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Abstract
Parkinson’s disease (PD) is a prevalent neurodegenerative disorder affecting millions of people globally, with substantial

health risks and economic burdens. This study aims to introduce an innovative hybrid approach combining deep learning

and machine learning algorithms to improve the diagnosis of PD using handwriting dynamics indicative of Parkinson’s

symptoms. The proposed approach integrates hybrid feature extraction using nine fine-tuned transfer learning models, i.e.,

InceptionV3, DenseNet201, EfficientNetB0, ResNet50, MobileNetV2, VGG16, Xception, NASNetMobile, and Incep-

tionResNetV2. Initially, features from these models are used individually or in binary and ternary combinations. Given the

limited sample size in PD datasets, some extracted features through fine-tuning may lack significance, and fully connected

layers can lead to overfitting. To address this issue, Neighborhood Component Analysis (NCA) is employed to refine these

features, retaining only the most informative ones. Finally, the selected features are classified using Support Vector

Machines (SVM) maximizing the margin between classes and reducing the risk of overfitting. The proposed hybrid model

achieves a state-of-the-art accuracy of 99.39% on the Parkinson Hand Drawings dataset. The combination of features

extracted from DenseNet201, Xception, and NASNetMobile models, processed using NCA and SVM methods, has been

identified as the most efficient model, balancing high accuracy with computational efficiency. Qualitative assessments

further confirm the accuracy and reliability of the approach.

Keywords Parkinson’s disease � Convolutional neural network � Feature extraction � Machine learning � Support vector

machine � Neighborhood component analysis

Abbreviations
PD Parkinson’s disease

NCA Neighborhood component analysis

SVM Support vector machine

CNN Convolutional neural network

FP Fixed-point

CIT Carbamide-Isoquinoline-tracer

PPMI Parkinson’s progression markers initiative

SNUH Seoul National University Hospital

SAE Stacked auto-encoder

KNN K-nearest neighbor

LOSOCV Leave-one-subject-out cross-validation

FP-CIT Fluoropropyl-carbamide-isoquinoline-tracer

ROC Receiver operating characteristic

AUC Area under the curve

DST Dynamic spiral test

SST Static spiral test

HOG Histogram of oriented gradients

MLP Multi-layer perceptron

BiGRU Bidirectional gated recurrent unit

FRCNN Faster region-based convolutional neural

network

LFDO Levy flight distribution optimizer

F1-Score Harmonic mean of precision and recall

t-SNE T-distributed stochastic neighbor embedding

GANs Generative adversarial networks

1 Introduction

PD is a prominent age-related neurodegenerative disorder,

ranking as the second most common after Alzheimer’s

disease. PD is characterized by a range of motor and non-

motor symptoms including speech difficulties, altered
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movement patterns, and tremors. These symptoms not only

significantly impair the quality of life for those affected but

also present a considerable challenge to healthcare provi-

ders due to the lack of a definitive cure. Accurate predic-

tion and effective management strategies for PD are

essential in alleviating the impact of the disease on indi-

viduals. The global prevalence of PD underscores the

importance of these strategies. Approximately 1% of the

population over the age of 50 and 2.5% of those over the

age of 70 are affected by this debilitating condition [1]. The

progressive nature of PD means that its symptoms worsen

over time, which further complicates treatment and man-

agement efforts. Worldwide, more than 10 million people

are living with PD. This high prevalence creates a signif-

icant economic burden on healthcare systems and societies.

The cost of managing PD is substantial, with estimates

suggesting that it can amount to approximately $23,000 per

patient annually. These costs encompass a range of

expenses including medical treatments, long-term care, and

loss of productivity.

Early diagnosis of PD is critically important for several

reasons. Firstly, early detection allows for timely inter-

vention, which can significantly slow the progression of the

disease and improve the quality of life for patients. Early

treatment can help manage symptoms more effectively and

delay the onset of severe disability. Furthermore, early

diagnosis allows patients and their families more time to

plan for the future, make necessary lifestyle adjustments,

and seek appropriate support and resources.

Individuals with PD often struggle with controlling

bodily movements due to neural changes, affecting fine

motor skills like writing. Consequently, handwriting

alterations can be early indicators of PD. In the initial

stages, these changes are subtle and may go unnoticed, but

detecting them is crucial as they can signal preclinical PD.

Symptoms such as constricted handwriting (micrographia)

or rapid changes in writing size may indicate early-stage

PD. Handwriting in PD patients is often affected by slow

movement, tremors, impaired balance, and stiffness.

Numerous studies have highlighted handwriting impair-

ments as a significant biomarker for early PD detection.

Handwriting analysis has emerged as a promising diag-

nostic tool for PD, offering a cost-effective and time-effi-

cient alternative to traditional neurological evaluations and

brain imaging scans. The intricate connection between

motor control and handwriting makes it a valuable window

into the neurological health of individuals. Expert hand-

writing analysis is gaining popularity as a viable way to

detect early signs of PD by identifying subtle changes like

tremors, micrographia, and anomalies in pen pressure and

stroke patterns.

Recently, machine learning and deep learning models

have been increasingly utilized for PD diagnosis [2–4].

These technologies can automate the analysis process,

assisting experts in decision-making by recognizing com-

plex patterns indicative of PD with high accuracy. This

automation ensures consistent and reliable results, reducing

the reliance on individual expertise. Additionally, these

algorithms can uncover new biomarkers and subtle indi-

cators of PD, improving early diagnosis and treatment

outcomes for individuals with PD. Recent successes in

using CNNs for automatic feature extraction from images

are well-documented. However, these models require large

datasets, and the sample size in Parkinson’s datasets is

typically quite small. To address this issue, transfer learn-

ing approaches are generally employed. Yet, even with

transfer learning, not all features may be meaningful due to

the limited number of samples. Another challenge is that

the fully connected layers used in the final stages of

transfer learning models contain numerous parameters.

Training these parameters with a small number of samples

can lead to overfitting. Therefore, this study aims to use

various transfer learning models to extract a combination

of features. Afterward, the non-significant features are

eliminated, and the final classification is performed using a

classifier with a limited number of parameters.

The motivation behind this study is to contribute to the

field of PD diagnosis by proposing a novel hybrid approach

that leverages the strengths of both deep learning and

machine learning algorithms. For the first time, this

approach systematically utilizes features extracted from

various transfer learning models [5–13] to enhance diag-

nostic accuracy. However, not all features extracted

through transfer learning are meaningful, necessitating an

efficient feature selection process. This study leverages

NCA [14] to eliminate redundant or less informative fea-

tures, thereby enhancing the discriminative power of the

model. By intelligently selecting and preserving only the

most informative features, NCA significantly contributes to

the performance improvement of the diagnostic model.

Finally, the classification stage utilizes SVM [15] to

leverage the enriched feature vectors obtained through the

preceding steps. SVMs are less prone to overfitting, espe-

cially when dealing with small datasets, as they focus on

maximizing the margin between classes. Additionally,

SVMs are effective in high-dimensional spaces and can

work well with a clear margin of separation. They also

perform well with a limited number of parameters, making

them suitable for scenarios with limited data. This com-

prehensive approach combines the strengths of deep

learning for feature extraction, NCA for dimensionality

reduction, and SVM for classification, aiming to achieve

robust and accurate diagnostic performance. The proposed

methodology achieves a state-of-the-art accuracy of

99.39% on the Parkinson Hand Drawings dataset. This

success highlights the practical utility of the developed
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methodology in real-world diagnostic scenarios. Addi-

tionally, the t-distributed Stochastic Neighbor Embedding

(t-SNE) method demonstrates clear and distinct groupings

among the test samples, further supporting the model’s

applicability.

The remainder of the article is organized to include:

Sect. 2 summarizes prior studies on diagnosing PD. Sec-

tion 3 provides a detailed discussion of the proposed

methodology, including datasets, evaluation metrics, and

training details. Section 4 presents experimental studies

and results. The paper concludes by discussing the findings

in Sect. 5 and potential future work in Sect. 6.

2 Related works

Diagnosing PD requires a multifaceted approach, encom-

passing physical exams, neurological evaluations, and

imaging techniques such as MRI or CT scans to identify

brain abnormalities. Additional tools include dopamine

transporter imaging and genetic testing. Laboratory tests

are employed to rule out other conditions with similar

symptoms. In recent years, the integration of artificial

intelligence has progressively enhanced the diagnostic

process, with deep learning and machine learning tech-

niques significantly improving Parkinson’s diagnosis by

analyzing various indicators, including speech [16], hand-

writing disorders [17], EEG signals [18], hand tremors

[19], nocturnal breathing patterns [20], smell signatures

[21], MRI brain scans [22], urine biomarkers [23], and

sketching patterns like spirals and waves [2].

Patients with PD often struggle with motor tasks like

writing and drawing due to altered neuronal control of

body movements. This has led researchers to create data-

sets based on handwriting and drawing to identify patterns

distinguishing PD patients from healthy individuals, aiding

early diagnosis. Among these datasets, notable examples

include PaHaW, HandPD, and Parkinson Hand Drawings

(also known as the Spiral/Wave dataset), each contributing

valuable insights into the motor impairments associated

with PD. The PaHaW dataset includes handwriting and

drawing samples from 75 individuals (37 PD, 38 healthy),

collected in collaboration with St. Anne’s University

Hospital and Masaryk University. The HandPD dataset

features spiral and meander sketches from 92 individuals

(74 PD, 18 healthy) collected at Botucatu Medical School

in Brazil. It contains 368 samples with each drawing

repeated four times. The Parkinson Hand Drawings dataset

consists of 204 samples (102 PD, 102 healthy) involving

Archimedean spirals and Sinusoidal waves [24]. There are

other datasets available as well; however, since these

datasets are more extensively studied in the literature, this

section will focus on recent studies utilizing these datasets,

organized by year. The methods, benefits, parameters,

levels of difficulty, and accuracy values of recent studies

using these datasets are detailed in Table 1. The exact

parameters of the models in these studies are not explicitly

stated; therefore, aspects such as the transfer learning

model used are mentioned. This information provides

researchers in the field with insights into model capacity.

An assessment has been made based on the estimated

number of parameters to determine the complexity of these

models. Approximately, models with parameters suit-

able for use on mobile devices are classified as ‘moderate’,

efficient models with fewer than 5M parameters are clas-

sified as ‘moderate to high’, and models with more than 5M

parameters are classified as ‘high’.

Drotar et al. [25, 26] have made significant contributions

to the diagnosis of PD using the PaHaW dataset. In their

studies, they evaluated the effects of different handwriting

modalities on the diagnosis of PD. Factors such as on-

surface movement, in-air movement, and pressure applied

to the tablet surface, which are rarely considered, were

analyzed. These factors have been shown to provide

valuable information for diagnosing PD through hand-

writing. In addition to traditional kinematic and spa-

tiotemporal features, new features based on the entropy of

the handwriting signal and empirical mode decomposition

were introduced. Using the Mann–Whitney U test filter and

the Relief algorithm allowed for a more accurate and

effective feature selection process, enabling the precise

identification of disease-specific features. Kinematic fea-

tures such as speed, acceleration, velocity, and jerk, along

with pressure and spatiotemporal features, were extracted

and classified using machine learning algorithms like

KNN, AdaBoost, and SVM. These results demonstrate that

handwriting can be used as a biomarker for PD and that

classification performance achieved a high accuracy of

89%. These studies highlight the effectiveness of hand-

writing dynamics and different algorithms in the early

detection and identification of PD. Impedovo [27] inves-

tigates various velocity-based features extracted from

handwriting signals, such as the sigma log-normal model,

Maxwell-Boltzmann distribution, Fourier, and Cepstrum

transforms. The study demonstrates that combining these

novel velocity-based features with traditional ones enhan-

ces the classification performance, achieving a notable ac-

curacy of 98.44% on the PaHaW dataset. This

improvement highlights the efficacy of these features in

distinguishing handwriting patterns between individuals

with PD and healthy controls. Additionally, the research

shows that these features effectively utilize the potential of

different tasks, including the Archimedes spiral task, which

was previously considered less impactful for classification

purposes. However, the extraction of these handcrafted

features is time-consuming and labor-intensive. Naseer
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Table 1 Comparison of datasets, years, benefits/methods, parameters, levels of complexity, and accuracy of related works in literature

Study Dataset Year Methods/Benefits Params Levels of

Complexity

Acc(%)

[2] Spiral-

Wave

2024 Presents a high-accuracy hybrid method for Parkinson’s diagnosis

by combining spiral and wave CNN-KNN architectures. This

approach merges CNN’s feature extraction with KNN’s

classification. An Ensemble Voting Classifier averages sub-

classifier probabilities enhancing accuracy and performance by

leveraging both models’ strengths preventing overfitting and

capturing nuanced data relationships

Custom CNN layers High 96.67

[37] Spiral-

Wave

2023 Proposes the Diplin model which combines WGAN transfer

learning and EfficientNetV2 to achieve outstanding performance

in image classification, particularly in predicting associated

disease risk. This approach merges the powerful sample

generation and feature extraction capabilities of DL with the

efficiency of lightweight neural networks providing a robust

framework for disease risk prediction

EfficientNetV2 layers Moderate

to High

98.0

[36] Spiral-

Wave

2023 By combining FRCNN and BiGRU in parallel the model extracts

both kinematic and spatiotemporal features allowing for better

symptom detection. Additionally, the LFDO algorithm auto-tunes

the hyperparams enhancing the model’s performance across

various datasets

Faster RCNN,

BiGRU params

High 98.82

[35] Spiral-

Wave

2023 Modifies the low-parameter MobileNetV2 model to create an

effective lightweight solution for real-time Parkinson’s detection

on mobile and edge devices without intensive computational

resources

MobileNetV2 layers Moderate 98.0

[38] Spiral-

Wave

2022 Integrates CNN and ANN with GridSearchCV to effectively utilize

drawing and acoustic features for Parkinson’s detection

CNN and ANN

layers,

GridSearchCV

params

High 98.0

[34] Spiral-

Wave

2022 Develops a high-accuracy hybrid method for Parkinson’s diagnosis

by integrating CNN and traditional HOG for feature extraction

with classical classifiers like SVM, LR, KNN and Bayes. This

approach combines the powerful feature extraction of DL with the

effective classification of traditional ML algorithms

ResNet50 layers,

SVM params

High 89.0

[39] Spiral-

Wave

2021 Utilizes the ResNet50 model with transfer learning to accurately

diagnose PD with spiral and wave images preprocessed using data

thinning and data augmentation resulting in enhanced model

performance and more reliable detection of the disease

ResNet50 layers High 96.67

[33] Spiral-

Wave

2021 Incorporates multiple PD handwriting datasets and employs DL-

based algorithms to effectively address the high variability in

handwritten material for improved Parkinson’s detection

performance

GoogLeNet layers High 90.0

[32] Spiral-

Wave

2020 Combines prediction probabilities from two CNN architectures

using LR and RFC meta-classifiers with the final prediction made

through average voting

Custom CNN layers,

LR and RFC

params

High 93.3

[28] PAHAW 2020 Models handwriting features using AlexNet and employs transfer

learning to address limited sample sizes. Utilizes pre-trained

AlexNet models on ImageNet and MNIST exploring freezing and

fine-tuning methods. Demonstrates that the fine-tuned ImageNet

approach efficiently extracts features

AlexNet layers High 98.28

[27] PAHAW 2019 Investigates various velocity-based features extracted from

handwriting signals including the sigma log-normal model,

Maxwell-Boltzmann distribution, Fourier and Cepstrum

transforms. Combines new velocity-based features with classic

ones to improve classification performance

SVM params Moderate 98.44

[25] PAHAW 2015 Proposes analyzing features like in-air movement and tablet surface

pressure rarely examined for diagnosing PD. Introduces novel

features based on handwriting signal’s entropy and empirical

mode decomposition uncovering complex hidden information

relevant to PD diagnosis

SVM params Moderate 89.0
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et al. [28] model handwriting features using AlexNet,

employing transfer learning to manage limited sample

sizes. They use pre-trained AlexNet models on ImageNet

and MNIST, exploring both freezing and fine-tuning

methods. Their fine-tuned ImageNet approach effectively

extracts features, achieving 98.28% accuracy on the

PaHaW dataset. Their deep convolutional neural network

classifier, enhanced with transfer learning and data aug-

mentation techniques, efficiently identifies handwriting

impairments related to Parkinson’s without traditional

feature extraction.

Pereira et al. [29] have significantly advanced PD

diagnosis with the development of the HandPD dataset, a

unique collection of images featuring spirals and meanders

extracted from digitized handwritten exams. Their pro-

posed pipeline addresses the challenge of learning from

non-registered images, demonstrating that meanders are

more informative than spirals due to the latter’s complex

contours. Despite the high variability of the dataset, which

includes patients in the early stages of PD, their approach

shows promise for improving diagnostic accuracy. They

evaluated three pattern recognition techniques: Naı̈ve

Bayes, optimum-path forest, and SVM with radial basis

function, optimizing SVM kernel parameters through

cross-validation. Using meander images, their approach

achieved a recognition rate of approximately 67%,

demonstrating its potential effectiveness in aiding PD

diagnosis. In their subsequent work, Pereira et al. [30]

further enhanced PD diagnosis by introducing a CNN-

based method to analyze handwriting dynamics from

smartpen signals. This method leverages a deep learning-

oriented approach to automatically identify features from

signals extracted during handwriting exams. The study also

provided a comprehensive dataset of sensor data (pressure,

tilt, acceleration), supporting the use of handwriting

dynamics as a reliable biomarker for PD. The proposed

approach outperformed traditional methods, achieving high

classification accuracy by effectively distinguishing

between healthy individuals and PD patients. Specifically,

they achieved an average overall accuracy of 84.42% over

the test set considering the meander dataset and 83.77%

over the test set considering the spiral dataset. The exper-

imental results, involving different CNN architectures and

image resolutions, demonstrated the method’s robustness

and potential for early-stage PD detection, with accuracy

rates significantly higher than previous techniques. Build-

ing on these findings, Pereira et al. [31] have made further

advancements by employing a deep learning-oriented

approach utilizing CNNs to analyze handwriting dynamics.

This method significantly enhances the accuracy of PD

diagnosis, leveraging CNNs to learn features from images

produced by handwritten dynamics, capturing critical

information during individual assessments. The primary

benefits of this study include the innovative use of CNNs,

which provide a more accurate and reliable diagnostic tool

compared to traditional methods. Notably, this approach

achieved accuracy rates close to 95% in the context of

early-stage detection. Furthermore, proposing an ensemble

of CNNs to better distinguish PD patients from the control

group ensures a robust and comprehensive analysis, sig-

nificantly improving diagnostic accuracy. Overall, the

study demonstrates that analyzing handwritten dynamics

using deep learning techniques is a promising approach for

the early and accurate identification of PD, outperforming

traditional handcrafted features and methods.

Recent observations in the diagnosis of PD indicate an

increased use of the Parkinson Hand Drawings dataset,

which consists of Archimedean spirals and sinusoidal

waves, due to its simplicity and effectiveness in capturing

motor impairments associated with the disease. Chakra-

borty et al. [32] proposed a comprehensive system design

for analyzing spiral and wave drawing patterns to detect

PD, leveraging two distinct CNNs for each drawing type.

By utilizing prediction probabilities from the CNN

Table 1 (continued)

Study Dataset Year Methods/Benefits Params Levels of

Complexity

Acc(%)

[31] HandPD 2018 Employs a DL-oriented approach utilizing CNNs to analyze

handwriting dynamics enhancing PD diagnosis accuracy. Provides

a comprehensive signal-based dataset composed of features

related to handwritten dynamics supporting the use of handwriting

as a biomarker for PD. Propose an ensemble of CNNs to

distinguish PD patients from the control group better

Custom CNN layers High 95.0

[30] HandPD 2016 Introduces a CNN-based method to analyze handwriting dynamics

from smartpen signals enhancing PD diagnosis accuracy. Provides

a comprehensive dataset of sensor data (pressure, tilt, acceleration)

from handwriting exams, supporting handwriting dynamics as a

PD biomarker

Custom CNN layers High 84.42
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architectures, the authors trained meta-classifiers, namely

logistic regression (LR) and random forest classifier (RFC),

which provided weighted predictions through ensemble

voting. The model achieved an overall accuracy of 93.3%.

This multistage classification approach improved the pre-

cision of detecting PD and demonstrated that specific

models worked better for certain samples, emphasizing the

need for a combined decision-making process. The sys-

tem’s ability to perform accurate and precise predictions at

the onset of the disease marks a significant contribution to

the field, potentially leading to more effective clinical

interventions.

Kamran et al. [33] suggested a comprehensive method

for the early diagnosis of PD using handwriting samples by

incorporating multiple PD datasets and employing deep

transfer learning-based algorithms. By combining different

PD datasets and applying various data augmentation tech-

niques, the researchers effectively addressed the high

variability in handwritten material, which resulted in

improved diagnostic performance. Their approach, which

leverages fine-tuned CNN architectures, achieved a

remarkable accuracy of 99.22% when using combined

datasets. They specifically achieved a 90% accuracy score

using GoogleNet with only the Parkinson Hand Drawings

dataset. This high level of accuracy demonstrates the sys-

tem’s potential to enhance early detection of PD, thereby

contributing to more effective clinical interventions and

better management of the disease’s progression.

MORALES-CASTRO et al. [34] developed a high-ac-

curacy hybrid method for Parkinson’s diagnosis by inte-

grating CNN and traditional HOG for feature extraction

with classical classifiers like SVM, LR, KNN, and Bayes.

This innovative approach harnesses the powerful feature

extraction capabilities of deep learning while leveraging

the effective classification potential of traditional machine

learning algorithms. As a result, the best classification

scenario was achieved using the ResNet50 neural network,

which outperformed the HOG method. This approach

achieved an impressive accuracy of nearly 90% on both

spiral and wave drawings. Additionally, SVM emerged as

the top classifier in both scenarios, demonstrating robust-

ness as the test set remained independent of the training set,

thus ensuring unbiased category assignments. This

methodology significantly advances PD detection by

combining advanced feature extraction with reliable clas-

sification techniques, achieving high diagnostic accuracy

and enhancing early detection capabilities.

Kumar and Bansal [35] introduced a modified Mobile-

NetV2 model designed for real-time PD detection on

mobile and edge devices, emphasizing lightweight archi-

tecture and efficiency without heavy computational

demands. Utilizing spiral and wave hand drawings, their

approach demonstrates significant contributions to early

PD diagnosis by achieving a remarkable accuracy of

97.70%. The innovative use of fewer parameters while

maintaining high accuracy underscores the model’s effi-

ciency. Furthermore, their research highlights the thera-

peutic benefits of artistic activities for Parkinson’s patients,

suggesting that despite the challenges posed by the disease,

creative expression through drawing can alleviate symp-

toms like depression and anxiety and provide a sense of

accomplishment. The use of a balanced dataset and the

application of transfer learning for feature extraction from

hand drawings of both healthy and Parkinson’s individuals

further validate the robustness of their model. The study

concludes that hand drawings are a valuable diagnostic

tool, offering a non-invasive, efficient, and accurate

method for PD detection.

Krishnsmoorthy et al. [36] presented a significant

advancement in the early detection of PD through the

development of the levy flight optimized hybrid weighted

faster recurrent network (Lf-HWFRNet). This system

integrates the faster region-based convolutional neural

network (FRCNN) and the bidirectional gated recurrent

unit (BiGRU) in parallel, effectively extracting both kine-

matic and spatiotemporal features. The unique levy flight

distribution optimizer (LFDO) auto-tunes hyperparameters,

enhancing the model’s performance across diverse data-

sets. This innovative approach utilizes handwritten samples

from databases such as PaHaW, NewHandPD, and

Parkinson’s hand drawing dataset. It achieves an impres-

sive accuracy of 98.82% on the Parkinson’s drawing

dataset. The primary contributions of this work include

enhancing image quality through preprocessing and aug-

mentation techniques, using a weighted average ensemble

method for optimal feature relevance, and significantly

improving prediction performance with the LFDO algo-

rithm. These advancements enhance classification accuracy

and reduce processing time to 0.045 s per image. This

demonstrates the model’s potential as an effective clinical

tool for early PD diagnosis.

Zhou et al. [37] proposed the Diplin model, which

combines WGAN, transfer learning, and EfficientNetV2 to

achieve outstanding performance in image classification,

particularly in predicting associated disease risk. The

foundation of the model lies in WGAN, utilizing the

Wasserstein distance to ensure accuracy between real and

generated sample distributions. The implementation pro-

cess involves constructing and training a WGAN-based

sample generation model to produce high-quality samples,

followed by a sample feature preprocessing model to

enhance discriminative capabilities. Transfer learning and

EfficientNetV2 are then integrated to build and train a

classification model, leveraging pre-trained models to

accelerate training and improve performance. Emphasis is

placed on optimizing sample feature extraction and
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classification modules, leading to remarkable results. This

model achieved an impressive accuracy rate of 98% on the

validation set, demonstrating its effectiveness in image

classification for disease risk prediction. The experimental

results show that in the application scenario of nursing

homes, the Diplin model can provide practical support for

predicting the health risks of the elderly, and this model

can be run directly on a tablet. These results indicate that

the Diplin model significantly advances disease risk pre-

diction, offering a practical and efficient solution for use in

environments without professional medical equipment,

such as nursing homes.

Saleh et al. [2] presented a high-accuracy hybrid method

for Parkinson’s diagnosis by combining spiral and wave

CNN-KNN architectures. This approach merges CNN’s

powerful feature extraction with KNN’s effective classifi-

cation, leveraging an ensemble voting classifier to average

sub-classifier probabilities. This method captures nuanced

data relationships and prevents overfitting, leading to a

robust and reliable system. The primary focus is predicting

PD through hand tremors, evident in varying speed and pen

pressure between healthy and affected individuals during

sketching. The authors proposed this ensemble classifier to

enhance medical services, improve quality of life, and

enable early detection. Unlike traditional CNNs, this

architecture offers flexibility with small and imbalanced

datasets, automating feature extraction and classification.

By optimizing data augmentation parameters, the model’s

robustness and generalization are improved without data

deformation. Additionally, the study addresses the critical

issue of misclassification in the medical field, proposing

solutions to mitigate potential fatal errors. The proposed

system achieves 96.67% accuracy, demonstrating its

effectiveness and potential for real-world application in PD

diagnosis.

Deep learning models require large datasets. However,

the sample sizes of Parkinson’s datasets are generally

small, which creates challenges in training and generaliz-

ing the model. To address these challenges, transfer

learning models are used. Yet, even with transfer learning,

not all features obtained are meaningful. This study pro-

poses a hybrid model consisting of CNN, NCA, and SVM

components to overcome these limitations. The proposed

approach identifies the most distinctive feature set by uti-

lizing single, pairwise, and triple combinations of nine

different transfer learning models. Among these features,

the significant ones are selected using the NCA method,

and the classification process is carried out with SVM. This

architecture aims to improve the early diagnosis of PD by

combining the strengths of transfer learning models, the

precision of NCA for feature selection, and the classifica-

tion capabilities of SVM.

3 The material and method

3.1 Datasets

Parkinson Hand Drawings dataset [40] consists of hand-

written samples, comprising 204 original images. These

images are divided into two distinct classes: Healthy and

PD. The dataset includes 102 examples of Spiral and 102

examples of Waves. From the 102 images of each type, 51

samples are derived from participants with PD, while the

remaining 51 samples are obtained from healthy partici-

pants. Random sample images from both classes are

depicted in Fig. 1.

Figure 1 illustrates representative samples from the

Parkinson Hand Drawings dataset used in this study. The

dataset includes two types of images from both healthy

individuals and PD patients: spirals and waves. Handwrit-

ing impairment is assessed using computational spiral

analysis, which evaluates spatial, dynamic, and kinematic

anomalies and markers of motor function and dysfunction.

Digitally enhanced spiral drawings correlate with motor

scores and may be more sensitive to early changes than

subjective judgments. Spirals are particularly effective in

capturing kinematic features because subjects tend to tra-

verse the figure in a 360� rotation, making them a strong

discriminator between PD patients and healthy controls.

Wave drawing patterns are also significant in assessing

handwriting impairments. They provide a distinct set of

kinematic features, such as amplitude, frequency, and

consistency. These features can reveal fine motor control

issues and movement irregularities indicative of PD.

Waves are beneficial for detecting tremors and rhythmic

disturbances in the handwriting of PD patients. The

repetitive nature of wave patterns allows for a detailed

analysis of movement smoothness and control, offering

additional markers for early diagnosis and differentiation

between PD patients and healthy individuals.

3.2 Proposed approach

The proposed method for PD identification comprises three

stages: feature extraction, feature selection, and

classification.

Feature extraction: This section aims to represent the

relevant example with a few features using transfer learn-

ing models. Transfer learning is typically employed to

apply pre-learned knowledge from deep learning models

trained on large and diverse datasets to new, smaller, or

more specialized datasets. Examples represented with a

few features are critical for facilitating this transfer because

they provide a more general and inclusive representation.

Among the algorithms used in this field are methods such
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as domain adaptation, transfer learning, and multi-task

learning. These algorithms aim to enhance performance by

effectively utilizing the knowledge obtained from the

source task on examples with few features in the target

task.

In this study, nine different transfer learning models,

namely InceptionV3 [5], DenseNet201 [6], EfficientNetB0

[7], ResNet50 [8], MobileNetV2 [9], VGG16 [10], Xcep-

tion [11], NASNetMobile [12], and InceptionResNetV2

[13], were used to determine the feature vectors that best

represent PD. The output of global average pooling (GAP)

layers was used as feature vectors. These layers summarize

the feature vectors after the convolutional layers of transfer

learning models. These outputs contain visual or linguistic

cues learned by the models and are typically high-dimen-

sional. The feature vector obtained from the i-th model,

denoted by Vi, is presented in Eq. (1):

Vi ¼ fiðxÞ ð1Þ

where the function fi represents the i-th transfer learning

model and x represents the input image. The relevant

transfer learning models are those that exhibit superior

performance on the ImageNet dataset. One of the main

contributions of this study is to investigate how combining

feature vectors from different transfer learning models

affects model performance. Specifically, the focus is on

determining which models’ feature vector combinations

enhance overall performance and the effectiveness of this

combination method. In this context, experimental research

has been conducted to identify the most important features

using individual models, binary combinations, and triple

combinations. In multiple model combinations, features

extracted from each model are merged. At this stage, pre-

trained weights from the ImageNet dataset [41] have been

used for individual models, followed by fine-tuning on the

Parkinson Hand Drawings dataset. Combinations of feature

vectors obtained from various transfer learning models are

utilized to create a more comprehensive and representative

feature set. The feature combination is formulated in

Eq. (2):

Vconcat ¼ /ðV1;V2; :::;VnÞ ð2Þ

where the function / combines different feature vectors to

create a new vector. The resulting feature vector, Vconcat,

obtained at this stage will serve as the basis for feature

selection and classification in subsequent stages. The fea-

ture extraction process is a critical step that enables more

accurate identification of PD and directly impacts the

model’s overall performance.

Feature selection: In the second stage, the NCA method

was used to select the most meaningful feature vectors

obtained and use them during the classification phase. NCA

is a powerful metric learning algorithm strategically crafted

to elevate the classification performance of a stochastic

nearest neighbors rule. Its primary objective is to maximize

Leave One Out (LOO) classification accuracy by acquiring

a supervised linear transformation within the feature space.

This approach diverges from traditional methods that

solely focus on similarity metrics, making NCA particu-

larly distinctive in its application.

The fundamental premise of NCA lies in its ability to

optimize LOO performance for future test data. In LOO

classification, the KNN algorithm endeavors to predict a

single point by measuring distances within the feature

space. Rather than relying on pre-defined or random dis-

tance metrics, NCA takes a unique approach. It aims to

learn an effective distance measurement through a linear

transformation of the input data.

The essence of NCA is to learn a suitable distance

metric to keep data points together. This metric brings

points belonging to similar classes closer while pushing

those belonging to different classes apart. NCA performs a

space transformation by reweighting points in the feature

Fig. 1 Sample images from the

Parkinson Hand Drawings

dataset
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space, ensuring that examples from the same class are

closer to each other and those from different classes are

farther apart. This approach makes relationships between

classes more distinct and enhances classification accuracy.

NCA utilizes two fundamental components: the training

data and classification labels. The training data is repre-

sented as X ¼ x1; x2; :::; xn, where there are N data points,

and each xi represents the feature vector corresponding to

the respective example. Classification labels are used for

each example, denoted as yi. yi typically takes values from

1 to K, where K represents the total number of classes.

NCA performs a space transformation by reweighting

points (examples) in the feature space, ensuring that

examples from the same class are closer to each other while

those from different classes are farther apart. This trans-

formation is achieved using a weight matrix A. NCA learns

a distance function based on this weight matrix. This dis-

tance function computes the distance between examples

using the learned metric. The distance between examples

dij is defined in Eq. (3):

dij ¼ A xi � xj
� ��� ��2 ð3Þ

where xi and xj are two different examples, and A xi � xj
� �

represents the norm of the transformed difference vector of

these two examples by the matrix A. NCA models the

neighborhood of an example among all other examples

with a probability distribution. For each xi, the probability

of another xj example being a neighbor of xi is calculated in

Eq. (4):

pij ¼
exp � A xi � xj

� ��� ��2
� �

P
k 6¼i exp � A xi � xkð Þk k2

� � ð4Þ

where pij represents the probability of selecting the xj
example as a neighbor of the xi example. In total, these

probabilities are calculated for all k where k 6¼ i. The goal

of NCA is to learn the matrix A that ensures examples with

the same class labels are closer to each other. The objective

function used for this purpose is to maximize the sum of

probabilities of having neighbors with correct class labels

for all examples. This objective function is presented in

Eq. (5):

LðAÞ ¼
Xn

i¼1

X

j6¼i

d yi; yj
� �

pij ð5Þ

where the function d yi; yj
� �

checks whether yi and yj class

labels are the same; if they are the same, it takes the value

1, otherwise, it takes the value 0. Thus, maximizing the

function L(A) implies ensuring that examples with similar

class labels are closer to each other. Gradient ascent is

commonly used to update the values of the matrix A. The

gradient is calculated by taking the derivative of the

objective function L(A) concerning A, and at each step, A is

updated in the direction of this gradient.

It is crucial to note that NCA operates as a supervised

learning algorithm, unlike unsupervised techniques such as

principal component analysis. The key differentiator is the

incorporation of target values during the estimation pro-

cess. This supervised nature enables NCA to tailor its linear

transformation to the specific characteristics of the training

data, leading to enhanced predictive capabilities. In sum-

mary, NCA stands out as a metric learning method that

goes beyond traditional similarity-based approaches. By

incorporating supervised learning principles and focusing

on a linear transformation of input data, NCA strives to

optimize LOO classification performance, ultimately con-

tributing to improved accuracy in predicting outcomes for

unseen test data.

Classification: In the third stage, the SVM from machine

learning algorithms has been used to classify the obtained

feature vectors. SVM is recognized as a robust supervised

learning algorithm, adept at classification, regression, and

outlier detection tasks. The core objective of SVM revolves

around identifying a hyperplane in an N-dimensional

space-where N represents the number of features-which

effectively segregates data points from distinct classes. The

hallmark of SVM lies in its emphasis on maximizing the

margin, which denotes the maximum separation between

data points of different classes.

SVM exhibits several advantages, particularly in high-

dimensional spaces. It is effective even in scenarios where

the number of features exceeds the number of samples,

demonstrating its versatility. Memory efficiency is another

strength, as SVM employs only a subset of training points,

known as support vectors, in the decision function.

Moreover, SVM can accommodate various kernel

functions, including custom ones, to refine the decision

function. This adaptability allows it to excel across dif-

ferent data types and structures. However, the potential for

overfitting is a significant drawback, particularly when the

number of features greatly exceeds the number of samples.

This underscores the importance of careful selection of

kernel functions and regularization terms.

The operation of SVM involves selecting a hyperplane

that maximizes the margin, ensuring optimal separation

between classes. This selection is guided by support vec-

tors, which are the data points closest to the hyperplane.

These points are critical as they determine the position and

orientation of the hyperplane. The margin is conceptual-

ized as a region bounded by two parallel hyperplanes. The

mathematical formulation of the SVM objective is to

maximize this margin. The decision function and its cor-

responding hyperplane can be described by Eq. (6):
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w � x� b ¼ 0 ð6Þ

where w is the weight vector, x is an input feature vector,

and b is the bias. The hyperplanes that define the margin

are given by Eq. (7):

w � x� b ¼ 1 and w � x� b ¼ �1 ð7Þ

The margin, defined as the distance between these two

hyperplanes, is 2
wk k. Hence, the problem of maximizing the

margin translates to minimizing wk k. The hinge loss, used

as the loss function in SVM, penalizes misclassifications

and data points that fall within the margin. The hinge loss

for a data point ðxi; yiÞ is defined as in Eq. (8):

maxð0; 1 � yiðw � xi � bÞ ð8Þ

where yi are the class labels. This loss function contributes

to the objective function, which also includes a regular-

ization term to prevent overfitting, as shown in Eq. (9):

minimize
1

2
kwk2 þ C

Xn

i¼1

max 0; 1 � yi w � xi � bð Þð Þ

ð9Þ

where C is the regularization parameter, balancing the

trade-off between maximizing the margin and minimizing

the hinge loss. Gradient updates in SVM involve adjusting

the weights (w) based on the gradients of the loss function.

These updates are contingent on correctly classifying a data

point and its distance from the margin. In conclusion, SVM

emerges as a formidable solution in complex scenarios,

effectively handling classification tasks by focusing on

margin maximization and strategic use of support vectors.

Figure 2 illustrates the best-performing model combination

based on the experimental results, showcasing the practical

application of SVM in enhancing predictive performance.

Figure 2 shows the proposed architecture combining

deep learning and machine learning techniques for PD

diagnosis. In the proposed architecture, different CNN

models’ single, paired, and triple combinations were tested,

and the combination with the highest performance was

identified and used. Accordingly, each CNN model was

utilized to extract different features from the data. After the

feature extraction process, the features collected from each

model’s GAP layer were utilized. This layer averages each

feature map to produce a more compact feature vector. The

features from each CNN model were then combined into a

single feature vector through a concatenation process. This

stage allows the model to integrate different features

obtained from various CNN architectures. The concate-

nated feature vectors were selected and dimensionally

reduced using the NCA method. This stage ensures that the

model focuses on the most important and distinctive fea-

tures. The selected and dimensionally reduced features

were classified using an SVM model. SVM is a powerful

machine learning algorithm capable of effectively classi-

fying nonlinear data. This architecture aims to diagnose PD

with higher accuracy by combining the strengths of various

deep learning models.

3.3 Evaluation metrics

In this study, several evaluation metrics were used to assess

the performance of the proposed model. These metrics

include accuracy, precision, specificity, sensitivity, F1-

score, and AUC. Each metric provides a different per-

spective on the model’s performance, allowing for a

comprehensive evaluation.

Accuracy: Accuracy measures the proportion of correctly

classified instances out of the total instances. It is a general

measure of the model’s overall performance. In the context

of PD diagnosis, accuracy indicates how well the model

correctly identifies both patients with the disease and

healthy individuals. It is presented in Eq. (10):

Accuracy ¼ TPþ TN

TPþ TN þ FPþ FN
ð10Þ

where TP represents true positives (correctly identified

patients with PD), TN represents true negatives (correctly

identified healthy individuals), FP represents false posi-

tives (healthy individuals incorrectly identified as having

PD), and FN represents false negatives (patients with PD

incorrectly identified as healthy). High accuracy suggests

that the model performs well in distinguishing between

healthy and diseased individuals.

Precision: Precision, also known as positive predictive

value, measures the proportion of true positives out of the

total predicted positives. It is particularly important in

medical diagnosis as it reflects the reliability of a positive

diagnosis. In the context of PD, high precision means that

when the model predicts an individual has PD, it is very

likely to be correct. It is presented in Eq. (11):

Precision ¼ TP

TPþ FP
ð11Þ

Precision is crucial in reducing the number of false posi-

tives, thereby minimizing the misdiagnosis of healthy

individuals as having PD.

Specificity: Specificity, also known as the true negative

rate, measures the proportion of true negatives out of the

total actual negatives. It indicates how well the model

identifies healthy individuals. In the context of PD, high

specificity means the model is effective at correctly iden-

tifying individuals who do not have the disease. It is pre-

sented in Eq. (12):
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Specificity ¼ TN

TN þ FP
ð12Þ

High specificity is important to avoid false positives,

ensuring that healthy individuals are not incorrectly diag-

nosed with PD.

Sensitivity: Sensitivity, also known as recall or the true

positive rate, measures the proportion of true positives out

of the total actual positives. It indicates how well the model

identifies patients with PD. High sensitivity means that the

model is effective at correctly identifying individuals who

have the disease. It is presented in Eq. (13):

Sensitivity ¼ TP

TPþ FN
ð13Þ

High sensitivity is critical for early diagnosis and treat-

ment, ensuring that most patients with PD are correctly

identified.

F1-Score: The F1-score is the harmonic mean of precision

and sensitivity, providing a balance between the two met-

rics. It is particularly useful when dealing with imbalanced

datasets, where the number of healthy individuals may

significantly differ from the number of patients with PD. It

is presented in Eq. (14):

F1-Score ¼ 2 � Precision � Sensitivity

Precision þ Sensitivity
ð14Þ

The F1-score is a comprehensive measure that considers

both false positives and false negatives, making it valuable

in medical diagnosis scenarios where both types of errors

have significant consequences.

Area under the curve (AUC): AUC measures the ability

of the model to distinguish between classes and is calcu-

lated as the area under the receiver operating characteristic

curve. It is a scalar value between 0 and 1, where a higher

AUC indicates better model performance. AUC provides

an aggregate measure of performance across all classifi-

cation thresholds. It is particularly useful for comparing the

performance of different models.

These metrics together provide a comprehensive eval-

uation of the model’s performance, highlighting its

strengths and areas for improvement. Using a combination

of these metrics ensures a thorough and balanced assess-

ment of the model’s effectiveness in diagnosing PD based

on the augmented hand-drawing images.

3.4 Training details

This section provides training details. Initially, the dataset

consisting of 204 images was insufficient, so augmentation

was applied to create a larger dataset. Augmentation

included rotations (90�, 180�, 270�), horizontal and vertical

flips, and color transformations applied to the hand-drawn

images. These operations increased the dataset size to

1, 635 images. After augmentation, the images were

resized to 224 � 224 pixels to ensure consistency with the

input requirements of CNN models. The dataset was then

split into 80% training and 20% test sets. A series of CNN

models pre-trained on the ImageNet dataset were initially

used for feature extraction. This approach enhances the

model’s generalization ability when the dataset is limited,

yielding better performance with less data. Additionally,

Fig. 2 Proposed hybrid model for the diagnosis of PD
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models trained on a large dataset like ImageNet learn

general features, enabling effective feature extraction for

different tasks. Subsequently, fine-tuning was performed

using the augmented dataset. During the training phase, the

categorical cross-entropy loss function was used, and the

Adam optimization algorithm was employed with a batch

size of 32. The models were trained for 20 epochs using the

default parameters of the Adam optimizer.

4 Experiment and results

This section provides a general overview of experimental

studies conducted to diagnose PD. Initially, nine different

transfer learning models widely recognized in the literature

were employed to extract meaningful features from the

images in the dataset. These models are: InceptionV3,

DenseNet201, EfficientNetB0, ResNet50, MobileNetV2,

VGG16, Xception, NASNetMobile, and Incep-

tionResNetV2. Each model used pre-trained weights from

the ImageNet dataset and was then fine-tuned with the

Parkinson Hand Drawings dataset. This process is crucial

for the models to learn features specific to PD. To ensure

consistent evaluation of these transfer learning models, the

feature maps produced by the final layer of each model

were summarized using a GAP layer. The GAP layer

compresses the feature maps into a single vector, facili-

tating the classification task. Subsequently, a dense layer

with a Softmax activation function was added for the

classification task. This layer produces an output vector

corresponding to the number of classes, providing proba-

bility distributions for the predicted classes. This uniform

strategy was applied to each model, and the experimental

results are presented in Table 2.

Table 2 presents a comprehensive performance com-

parison of the fine-tuned models used in this study. Each

model’s performance is measured using several key met-

rics: accuracy, specificity, sensitivity, precision, F1 score,

training time, inference time, the number of parameters

(Params), and computational load (FLOPs). InceptionV3

achieved the highest performance with an accuracy of

97.55% along with efficient training (3.22 minutes) and

inference times (0.04 minutes). Xception followed closely

with an accuracy of 97.25%. InceptionResNetV2 also

performed well, with an accuracy of 96.64%, but had the

highest parameter count (54.3M) and computational load

(13B FLOPs). DenseNet201 and NASNetMobile demon-

strated moderate performance, with accuracies of 81.35%

and 80.73%, respectively. ResNet50 and MobileNetV2 had

varying degrees of success, with ResNet50 achieving an

accuracy of 65.14% and MobileNetV2 achieving an

accuracy of 77.06%. EfficientNetB0 and VGG16 per-

formed less effectively, with EfficientNetB0 showing an

accuracy of 52.60% and VGG16 demonstrating an accu-

racy of 48.62%. In summary, InceptionV3 and Xception

were the top performers, while EfficientNetB0 and VGG16

had the lowest performance in PD detection. Figure 3

shows the loss and accuracy graphs for the best-performing

model, InceptionV3, and the lowest-performing model,

VGG16, across epochs.

In Fig. 3, InceptionV3 shows a consistent decrease in

training loss, indicating effective learning, while validation

loss generally decreases with minor fluctuations, suggest-

ing occasional overfitting. The best epoch is 16. Training

accuracy steadily increases, and validation accuracy trends

upward despite fluctuations. For VGG16, training loss

decreases steadily, but validation loss has more pronounced

fluctuations, indicating overfitting issues. The best epoch is

18. Training accuracy increases, but validation accuracy

shows significant fluctuations, reflecting unstable perfor-

mance. In summary, InceptionV3 demonstrates a more

stable performance with fewer fluctuations and higher

validation accuracy compared to VGG16. Both models

exhibit some overfitting; however, InceptionV3 is more

reliable and stable, making it a potentially better model for

this task.

In the next phase of the experiments, the pre-trained

models were used as feature extractors, utilizing the feature

vectors from the GAP layers of each model. Subsequently,

the NCA method was applied for feature selection and

dimensionality reduction. NCA is a learning strategy

designed to preserve the dataset’s structure by clustering

relevant formations in the feature space and classifying

them by class. This is achieved by learning a transforma-

tion matrix that better represents the feature space. The

primary goal of NCA is to group similar examples and use

the learned transformation matrix to separate them from

other classes in the dataset. As a result, NCA retained 17%

of the features obtained from the GAP layers of the

respective models and discarded the remaining 83%. The

features preserved by the NCA method were classified

using the SVM machine learning algorithm. Table 3 shows

the results of using the features obtained from the respec-

tive model, applying the NCA dimensionality reduction

approach, and using the SVM classification algorithm.

Since the transfer learning models were not retrained at this

stage, the variables training time, inference Time, params,

and FLOPs remained almost the same. Therefore, these

variables were no longer included in the tables.

In the initial Table 2 (without NCA and SVM), Incep-

tionV3, Xception, and InceptionResNetV2 demonstrated

high accuracies of 97.55%, 97.25%, and 96.64%, respec-

tively. In Table 3 (with NCA and SVM), these models

either maintained or improved their performance, with

InceptionV3 and Xception both achieving 97.55%, and

InceptionResNetV2 reaching 98.47%. DenseNet201
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Table 2 Performance of fine-tuned models

Models Accuracy

(%)

Precision

(%)

Specificity

(%)

Sensitivity

(%)

F1

Score

(%)

AUC

(%)

Training

Time (Min)

Inference

Time (Min)

Params

(M)

FLOPs

InceptionV3 97.55 97.55 97.45 97.55 97.55 97.58 3.22 0.04 21.8 5.7B

DenseNet201 81.35 79.83 81.2 81.25 80.54 80.48 6.87 0.08 18.3 8.6B

EfficientNetB0 52.60 28.01 53.5 52.70 36.59 50.32 4.16 0.04 4.1 0.8B

ResNet50 65.14 64.63 67.4 65.14 64.89 65.57 3.55 0.04 23.6 7.7B

MobileNetV2 77.06 74.61 78.8 77.06 75.81 76.07 1.98 0.03 2.3 0.6B

VGG16 48.62 24.86 38.6 48.62 33.81 50.82 3.57 0.02 14.7 30.7B

Xception 97.25 97.25 96.5 97.25 97.25 97.17 4.75 0.04 20.9 9.1B

NASNetMobile 80.73 79.74 79.7 80.73 80.23 80.06 5.69 0.09 4.3 1.1B

InceptionResNetV2 96.64 96.64 97.1 96.64 96.64 96.73 7.03 0.08 54.3 13B

Fig. 3 The top graphs display the training and validation loss and accuracy of the best-performing model, InceptionV3, while the bottom graphs

show these for the lowest-performing model, VGG16
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improved significantly from 81.35% to 96.02%, and

MobileNetV2 increased from 77.06% to 93.88%. Effi-

cientNetB0 also showed substantial improvement, rising

from 52.60% to 87.16%. ResNet50’s accuracy improved

from 65.14% to 70.03%, while VGG16 remained low at

47.71%, indicating minimal impact from the NCA-SVM

method. NASNetMobile’s accuracy increased significantly

from 80.73% to 91.44%, showing a notable improvement

in classification performance. Overall, experimental studies

indicate that the combined use of CNN, NCA, and SVM

approaches generally enhances results.

The study’s next step focused on evaluating the impact

of combining features from different CNN models. In this

case, features derived from binary combinations of nine

different transfer learning models were first concatenated.

Specifically, features taken independently from each pair of

transfer learning models were concatenated, and the

resulting feature sets went through feature selection and

dimensionality reduction using the NCA approach. The

newly obtained features were then trained using the SVM

method. This method allows each combination to highlight

distinct structures inside the feature space. A total of 36

distinct experimental studies were conducted, considering

pairwise combinations of the nine transfer learning models.

Table 4 presents the top and bottom 10 experimental results

based on the performances obtained from these model

combinations.

Table 4 shows that features derived from pairwise

combinations of models significantly improve model per-

formance. Notably, the combination of InceptionV3 and

EfficientNetB0 yielded an impressive accuracy of 99.1%.

In addition, the top ten model combinations achieved

accuracy rates ranging from 98.5% to 99.1%. Examining

the worst-performing model combinations, the pairing of

the VGG16 model, which previously achieved a single

accuracy rate of 47.71%, and the ResNet50 model, which

had an accuracy rating of 70.03%, resulted in the lowest

accuracy rate of 71.6%. Despite being the least favorable

combination, it still demonstrates a significant improve-

ment compared to the individual performance of VGG16.

Overall, the combination of models such as InceptionV3 ?

EfficientNetB0, InceptionV3 ? Xception, and Xception ?

NASNetMobile proves to be the most promising, with

consistently high accuracy rates. This indicates that lever-

aging complementary strengths from different models can

lead to superior performance. Comparing Tables 3 and 4, it

is evident that paired combinations of models produce very

high accuracy rates. The effectiveness of model combina-

tions is particularly evident in the substantial performance

gains seen in previously lower-performing models when

paired with stronger models.

The next phase of the study evaluated the impact of

combining features from different CNN models in triple

combinations. Features from each trio of the nine transfer

learning models were concatenated, followed by feature

selection and dimensionality reduction using NCA. The

refined features were then trained using the SVM method,

allowing each combination to highlight distinct structures

within the feature space. A total of 84 experimental studies

were conducted. Table 5 presents the top and bottom 10

experimental results based on the performance of these

model combinations.

Table 5 summarizes the performance results of triple

feature combinations derived from fine-tuned transfer

learning models integrated with NCA and SVM. Upon

examining the experimental results, it is clear that six

distinct combinations, e.g., InceptionV3 ? DenseNet201 ?

Xception, achieved the best performance, each with an

accuracy of 99.39%. To determine the most efficient model

among these top-performing combinations, it is crucial to

evaluate the total number of parameters, training time,

inference time, and FLOPs, in addition to accuracy. For

instance, the combination of InceptionV3, DenseNet201,

and Xception has 61.0M parameters, with medium training

Table 3 Performance of fine-tuned models with NCA and SVM

Models Accuracy (%) Precision (%) Specificity (%) Sensitivity (%) F1 Score (%) AUC (%)

InceptionV3 97.55 98.15 98.6 97.55 97.55 97.58

DenseNet201 96.02 96.53 97.6 96.02 96.02 96.00

EfficientNetB0 87.16 88.02 88.4 87.16 87.16 87.16

ResNet50 70.03 70.86 71.0 70.03 69.80 69.66

MobileNetV2 93.88 94.34 94.08 93.88 93.89 93.98

VGG16 47.71 48.52 48.63 47.71 30.82 50.00

Xception 97.55 98.15 98.6 97.55 97.53 97.52

NASNetMobile 91.44 92.13 92.32 91.44 91.43 91.33

InceptionResNetV2 98.47 98.86 98.7 98.47 98.47 98.46
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and inference times, and high FLOPs. The combination of

InceptionV3, EfficientNetB0, and Xception has 46.8M

parameters, with faster training and inference times, and

medium FLOPs. InceptionV3, MobileNetV2, and Xception

have 45.0M parameters, with fast training and inference

times, and low FLOPs. InceptionV3, VGG16, and Xcep-

tion have 57.4M parameters, with slower training and

inference times, and high FLOPs. InceptionV3, Xception,

and NASNetMobile have 47.0M parameters, with fast

training and inference times, and medium FLOPs. Dense-

Net201, Xception, and NASNetMobile have 43.5M

parameters, with medium training and inference times, and

low FLOPs. Considering these factors, DenseNet201,

Xception, and NASNetMobile emerge as the most param-

eter-efficient and computationally efficient combination

while still maintaining the highest performance level. On

the other hand, the combination of VGG16, NASNetMo-

bile, and InceptionResNetV2 performed poorly, achieving

the lowest accuracy of 83.18%. Despite having high

computational resources, this combination did not translate

into better performance, highlighting the importance of

model selection and feature combination. Table 5 shows

that combinations involving InceptionV3 and Xception

consistently outperformed other models among the most

successful combinations. In contrast, VGG16 frequently

appeared in the least effective combinations, indicating its

lower effectiveness in these triple-model setups. Figure 4

displays a confusion matrix plot demonstrating the classi-

fication performance of the successful model combination

DenseNet201, Xception, and NASNetMobile.

The confusion matrix in Fig. 4 illustrates the perfor-

mance of the DenseNet201, Xception, and NASNetMobile

model combination with NCA and SVM on test images.

The matrix provides a clear representation of the model’s

classification accuracy for two classes: Healthy and PD.

The model correctly classified 170 images as Healthy (true

negatives) and 155 images as PD (true positives). There

were minimal misclassifications, with only 1 image

incorrectly classified as Healthy when it was PD (false

positive) and 1 image incorrectly classified as PD when it

was Healthy (false negative). This high level of accuracy,

where the model correctly classified 325 out of 327 images,

highlights the robustness and reliability of this model

combination. The near-perfect classification performance

aligns with the previously noted accuracy rate of 99.39%,

demonstrating that the combination of DenseNet201,

Xception, and NASNetMobile is both parameter-efficient

and highly effective in accurately classifying the dataset.

Table 4 Performance of pairwise model combinations with NCA and SVM

Model 1 Model 2 Accuracy (%) Precision (%) Specificity (%) Sensitivity (%) F1 Score (%) AUC (%)

InceptionV3 EfficientNetB0 99.1 99.6 99.2 99.1 99.1 99.1

InceptionV3 Xception 99.1 99.5 99.2 99.1 99.1 99.0

InceptionV3 InceptionResNetV2 99.1 99.6 99.2 99.1 99.1 99.1

Xception NASNetMobile 99.1 99.6 99.2 99.1 99.1 99.1

Xception InceptionResNetV2 99.1 99.6 99.2 99.1 99.1 99.1

InceptionV3 MobileNetV2 98.8 99.1 98.8 98.8 98.8 98.8

MobileNetV2 InceptionResNetV2 98.8 99.1 98.8 98.8 98.8 98.8

NASNetMobile InceptionResNetV2 98.8 99.1 98.8 98.8 98.8 98.8

InceptionV3 NASNetMobile 98.5 98.9 98.5 98.5 98.5 98.5

EfficientNetB0 InceptionResNetV2 98.5 98.9 98.5 98.5 98.5 98.5

– – – – – – – –

– – – – – – – –

DenseNet201 VGG16 95.7 96.3 95.7 95.7 95.7 95.7

MobileNetV2 NASNetMobile 95.7 96.3 95.7 95.7 95.7 95.7

EfficientNetB0 NASNetMobile 95.4 96.1 95.4 95.4 95.4 95.4

ResNet50 MobileNetV2 95.4 96.1 95.4 95.4 95.4 95.4

MobileNetV2 VGG16 93.9 94.5 93.9 93.9 93.9 94.0

VGG16 NASNetMobile 93.6 94.5 93.6 93.6 93.6 93.5

ResNet50 NASNetMobile 91.7 92.3 91.7 91.7 91.7 91.6

EfficientNetB0 VGG16 87.5 87.9 87.5 87.5 87.5 87.4

EfficientNetB0 ResNet50 86.2 86.8 86.2 86.2 86.2 86.3

ResNet50 VGG16 71.6 72.2 71.4 71.6 71.4 71.2
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Figure 5 visually evaluates the performance of the model,

composed of the InceptionV3 ? DenseNet201 ? Xception

combination, using the t-SNE approach.

Figure 5 visualizes the distinctiveness of the features

obtained in the final stage for the test samples using the

t-SNE approach. t-SNE is a visualization technique that

transforms high-dimensional features of a dataset into a

lower-dimensional space, clustering similar samples toge-

ther while separating them from other classes. t-SNE

Table 5 Performance of triple model combinations with NCA and SVM

Model 1 Model 2 Model 3 Accuracy

(%)

Precision

(%)

Specificity

(%)

Sensitivity

(%)

F1 Score

(%)

AUC

(%)

InceptionV3 DenseNet201 Xception 99.39 99.36 99.42 99.36 99.36 99.39

InceptionV3 EfficientNetB0 Xception 99.39 99.36 99.42 99.36 99.36 99.39

InceptionV3 MobileNetV2 Xception 99.39 99.36 99.42 99.36 99.36 99.39

InceptionV3 VGG16 Xception 99.39 99.36 99.42 99.46 99.36 99.39

InceptionV3 Xception NASNetMobile 99.39 99.36 99.42 99.36 99.36 99.39

DenseNet201 Xception NASNetMobile 99.39 99.36 99.42 99.36 99.36 99.39

InceptionV3 DenseNet201 EfficientNetB0 99.08 99.08 98.88 99.08 99.08 99.08

InceptionV3 DenseNet201 MobileNetV2 99.08 99.08 98.88 99.08 99.08 99.08

InceptionV3 DenseNet201 InceptionResNetV2 99.08 99.08 98.88 99.08 99.08 99.08

InceptionV3 ResNet50 Xception 99.08 99.08 98.88 99.08 99.08 99.08

– – – – – – – – –

– – – – – – – – –

MobileNetV2 NASNetMobile InceptionResNetV2 90.52 90.52 89.82 90.52 90.53 90.52

ResNet50 NASNetMobile InceptionResNetV2 90.21 90.21 89.68 90.21 90.29 90.21

ResNet50 MobileNetV2 VGG16 88.99 88.99 88.15 88.99 88.99 88.99

ResNet50 VGG16 NASNetMobile 88.99 88.99 89.35 88.99 89.03 88.99

MobileNetV2 VGG16 NASNetMobile 88.38 88.38 87.75 88.38 88.39 88.38

EfficientNetB0 NASNetMobile InceptionResNetV2 88.07 88.07 88.07 88.07 88.07 88.07

EfficientNetB0 VGG16 InceptionResNetV2 87.77 87.77 87.52 87.77 88.17 87.77

EfficientNetB0 VGG16 NASNetMobile 86.85 86.85 87.4 86.85 86.85 86.85

ResNet50 VGG16 InceptionResNetV2 86.24 86.24 87.3 86.24 86.24 86.24

VGG16 NASNetMobile InceptionResNetV2 83.18 83.18 82.23 83.18 83.28 83.18

Fig. 4 Confusion matrix for DenseNet201 ? Xception ? NASNet-

Mobile with NCA and SVM Fig. 5 Feature space distribution visualization of DenseNet201 ?

Xception ? NASNetMobile model using t-SNE
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operates in two stages: first, it estimates similarity values

and then performs a low-dimensional embedding to pre-

serve the similarity structures between the samples in the

dataset. t-SNE is excellent for visualizing complex data

structures and patterns, revealing clustering trends and

relationships between dataset samples. Figure 5 shows the

distribution of features for the test samples using t-SNE.

The plot displays two distinct clusters representing the

healthy and PD classes. Purple dots represent the healthy

class, while yellow dots represent the PD class. The clear

separation between these clusters indicates that the model

effectively distinguishes between the two classes. The tight

clustering of similar points suggests that the model has

learned meaningful features, using these features to dis-

tinguish healthy individuals from those with PD. This

t-SNE visualization confirms the model’s effectiveness in

classifying the dataset. The proposed hybrid model’s fea-

tures are highly distinctive, and the model’s success is

evident. This visualization shows that the model has

effectively learned the complex data structures and clus-

tering trends, using this knowledge successfully in classi-

fication tasks. Table 6 presents a comparison of the

proposed approach with state-of-the-art studies conducted

on the Parkinson Hand Drawings dataset, evaluating the

models based on the metrics of accuracy, precision, sen-

sitivity, and F1-score.

The Parkinson Hand Drawing Dataset, consisting of

spiral and wave drawings, serves as a crucial resource for

examining motor impairments associated with PD. Table 6

presents state-of-the-art studies utilizing this dataset. While

some of these studies focus solely on spiral images, others

analyze both types of drawings or develop separate models

for each. MORALES-CASTRO et al. [34] found that

employing ResNet50 as a feature extractor and SVM as a

classifier resulted in the best performance for PD identifi-

cation, with an accuracy of 89%. Kamran et al. [33] pro-

posed an end-to-end deep transfer learning method for the

early diagnosis of PD using handwriting. By using various

deep transfer CNN architectures, combining different PD

handwriting datasets, and applying data augmentation

techniques, they achieved a 90% accuracy score with

GoogleNet. Das et al. [42] introduced an approach aiming

to expedite the costly process of PD diagnosis. They con-

ducted a comparative analysis evaluating the effectiveness

of manually crafted features versus deep-level features,

achieving a notable accuracy of 93%. Chakraborty et al.

[32] developed a system for detecting PD using spiral and

wave drawings with two distinct CNNs. They employed

logistic regression and random forest meta-classifiers with

ensemble voting, achieving 93.3% accuracy. This multi-

stage approach enhances PD detection precision and

highlights the importance of combined decision-making for

better clinical interventions. Hossain et al. [43] introduced

the MetaParkinson model, an advanced health framework

combining industrial cyber-physical systems with a meta-

learning approach. This model achieves a diagnostic

accuracy of 95.0% for spiral images and 90.0% for wave

images in a 10-shot training setup, training separate models

for spiral and wave data, using a CNN encoder and Sia-

mese network for PD classification. Saleh et al. [2] pro-

posed a hybrid method for PD diagnosis by combining

spiral and wave CNN-KNN architectures, achieving

96.67% accuracy. This approach leverages CNN’s feature

extraction and KNN’s classification through ensemble

voting, capturing nuanced data relationships and prevent-

ing overfitting. Jahan and Nesa [39] utilized the ResNet50

model with transfer learning to diagnose PD using spiral

and wave images. By employing data thinning and aug-

mentation, they enhanced model performance, achieving

an accuracy of 96.67%, thereby improving the reliability of

PD detection. Kumar and Bansal [35] introduced a modi-

fied MobileNetV2 model for real-time PD detection on

mobile devices, achieving 97.70% accuracy using spiral

and wave hand drawings. Their lightweight, efficient

model highlights the diagnostic value of hand drawings for

Parkinson’s, offering a non-invasive and accurate method

for detection. Fiza et al. [38] integrated CNN and ANN

with GridSearchCV to effectively utilize drawing and

acoustic features for Parkinson’s detection, leading to a

high classification accuracy of 98.0%. Zhou et al. [37]

proposed the Diplin model, which achieves outstanding

performance in image classification by incorporating

WGAN and migration learning, exhibiting a remarkable

accuracy rate of 98% on the validation dataset. Varalak-

shmi et al. [1] conducted a study focusing on predicting PD

using only spiral images. They found that hybrid models

like ResNet50 ? SVM outperform other machine learning,

deep learning, and hybrid models, achieving an accuracy

rate of 98.45%. Krishnsmoorthy et al. [36] developed the

Lf-HWFRNet system for early PD detection using hand-

written samples. The system integrates FRCNN and

BiGRU with a weighted average ensemble technique and

optimized hyperparameters using LFDO, achieving a

remarkable PD classification accuracy of 98.82%. Many of

these studies emphasize the combination of deep learning

and traditional machine learning techniques in detecting

PD using hand drawings. The proposed hybrid model

successfully identified Parkinson’s patients with a signifi-

cant accuracy rate of 99.39% across six different combi-

nations utilizing various feature extraction models. This

research highlights the combination of features obtained

from binary and ternary combinations of transfer learning

models, followed by feature selection and dimensionality

reduction using the NCA method, and ultimately classifi-

cation using the SVM algorithm, significantly enhancing

performance. This performance is notably remarkable
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when compared to the accuracy rates ranging from 89% to

98.82% in other research. The strong performance of the

proposed approach in identifying PD suggests the potential

utility of such models in clinical applications.

5 Conclusion

This study proposes a new hybrid model consisting of

CNN, NCA, and SVM algorithms to diagnose PD based on

handwritten drawings. The primary aim is to develop a

feature extraction methodology that captures the geometric

dynamics of handwriting associated with symptoms of PD.

In this context, the performance of fine-tuned transfer

learning models on the Parkinson Hand Drawings dataset

was compared using several key metrics, i.e., accuracy,

specificity, sensitivity, precision, F1 score, training time,

inference time, number of parameters, and computational

load (Table 2). The analyses revealed significant disparities

in the relevant metrics among the models examined.

InceptionV3 achieved the highest performance with an

accuracy of 97.55%, efficient training (3.22 min), and

inference times (0.04 min). It also excelled in other metrics

like specificity, sensitivity, precision, and F1 score. Xcep-

tion followed closely with 97.25% accuracy and strong

performance across all metrics. InceptionResNetV2 also

performed well, achieving 96.64% accuracy, but it had the

highest parameter count (54.3M) and computational load

(13B FLOPs). DenseNet201 and NASNetMobile demon-

strated moderate performance, with accuracies of 81.35%

and 80.73%, and balanced results in other metrics.

ResNet50 and MobileNetV2 had accuracies of 65.14% and

77.06%, respectively, with varied performance in other

metrics. EfficientNetB0 and VGG16 were the least effec-

tive, with accuracies of 52.60% and 48.62%, and lower

scores across all metrics. Overall, InceptionV3 and Xcep-

tion were top performers across all evaluated metrics, while

EfficientNetB0 and VGG16 showed the lowest

performance.

Table 6 Comparison between the proposed model with previous literature (only Parkinson Hand Drawing Dataset)

Study Dataset Year Features Classifier Accuracy (%) Precision (%) Sensitivity (%) F1-Score

(%)

[32] Spiral-

Wave

2020 CNN-based

features

LR, RFC 93.3 93.5 94 93.94

[39] Spiral-

Wave

2021 CNN-based

features

FC layers 96.67 – – –

[33] Spiral-

Wave

2021 CNN-based

features

MLP 90 – – –

[42] Spiral-

Wave

2021 HOG MLP 93 – – –

[38] Spiral-

Wave

2022 CNN-based

features

Decision Tree 98 100 100 98

[34] Spiral-

Wave

2022 CNN-based

features

SVM 89 90 89 87

[1] Spiral 2022 CNN-based

features

SVM Spiral: 98.45 Spiral: 99 Spiral: 99 Spiral:

99

[43] Spiral-

Wave

2023 Siamese Networks

features

Meta-learning

framework

Spiral: 95,

Wave: 90

Spiral: 97.4,

Wave: 90.3

Spiral: 96.1,

Wave: 93.2

–

[36] Spiral-

Wave

2023 Faster RCNN,

BiGRU

WAE 98.82 97.75 94.13 92.64

[35] Spiral-

Wave

2023 CNN-based

features

Dense layer 97.70 98 98 98

[37] Spiral-

Wave

2023 CNN-based

features

FC layer 98 97 96 97

[3] Spiral-

Wave

2024 CNN-based

features

MLP 94 95 94 94

[2] Spiral-

Wave

2024 CNN-based

features

Ensemble voting

classifier

96.67 100 93.33 96.55

Proposed

approach

Spiral-

Wave

– CNN Fusion

features

NCA ? SVM 99.39 99.36 99.36 99.36
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Previous research has demonstrated that using CNNs as

feature extractors and SVM as the classifier outperforms

using CNN classification layers. In this study, the NCA

approach was implemented before SVM to filter out irrel-

evant features, discarding 83% of the features. Initially,

without NCA and SVM (Table 2), InceptionV3, Xception,

and InceptionResNetV2 showed high accuracies of

97.55%, 97.25%, and 96.64%, respectively. Upon applying

NCA and SVM (Table 3), these models either maintained

or improved their performance, with InceptionV3 and

Xception both achieving 97.55%, and InceptionResNetV2

increasing to 98.47%. Other models also saw significant

improvements: DenseNet201 from 81.35% to 96.02%,

MobileNetV2 from 77.06% to 93.88%, and EfficientNetB0

from 52.60% to 87.16%. ResNet50 saw a modest increase

in accuracy from 65.14% to 70.03%, while VGG16’s

accuracy remained low at 47.71%. Overall, the combina-

tion of CNN, NCA, and SVM enhanced the models’

performance.

An important contribution of this study is to demonstrate

that utilizing various combinations of transfer learning

models yields an effective approach to capturing hand-

writing geometric dynamics related to disease symptoms.

In this context, initially, binary combinations of these

transfer learning models were examined, and it was

observed that the features generated through these combi-

nations enhance model performance (Table 4). In this

regard, 5 different binary combinations, such as Incep-

tionV3 ? EfficientNetB0, achieved an impressive accuracy

of 99.1%. When the model combinations with the lowest

performance were investigated, pairing the VGG16 model,

which previously achieved a standalone accuracy rate of

47.71%, with the ResNet50 model, which has an accuracy

rate of 70.03%, resulted in the lowest accuracy rate of

71.6%. This suggests that utilizing the complementary

strengths of different models can result in improved per-

formance. To identify the best combination, it is essential

to consider the number of parameters, training time,

inference time, and FLOPs. Among the combinations,

InceptionV3 ? EfficientNetB0 and Xception ? NASNet-

Mobile emerge as the most efficient. The InceptionV3 ?

EfficientNetB0 combination has approximately 29.2M

parameters. EfficientNetB0’s design allows for faster

training and inference times, and its lower FLOPs enhance

computational efficiency. Similarly, the Xception ?

NASNetMobile combination has around 28.2M parame-

ters, offering even better parameter efficiency. This com-

bination also benefits from faster training and inference

times due to NASNetMobile’s efficient architecture and

low FLOPs, contributing to its computational efficiency.

When comparing these combinations, Xception ? NAS-

NetMobile stands out as the most efficient in terms of

parameters, computational demands, and speed. This

combination provides a balanced approach with high

accuracy and practical efficiency, making it the preferred

choice for applications that require optimal performance

with limited computational resources. In this context, the

effect of combining features obtained from different

transfer learning models in triple combinations was also

evaluated (Table 5). Among the experimental results, six

distinct combinations achieved the highest performance,

each with an accuracy of 99.39%. However, the combi-

nation of DenseNet201, Xception, and NASNetMobile

emerged as the most efficient model when considering

additional metrics. This combination has 43.5M parame-

ters, medium training and inference times, and low FLOPs,

maintaining lower computational costs while achieving the

same high accuracy as the other top-performing models. In

these experimental trials, similar to previous experimental

studies, the NCA approach was used after feature fusion,

and SVM was used for classification. The findings provide

valuable insight into the relationship between various

combinations of transfer learning models.

This study also contributes to identifying transfer

learning models that are compatible with one another and

lead to better feature extraction when utilized together.

Experimental results show that the Inception and Xception

models are compatible with other models and improve

performance. On the other hand, the VGG16 model exhi-

bits low performance for PD and adversely affects the

overall performance. Furthermore, it was discovered that

the ResNet50 model made no substantial contributions to

other models after VGG16 and had a minor impact on

overall performance. These findings give an important

insight for understanding transfer learning models’

behaviors and determining suitable combinations.

In addition, the t-SNE approach was used to assess the

proposed hybrid model’s performance qualitatively. The

t-SNE method maps the obtained feature vectors to a low-

dimensional space, positioning similar instances close to

each other and dissimilar instances far apart. In this con-

text, visualization using the feature set obtained from the

combination of DenseNet201, Xception, and NASNetMo-

bile, which achieved the highest accuracy, revealed the

feature set to be highly discriminative.

Finally, the proposed approach was compared with

state-of-the-art studies in the literature using the Parkinson

Hand Drawings dataset, as detailed in Table 6. This com-

parison evaluated models based on accuracy, precision,

sensitivity, and F1-score. Some of these studies focused on

spiral images, while others concentrated on both types or

developed separate models for each. The proposed hybrid

model achieved an outstanding accuracy of 99.39%, sur-

passing other studies with accuracy rates between 89% and

98.82%, highlighting its potential for clinical applications

in early and accurate PD diagnosis. The success of the
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proposed approach in this study lies in presenting an

innovative hybrid method that combines deep learning and

machine learning algorithms. Due to the limited number of

samples in the dataset, not all features obtained from

transfer learning models may be meaningful, and the fully

connected layers in these models can lead to overfitting. To

address this issue, the study extracts a combination of

features from different models and uses NCA to eliminate

less informative features. This enhances the model’s dis-

criminative power by selecting only the most relevant

features. In the classification stage, SVM is used to process

the enriched feature vectors. SVMs are effective in maxi-

mizing the margin between classes, making them less

prone to overfitting with small datasets. By integrating

various transfer learning models, selecting features effi-

ciently with NCA, and classifying robustly with SVM, this

approach ensures superior performance.

6 Future work

Future research will focus on applying the proposed hybrid

model to different health datasets to investigate its per-

formance across various medical conditions. This will

involve obtaining and analyzing datasets related to other

neurodegenerative disorders, cardiovascular diseases, and

various types of cancers to evaluate the model’s adapt-

ability and effectiveness in diverse medical contexts.

Furthermore, to enhance the model’s performance on

the new datasets to be utilized in future research, various

methods for both feature selection and classification will be

investigated. Specifically, methods such as principal com-

ponent analysis, linear discriminant analysis, and uniform

manifold approximation and projection will be considered

replacements for NCA. These methods will be evaluated

for their ability to retain the most informative features

while reducing dimensionality, ultimately aiming to

enhance classification accuracy and model efficiency.

Similarly, other classification models like decision trees,

random forests, k-nearest neighbors, logistic regression,

and gradient boosting models will be evaluated in place of

SVM. These models will be assessed for their performance

in terms of accuracy, robustness, and computational effi-

ciency. Additionally, ensemble methods that combine

multiple classifiers could be investigated to further improve

diagnostic performance.

Another promising direction for future research is the

application of generative adversarial networks (GANs) for

data augmentation and synthetic data generation. GANs

can significantly enhance the size and diversity of training

datasets, which is crucial for medical data that are often

scarce. By producing synthetic samples that mimic real

data, GANs provide a broader range of examples,

improving the training process. This is especially vital for

small datasets where traditional methods fall short. The use

of GANs helps mitigate overfitting, ensuring the model

remains robust and generalizable.

Finally, collaboration with healthcare professionals will

be sought to ensure the practical applicability of the model

in real-world clinical settings. This includes conducting

clinical trials to validate the model’s effectiveness and user

studies to gather feedback from medical practitioners. The

ultimate goal is to develop a user-friendly diagnostic tool

that seamlessly integrates into existing healthcare work-

flows, thereby aiding in the early detection and treatment of

various diseases.
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