SSO algorithm

and other existing methods. This advantage was particu-

larly evident for large-scale systems.

5.2.6 Grey wolf optimizer (GWO) based OPF

GWO was first implemented to address the SOOPF prob-

lem in [16] and verified on 30 and 118-bus IEEE test

networks. However, its computational efficiency was found

to be lower when dealing with large systems (118-bus).

The objectives considered were FCM, PLM, RPLM, and

VSI. In the FCM objective of a 30-bus system, the GWO

algorithm achieved a fuel cost of 801.41 $/hr in 15.8 s with

a maximum of 300 iterations. In [62], the authors published

an updated version of GWO known as the Crisscross

Search based GWO (CS-GWO). Proposed CS-GWO offers

a distinct advantage in the form of its single controllable

parameter, specifically the vertical crossover probability. It

incorporated horizontal and vertical crossover operators to

augment population diversity and mitigate local trapping.

The validation of the CS-GWO involved the use of IEEE

test networks with 30 and 118 buses, covering 7 objective

cases in total. The objectives considered included FCM

(with and without VPL effect), PLM, and VDM, encom-

passing both SOOPF (for 118-bus system only), as well as

MOOPF scenarios. The results indicated that CS-GWO

exhibited superior performance compared to other well-

known OAs, including PSO, ABC, Backtracking Search

Algorithm (BSA), and GSA, particularly for large-scale
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systems. In particular, CS-GWO excels in delivering better

solutions while achieving faster convergence speeds.

5.2.7 Ant lion optimizer (ALO) based OPF

In 2015, Seyedali Mirjalili introduced ALO, which emu-

lates the intellectual aspects of antlions as they capture ants

in their environment. In [63], Trivedi et al. utilized the

ALO algorithm to tackle the SOOPF problem on the IEEE

test network with 30 buses, considering the objectives of

FCM, VDM, VSE, PLM and RPLM. ALO demonstrated

superior convergence and outperformed FA and PSO

techniques, affirming its effectiveness. ALO yielded the

lowest fuel cost of 799.155 $/hr in the FCM objective,

surpassing FA (799.766 $/hr), PSO (799.704 $/hr), DE

(799.289 $/hr), and the black-hole based optimization

algorithm (799.921 $/hr). Belkacem Mahdad in [64] pro-

posed a partitioned ALO (PALO) technique to improve

OPF solution accuracy using multi-SVC and TCSC-based

FACTS devices. The robustness of PALO was validated on

30-bus IEEE test network and two large Polish power

system networks (300-bus and 2736 ps-bus). The valida-

tion included three objective functions (FCM, PLM, VDM)

and took into account load growth. The proposed PALO

was evaluated against recently published metaheuristics in

the literature, therefore demonstrating its unique effec-

tiveness in solving large-scale security OPF problems with

various FACTS devices.

5.2.8 Whale optimization algorithm (WOA) based OPF

In 2016, Mirjalili and Lewis developed WOA, utilizing the

bubble net feeding behavior observed in humpback whales

[65]. Authors in [66] proposed a non-dominated sorting

WOA (NSWOA) for SOOPF and MOOPF formulations.

The study investigated the objectives of FCM, PLM, VDM,

and VSE (L-index minimization) on 30-bus IEEE test

network. The best compromise solution was chosen by

selecting the option with the least Euclidean distance from

the non-dominated solution set. The suggested technique

outperformed existing methods in the literature, such as

PSO, SCA, SSA, and others, in terms of fuel cost and

power loss in multi-objective scenarios.

5.2.9 Grasshopper optimization algorithm (GOA) based
OPF

The GOA is the recently innovated optimization technique

presented by Mirjalili et al. in 2017 [67]. The philosophy

behind this approach was influenced by the behavior of

grasshopper swarms, where large groups collectively for-

age for food sources. A modified GOA (MGOA) technique

was proposed in [68] as a solution to optimize OPF

problems. The modification specifically focused on

enhancing the mutation process of the traditional GOA.

This was done to overcome challenges including delayed

convergence, becoming stuck in local optima, and

improving the global exploration process. The proposed

algorithm was deployed on IEEE test networks consisting

of 30, 57, and 118 buses. It considered various objectives

such as FCM, EM, PLM, VDM, and VSE, covering a total

of 13 distinct case studies in SOOPF and MOOPF formu-

lations. Specifically, there were 8 case studies conducted

on the 30-bus system, 4 case studies on the 57-bus system,

and 1 case study on the 118-bus system (SOOPF). Com-

parative performance analysis of MGOA against conven-

tional GOA, GA, PSO, and TLBO revealed that the

proposed technique is not only more efficient but also

exhibits superior performance.

5.2.10 Sparrow search algorithm (SPSA) based OPF

In [69], Jebaraj and Sithankathan proposed SPSA to

resolve OPF. The capabilities of the SPSA optimizer were

evaluated on IEEE systems with 30, 57, and 118 buses,

involving 33 different economic and technical objectives.

These functions encompassed single, bi-, tri-, and quad-

objective formulations. For instance, when considering fuel

cost as a SOF, the SPSA algorithm achieved fuel costs of

798.9536 $/hr, 41,609 $/hr, and 129,561.0305 $/hr for the

IEEE test systems with 30, 57, and 118 buses, respectively.

These values were found to be superior than those reported

in the existing literature, indicating improved performance

by the proposed method. In the tri-objective formulation,

focusing on the objective of FCM and VSE (L-index

minimization) during a single-line outage contingency, the

proposed method achieved a fuel cost of 804.2563 $/hr.

Despite the low L-index value resulting from the outage,

the method demonstrated its effectiveness. This fuel cost

result outperformed popular algorithms such as MFO,

MPSO, MSA, and ABC, highlighting the superiority of the

suggested approach in optimizing multi-objective cases.

5.2.11 Slime mould algorithm (SMA) based OPF

The SMA was proposed in [70] and is inspired by the

natural foraging behavior of slime moulds that seek out

food, encircle it, and release enzymes for digestion. In [71],

authors proposed SMA to handle SOOPF and MOOPF

problems, utilizing Pareto optimality and crowding mech-

anism and testing it on IEEE test networks consisting of 30,

57, and 118 buses. The study included 14 case studies with

objectives centered around FCM, PLM, and EM. The SMA

exhibited comparable computational times to other OAs,

being slightly slower than EP, DE, and GWSO, while

slightly faster than MFO and WOA for SOOPF problems
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on 30-bus network. The SMA delivered better performance

in terms of objective values for the IEEE 30-bus network,

achieved significant superiority for the IEEE 57-bus net-

work, and demonstrated significant enhancements in both

high-quality solutions and computational time, particularly

in the case of the IEEE 118-bus network. The proposed

SMA outperformed the PSO algorithm in generating

diverse and superior two- and three-dimensional Pareto

fronts across all test systems. In [72], a multi-objective

SMA (MOSMA) was introduced to resolve the MOOPF

problem on two IEEE standard test systems (30-bus and

57-bus), as well as one practical Iraqi Super Grid system. A

collection of 29 case studies was presented, comprising

both SOFs and MOFs with two, three, four, and five

objective formulations. These case studies considered

various objectives such as FCM, PLM, EM, VDM, and

VSE. By employing Pareto theory, the authors deduced

optimal solutions for MOOPF problems, while simultane-

ously utilizing fuzzy set theory to retrieve the most

favorable solution. The MOSMA algorithm showed

excellent convergence, high efficacy, and evenly spread-

out solutions on the Pareto front, thus establishing its

superiority over other recent OAs reported in prior

research.

5.2.12 Mantra ray foraging optimizer (MRFO) based OPF

The MRFO algorithm was introduced by Zhao et al. in

2020 [73] and takes inspiration from survival skills of

manta rays. The MRFO algorithm employs three foraging

techniques, namely ‘‘chain’’, ‘‘cyclone’’, and ‘‘somersault’’,

to generate fresh solutions from a population of random

ones. Kahraman et al. [74] presented improved multi-ob-

jective MRFO (IMOMRFO) as a solution for addressing

the MOOPF problem. To augment the exploratory and

exploitation capabilities of IMOMRFO, the authors

developed a crowding distance-based Pareto archival pro-

cess. The proposed IMOMRFO was assessed on 30 and

57-bus IEEE test systems, focusing on four objective

functions: FCM, VDM, PLM, and EM, with simultaneous

optimization of two or more objectives. In one scenario

involving the simultaneous optimization of all four objec-

tives, IMOMRFO achieved a fuel cost of 816.4599 $/hr,

showcasing a 1.6536% reduction compared to the best

value reported in existing literature for the 30-bus system.

5.2.13 Marine predator algorithm (MPA) based OPF

In [75], the MPA was created to find the best global opti-

mum solution by drawing inspiration from foraging

methods, Brownian motions, and the biological predator–

prey interaction. In [76], the authors applied MPA to

address the SOOPF problem, with objectives including

FCM, PLM, VDM, and VSE. The suggested technique was

tested and compared to various OAs such as SCA, PSO,

and GSA on the IEEE 30-bus network. The MPA approach

achieved a fuel cost of 799.0725 $/hr on 30-bus network,

which is comparable to the findings derived from SCA,

GWO, PSO, and other algorithms. Furthermore, an analysis

was conducted on a larger IEEE 118-bus test network to

determine the optimal fuel cost, which was determined to

be 129,422.56 $/hr.

5.3 Classification inspired by principle of physics

5.3.1 Electromagnetism-like mechanism (EM) method
based OPF

The EM technique was put forth in 2003 by Birbil and

Fang [77] as a powerful population-based metaheuristic

optimization strategy utilizing the concept of electromag-

netic force of attraction or repulsion between electrically

charged particles distributed across the search space. The

particle exhibiting the highest charge, denoted as the

optimal particle, exerts a strong attraction on particles with

higher fitness values while repelling those with lower fit-

ness values. An improved version of the EM (IEM)

approach was provided in [78] for obtaining the optimal

configurations for the control variables, thereby offering

the optimal OPF solution for seven distinct single-objective

cases with varying constraints. The proposed method was

applied to IEEE networks with 30 and 57 buses, consid-

ering objectives such as FCM (basic QFC and piecewise

QFC), VDM, VSE, PLM, and RPLM. A scalability test was

conducted on a 57-bus system with the objective of FCM

(basic QFC). Simulation results demonstrated superiority

of improved version over the initial version of EM method

and other established OAs (e.g., BBO, DE, PSO) in solu-

tion accuracy, convergence rate, and computational effi-

ciency, all simultaneously. For a specific scenario in which

the VDM objective is combined with the FCM to formulate

a Single Objective Function (SOF), the proposed IEM

achieved a fuel cost of 804.1084 $/hr and a voltage devi-

ation of 0.1063. In contrast, the corresponding values for

EM were 804.26 $/hr and 0.127, for BBO were 804.998 $/

hr and 0.102, for DE were 805.2619 $/hr and 0.1357, and

for PSO were 806.38 $/hr and 0.0891.

5.3.2 Grenade explosion method (GEM) based OPF

The GEM is a population-based novel metaheuristic

approach developed in 2009 by Ahrari and Atai [79] and

draws inspiration from the grenade explosion mechanism

wherein a large amount of shrapnel is propelled by the

explosion, thus effectively targeting the objects situated

within a neighborhood radius. As a result of a shrapnel
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impact, the damage is evaluated, and the overall damage is

correlated with the effectiveness or quality of the solution

at the location of the object. GEM is a swarm-intelligence

algorithm, where new particles are created in a similar

manner as the explosion of a grenade, reflecting the

problem-solving interactions observed in social insects. In

[10], GEM approach was used to handle SOOPF and

MOOPF problems, considering six different objectives

involving FCM, VDM, VSE, EM, PLM, and RPLM. The

MOO problem was formulated using fuzzy decision-mak-

ing technique, where the objective functions were substi-

tuted with fuzzy membership functions. The decision

maker was responsible for formulating a fuzzy goal for

each objective function, and the algorithm testing was

carried out using a standard 30-bus IEEE test system.

SOFs, out of multiple objectives, were formed using

weighted sum, exponential weighted method, minimal

operator, and epsilon-constraint approaches. The superior-

ity of the suggested GEM-based method was demonstrated

in both single- and multi-objective scenarios.

5.3.3 Gravitational search algorithm (GSA) based OPF

GSA, a nature-inspired algorithm proposed by Rashedi

et al. in 2009 [80], is a recently developed method capable

of effectively addressing various challenging global opti-

mization issues. Newton’s Law of Gravity serves as a

fundamental basis for a key component of the algorithm,

governing the interaction among masses within the system.

In their study [81], Duman et al. proposed GSA as a viable

approach to tackle the OPF problem, taking into account

objectives such as FCM (basic QFC, piecewise QFC, QFC

with VPL), VDM, VSE (normal and contingency states).

The proposed GSA was tested on IEEE test networks with

30 and 57 buses, and the derived findings reaffirmed its

superior capability in effectively addressing the SOOPF

problems. The GSA algorithm achieved the best fuel cost

of 798.675 $/hr on the 30-bus system for the FCM objec-

tive (basic QFC), surpassing the results of BBO (799.1116

$/hr), DE (799.2891 $/hr), PSO (800.41 $/hr), improved

GA (800.805 $/hr), and other previously published results.

The scalability test involved evaluating the 57-bus test

system specifically for the FCM objective. Bhattacharya

et al. applied GSA algorithm to solve three SOOPF and

three MOOPF cases [82]. The authors tested the algorithm

for solving OPF objective functions on a standard 26-bus

system as well as a large-scale 118-bus IEEE system. They

considered identical single, bi, and tri-objective cases for

both systems during the testing. The acquired findings were

compared against previously published algorithms, con-

firming the usefulness of the GSA-based technique in

determining optimal values for the objective function

across different scales of systems. In [83], Bhowmik et al.

proposed the non-dominated sorting multi-objective GSA

(NSMOGSA), a modified form of the classic GSA. In this

approach, the non-dominated sorting mechanism was

employed to alter the gravitational force acting on the

agents while adhering to the fundamental equation of the

original GSA. ‘‘Opposition-based learning’’ concept was

used to augment the quality of solutions and to make them

converge faster. The proposed NSMOGSA approach was

evaluated using different SOOPF and conflicting MOOPF

scenarios on a 30-bus IEEE test network considering

objectives of FCM (basic QFC, piecewise QFC and QFC

with VPL effect), EM, PLM, VDM, and VSE. The case

studies conclusively demonstrated the dominance of the

proposed method over other algorithms, showcasing faster

convergence to high-quality solutions. NSMOGSA, for

instance, demonstrated its superiority compared to other

popular OAs documented in prior studies, such as GA,

PSO, and DE, for the specific objective of FCM (basic

QFC) after performing 50 individual runs on the 30-bus

system. It achieved the best fuel cost value of 796.124 $/hr,

which is 0.56%, 0.21%, 0.65%, and 0.11% lower than

ABC, GSA, MDE, and DE, respectively.

5.3.4 Black-hole based optimization (BHBO) algorithm-
based OPF

The BHBO algorithm emulates the behavior of black holes,

with candidate solutions represented as stars. These stars

are drawn towards the optimal solution, replicating the

black hole phenomena. The algorithm possesses a

straightforward structure and, being parameter-less, elimi-

nates the need for tuning internal parameters. Bouchekara

in [84] implemented BHBO algorithm to address a variety

of OPF problems while meeting various types of con-

straints. The author applied the approach to identify the

optimal settings of OPF control variables for the 30-bus

IEEE test network and the Algerian 59-bus network, con-

sidering various SOFs. However, the efficacy of the sug-

gested approach in dealing with MOOPF problems was not

examined.

5.3.5 Colliding bodies optimization (CBO) algorithm-based
OPF

CBO is a newly formed population-based metaheuristic

algorithm that derives its foundation from the law of

physics of one-dimensional collision between two massed

objects of specified velocities [85]. The CBO algorithm,

formulated by Kaveh and Mahdavi, utilizes the law of

conservation of momentum to guide the movement of the

bodies towards improved positions within the search

domain. An Enhanced CBO (ECBO) was proposed by

Kaveh and Ghazaan [86], which adopted a regeneration
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mechanism that avoided solutions from falling into local

optima. Bouchekara et al. [87] developed improved CBO

(ICBO) algorithm which utilized three colliding bodies

instead of two. Through 16 case studies, the ICBO

approach was successfully applied to three IEEE test sys-

tems consisting of 30, 57, and 118 buses to resolve realistic

OPF problems based on objectives reflecting FCM, VDM,

and VSE, both for normal operations and branch contin-

gency conditions. The findings of the performance evalu-

ation study revealed that the proposed algorithm was

highly robust and satisfied all the constraints for all cases

considered in the study. It exhibited a remarkable capa-

bility in effectively deal with a variety of OPF cases.

However, a multi-objective CBO algorithm is still to be

developed and its scope is to be explored to solve MOOPF

problems.

5.3.6 Water evaporation optimization algorithm (WEA)
based OPF

Saha et al. [88] employed the Water Evaporation Algo-

rithm (WEA), introduced by A. Kaveh et al. [89], to

address the OPF problem. WEA draws inspiration from the

behavior of water evaporation, a fundamental physical

process involving the interaction between liquid particles

and solid surfaces. By integrating concepts from molecular

dynamics simulations, the algorithm analyses the effects of

surface wettability on the behavior of water particles. The

authors evaluated the algorithm on IEEE test systems

consisting of 30 and 118 buses, considering single and bi-

objective functions. The considered objectives included

FCM (basic QFC, QFC-POZ, QFC-VPL effects-POZ),

PLM, VSE, and VDM, but only the 30-bus system was

tested for multi-objective optimization (bi-objective).

WEA outperformed HSA, NSGA-II, and TLBO in a sce-

nario that minimized fuel cost and L-index simultaneously.

WEA achieved a fuel cost of 799.0183 $/hr and an L-index

of 0.1066 p.u., demonstrating superior outcomes compared

to these established algorithms commonly found in the

literature.

5.3.7 Archimedes optimization algorithm (AOA) based OPF

In [90], authors proposed an improved AOA (IAOA) where

a trade-off between local and global exploration was

attained employing a ‘‘dimension-learning-based search

strategy’’, along with the ‘‘motion strategy’’ derived from

AOA, which leads to better convergence characteristics.

The proposed IAOA underwent testing on the IEEE test

networks with 30 and 57 buses, as well as the 16-bus South

Marmara regional transmission systems. With objectives

encompassing FCM, PLM, EM, and VDM (voltage profile

improvement), both SOF and MOF formulations were

examined extensively. The obtained results were compared

with TLBO, SCA, DSA, and various other widely used

methods in the literature. For instance, for FCM as a single

objective, IAOA achieved a remarkable result of 799.068

$/hr, outperforming several other reported methods.

5.4 Classification based on inspiration drawn
from human behavior (human-based
algorithms)

Human-based problem-solving approaches make use of

human qualities such as adaptation, teamwork, and expe-

rience-based learning. The following subsection outlines

two predominant algorithms commonly found in the liter-

ature for addressing OPF problems.

5.4.1 Teaching–learning based optimization (TLBO)
algorithm based OPF

The TLBO algorithm, formulated by Rao et al. in 2011, is a

highly effective, parameter-free optimization approach

using a population-based strategy, drawing inspiration

from the teaching–learning phenomenon observed in a

classroom. It mimics the knowledge transfer process from a

teacher to learners. Moreover, the results achieved by the

learners are shaped by the collective exchange of knowl-

edge and interactions within the group, fostering a col-

laborative learning process that enhances the quality of

solutions. Bouchekara et al. in [91] applied TLBO for

solving SOOPF problem for different objectives reflecting

FCM (basic QFC, piecewise QFC and QFC with VPL

effect), VDM, VSE (normal and contingency condition).

The proposed approach was validated on IEEE networks

consisting of 30 and 118 buses, with a single FCM

objective implemented on the 118-bus network to demon-

strate its scalability. The proposed technique achieved a

fuel cost of 799.0715 $/hr for the basic FCM objective on

the 30-bus system, demonstrating better or comparable

results to those attained from alternative approaches doc-

umented in prior studies. A modified TLBO algorithm was

used in [92] for solving MOOPF problem involving the

objectives of FCM and EM. A modified phase that

employed a self-adapting wavelet mutation (SAWM)

technique was added to the original TLBO to improve its

performance and explore a larger search space for optimal

solutions. The proposed algorithm underwent testing using

standard IEEE test systems consisting of 30 and 57 buses.

The final outcomes validated the improved performance of

the algorithm in terms of faster convergence rate with

improved accuracy within a fewer number of iterations as

compared with original TLBO. A novel hybrid algorithm

formed by merging a modified imperialist competitive

algorithm (MICA) with teaching–learning algorithm
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(TLA), called a MICA-TLA, was developed and presented

in [93]. The proposed MICA-TLA profits from TLA to

enhance local search capability near the global optimal.

The proposed modified approach was tested on the 30-bus

IEEE test network under SOFs of varying nature such as

basic cost function, cost function with VPL effect and

POZs, piecewise QFC function. Additionally, it was tested

on the 57-bus IEEE test network, focusing on cost-based

SOF and a two-fold function considering objectives of

FCM and VDM. The obtained simulation outcomes vali-

dated the suggested algorithm’s supremacy over other

basic population-based algorithms such as ICA, TLA,

MICA etc., due to faster convergence towards finding the

better-quality solutions. In [94], Ghasemi et al. used the

TLBO algorithm with the Lévy mutation strategy to

determine optimal control variables. The Lévy mutation

operator is capable of enhancing the exploration and

improving the diversity of population. The authors applied

the approach in the same situation considering identical test

systems with similar objectives. As compared to other

stochastic approaches previously reported in the literature,

the proposed Lévy mutation TLBO algorithm-based

approach offered better quality results. Akbari et al. [95]

introduced a modified version named Teaching–Learning-

Studying-Based Optimization (TLSBO), which includes a

studying strategy. The proposed TLSBO algorithm was

assessed for its performance in solving SOOPF and

MOOPF problems on the 30-bus IEEE standard test net-

work, incorporating the objectives of FCM, PLM, VDM,

and EM. In comparison to the original TLBO algorithm,

the proposed TLSBO algorithm achieved a cost of

$815.4377/hr, outperforming the original algorithm’s cost

of $816.4994/hr. Additionally, the TLSBO algorithm

yielded a power loss of 6.34 MW, a voltage deviation of

0.3305 p.u., and an emission of 0.2742 ton/hr, while

demonstrating faster convergence characteristics.

5.4.2 Jaya algorithm based OPF

R. Venkata Rao introduced the Jaya algorithm in [96], a

population-based OA capable of addressing both con-

strained and unconstrained optimization problems. The

Jaya algorithm aims to avoid getting stuck in local optima

by exhibiting a tendency towards the best solutions while

simultaneously moving away from the worst ones. The

advantage of Jaya lies in its parameter-free nature, elimi-

nating the need for any adjustment or tuning of parameters

to provide a globally optimal or near-globally optimal

solution. In [97], various frameworks utilizing the Jaya

optimizer were proposed to address SOOPF and MOOPF

problems. These frameworks consider different objective

function conditions, such as FCM, VDM, VSE, PLM, EM,

and combinations thereof, to formulate MOFs. The

proposed OPF frameworks were validated on IEEE test

systems having 30 and 57 buses with a total of 23 case

studies. To attain the best compromise OPF solution, the

authors combined Pareto concept with the proposed algo-

rithm to derive a non-dominated solution set. The com-

parison of the suggested approach with other existing

algorithms documented in previous studies revealed a

favorable and promising performance of developed

frameworks, along with steady convergence characteristics.

A modified version of Jaya (MJAYA) was introduced in

[98] to overcome the problem of premature convergence of

the original Jaya. The authors applied MJAYA algorithm to

solve OPF problem including RES and examined their

effects on objective functions considering four distinct

objectives of FCM, EM, PLM and VDM. The pricing and

weighting parameters were utilized to transform the MOF

into a SOF problem. The efficacy of the suggested MJAYA

was validated on IEEE test systems (30 and 118-bus). A

comparison of the suggested MJAYA algorithm with other

published techniques revealed its superiority. Rao et al.

[99] proposed an innovative approach known as adaptive

multiple teams perturbation-guiding Jaya (AMTPG-Jaya)

for engineering optimization problems. This approach was

introduced for the first time in [100] to address the chal-

lenges associated with SOOPF cases. AMTPG-Jaya utilizes

a set of movement equations to efficiently guide the

movement of multiple populations, referred to as teams, in

exploring a given search space. The number of teams keeps

changing as the algorithm approaches towards the best

candidate solution. In order to explore the versatility of the

AMTPG-Jaya algorithm, it was executed on IEEE test

systems having 30 and 118 buses with three SOOPF cases,

namely fuel rate reduction, PLM, and VSE (minimizing L-

index). The competitiveness of the algorithm was con-

firmed through a comparison with the basic TLBO algo-

rithm. Furthermore, AMTPG-Jaya was evaluated against

various stochastic algorithms in the literature, with an

emphasis on solution quality, feasibility, and execution

time. The proposed AMTPG-Jaya demonstrated excellent

performance, especially for large-scale power systems.

6 Non-nature inspired algorithms for OPF
solution (non-hybrid)–inspired
by mathematical functions

Non-nature-inspired algorithms neither directly simulate

nor are influenced by natural phenomena such as biological

evolution, swarm intelligence, or genetic operations. In

terms of population-based nature and search space explo-

ration, these algorithms are related to swarm intelligence

algorithms. These algorithms, which are inspired by both
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social and mathematical concepts, are now widely used in

PSOPs.

6.1 Backtracking search algorithm (BSA) based
OPF

The BSA is a population-based search method that Civi-

cioglu developed in 2013 [101]. To produce trial solutions,

it employs three genetic operators: mutation, crossover,

and selection. Although the BSA uses genetic operators

similar to those of evolutionary algorithms, it does not

explicitly attempt to mimic the process of biological evo-

lution. However, BSA utilizes the memory of previously

generated solutions to gain experience, enabling it to guide

the search process in subsequent iterations and achieve

improved search direction. The single control parameter,

the mix-rate parameter, makes the algorithm less sensitive

to initial parameter values compared to other heuristic

algorithms. BSA was first applied to provide a solution to

the SOOPF problem in [102], wherein the authors con-

sidered the basic cost functions in four different cases with

the VPL effect and POZ of power systems. The proposed

algorithm was executed using the IEEE 30-bus test net-

work, and its outcomes were contrasted with those of other

established OAs such as GA, EP, DE, MDE, ABC, and

others, as documented in prior studies. The results con-

firmed the superiority of the proposed algorithm in terms of

generation cost and convergence speed towards the global

optimum. However, the performance of the suggested

approach on large-scale systems was not assessed. Chaib

et al. [103] implemented BSA to resolve OPF issue with

complex objective functions with discontinuities. The

proposed approach was validated on standard IEEE 30-bus

and 57-bus test networks, as well as a large-scale 118-bus

system, for 16 different case studies of the OPF problem. It

demonstrated superior performance and robustness com-

pared to other algorithms in the literature (DE, PSO, ABC,

GA, BBO), especially for large-scale networks. The pro-

posed approach, however, was recommended for further

studies to address MOOPF problems based on Pareto-op-

timal solutions. Daqaq et al. in [104] presented multi-ob-

jective BSA (MOBSA) to address OPF problem in power

systems, considering FCM, PLM and VDM as objective

functions. MOBSA was assessed on IEEE networks with

30, 57, and 118 buses, demonstrating its efficient genera-

tion of well-distributed Pareto optimal solutions. The

optimal Pareto solutions were analyzed using a fuzzy

membership technique to determine the best trade-off

solution. The superiority, efficacy, and robustness of

MOBSA were proven through comparison with other

approaches (multi-objective DE, multi-objective ALO,

etc.).

6.2 Sine–Cosine algorithm (SCA) based OPF

Introduced in 2016 by Seyedali Mirjalili [105], SCA is a

promising population-based OA. It utilizes mathematical

rules for efficient searching of optimal solutions. Attia et al.

in [106] presented a modified SCA (MSCA) for addressing

the OPF problem by reinforcing the basic SCA with Lévy

flights and with a mechanism of adaptive tuning in the

population size. This enhanced the likelihood of discov-

ering global optima at a quicker convergence rate and

improved its ability to evade local optima. The proposed

approach underwent successful testing on both the 30-bus

IEEE test network and a larger 118-bus IEEE network. It

was evaluated for single-objective formulations that

included FCM (with single and multiple fuel types), VDM

and PLM objectives. The authors checked and established

the superiority of proposed algorithm over the original

SCA to attain the best feasible solution with faster con-

vergence for addressing large-scale OPF problems. Addi-

tionally, to validate the proposed algorithms, a

performance comparison was performed with other pub-

lished OAs documented in prior studies. The results con-

firmed that the SCA and MSCA algorithms outperformed

the others by attaining optimized control variables for the

power system with significantly reduced number of itera-

tions. Karimulla and Ravi in [107] proposed enhanced SCA

(ESCA) by adding Lévy flights to solve MOOPF problem

considering objectives related to FCM, PLM, EM and

VSE, and tested on 30-bus IEEE test network. The power

loss achieved was 4.7893 MW, which was lower than the

power losses obtained using GA (5.35 MW), PSO

(5.21 MW), and the Flower Pollination algorithm

(4.80 MW). Furthermore, contrasting with other widely

used OAs, the proposed approach exhibited superior out-

comes for fuel cost (796.34 MW), L-index (1.04), and

emission (0.2048 ton/hr).

6.3 Rao algorithm based OPF

The Rao algorithms, proposed by Rao [108] in 2020, are

recent and advanced parameter-less metaheuristic opti-

mization tools that do not require parametric tuning. The

evaluation of the Rao variants (Rao-1, Rao-2, and Rao-3)

was carried out in [109] on IEEE test systems consisting of

30, 57, and 118 buses to tackle the OPF problem. The

assessment included objectives of FCM, PLM, EM, VDM

and VSE, considering both normal and contingency sce-

narios. Among the three variants, the Rao-3 algorithm

consistently outperformed both Rao-1 and Rao-2 algo-

rithms, achieving the best optimized values for objectives

of FCM, PLM, VDM, and VSE, while also demonstrating a

comparable value for the EM objective. However, for IEEE
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57-bus system, Rao-2 excelled by achieving the lowest real

power loss. Hassan et al. [110] introduced the MRao-2

algorithm, a modified version of the Rao-2 algorithm,

designed to address the challenges posed by OPF problems

that incorporate RES under both normal and contingency

conditions. The performance of the MRao-2 algorithm was

enhanced by incorporating the quasi-oppositional and Lévy

flight methods. The efficacy of the suggested approach was

verified through its validation on both IEEE 30 and

118-bus test networks, incorporating objectives of FCM,

PLM, EM, and VDM. Simulation results were compared

with variants of Rao and other popular algorithms, such as

atom search optimization (ASO) and marine predator

algorithm (MPA). The MRao-2 algorithm showed smooth

and fast convergence, even for large systems, outper-

forming other approaches documented in the literature.

7 AI-based metaheuristics for OPF:
categorization and comparative analysis

Building on the detailed discussions in Sects. 4, 5, and 6,

this section offers a comprehensive tabular overview that

provides a detailed categorization and comparative analysis

of individual AI-based metaheuristics that have been used

in existing literature to address the OPF problem. Table 1

summarizes the number of publications from 2012 to 2022

that used individual AI-based metaheuristic algorithms for

OPF, along with their respective references cited in this

study. Articles that employed multiple algorithms are dis-

cussed separately in a subsequent section within this arti-

cle. Table 2 presents a tabular summary of the OPF

algorithms (non-hybrid) discussed in this study, along with

their comparison to established algorithms. Besides serving

as a quick reference for readers, Table 2 also incorporates

pertinent information about each algorithm. It includes

information about objective functions, types of OPF

problems, selected bus systems, methodologies used, key

outcomes, and findings. This thorough comparison with

other well-known algorithms enables readers to efficiently

evaluate these approaches.

Table 3 offers readers a comprehensive comparison of

basic fuel cost results using different non-hybrid OPF

algorithms across various standard IEEE test systems, as

well as other benchmark systems. It highlights the achieved

fuel costs for the IEEE 30-bus, 57-bus, and 118-bus sys-

tems, among others, showcasing the economic efficiency of

each algorithm analyzed.

8 Hybrid optimization methods-based
approach to solve OPF problem

More recently, the well-established AI methods have been

combined into one powerful algorithm by many research-

ers. This hybridization yields hybrid algorithms which

possess better and faster convergence characteristics than

any of their component methods. Hybrid methods have

gained popularity due to their ability to combine the

advantages of individual methods while mitigating the

limitations of each.

Kumar and Chaturvedi in 2013 [111] proposed a hybrid

approach that combined fuzzy systems with GA (GA-

Fuzzy) and PSO algorithms (PSO-Fuzzy). This approach

aimed to optimize control parameters for the SOOPF

problem specifically targeting the FCM objective. The

approach was successfully executed on the modified IEEE

30-bus network. Integrating fuzzy with PSO yielded the

lowest fuel cost among other OPF methods documented in

the literature, including the GA fuzzy approach, while

integrating fuzzy with GA showed improved average fit-

ness performance for the modified IEEE 30-bus system.

The authors found integrated approaches to be more

effective and robust than simple PSO and GA approaches

in handling the OPF problem.

A hybrid algorithm incorporating modified PSO and the

Shuffle Frog Leaping Algorithm (MPSO-SFLA) was pro-

posed in [112] as a solution to the challenges posed by the

MOOPF problem, incorporating the objectives of FCM and

EM simultaneously. The suggested optimization problem

included a number of generating restrictions, such as POZs

and VPL effects, to emphasize the practical aspects of

power generation. Furthermore, a new operator, referred to

as the ‘‘Self-Adaptive Probabilistic Mutation Operator’’

(SAPMO), was proposed and applied to resolve the

shortcomings of original PSO. SAPMO aims to enhance

the diversity of the population by promoting a more varied

generation process. The authors took the advantage of a

Pareto-based methodology to acquire a well-distributed set

of Pareto-optimal solutions. Afterward, a fuzzy decision-

making model was employed to determine the best com-

promise solution. The suitability of MPSO-SFLA was

validated through its testing on the 30-bus, 57-bus, and two

variants of the 118-bus IEEE test network. The obtained

results were compared with those of existing methods

(basic SFLA and basic PSO), revealing the superior effi-

cacy of the proposed algorithm regarding convergence

trend, computational time, solution quality, robustness, and

enhanced local & global search capabilities.

A hybrid PSO and GSA (PSO-GSA) algorithm was

proposed in [113] as a solution for addressing the OPF

problem by integrating the global exploration capability of
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PSO (g-best) with local search ability of GSA. The validity

of this hybrid approach was verified through testing on

IEEE test networks consisting of 30 and 118 buses. The

testing involved various single and twofold objectives,

including FCM, VDM, PLM, and VSE. In a specific case

involving FCM on 30-bus system, where two different

subcases of load bus voltage limits were considered, the

proposed PSO-GSA algorithm exhibited faster conver-

gence to its global best compared to both PSO and GSA

algorithms. Despite some methods yielding improved

results, the authors identified that these outcomes were

infeasible solutions as they violated the load bus voltages.

However, the authors suggested the need for improving the

computational speed of the proposed hybrid approach,

especially when dealing with large-scale systems.

In [114], Reddy proposed the Hybrid DE-HS algorithm,

a novel approach that combined DE and HS to address the

SOOPF and MOOPF problems. The combination of the

two algorithms led to the development of a powerful hybrid

algorithm that integrated the original DE algorithm with

HSA to achieve faster global convergence. The suggested

algorithm considered three objective functions, namely

FCM (with VPL and POZs), PLM, and VSE, and was

tested on IEEE test networks with 30, 118, and 300 buses.

In a 30-bus system for the FCM objective, DE-HS achieved

an optimum cost of 799.0514 $/hr, better than that reported

by BBO, DE, modified DE, PSO, GA, improved GA, and

Table 1 Publications utilizing individual AI-based metaheuristic algorithms for OPF

AI-based metaheuristics for OPF Algorithms Number of

articles

References

Evolutionary Evolutionary programming 2 [11, 12]

Genetic algorithm 2 [12, 14]

Differential evolution 4 [16–19]

Harmony search 3 [21–23]

Biogeography-based optimization 1 [26]

Swarm-intelligence based

metaheuristics

Natural Particle swarm optimization 2 [12, 28]

Glowworm swarm optimization 1 [30]

Firefly algorithm 1 [32]

Differential search algorithm 2 [34, 35]

Animal migration optimization 1 [37]

Moth flame optimization/Moth swarm algorithm 5 [39–43]

Salp swarm optimization 1 [44]

Bacterial foraging 1 [46]

Artificial bee colony 6 [47–52]

Group search optimizer 2 [54, 55]

Krill herd algorithm 3 [57–59]

Social spider optimization 1 [61]

Grey wolf optimizer 2 [16, 62]

Ant lion optimizer 2 [63, 64]

Whale optimizer 1 [66]

Grasshopper optimization 1 [68]

Sparrow search algorithm 1 [69]

Slime mould 2 [71, 72]

Mantra ray foraging optimizer 1 [74]

Marine predator algorithm 1 [76]

Physics inspired (EM, GEM, GSA, BHBO, CBO,

AOA)

8 [10, 78, 81–84, 87, 88]

Human behavior inspired (TLBO, Jaya) 8 [89–93, 95, 97, 98]

Non-

natural

Backtracking search algorithm 3 [102–104]

Sine–cosine algorithm 2 [106, 107]

Rao algorithm 2 [109, 110]
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Table 2 Summary of OPF algorithms (non-hybrid) and comparative analysis with established methods

References Algorithm Objective

function (OF)

SOOPF/

MOOPF/

Both

Test

System (-

bus IEEE

network)

Strategy/methodology Outcome/

findings

[11] EP FCM, FCM-

VPL, FCM-

MFS, VDM

SOOPF 30 The EP-OPF algorithm employs gradient

information to identify the global optimal

solution, utilizing a key strategy that involves

integrating solution acceleration concepts using

steepest descent method

Proposed EP-

based

algorithm

maintains a

solution

population,

reproduces the

best solutions,

and creates new

ones through

mutation to

optimize the

OPF problem

and enhance

voltage profiles

[12] EP, PSO,

GA

FCM, PLM,

VSE, EM

Both 30 This work compares PSO, EP, and GA for MOOPF,

using the Pareto optimal method and fuzzy

decision-making to select the best solutions

EP outperforms

PSO and GA in

cost and

convergence,

but the ideal

algorithm

varies based on

the objectives

and trade-offs

[14] AGAPOP FCM, VDM,

FCM-MFS

SOOPF 30 AGAPOP combines GA and fine-tuning to optimize

high-dimensional problems, simultaneously

flooding the problem space with solutions (POP)

and dynamically adjusting parameters

AGAPOP

significantly

reduces fuel

cost to

$799.8441/hr in

few

generations,

surpassing

IGA, PSO, and

DE approaches

[16] DEA FCM, PLM,

RPLM and

VSI

Both 30, 118 DEA uses a differential mutation operator and

uniform crossover to generate new solutions, and

then selects the best solutions to move on to the

next generation

DEA excels in

large-scale

optimization,

offering

competitive

solutions when

compared to

PSO, GSA, and

TLBO

[16] GWO FCM SOOPF 30, 118 GWO emulates wolf hunting behavior, effectively

transitioning between exploration and exploitation

strategies for global optimum discovery

GWO presents a

viable option

for large-scale

optimization.

The Authors

suggest

exploring

GWO’s

potential for

MOO problems

in power

systems
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Table 2 (continued)

References Algorithm Objective

function (OF)

SOOPF/

MOOPF/

Both

Test

System (-

bus IEEE

network)

Strategy/methodology Outcome/

findings

[17] MODEA FCM, VDM,

VSE, and

PLM

Both 30, 57 DE variant that converges quickly and discovers

Pareto-optimal solutions in one run with adaptive

e-constraints

Faster

convergence

and superior

solutions

compared to

BBO, EP,

ABC, TLBO,

LTLBO and

many others

[18] MDE FCM, PLM,

VDM, VSE,

Both 57, 118 MDE utilizes a modified DE/best/1 multi-objective

model that emphasizes rapid convergence,

improved search capabilities, and Pareto ranking

Proposed

algorithm

outperforms

original DE

variant

[19] DEA FCM-VPL,

FCM-POZ,

FCM-PLM,

FCM-VDL

modeling

MOOPF 30, 300 DEA combines the concept of mutation, crossover,

and selection to efficiently explore the solution

space for global optima

Outperforms

NSGA-II with

10 times faster

computation

while excelling

in multi-

objective tasks,

particularly

through

weighted

summation

[21] IHS FCM, FCM-

VPL

SOOPF 6, 14, 30,

57, 118

IHS algorithm dynamically adjusts PAR to optimize

various problems, all without requiring prior

knowledge or space limitations

Superior over

SQP and GA

especially for

large-scale

systems in

terms of less

CPU time and

better objective

function value

[22] FHSA FCM, Severity-

index

minimization

SOOPF 30, 57, 118 FHSA algorithm optimizes decision variables by

combining historical values, improvisation,

iterative improvement, and parameter adaptation

FHSA

outperforms

traditional HSA

by achieving

faster

convergence to

high-quality

solutions

[23] Differential-

based

HSA

VDM, PLM,

Active power

generation

reduction

Both 57, 118 Incorporated DH/best algorithm eliminating need

for PAR parameter

Enhanced search

capabilities

compared with

NSGA-II, PSO,

and the original

HSA
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Table 2 (continued)

References Algorithm Objective

function (OF)

SOOPF/

MOOPF/

Both

Test

System (-

bus IEEE

network)

Strategy/methodology Outcome/

findings

[26] ARCBBO FCM, VDM,

VSE (normal

and

contingency),

PLM, EM

SOOPF 30, 57 Adaptive Gaussian mutation improves population

diversity and exploration capability

ARCBBO

effectively

combated

premature

convergence,

surpassing

basic BBO,

ABC, GSA,

and MDE,

although some

solutions

violated load

bus voltage

constraints

[28] IPSO FCM, EM,

PLM, and

VSE

Both 30 IPSO offers enhanced search ability through Chaos,

self-adaptation, and mutation techniques to find a

well-distributed Pareto front

Better results

than PSO, EP,

EGA, fuzzy

GA, modified

DEA for

SOOPF

scenario. Better

results than

PSO and

NSGA-II for

MOOPF

scenario

[30] GWSO FCM, EM Both 30, 75-bus

Indian

grid

GWSO uses glowworms to optimize multi-objective

functions by assessing luciferin values, favoring

movement towards brighter neighbors, and

applying Pareto-based methods

GWSO surpasses

PSO, yielding

better results in

fewer iterations

and reduced

computational

memory usage

[32] GBLFA,

MGBLFA

FCM, EM,

PLM and

VDM

Both 30 Strategic use of Lévy, bare-bone, and Gaussian

sampling

MGBLFA

excelled in

smaller

systems,

surpassing

BBDE,

BBPSO, LFA,

and GBLFA,

especially in

terms of carbon

tax value and

effectively

reducing the

cost target for

the IEEE

30-bus system

[34] DSA FCM, FCM-

VPL, FCM-

MFS, VDM,

VSE (normal

&

contingency)

SOOPF 30, 118 DSA utilizes artificial organisms to fill the

problem’s search space, using Brownian-like

random walks for migration and position

adjustment

DSA

outperformed

DE, GSA, GA,

BBO and PSO
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Table 2 (continued)

References Algorithm Objective

function (OF)

SOOPF/

MOOPF/

Both

Test

System (-

bus IEEE

network)

Strategy/methodology Outcome/

findings

[35] Novel DSA-

based

approach

FCM, VDM,

PLM, VSE

and EM

Both 9, 30, 57 Superorganisms migrate to find global optimal

solutions by choosing the best solution in each

iteration

Proposed

algorithm

achieved

superior

solution

performance

compared to

ABC and GSA

[37] BAAMO FCM, PLM,

VDM

SOOPF 30, 57, 118 AMO and its variant BAAMO are applied in a two-

phase process: the first phase evaluates fitness,

guiding control variable optimization in the

second phase

Better results

than PSO, GA,

DE, ABC, and

GSA.

Computation

time is

relatively high

due to dual

variable

updates per

iteration

[39] MFO FCM, FCM-

VPL, FCM-

MFS, EM,

PLM

SOOPF 30 MFO iteratively updates moth positions based on

their attraction to the best solutions (flames) and

repulsion from the worst solutions, optimizing

their positions in the search space

MFO

outperforms

flower

pollination

algorithm

(FPA), PSO,

GWO, ABC

and other OAs

by more

effectively

exploring and

exploiting the

search space to

deliver superior

results

[40] IMFO FCM, PLM,

VDM, VSE,

EM (total 15

combinations)

Both 30, 57, 118 Modified MFO concept by changing moth paths to

create new spirals around a flame

IMFO excels

over MFO, GA,

PSO, and

TLBO with

quicker

convergence

[41] AMFO FCM, FCM-

VPL, FCM-

MFS, EM,

VSE, VDM,

PLM, RPLM

(total 13 case

studies)

SOOPF 118 Basic MFO improved by incorporating a step size

derived from different moth positions, with the

goal of enhancing convergence speed while

preserving MFO’s essential traits

AMFO

demonstrates

superior

searchability

compared to

MFO, GWO,

DA, SCA,

ALO, and GOA
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Table 2 (continued)

References Algorithm Objective

function (OF)

SOOPF/

MOOPF/

Both

Test

System (-

bus IEEE

network)

Strategy/methodology Outcome/

findings

[42] MSA FCM, FCM-

VPL, FCM-

MFS, EM,

VDM, PLM,

VSE (normal

and

contingency)

Both 30, 57, 118 The novel MSA paradigm incorporates new

optimization operators, such as adaptive crossover

based on population diversity and an associative

learning mechanism with immediate memory

MSA delivers

valid and

precise

solutions

compared to

MPSO, MDE,

MFO, and

FPA,

leveraging the

strengths of

these OAs

[43] EMSA FCM, PLM,

VDM, EM,

VSE

Both 30, 57, 118 Quasi-opposition-based learning is implemented to

enhance basic MSA. Oppositional-based

population is created using

xoi ¼ lbi þ ubi � xi,where xoi is i
th opposite-point

EMSA

outperformed

MSA with

faster

convergence

and improved

voltage profiles

[44] ISSA FCM, FCM-

VPL, FCM-

POZ, FCM-

MFS

SOOPF 30, 57, 118 ISSA technique prevents stagnation in SSA by

adding random mutation to enhance exploration

and diversify the search

ISSA-based

approach

consistently

provides the

most cost-

effective

solutions when

compared to

basic SSA,

MFO, IHS,

GA, and other

established

algorithms

[46] IBF FCM, FCM-

VPL, FCM-

MFS, EM

SOOPF 26-bus, 30,

118

Modified DE mutation operator is incorporated in

basic IBF to enhance exploration and diversify the

search in the complex solution space of nonlinear

OPF-SC problems

IBF surpasses

basic BF, EP,

PSO, GA, and

various other

OAs in

delivering

robust solutions

[47] ABC FCM, FCM-

VPL, FCM-

MFS, EM,

PLM, VSE

(normal &

contingency)

SOOPF 9, 30, 57 Proposed ABC iteratively explores optimal

solutions using employed and onlooker bees,

guided by fitness evaluation and probabilistic

selection

ABC

demonstrates

ability to find

feasible and

optimal

solutions,

compared to

LDI-PSO and

GSA
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Table 2 (continued)

References Algorithm Objective

function (OF)

SOOPF/

MOOPF/

Both

Test

System (-

bus IEEE

network)

Strategy/methodology Outcome/

findings

[48] MABC FCM-VPL,

EM, PLM,

VDM

Both 30, 118 MABC incorporates fuzzy logic-based membership

functions and fitness calculations to evaluate the

quality of each food source using

lDðxÞ ¼ min ðlf1 ðxÞ; lf2 ðxÞ; ::::; lc1 ðxÞ; lc2 ðxÞ; :::Þ

here, lD is the membership function for the optimal

decision function

MABC

outperforms

different

variants of

PSO, SFLA

and ABC by

excelling in

global search

exploration

while

maintaining its

efficiency, even

as the problem

dimension

scales up

[49] M2OBA FCM, EM,

PLM

MOOPF 30 M2OBA models bee colony foraging behaviors and

uses multi-population cooperation to efficiently

solve complex high-dimensional MOO problems

M2OBA,

utilizing Pareto

concept,

external

archive, greedy

selection, and

fuzzy

membership

approaches,

outperforms

MOPSO,

MOABC, and

NSGA-II

[50] IABC FCM, EM,

VDM, PLM

Both 30, 57, 300 IABC rectifies the exploration–exploitation

imbalance in ABC by introducing DE algorithm-

inspired mutation and crossover operations, along

with tent chaos mapping, to enhance exploitation

IABC

outperforms

ABC, MSFLA,

GA, PSO, DE,

and BBO

algorithms,

delivering

superior

solutions while

requiring less

computation

time

[51] GABC FCM SOOPF 30, 57 and

2383 &

2736 bus

Polish

systems

GABC enhances the original ABC algorithm’s

convergence and exploitation capabilities by

introducing a ‘‘best solution’’ term in the search

equation

GABC

effectively

tackles both

conventional

OPF and

TDOPF

problems,

evaluating its

impact on

factors like

resistance,

generation cost,

and total

system loss
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[52] OL-IABC FCM, FCM-

VPL, PLM

SOOPF 30, 118 Incorporating Orthogonal Learning (OL) selectively

during iterations efficiently create candidate

solutions in the ABC algorithm, enhancing its

exploitation capabilities

The OL-based

IABC

algorithm

consistently

outperforms

basic ABC,

GSA, and

MDE,

achieving

lower costs and

smaller

deviations

[54] GSO FCM, EM,

VDM, VSE

SOOPF 30, 57, 118 GSO involves a combination of producer-scrounger

roles, resource scanning, and random walk

dispersal to efficiently explore and exploit the

search space

Better results

than IPSO,

BBO

[55] AGSO FCM, EM, VSE MOOPF 30, 57 AGSO combines random initialization, Pareto-

based decision-making, adaptive searching, and a

maximum iteration-based termination to optimize

MOOPF problems

AGSO improves

the

convergence

behavior

compared to

traditional GSO

[57] CKHA FCM, PLM,

VDM

SOOPF 57,

standard

26-bus

Chaos theory is fused with the fundamental KHA to

boost computational speed and accelerate

convergence

CKHA, utilizing

the logistic

map,

outperforms

basic KHA,

BBO, and GSA

in delivering

superior results

with better

convergence

[58] KHA FCM, VDM,

PLM, VSE

Both 30, 57, 118 Proposed KHA combines induction, foraging

action, random diffusion, and crossover/mutation

operations from DE to select high-quality

solutions

KHA approach

minimizes fuel

cost and

outperforms

BBO, PSO

variants and

Real-coded GA

techniques

[59] SKH FCM, FCM-

VPL, PLM,

VSE, EM

SOOPF 14, 30, 57 SKH algorithm merges KH’s global exploration

with an SSC operator, enhancing efficiency by

accepting superior solutions and updating krill

positions based on fitness evaluations

SKH

outperforms

basic KH,

ABC, PSO, and

other

algorithms by

providing

better solutions

in a shorter

number of

iterations
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[61] NISSO FCM, FCM-

VPL, FCM-

MFS, PLM,

EM, VDM,

VSE

SOOPF 30, 57, 118 NISSO algorithm uses a combination of SSO and a

new mating operation strategy to improve the

performance of SSO

NISSO

consistently

outperforms

other methods,

including SSO,

by achieving

superior

optimization

results in terms

of OF values,

convergence

speed, and cost

savings

[62] CS-GWO FCM, FCM-

VPL, PLM,

VDM

Both 30, 118 CS-GWO algorithm incorporates a crisscross search

mechanism to address the premature convergence

issue of GWO

CS-GWO

surpasses not

only basic

GWO but also

other

algorithms

including PSO,

ABC, MSA,

BSA, GSA, as

well as hybrid

approaches like

NISSO, IABC,

ICBO, and

various others

[63] ALO FCM, VDM,

VSE, PLM,

RPLM

SOOPF 30 ALO mimics antlions’ hunting behavior through

random walks, trapping, sliding, prey-catching,

and enhanced elitism to optimize power flow

ALO

outperforms

FA and PSO in

OPF problem-

solving, with

faster

convergence

and potential

efficiency

improvements

through penalty

handling and

randomization

techniques

[64] PALO FCM, VDM,

PLM

Both 30, 300

and

2736 ps-

bus

Polish

system

PALO enhances exploration–exploitation balance

through partitioning, updates control variables

dynamically, and explores parallelism for efficient

large OPF problem

PALO surpasses

ALO on the

Polish test

system with an

execution time

of 35.2 s and a

reduced power

loss of

261.436 MW

(from

326.129 MW)
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[66] NSWOA FCM, PLM,

VDM, VSE

Both 30 NSWOA utilizes Pareto dominance to classify

solutions and selects the best compromise solution

based on minimal Euclidean distances

NSWOA, in

contrast to OAs

like PSO, SSA,

SCA, and

MPA,

consistently

demonstrates

superior

performance,

leading to

improved

techno-

economic

outcomes

[68] MGOA FCM, EM,

PLM, VDM,

VSE

Both 30, 57, 118 MGOA solves OPF by improving mutation process

in conventional GOA to keep local optima from

stagnating

Comparisons

with algorithms

such as PSO,

GOA, GA, and

TLBO validate

the

effectiveness of

MGOA

[69] SPSA FCM, FCM-

VPL, FCM-

MFS, EM,

PLM, VDM,

VSE

Both 30, 57, 118 SPSA simulates a sparrow society with two roles:

producers actively seek food and guide others

(scroungers), who follow and depart based on food

discoveries and hazard awareness

Proposed

sparrow-search

algorithm

surpassed

several other

OAs, including

MDE, MFO,

ABC, MPSO,

MSA, and

TLBO, across

diverse

objective

functions and

network sizes

[71] SMA FCM, PLM,

and EM

Both 30, 57, 118 The SMA handles MOOPF using Pareto dominance

and a crowding mechanism for managing Pareto

repositories

SMA excels in

solving SOOPF

and

outperforms in

generating

Pareto fronts

for multi-

objective cases,

particularly in

large power

systems
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[72] MOSMA FCM, PLM,

EM, VDM,

VSE

MOOPF 30, 57,

Iraqi

super

grid

MOSMA combines non-dominated solutions from

multiple populations iteratively to achieve

predefined objectives or meet stopping criteria,

employing the Pareto concept and fuzzy set theory

MOSMA proved

effective,

delivering

economic,

environmental,

and technical

benefits while

surpassing

various other

OAs like

GWO, SSO,

WOA, and

numerous

others

[74] IMOMRFO FCM, EM,

PLM, VDM

MOOPF 30, 57 IMOMRFO enhances MOO by applying a crowding

distance-based Pareto archiving method

IMOMRFO

enhances

exploration and

exploitation in

its search

space,

surpassing

methods like

MOPSO and

NSGA-II

[76] MPA FCM, PLM,

VDM, VSE

SOOPF 30, 118 MPA is applied by iteratively optimizing objective

functions through elite-prey interactions, three-

phase exploration, and incorporating FADs

(Foraging and Attacking Dynamics)

Comparisons

with OAs like

DSA, SCA,

MSCA, PSO,

and ABC

confirmed

MPA’s

effectiveness in

delivering

global best

results for

SOOPF

problems

[78] IEM FCM, FCM-

MFS, VDM,

VSE, PLM,

RPLM

SOOPF 30, 57 IEM improves the basic EM method with bounds

normalization and optimizes variables through

standardized ranges, customizable local searches,

and force-guided particle movement

Comparisons

against OAs

such as BBO,

ABC, PSO, and

GA confirmed

IEM’s superior

solution

quality, with an

80% reduction

in simulation

time

[81] GSA FCM, FCM-

VPL, FCM-

MFS, VDM,

VSE (normal

&

contingency)

SOOPF 30, 57 With the GSA, solutions are represented as objects

with masses, attracting each other towards higher

fitness values, resulting in global movement

towards optimal solutions

GSA consistently

outperforms

BBO, DE,

PSO, and MDE

in various OPF

scenarios
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[82] GSA FCM, FCM-

VPL, VDM,

PLM

Both 118,

standard

26-bus

GSA uses gravitational attraction as a guide for

finding optimal solutions. As heavier masses

attract stronger, better solutions are identified,

resulting in better search space exploitation

In both SOOPF

and MOOPF

problems, the

GSA is faster

and provides

better solutions

than MIPSO,

EP, GA, and

BBO

[83] NSMOGSA FCM, FCM-

VPL, FCM-

MFS, EM,

PLM, VDM,

VSE

Both 30 NSMOGSA addresses the limitations of GSA by

adding non-dominated sorting and opposition-

based learning

NSMOGSA

algorithm is

superior to

NSGA-II and

other OAs,

delivering

superior OPF

results with

faster

convergence

[84] BHBO FCM, VDM,

VSE, PLM,

RPLM

SOOPF 30,

Algerian

59-bus

BHBO draws inspiration from black-hole

phenomenon where absorption of stars by

blackhole is governed by the equation:

xi ¼ xi þ rand � xBH � xið Þ 8 i; i 6¼ best

where xi is ith star location and xBH is blackhole

location in search space

BHBO stands out

as a promising

optimization

method due to

its robustness

and superior

solution quality

when compared

to methods like

GA and PSO

[87] ICBO FCM, VDM,

VSE (normal

and

contingency)

SOOPF 30, 57, 118 ICBO improves optimization by introducing three-

body collisions in each iteration, with one

stationary and two moving bodies, increasing

search directions and population diversification

ICBO algorithm

excels as an

efficient,

robust, and

versatile

solution for

diverse SOOPF

problems,

surpassing

standard CBO

and other

established

OAs like DE,

PSO, ABC,

GA, and BBO

[88] WEA FCM, FCM-

POZ, FCM-

VPL-POZ,

PLM, VSE,

VDM

Both 30, 118 WEA utilizes water evaporation on surfaces with

different wettability to optimize by employing a

two-phase approach for global and local search

WEA

outperforms

GSO, TLBO,

PSO, and

NSGA-II,

among other

popular OAs, in

solving diverse

OPF objectives
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[90] IAOA FCM, PLM,

EM, VDM

Both 30, 57,

16-bus

South

Marmara

IAOA algorithm optimizes the position of objects

within a fluid by combining dimension learning

(DL) strategies with standard AOA search

strategies

IAOA

outperforms

AOA, TLBO,

SCA, IABC

and other

established

OAs in solving

the OPF

[91] TLBO FCM, VDM,

VSE (normal

and

contingency),

FCM-MFS,

FCM-VPL

SOOPF 30, 118 TLBO uses a knowledge-sharing strategy based on

teachers’ guidance and collaborative learning

among learners, without the need for algorithmic

parameters

TLBO serves as

an effective

tool for

handling the

OPF problem

in power

systems,

outperforming

other OAs like

DSA, GSA,

BBO, and PSO

[92] MTLBO FCM, EM Both 30, 57 MTLBO algorithm employs a SAWM strategy,

fuzzy clustering, and a smart population approach

to enhance convergence speed and accuracy

MTLBO

outperforms

TLBO with

faster

convergence

and improved

accuracy

[93] MICA-TLA FCM, FCM-

VPL, FCM-

POZ, FCM-

MFS

Both 30, 57 The fusion of ICA and TLA, with imperialists

guiding their colonies and colonies sharing

knowledge, leads to expedited convergence

MICA–TLA

approach is less

likely to get

trapped in local

minima, and it

finds the

optimal

solution more

quickly than

ICA, TLA, and

MICA

algorithms

[95] TLSBO FCM, FCM-

MFS, PLM,

VDM, EM

Both 30 TLSBO improves TLBO by introducing a ‘‘studying

strategy’’ where individuals learn from peers,

enhancing global optimization

TLSBO

outperforms

original TLBO

and other OAs

by converging

faster, finding

better

solutions, and

being more

resistant to

local optima
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[97] Jaya FCM, VDM,

VSE, PLM,

EM

Both 30, 57 The proposed Jaya optimizer utilizes multi-

objective frameworks, including fuzzy set theory,

to maximize technical, economic, and

environmental benefits

Jaya outperforms

other

techniques in

stability and

performance,

as confirmed by

comparisons

with DE, MDE,

ABC, PSO, and

various other

methods

[98] MJAYA FCM, EM,

PLM, VDM

SOOPF 30, 118 The MJAYA algorithm enhances conventional

JAYA by modifying the equation that is used to

update the best and worst solutions using:

X0
j;d;k ¼ Xj;d;k þ r1;j;k � Xj;worse;k � Xj;d;k

�� ��� �

� L� r2;j;k � Xj;d;k

�� ��2�X2
j;best;k

� �

here, Xj,d,k is j
th decision variable for dth member

in kth iteration. Both r1, j,k and r2, j,k are randomly

generated coefficients in the range [0, 1] for each

member of the population for jth decision variable

in the kth iteration. Coefficient L varies in each

iteration

MJAYA excels

in OPF

problem

resolution,

maintaining

efficient

convergence,

even with RES,

in comparison

to MSA, ABC,

CSA, GWO,

BSA, and few

other methods

[102] BSA FCM, FCM-

VPL, FCM-

POZ, FCM-

VPL-POZ

SOOPF 30 BSA algorithm utilizes a combination of random

mutation and non-uniform crossover techniques to

effectively explore the search space and find

optimal solutions

BSA excels in

cost, efficiency,

and achieving

the global

optimum,

surpassing

other heuristics

like GA, SA,

PSO, DE, and

more in solving

diverse SOOPF

cases

[103] BSA FCM, FCM-

VPL, FCM-

MFS, VDM,

VSE, EM,

Both 30, 57, 118 BSA algorithm uses multiple steps for optimizing

solutions, including initialization, historical

guidance, mutation, unique crossover, and a

greedy update mechanism

BSA excels at

solving OPF

problems,

especially in

large-scale

power systems,

outperforming

other

established

OAs like DE,

PSO, ABC,

GA, and BBO
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[104] MOBSA FCM, PLM,

VDM

MOOPF 30, 57, 118 MOBSA algorithm utilizes dual populations to

enhance diversification in search directions and

efficiently balances exploration and exploitation

MOBSA

algorithm for

solving

MOOPF

problems

outperforms

other state-of-

the-art

methods,

including

MODE, SPEA,

MALO,

NSGA-II, and

quasi-

oppositional

TLBO

[106] MSCA FCM, FCM-

MFS, PLM,

VDM

SOOPF 30, 118 MSCA utilizes Lévy flights to enhance exploration

and a dynamic ‘POP’ strategy to adapt the number

of search agents, thereby improving its

performance and convergence speed

MSCA with its

fast

convergence

and scalability,

surpasses

algorithms like

basic SCA,

EGA, ABC,

Jaya and

numerous other

OAs

[107] ESCA FCM, PLM,

VSE, EM

Both 30 ESCA combining the SCA with Lévy flights and a

Population (POP) strategy to enhance efficiency

and balance exploration and exploitation in OPF

problems

ESCA

outcompetes

GA, EGA,

PSO, IPSO,

FPA and other

methods in

MOOPF

optimization

for the

considered

objective

functions (OFs)

[109] Rao-1, 2, 3 FCM, PLM,

VDM, VSE

(normal and

contingency),

EM

MOOPF 30, 57, 118 Rao algorithms utilize the best and worst solutions,

obtained through random interactions among

candidates, for parameter-less optimization

Rao-3

consistently

outperforms

Rao-1 and Rao-

2, and it also

surpasses other

widely used

OAs for the

considered OFs
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the General Algebraic Modelling System (GAMS) soft-

ware, demonstrating the efficiency and feasibility of the

proposed approach.

The PSO-SSO algorithm, introduced by El Sehiemy

et al. [115], was utilized to solve the SOOPF and MOOPF

problems in IEEE test networks with 30, 57 and 118-bus

networks. The algorithm was evaluated through 18 case

studies considering objectives that included FCM, VDM,

PLM, VSE, and EM, representing economic, technical, and

environmental benefits. In a single-objective case of PLM

on a 30-bus system, PSO-SSO achieved a power loss of

2.858 MW, which is lower than the power losses of

2.902 MW and 3.278 MW achieved by SSO and PSO,

respectively. For a bi-objective case involving EM and

FCM in a 57-bus system, PSO-SSO attained an emission

level of 1.3647 p.u. and a fuel cost of 41,672.56 $/hr,

outperforming PSO (1.4263 p.u., 42,013.9 $/hr) and SSO

(1.60 p.u., 41,824.46 $/hr) with faster convergence.

In 2018, Aydilek, I.B. introduced the Hybrid Firefly

Particle Swarm Optimization (HFPSO) method [116].

Khan et al. [117] were pioneers in utilizing the Jaya-PPS

algorithm as an OPF solution. The authors applied HFPSO

to solve five SOFs, namely FCM, VDM, VSE, PLM, and

RPLM, and examined its efficacy on a 30-bus IEEE test

system. In a specific case that prioritized FCM, the authors

compared the performance of the hybrid HFPSO approach

with the conventional PSO algorithm, as well as other

established algorithms such as Jaya, DE, and BHBO. On

30-bus system, HFPSO achieved a fuel cost of 799.123 $/h,

outperforming the PSO result of 799.543 $/h, the DE result

of 799.289 $/h, and the BHBO result of 799.921 $/h. These

results were achieved by HFPSO in fewer iterations,

highlighting its efficiency and effectiveness in solving OPF

problems.

Khan et al. in [118] further expanded the scope of the

problem to address MOOPF problem and proposed multi-

objective HFPSO (MOHFPSO). To calculate Pareto opti-

mal fronts and optimal solutions using the algorithm, non-

dominated sorting strategies were developed and utilized.

Authors tested the MOHFPSO on 30 and 57-bus IEEE test

networks to minimize fuel cost (FC), power loss (PL), L-

index (voltage stability), and voltage deviation, forming a

total of 5 objective function formulations (three bi-objec-

tives and two tri-objectives), and compared results with the

MOPSO and other popular techniques documented in prior

studies. As compared to MOPSO, the proposed MOHFPSO

approach exhibited superior effectiveness and efficiency.

For a specific scenario where FC and PL were considered

simultaneously, MOPSO achieved a fuel cost of 822.32 $/h

and a power loss of 5.7015 MW. In contrast, MOHFPSO

demonstrated its superiority by achieving a fuel cost of

819.5330 $/h and a power loss of 5.6827 MW in a shorter

simulation time on the 30-bus system.

In reference [119], an algorithm called Jaya-PPS (Jaya-

Powell’s Pattern Search) was put forward as a hybrid

method to resolve OPF. The PPS is a derivative-free

optimization search technique that utilizes the principles of

the conjugate-direction method. The proposed hybrid

approach was evaluated using the standard IEEE test net-

works of 30, 57, and 118 buses, with and without DG

sources. The authors performed tests on these specific

systems to explore the effectiveness of the developed

algorithms (Jaya-PPS1, 2 and 3), considering the objectives

of FCM, EM, PLM and VDM and their simultaneous

combinations. The findings revealed that Jaya-PPS1 con-

sistently yielded the lowest values for the combined

objective functions across all four cases, which involved

the 30 and 57-bus systems. The Jaya-PPS1 algorithm

Table 2 (continued)
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[110] MRao-2 FCM, PLM,

EM, VDM

SOOPF 30, 118 MRao-2, utilizing Opposition-Based Learning

(OBL), effectively handles OPF problems with

RES by employing quasi-oppositional and Lévy

methods

MRao-2

consistently

outperforms

Rao variants,

MPA, ASO,

and other OAs,

achieving a

significant

23.4%

reduction in

fuel costs when

integrating

RES into the

IEEE 118-bus

system

Neural Computing and Applications (2024) 36:17881–17929 17917

123



Table 3 Comparison of fuel costs using OPF algorithms (non-hybrid) on standard test systems: (FCM single-objective)

References Algorithm Attained fuel cost ($/hr)

IEEE 30-bus IEEE 57-bus IEEE 118-bus Other benchmark test

networks

[12] EP 800.04 – – –

[12] PSO 802.79 – – –

[12] GA 799.23 – – –

[14] AGAPOP 799.8441 – – –

[16] DEA 801.23 – 1,29,582 –

[16] GWO 801.41 – 1,29,720 –

[17] MO-DEA 799.0827 41,683 – –

[18] MDE – 41,682 1,30,518.50 –

[19] DEA 801.2480

(FCM ? PLM)

– – IEEE 300-bus:

8,57,442.6782

(FCM ? PLM)

[21] IHS 462.0950 €/hr 584.9872 €/hr 3816.3 €/hr IEEE 6-bus: 412.523 €/
hr, IEEE 14-bus:

372.6214 €/hr

[22] FHSA 799.914 41,658.18 1,32,138.30 –

[26] ARCBBO 801.5159 41,686 – –

[28] IPSO 801.978 – – –

[30] GWSO 799.05 – – 75-bus Indian Grid:

1,10,046 Rs/hr

[32] GBLFA 800.8726 – – –

[32] MGBLFA 800.4802 – – –

[34] DSA 799.0943 – 1,29,691.62 –

[35] Novel DSA-

based

approach

800.3887 41,686.82 – IEEE 9-bus: 1,132.1760

[37] BAAMO 798.012 41,665.50 1,29,550.80 –

[39] MFO 799.2029 – – –

[40] IMFO 800.3848 41,667.15 1,31,820 –

[42] MSA 800.5099 41,673.7231 1,29,640.72 –

[43] EMSA 799.3582 (FCM ? VSE) 41,666.2449 1,35,262.57 –

[44] ISSA 800.4752 41,675.0203 1,29,460.84 –

[46] IBF 802.325 – – Standard 26-bus:

15,441.7

[47] ABC 800.66 41,693.9589 – IEEE 9-bus: 1,132.1765

[50] IABC 800.4215 41,684 – IEEE-300 bus: 7,83,951

[51] GABC 800.4401 41,684.20 – –

[52] OL-based

IABC

799.321 – 129,862 –

[55] AGSO 801.75 40,936.07 – –

[57] CKHA – 41,660.4657 – Standard 26-bus:

15,455.19

[58] KHA 799.0311 41,709.2647 1,29,608.46 –

[59] SKH 800.5141 41,676.9152 – IEEE 14-bus:

8,080.7045

[61] NISSO 799.7624 41,665.5404 1,29,879.45 –

[62] CS-GWO 799.9978 – 1,29,544.01 –

[63] ALO 799.155 – – –

[64] PALO 799.916 – – –

[66] NSWOA 800.26 – – –
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showed notable superiority over other algorithm variants in

the IEEE 118-bus system, achieving a significant 1.52%

reduction in fuel cost.

Gupta et al. [120] proposed a ‘‘sine–cosine mutation

operator’’ and a modified Jaya algorithm (SCM-MJ) for

OPF. The sine–cosine mutation operator enhances popu-

lation-based OAs by preserving diversity and enhancing

solution quality throughout the search. The algorithm

underwent testing on the practical 59-bus Algerian system

as well as the large-scale 118-bus IEEE test network,

considering objectives such as FCM, PLM, and VDM. The

SCM-MJ algorithm exhibited smoother convergence

characteristics than the M-Jaya algorithm through the

transformation of the MOF into a single-objective one by

means of a weighted sum approach. Irrespective of the

problem dimension or system size, the SCM-MJ method

invariably yielded the lowest objective function value

across all cases. In particular, in the case of the 118-bus test

system, the SCM-MJ algorithm significantly reduced fuel

consumption costs by 1.56% when compared to the base

scenario.

In [121], Naderi et al. proposed the FAHSPSO-DE

algorithm, a fuzzy adaptive framework that hybridizes self-

adaptive PSO and DE algorithms. The hybrid approach was

Table 3 (continued)

References Algorithm Attained fuel cost ($/hr)

IEEE 30-bus IEEE 57-bus IEEE 118-bus Other benchmark test

networks

[68] MGOA 800.4744 41,671.10 1,21,072.93 –

[69] SPSA 798.9536 41,609 1,29,561.03 –

[71] SMA 802.5449 41,697.1189 1,27,896.55 –

[72] MOSMA 799.2557 41,633.61 – –

[74] IMOMRFO 801.3908

(FCM ? VDM)

41,680.383 (FCM ? VDM) – –

[76] MPA 799.0725 – 1,29,422.56 –

[78] IEM 800.0781 – – –

[81] GSA 798.6751 41,695.8717 – –

[82] GSA – – 129,565 Standard 26-bus:

15,467.45

[83] NSMOGSA 796.124 – – –

[84] BHBO 799.9217 – – Algerian 59-bus:

1,710.0859

[87] ICBO 799.0353 41,697.3324 1,35,121.57 –

[88] WEA 798.9969 – – –

[90] IAOA 799.068 40,911 – –

[91] TLBO 799.0715 – 1,29,682.84 –

[92] MTLBO 801.8925 41,638.3822 – –

[93] MICA-TLA 801.0488 41,675.0545 – –

[95] TLSBO 815.4377 – – –

[97] Jaya 798.9386 39,555 – –

[98] MJAYA 858.2281* – 1,40,575.3099* –

[102] BSA 801.63 – – –

[103] BSA 799.076 – 1,35,333.47 –

[104] MOBSA 799.046 (FCM-

VPL ? PLM)

41,623.292 (FCM-

VPL ? PLM)

1,35,620.99 (FCM-

VPL ? PLM)

–

[106] MSCA 799.31 – 1,29,620.22 –

[107] ESCA 796.345 – – –

[109] Rao-1, 2, 3 799.9683 (Rao-3),

799.9918 (Rao-2),

800.4391 (Rao-1)

41,659.2621 (Rao-3),

41,872.0668 (Rao-2),

41,771.1088 (Rao-1)

1,29,220.6794 (Rao-3),

1,29,256.5242 (Rao-2),

1,29,241.1787 (Rao-1)

–

[110] MRao-2 800.4412 – 1,31,457.80 –

*modified test system
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Table 4 Summary of hybrid approaches for OPF in the last decade from reputable peer-reviewed journals

Authors Year,

References

Hybrid approach Objective

function

SOOPF/

MOOPF/

Both

Test System

(-bus IEEE

network)

Strength of hybrid approach

Kumar and

Chaturvedi

2013,

[111]

GA ? Fuzzy FCM SOOPF 30

(modified

system)

Proposed hybrid algorithms achieve

improved average fitness

characteristics and a faster

convergence rate

PSO ? Fuzzy

Narimani et al. 2013,

[112]

Modified PSO ? SFLA

(HMPSO-SFLA)

FCM, EM MOOPF 30, 57, 118 PSO explores for promising solutions,

SAMPO boosts solution diversity in

modified PSO, and SFLA offers

strong local search

Radosavljevića

et al.

2015,

[113]

PSO ? GSA

(PSOGSA)

FCM, PLM,

VDM, VSE

Both 30, 118 PSOGSA merges PSO’s exploratory

strengths with GSA’s local search

but is slow on large-scale systems

S. S. Reddy 2019,

[114]

DE ? HS FCM, VSE,

PLM

Both 30, 118,

300

DEA explores search spaces and HS

exploits solutions, achieving a

balanced exploration–exploitation

trade-off

El Sehiemy

et al.

2020,

[115]

PSO ? SSO FCM, VDM,

PLM, VSE,

EM

Both 30, 57, 118 Like PSO, PSO-SSO addresses

premature convergence. Using SSO,

it avoids suboptimal locals and

thoroughly explores the search space

Khan et al. 2020,

[117]

FA ? PSO (HFPSO) FCM, VDM,

VSE, PLM,

RPLM

SOOPF 30 FA excels in local exploitation; PSO

ensures rapid global convergence.

HFPSO balances both for high

convergence efficiency

Khan et al. 2020,

[118]

FA ? PSO

(MOHFPSO)

FCM, VSE,

VDM,

PLM

MOOPF 30, 57 MOHFPSO combines FOA’s

exploitation with PSO’s exploration,

using non-dominated sorting to find

superior Pareto optimal solutions

Gupta et al. 2021,

[119]

Jaya ? PPS FCM, VDM,

EM, PLM

MOOPF

(combined

SOF)

30, 57, 118 PPS enhances local searches and

escapes local optima; Jaya improves

global exploration. Jaya-PPS

balances both effectively

Gupta et al. 2021,

[120]

SCM ? MJ FCM, VDM,

PLM

SOOPF

(MOF

turned into

SOF)

118,

Algerian

59-bus

SCM introduces new solutions to

avoid local optima, and MJ explores

the search space effectively. SCM-

MJ balances exploration and

exploitation

Naderi et al. 2021,

[121]

PSO ? DE

(FAHSPSO-DE)

FCM, PLM,

EM

Both 30, 57, 118 FAHSPSO-DE uses fuzzy logic for

dynamic parameter adjustment to

optimize and effectively manage

exploration and exploitation

Avvari and

Vinod Kumar

2022,

[122]

(Pareto dominance &

decomposition) ? EA

FCM, EM,

PLM,

VDM

MOOPF 57, 118 The hybrid approach integrates

decomposition and local dominance,

enhancing MOEA’s exploration and

exploitation, achieving a more

uniform Pareto front and improved

convergence

Mallala et al. 2022,

[123]

Fruit fly ? ABC

(NSHFABC)

FCM, PLM,

SVM

Both 30, 118 NSHFABC combats ABC’s premature

convergence and enhances optimal

value accuracy by utilizing both

algorithms’ exploratory potential

Mohamed et al. 2022,

[124]

GBO ? MFO FCM, PLM

(without/

with

uncertain

load

demand)

Both 30 The GBO-MFO algorithm utilizes the

MFO algorithm’s spiral movement to

avoid local optima and enhances

convergence by incorporating the

gradient search rule and a local

escaping operator (LEO)
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applied to single- and MOO problems on 30, 57, and

118-bus IEEE test networks, encompassing a total of 18

case studies with objectives related to cost, emission, and

losses. In the IEEE 57-bus power grid, the algorithm sig-

nificantly reduced total generation costs, resulting in a

reduction of at least $150,000 annually. The medium-scale

nature of the test system makes this accomplishment par-

ticularly remarkable.

In the literature [122], a proposition was put forth to

enhance the performance of a multi-objective EA (MOEA)

by combining decomposition and local dominance tech-

niques. The authors proposed the use of these methods to

achieve a Pareto front that is uniformly distributed and to

improve convergence properties. To assess the effective-

ness of this approach, the authors conducted tests on IEEE

57 and 118-bus systems, employing various case studies.

These case studies represented multi-objective formula-

tions with four objectives: FCM, EM, PLM, and VDM. The

simulation results were contrasted with those obtained

from MOPSO and NSGA-II methods, demonstrating

competitive performance of the proposed approach.

The authors in [123] designed a non-dominated sorting

hybrid fruit-fly-based ABC (NSHFABC) by combining the

ABC and fruit fly algorithms to solve MOOPF problems.

They validated the algorithm utilizing the IEEE 30-bus

(MOOPF) and 118-bus test systems (SOOPF). A total of

three objectives were examined: FCM, PLM, and SVM. In

the 30-bus system, considering a single objective of min-

imizing fuel cost without ramp rate limits, the obtained

value was 800.212 $/hr. With ramp rate limits, the fuel cost

increased to 802.922 $/hr. Regarding severity values,

without ramp rate limit constraints, it measured 1.304,

while with ramp rate limits, it reached 1.534. In order to

showcase the superiority of the suggested hybrid approach,

a comprehensive evaluation was performed, contrasting it

with established techniques including DE, enhanced PSO,

and ant colony optimization (ACO), among others.

In [124], a hybrid of gradient-based optimizer (GBO)

and MFO was utilized to optimize the OPF problem, taking

into account the objectives of cost, losses, and their com-

bination with constant load and uncertain load demand.

The presented hybrid methodology was executed on a

Table 5 Comparison of fuel costs using OPF algorithms (hybrid) on standard test systems: (FCM single-objective)

References Algorithm Attained fuel cost ($/hr)

IEEE 30-bus IEEE 57-bus IEEE 118-bus Other

benchmark test

networks

[111] GA ? Fuzzy 801.21* – – –

[111] PSO ? Fuzzy 800.72* – – –

[112] Modified PSO ? SFLA

(HMPSO-SFLA)

801.75 – – –

[113] PSO ? GSA 800.4985 – 1,29,733.58 –

[114] DE ? HS 799.0514 – – IEEE 300-bus:

8,33,892.0996

[115] PSO ? SSO 798.98 41,666.66 1,35,055.30 –

[117] FA ? PSO 799.123 – – –

[118] FA ? PSO

(MOHFPSO)

800.138 (FCM ? VSE) 41,601.043 (FCM ? VSE) – –

[119] Jaya ? PPS 830.467* (Jaya-PPS1),

830.850* (Jaya-PPS2),

830.290* (Jaya-PPS3)

42,573.898* (Jaya-PPS1),

42,542.989* (Jaya-PPS2),

42,571.028* (Jaya-PPS3)

1,29,221.889 (Jaya-PPS1),

1,29,227.810 (Jaya-

PPS2), 1,29,231.178

(Jaya-PPS3)

–

[120] SCM ? MJ – – 1,29,171.96 Algerian

59-bus:

1,688.5933

[121] PSO ? DE 799.8066 41,637.18 1,29,519.38 –

[122] (Pareto dominance &

decomposition) ? EA

– 41,748.67

(FCM ? PLM ? VDM)

1,34,895.9 (FCM ? PLM) –

[123] Fruit fly ? ABC 800.212 – 1,31,400.63 –

[124] GBO ? MFO 807.12* – – –

*modified test system
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30-bus IEEE test network with stochastic wind and FACT

devices. Hybrid power systems were implemented at buses

5 and 11, in which wind generators replaced thermal

generators. Three FACT devices were deployed at their

optimal location and size, considering objectives of FCM

and PLM in the grid. The proposed method achieved a

generation cost of 807.12 $/hr when considering FACT

devices. These costs are lower than those of other evalu-

ated techniques, such as 807.2502 $/hr in GBO, 807.277 $/

hr in SMA, and 807.4733 $/hr in MFO, as reported in the

paper for the same modified test system.

Table 4 summarizes the hybrid approaches used to solve

OPF in the past decade, along with their strengths. It also

includes citations of the literature where these approaches

were proposed, along with additional relevant information.

Following this, Table 5 provides readers with a detailed

comparison of basic fuel cost outcomes using various

hybrid OPF algorithms across standard IEEE test systems

and other benchmark systems.

Table 6 Ranking of OPF solutions: minimum fuel costs (IEEE 30-bus system)

S.

No.

References Algorithm Attained

fuel cost ($/

hr)

S.

No.

References Algorithm Fuel cost

($/hr)

S.

No.

References Algorithm Attained

fuel cost ($/

hr)

1 [83] NSMOGSA 796.124 27 [43] EMSA 799.3582 53 [59] SKH 800.5141

2 [107] ESCA 796.345 28 [61] NISSO 799.7624 54 [47] ABC 800.66

3 [37] BAAMO 798.012 29 [121] FAHSPSO-

DE

799.8066 55 [111] PSO-Fuzzy 800.72*

4 [81] GSA 798.6751 30 [14] AGAPOP 799.8441 56 [32] GBLFA 800.8726

5 [97] Jaya 798.9386 31 [22] FHSA 799.914 57 [93] MICA-

TLA

801.0488

6 [69] SPSA 798.9536 32 [64] PALO 799.916 58 [111] GA-Fuzzy 801.21*

7 [115] PSO-SSO 798.98 33 [84] BHBO 799.9217 59 [16] DEA 801.23

8 [88] WEA 798.9969 34 [109] Rao-1 799.9683 60 [19] DEA 801.248

9 [58] KHA 799.0311 35 [109] Rao-2 799.9918 61 [74] IMOMRFO 801.3908

10 [87] ICBO 799.0353 36 [62] CS-GWO 799.9978 62 [16] GWO 801.41

11 [104] MOBSA 799.046 37 [12] EP 800.04 63 [26] ARCBBO 801.5159*

12 [30] GWSO 799.05 38 [78] IEM 800.0781 64 [102] BSA 801.63*

13 [114] Hybrid DE-

HS

799.0514 39 [118] MOHFPSO 800.138 65 [55] AGSO 801.75*

14 [90] IAOA 799.068 40 [123] NSHFABC 800.212 66 [112] MPSO-

SFLA

801.75

15 [91] TLBO 799.0715 41 [66] NSWOA 800.26 67 [92] MTLBO 801.8925

16 [76] MPA 799.0725 42 [40] IMFO 800.3848 68 [28] IPSO 801.978

17 [103] BSA 799.076 43 [35] Novel DSA-

based

approach

800.3887 69 [46] IBF 802.325

18 [17] MODEA 799.0827 44 [50] IABC 800.4215 70 [71] SMA 802.5449

19 [34] DSA 799.0943 45 [109] Rao-3 800.4391 71 [12] PSO 802.79

20 [117] HFPSO 799.123 46 [51] GABC 800.44011 72 [124] GBO-MFO 807.12*

21 [63] ALO 799.155 47 [110] MRao-2 800.4412 73 [95] TLSBO 815.4377*

22 [39] MFO 799.2029 48 [68] MGOA 800.4744 74 [119] Jaya-PPS3 830.290*

23 [12] GA 799.23 49 [44] ISSA 800.4752 75 [119] Jaya-PPS1 830.467*

24 [72] MOSMA 799.2557 50 [32] MGBLFA 800.4802 76 [119] Jaya-PPS2 830.850*

25 [106] MSCA 799.31 51 [113] PSO-GSA 800.4985 77 [98] MJAYA 858.2281*

26 [52] OL-based

IABC

799.321 52 [42] MSA 800.5099

*modified 30-bus
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9 Comparative analysis of OPF algorithm
performance

This section presents three distinct tables (Tables 6, 7 and

8), each dedicated to ranking OPF solutions based on the

minimum fuel costs achieved for the IEEE 30-bus, 57-bus,

and 118-bus systems, respectively. These tables quickly

offer the reader comparative insights into which algorithms

yield the most economical outcomes in terms of minimum

fuel cost (FCM objective) under specific system configu-

rations. Figure 3 illustrates the dispersion of OAs in tack-

ling OPF problems, providing valuable insights into their

percentage adoption in highly reputable peer-reviewed

journal exclusively within the past decade.

Tables 6, 7 and 8 clearly show that while one algorithm

may excel in a specific test system for a given objective

(FCM), it may not perform as well in other systems. We

have focused on fuel cost values (basic QFC) for com-

parison, as FCM is a fundamental objective commonly

addressed in the literature, allowing for a consistent basis

of comparison. Space limitations and the inconsistent

presence of all OPF objectives across the literature

reviewed further restrict the inclusion of multiple

objectives. The choice of an algorithm for OPF problems is

influenced by the nature of the problem, including the type

of variables, the objectives to be optimized, and the desired

balance between global exploration and local exploitation.

While multiple trials and careful parameter tuning are

essential for many algorithms, some metaheuristics may

require minimal (e.g., CS-GWO, BSA) or no parameter

tuning (e.g., BHBO, Jaya, Rao, TLBO), which can simplify

the optimization process and enhance robustness.

Our review examines both individual OAs and hybrid

approaches that combine fundamental metaheuristics.

While hybrids offer the potential for superior performance

by creating a balance between exploration and exploitation,

especially in complex MOOPF problems, they also intro-

duce increased computational complexity and require

careful configuration tailored to specific OPF challenges.

As evidenced by Fig. 3 and supported by our compre-

hensive literature review, swarm intelligence algorithms, a

key subset of AI-based computational intelligence tools,

have emerged as a dominant approach for solving OPF

problems. These algorithms, whether in their original form

or as components in hybrid algorithms, are particularly

well-suited for addressing OPF challenges involving

Table 7 Ranking of OPF solutions: minimum fuel costs (IEEE 57-bus system)

S.No References Algorithm Attained fuel cost ($/

hr)

S.No References Algorithm Attained fuel cost

($/hr)

1 [97] Jaya 39,555 21 [93] MICA-TLA 41,675.05

2 [90] IAOA 40,911 22 [59] SKH 41,676.92

3 [55] AGSO 40,936.07 23 [74] IMOMRFO 41,680.38

4 [118] MOHFPSO 41,601.04 24 [18] MDE 41,682

5 [69] SPSA 41,609 25 [17] MO-DEA 41,683

6 [104] MOBSA 41,623.29 26 [50] IABC 41,684

7 [72] MOSMA 41,633.61 27 [51] GABC 41,684.20

8 [121] FAHSPSO-

DE

41,637.18 28 [26] ARCBBO 41,686

9 [92] MTLBO 41,638.38 29 [35] Novel DSA-based approach 41,686.82

10 [22] FHSA 41,658.18 30 [47] ABC 41,693.96

11 [109] Rao-3 41,659 31 [81] GSA 41,695.87

12 [57] CKHA 41,660.47 32 [71] SMA 41,697.12

13 [37] BAAMO 41,665.50 33 [87] ICBO 41,697.33

14 [61] NISSO 41,665.54 34 [58] KHA 41,709.26

15 [43] EMSA 41,666.24 35 [122] (Pareto dominance &

decomposition) ? EA

41,748.67

16 [115] PSO-SSO 41,666.66 36 [109] Rao-1 41,771

17 [40] IMFO 41,667.15 37 [109] Rao-2 41,872

18 [68] MGOA 41,671.10 38 [119] Jaya-PPS2 42,542.989*

19 [42] MSA 41,673.72 39 [119] Jaya-PPS3 42,571.028*

20 [44] ISSA 41,675.02 40 [119] Jaya-PPS1 42,573.898*

*modified 57-bus
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multiple constraints and objectives, making them effective

tools in this domain.

10 Future research directions

Integration of renewable energy technologies into con-

ventional power systems has provided several benefits like

reducing emission of greenhouse gases contributing to

global warming and mitigating power transmission losses

incurred while transmitting electricity from distant gener-

ating stations. The use of more than one resource when

available is advantageous because the majority of RES are

intermittent in nature. Implementation of hybrid algorithms

to solve MOOPF problems and adapting RES for further

cost reduction, alongside the environmental pollution

reduction, opens up new opportunities for research and

provides the future scope of work in this area.

Table 8 Ranking of OPF solutions: minimum fuel costs (IEEE 118-bus system)

S.

No

References Algorithm Attained fuel cost ($/

hr)

S.

No

References Algorithm Attained fuel cost ($/

hr)

1 [68] MGOA 1,21,072.93 20 [42] MSA 1,29,640.7191

2 [71] SMA 1,27,896.55 21 [91] TLBO 1,29,682.844

3 [120] SCM-MJ 1,29,171.96 22 [34] DSA 1,29,691.6152

4 [109] Rao-3 1,29,220.6794 23 [16] GWO 1,29,720

5 [119] Jaya-PPS1 1,29,221.889 24 [52] OL-based IABC 1,29,862

6 [119] Jaya-PPS2 1,29,227.810 25 [61] NISSO 1,29,879.4536

7 [119] Jaya-PPS3 1,29,231.178 26 [18] MDE 1,30,518.5

8 [109] Rao-1 1,29,241.1787 27 [123] NSHFABC 1,31,400.6342

9 [109] Rao-2 1,29,256.5242 28 [110] MRao-2 1,31,457.8

10 [76] MPA 1,29,422.56 29 [40] IMFO 1,31,820

11 [44] ISSA 1,29,460.8351 30 [22] FHSA 1,32,138.30

12 [121] FAHSPSO-

DE

1,29,519.38 31 [122] (Pareto dominance &

decomposition) ? EA

1,34,895.90

13 [62] CS-GWO 1,29,544.01 32 [115] PSO-SSO 1,35,055.30

14 [37] BAAMO 1,29,550.80 33 [87] ICBO 1,35,121.5704

15 [69] SPSA 1,29,561.0305 34 [43] EMSA 1,35,262.57

16 [82] GSA 1,29,565 35 [103] BSA 1,35,333.4743

17 [16] DEA 1,29,582 36 [104] MOBSA 1,35,620.99

18 [58] KHA 1,29,608.4554 37 [113] PSO-GSA 1,29,733.58

19 [106] MSCA 1,29,620.22 38 [98] MJAYA 1,40,575.3099*

*modified 118-bus

Fig. 3 OPF algorithm

distribution: evolutionary

(30.9%), swarm intelligence

(53.1%), hybrid (16%)
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Another area of potential research lies in studying the

integration of various types of Flexible AC Transmission

Systems (FACTS) devices for addressing OPF problems.

Power system performance can be improved using these

devices in steady-state operating conditions. Furthermore,

the impact of FACTS devices needs to be considered in

OPF when the system encounters contingencies, known as

contingency-constrained OPF.

Overall, FACTS devices combined with a stochastic

multi-objective model can assist in addressing the chal-

lenge of OPF problems created by the increasingly preva-

lent use of RES. This model can minimize the risk of

blackouts and other disruptions by considering the uncer-

tainty of renewable energy output and other potential fac-

tors. Although research in this area may pose challenges, it

is essential to ensure the reliable operation of power sys-

tems amid the increasing penetration of renewables.

11 Conclusions

Power system optimization is a challenge that AI methods

can solve well, especially in large, complex systems

requiring multi-objective optimization (MOO). In this

work, an exhaustive attempt has been made to review all

the notable findings of eminent researchers in the area of

power system optimization to address issues related to

OPF, utilizing modern population-based computational

intelligence tools, or AI tools. Significant emphasis has

been placed on literature that was published in highly

reputable peer-reviewed international journals, with par-

ticular attention given to the period from 2012 to 2022. The

selection criteria for inclusion prioritized articles published

in SCI/SCIE indexed journals.

All modern AI techniques have been reviewed cate-

gorically and chronologically for solution of different types

of OPF problems. Several combined AI techniques (hybrid

methods) have also been reviewed, claiming to effectively

address OPF problems in large-scale electrical grids.

However, it is essential to note that the choice of an

algorithm is highly problem-specific, and according to NFL

theorem, no single optimization algorithm can solve all

optimization problems universally. The study presented in

this paper is expected to be helpful for potential researchers

in identifying the future research directions in the domain

of power system optimization.
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77. Birbil Şİ, Fang SC (2003) An electromagnetism-like mechanism

for global optimization. J Global Optim 25:263–282. https://doi.

org/10.1023/A:1022452626305

78. El-Hana Bouchekara HR, Abido MA, Chaib AE (2016) Optimal

power flow using an improved electromagnetism-like mecha-

nism method. Electric Power Compon Syst 44(4):434–449.

https://doi.org/10.1080/15325008.2015.1115919

79. Ahrari A, Atai AA (2010) Grenade explosion method—a novel

tool for optimization of multimodal functions. Appl Soft Com-

put 10(4):1132–1140. https://doi.org/10.1016/j.asoc.2009.11.

032

80. Rashedi E, Nezamabadi-Pour H, Saryazdi S (2009) GSA: a

gravitational search algorithm. Inf Sci 179(13):2232–2248.

https://doi.org/10.1016/j.ins.2009.03.004

Neural Computing and Applications (2024) 36:17881–17929 17927

123

https://doi.org/10.1016/j.ijepes.2013.04.021
https://doi.org/10.1016/j.ijepes.2013.04.021
https://doi.org/10.1016/j.epsr.2012.09.002
https://doi.org/10.1016/j.ijepes.2014.02.017
https://doi.org/10.3390/en8042412
https://doi.org/10.3390/en8042412
https://doi.org/10.1016/j.ijepes.2015.11.026
https://doi.org/10.1016/j.ijepes.2015.11.026
https://doi.org/10.1016/j.conengprac.2017.02.010
https://doi.org/10.1016/j.conengprac.2017.02.010
https://doi.org/10.1109/TEVC.2009.2011992
https://doi.org/10.1109/TEVC.2009.2011992
https://doi.org/10.1080/15325008.2015.1122109
https://doi.org/10.1016/j.asoc.2015.10.057
https://doi.org/10.1016/j.asoc.2015.10.057
https://doi.org/10.1016/j.cnsns.2012.05.010
https://doi.org/10.1016/j.chaos.2015.06.020
https://doi.org/10.1002/etep.1888
https://doi.org/10.1007/s00500-016-2319-3
https://doi.org/10.1007/s00500-016-2319-3
https://doi.org/10.1016/j.eswa.2013.05.041
https://doi.org/10.1016/j.eswa.2013.05.041
https://doi.org/10.1016/j.energy.2019.01.021
https://doi.org/10.1016/j.energy.2019.01.021
https://doi.org/10.1016/j.energy.2021.120211
https://doi.org/10.1080/23311916.2016.1208942
https://doi.org/10.1080/23311916.2016.1208942
https://doi.org/10.1007/s00202-020-01033-3
https://doi.org/10.1007/s00202-020-01033-3
https://doi.org/10.1016/j.advengsoft.2016.01.008
https://doi.org/10.1016/j.advengsoft.2016.01.008
https://doi.org/10.3390/en15072378
https://doi.org/10.3390/en15072378
https://doi.org/10.1016/j.advengsoft.2017.01.004
https://doi.org/10.1007/s00202-019-00762-4
https://doi.org/10.1007/s00202-019-00762-4
https://doi.org/10.1016/j.prime.2022.100031
https://doi.org/10.1016/j.prime.2022.100031
https://doi.org/10.1016/j.future.2020.03.055
https://doi.org/10.1016/j.future.2020.03.055
https://doi.org/10.3390/su13137448
https://doi.org/10.3390/su13137448
https://doi.org/10.3390/en15207473
https://doi.org/10.1016/j.engappai.2019.103300
https://doi.org/10.1016/j.engappai.2019.103300
https://doi.org/10.1016/j.asoc.2021.108334
https://doi.org/10.1016/j.asoc.2021.108334
https://doi.org/10.1016/j.eswa.2020.113377
https://doi.org/10.1016/j.eswa.2020.113377
https://doi.org/10.1371/journal.pone.0256050
https://doi.org/10.1371/journal.pone.0256050
https://doi.org/10.1023/A:1022452626305
https://doi.org/10.1023/A:1022452626305
https://doi.org/10.1080/15325008.2015.1115919
https://doi.org/10.1016/j.asoc.2009.11.032
https://doi.org/10.1016/j.asoc.2009.11.032
https://doi.org/10.1016/j.ins.2009.03.004
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102. Kılıç U (2015) Backtracking search algorithm-based optimal

power flow with valve point effect and prohibited zones. Electr

Eng 97:101–110. https://doi.org/10.1007/s00202-014-0315-0

103. Chaib A, Bouchekara H, Mehasni R, Abido MA (2016) Optimal

power flow with emission and non-smooth cost functions using

backtracking search optimization algorithm. Int J Electr Power

Energy Syst 81:64–77. https://doi.org/10.1016/j.ijepes.2016.02.

004

104. Daqaq F, Ouassaid M, Ellaia R (2021) A new meta-heuristic

programming for multi-objective optimal power flow. Electr

Eng 103:1217–1237. https://doi.org/10.1007/s00202-020-

01173-6

105. Mirjalili S (2016) SCA: a sine cosine algorithm for solving

optimization problems. Knowl Based Syst 96:120–133. https://

doi.org/10.1016/j.knosys.2015.12.022

106. Attia AF, El Sehiemy RA, Hasanien HM (2018) Optimal power

flow solution in power systems using a novel Sine-Cosine

algorithm. Int J Electr Power Energy Syst 99:331–343. https://

doi.org/10.1016/j.ijepes.2018.01.024

107. Karimulla S, Ravi K (2021) Solving multi objective power flow

problem using enhanced sine cosine algorithm. Ain Shams Eng J

12(4):3803–3817. https://doi.org/10.1016/j.asej.2021.02.037

108. Rao R (2020) Rao algorithms: three metaphor-less simple

algorithms for solving optimization problems. Int J Ind Eng

Comput 11(1):107–130. https://doi.org/10.5267/j.ijiec.2019.6.

002

109. Gupta S, Kumar N, Srivastava L, Malik H, Anvari-Moghaddam

A, Garcı́a Márquez FP (2021) A robust optimization approach

for optimal power flow solutions using Rao algorithms. Energies

14(17):5449. https://doi.org/10.3390/en14175449

110. Hassan MH, Kamel S, Selim A, Khurshaid T, Domı́nguez-

Garcı́a JL (2021) A modified Rao-2 algorithm for optimal power

flow incorporating renewable energy sources. Mathematics

9(13):1532. https://doi.org/10.3390/math9131532

111. Kumar S, Chaturvedi D (2013) Optimal power flow solution

using fuzzy evolutionary and swarm optimization. Int J Electr

Power Energy Syst 47:416–423. https://doi.org/10.1016/j.ijepes.

2012.11.019

112. Narimani MR, Azizipanah-Abarghooee R, Zoghdar-Moghadam-

Shahrekohne B, Gholami K (2013) A novel approach to multi-

objective optimal power flow by a new hybrid optimization

algorithm considering generator constraints and multi-fuel type.

Energy 49:119–136. https://doi.org/10.1016/j.energy.2012.09.

031
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