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Abstract
Ensemble learning has become a cornerstone in various classification and regression tasks, leveraging its robust learning

capacity across disciplines. However, the computational time and memory constraints associated with almost all-learners-

based ensembles necessitate efficient approaches. Ensemble pruning, a crucial step, involves selecting a subset of base

learners to address these limitations. This study underscores the significance of optimization-based methods in ensemble

pruning, with a specific focus on metaheuristics as high-level problem-solving techniques. It reviews the intersection of

ensemble learning and metaheuristics, specifically in the context of selective ensembles, marking a unique contribution in

this direction of research. Through categorizing metaheuristic-based selective ensembles, identifying their frequently used

algorithms and software programs, and highlighting their uses across diverse application domains, this research serves as a

comprehensive resource for researchers and offers insights into recent developments and applications. Also, by addressing

pivotal research gaps, the study identifies exploring selective ensemble techniques for cluster analysis, investigating

cutting-edge metaheuristics and hybrid multi-class models, and optimizing ensemble size as well as hyper-parameters

within metaheuristic iterations as prospective research directions. These directions offer a robust roadmap for advancing

the understanding and application of metaheuristic-based selective ensembles.

Keywords Hybrid learning � Ensemble pruning � Optimization metaheuristics � Evolutionary computation �
Swam intelligence

1 Introduction

Ensemble learning, a powerful approach in machine

learning, involves combining multiple classification and

regression algorithms to enhance predictive performance

[1]. Notably, Fernández-Delgado et al. [2] have highlighted

ensemble learning as the state-of-the-art solution approach

for resolving a wide range of machine learning challenges,

particularly in classification tasks. Selective ensemble

learning, or ensemble pruning, further refines this approach

by strategically selecting a subset of base learners that

maintains or even outperforms the performance of the

entire ensemble [3].

As a matter of fact, the main challenge in selective

ensemble learning is how to come up with useful algorithms

that reduce the ensemble size without reducing generaliza-

tion performance in comparison with all-member ensembles

[4]. Three categories of ensemble selection techniques have

been found common, namely clustering-based [5], ordering-

based [6], and optimization-based techniques [7].

Optimization-based approaches, a focal point of our

study, involve solving an optimization problem P expressed

as a triple (S;X; f ). The search space S is defined over a

finite collection of decision variables V ¼ ðv1; v2; . . .; vGÞ.
The set of constraints/restrictions imposed on the variables

V is symbolized by X. Ultimately, f is the objective function

(sometimes called cost function or fitness function) that

assigns a value to each element/solution of S. For a maxi-

mization problem, the objective is to locate an optimal

solution s� 2 S such that f ðs�Þ� f ðsÞ; 8s 2 S, whereas for
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minimization, the optimal solution s� 2 S satisfies

f ðs�Þ� f ðsÞ; 8s 2 S. Optimizing more than one objective

function at the same time (i.e. multi-objective optimization)

is a common target in real-world situations [8].

In terms of ensemble pruning, optimization-based

methods attempt to locate the subset of base learners that

maximizes diversity by selecting the most diverse classi-

fiers to obtain a complementary subset of learners and/or

minimizes the ensemble error of a particular combination

rule [7]. Due to the practical importance of optimization

problems, many algorithms to tackle them have been

developed, including mathematical programming, proba-

bilistic-based, and metaheuristic/search-based methods [9].

Metaheuristics, multipurpose problem-solving tech-

niques, have emerged as effective tools for tackling opti-

mization problems, offering approximate solutions within a

reasonable timeframe [10, 11]. In terms of ensemble

learning, these high-level algorithms, including trajectory

and population-based approaches categorized in Fig. 1,

play a pivotal role in pruning problems. Previous studies

[12–18] demonstrate the success of metaheuristic-based

selective ensemble models across diverse domains.

In order to structure and understand the perspective of

metaheuristic-based selective ensemble learning, the pre-

sent study provides a comprehensive review of publications

over the past decade. While several reviews have explored

ensemble learning [3, 5, 19, 20] and metaheuristics [21],

[22], [23], [10], [24], [25] disjointly, none have thoroughly

examined the publications joining the 2 subjects together.

This paper aims to fill this gap by systematically catego-

rizing metaheuristic-based selective ensembles, identifying

common algorithms, and exploring their applications in

various fields, such as information technology, medical

applications, industrial engineering, financial management,

as well as agricultural and environmental applications. In

general, the key issues that the review aims to address

could be summarized as follows:

• Introducing a comprehensive review that address cru-

cial research aspects that assess the advancements and

the real-world applications of metaheuristics in ensem-

ble pruning. In other words, it provides a comprehen-

sive understanding of the current state of the field.

• Methodologically, categorizing metaheuristic-based

selective ensembles and systematically identifying the

common employed algorithms and software programs

so as to provide the active body of researchers and

practitioners with a concrete structured overview.

• Exploring and categorizing the criteria used to guide the

selection of base learners, the practical fields of

applications, and the future research directions.

It could be said that the current review not only con-

tributes to a deeper understanding of recent advancements

but also serves as a valuable guide for researchers and

practitioners. By addressing crucial research aspects, cat-

egorizing methodologies, and highlighting application

domains, the present study aims to offer insights into

prevalent trends and future directions in the dynamic realm

of metaheuristic-based selective ensembles within ensem-

ble learning.

After this introductory section, the rest of this paper is

structured as follows. A brief background on metaheuris-

tics and ensemble selection is provided in Sect. 2. An

exposition of review methodology and selection strategy of

publications is given in Sect. 3. Section 4 provides a brief

review of the preliminary statistics and publishing trends of

metaheuristic-based selective ensembles. Section 5 intro-

duces a taxonomy of technical developments in meta-

heuristic-based selective ensembles. Following that, a

thorough discussion of how metaheuristic-based selective

ensembles is employed in real-world practical contexts is

outlined in Sect. 6. Section 7 discusses the study’s main

results, followed by Sect. 8 which is dedicated to dis-

cussing the challenges and factors influencing the gener-

alization of metaheuristic-based selective ensembles across

diverse domains and practical contexts. Finally, Sect. 9

summarizes the main conclusions and offers some sug-

gestions for future research directions.

2 Brief background on metaheuristics
and ensemble selection

In terms of ensemble learning, the fundamental idea behind

metaheuristics is to assign each individual learner a weight

that measures how beneficial it would be to include that

learner in the final ensemble. With respect to N individual

learners, the weights can be arranged as an N-dimensional

vector, wherein small elements in the weight vector indi-

cate that the associated learners are candidates to be

ignored. One ensemble pruning solution, therefore, corre-

sponds to one weight vector. The foremost objective in this

situation is to identify the optimal weight vector for

choosing selective ensembles. It is crucial to remember that

learners’ weights may be configured as integer, float, or bit-

encoded vectors. Nonetheless, if the objective is to only

select learners to be included in the final aggregated

decision and those to be excluded, without using any

threshold, the bit-encoded ones (i.e. 0, 1) are frequently

employed [9].

In their algorithmic design for search process, meta-

heuristics usually make use of what is referred to as

‘‘neighbouring search’’ which is a well-known notion in

optimization algorithms. The essential principle of this

concept is that a set of solutions can be attained from the

current one by making use of the considered search
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operators, if the neighbourhood of a particular solution is

defined. The search is over when a predetermined stopping

criterion is satisfied [22].

Metaheuristic search is typically conducted using either

trajectory-based or population-based approaches. The

primary distinction between the 2 types is based on how

many tentative solutions are used at each stage of the

iterative search process. The following subsections are

devoted to introducing a brief background to representative

methodologies of both types as well as their employment

with regard to selective ensemble learning.

Fig. 1 Taxonomy of selective ensemble learning methods. (The listing of metaheuristic algorithms shown is not, by any means, inclusive.)
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Algorithm 1 Generic algorithm of trajectory-based approaches

Algorithm 2 Generic algorithm of population-based approaches

2.1 Trajectory-based selective ensembles

Trajectory-based metaheuristics are often used to identify a

locally optimal solution rapidly, and as a result, they are

also known as exploitation-oriented methods since they

facilitate intensification in the search space, by locally

upgrading good-quality acquired solutions [22, 24]. Most

common trajectory-based methods include hill-climbing

[26], simulated annealing [27], Tabu search [28], greedy

randomized adaptive search procedure (GRASP) [29],

variable neighbourhood search (VNS) [30], and iterated

local search [31]. Details about all of these algorithms

could be found at [10].

As depicted in Fig. 2, the majority of trajectory-based

algorithms adhere to the same procedures. In general, a

trajectory-based approach starts with one candidate solu-

tion and replaces it, at each iteration, with a new one (often

the best found in its neighbourhood) by employing modi-

fication operators of the algorithm. According to the liter-

ature, the variation of trajectory-based algorithms is in how

they alter/modify the current solution. Formally, the overall

procedure of trajectory-based algorithms proceeds as

shown in Algorithm 1.

When it comes to selective ensembles, algorithms of this

category typically begin with an initial solution (i.e. initial

weight vector or bit-encoded vector) and incrementally

Fig. 2 General flow chart of trajectory-based ensemble selection
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make some variations using modification operators of the

algorithm so as to enhance the current solution. The

objective function of the metaheuristic algorithm evaluat-

ing that solution provides the foundation for these modi-

fications. When the algorithm achieves a local optimum,

which means that no more improvements can be obtained

with the present set of possible moves, the algorithm stops

making further adjustments.

2.2 Population-based selective ensembles

In contrast to trajectory-based methods, population-based

metaheuristics typically work with a collection of potential

solutions. At each iteration, as depicted by the flow chart in

Fig. 3 and algorithm in Algorithm 2, these solutions are

modified and updated based on certain guidelines. Further,

recombining solutions is permitted by the population

paradigm in an effort to improve results by using the salient

features of the initial solutions. Each iteration involves

replacing some of the population’s solutions with newly

produced ones, frequently the best ones, or with some

solutions that have been chosen using a predetermined

quality-based criterion. It could be said that population-

based metaheuristics utilizes a group of search agents

instead of a single one in order to take advantage of

cooperation and parallelism in the search mechanism.

Accordingly, they are commonly known as exploration-

oriented methods [22].

In terms of population-based selective ensembles,

according to most of the literature, the algorithm proceeds

as follows. Firstly, an initial collection of weight vectors

(or bit-encoded vectors) is selected or designed at random.

The quality of each weight vector is then evaluated,

depending on the performance of the relevant ensemble on

validation data. The weight vectors are then improved

using operators of variation/improvement, and the pro-

cesses continue until convergence or satisfying a prede-

termined stopping criterion. In order to create the selective

ensemble, the best weight vector is decoded, and learners

with low weights are removed.

Even though they mostly adhere to the same procedures,

population-based metaheuristics could be divided into

many groups, including evolutionary computation, swarm

intelligence, biological-based, chemical-based, nature-in-

spired, and physics-based algorithms. They generally

diverge in terms of where they get inspiration from, and the

processes that they employ to create new generations of

improved solutions [21]. The present study is interested

only in evolutionary computation and swarm intelligence.

2.2.1 Evolutionary computation

Evolutionary computation refers to a set of algorithms

motivated by the process and mechanisms of biological

evolution. They draw inspiration from evolutionary con-

cepts such as natural selection and survival of the fittest.

They commonly share adaptation-related characteristics

through an iterative process that accumulates and amplifies

beneficial variation through a process of trial and error

[32].

The following is how evolutionary algorithms operate.

An ever-evolving collective learning procedure is applied

to a population of candidate solutions, each of which rep-

resents a search point in the space of possible solutions. In

phases known as generations, the population is randomly

seeded and then subjected to the processes of selection,

recombination (crossover), and mutation. As a result, the

population evolves towards better-suited areas of the

search space where new generations are produced. So as to

advance the search process, the population’s fitness gets

evaluated, solutions with the best fitness values are chosen,

and they are combined to form new candidate solutions

with a higher probability of better fitness. The solution

eventually converges after a certain number of generations,

and the one with the highest fitness value denotes an

optimal or nearly optimal solution [22], [33], [34].

In fact, genetic algorithm (GA) [35, 36], differential

evolution [37], gene expression programming [38], evolu-

tionary strategies [39], and estimation of distribution

algorithm [40] are just a few instances of the numerous

representative methods of evolutionary computation.Fig. 3 General flow chart of population-based ensemble selection
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2.2.2 Swarm intelligence

Swarm intelligence refers to a set of distributed problem-

solving algorithms motivated by the cooperative group

intelligence of swarms. Swarm intelligence systems are

often composed of a population of autonomous and self-

organizing agents, or entities that are capable of complet-

ing certain tasks, interacting with one another and their

immediate surroundings. The emergence of global beha-

viour frequently results through local interactions among

such agents, even though there is typically no centralized

control structure mandating how individual agents should

behave [8, 21], [41].

Similar to evolutionary algorithms, swarm intelligence

models are initialized with a population of potential solu-

tions that are then modified over many generations by

imitating the social behaviour of insects or other animals in

order to locate the optimal solution. Instead of using evo-

lutionary operators, as is the case with evolutionary algo-

rithms, swarm intelligence techniques use possible

solutions that fly around the search space by adjusting to

their surroundings and interacting with other population

members [34], [10].

Examples of swarm intelligence algorithms include,

among others, ant colony optimization [42], artificial bee

colony [43], firefly [44], bat [45], fireworks [46], particle

swarm optimization (PSO) [47], cuckoo [48], glowworm

(Y. [49], ant lion [50], moth-flame [51], salp swarm [52],

crayfish [53], and puma optimizer [54].

3 Review methodology and selection
strategy

Pursuant to Fahimnia et al. [55], the purpose of literature

reviews is to map, evaluate, and highlight the knowledge

gaps and to emphasize the limitations of current knowl-

edge. Selecting pertinent search terms, reading the litera-

ture, and then completing the analysis are all steps in the

process of conducting systematic literature reviews. In

contrast to conventional narrative reviews, systematic

reviews employ a repeatable, scientific, and objective

process that eliminates selection bias by conducting an in-

depth literature search. Accordingly, inspired by Haixiang

et al. [56], the review is conducted following the process

illustrated in Fig. 4.

To fulfil the study’s primary objectives outlined in the

Introduction, the research addresses various facets of the

current advances concerning the use of metaheuristics in

ensemble pruning. The following points encapsulate the

key aspects of investigation:

• Examining the main categories of metaheuristic-based

selective ensembles.

• Determining the algorithms with superior track records

and frequent usage in metaheuristic-based selective

ensembles.

• Investigating the criteria employed in selecting the base

learners for the selective ensemble model.

• Identifying the most frequently utilized software pro-

grams for metaheuristic-based selective ensemble

modelling.

• Exploring methodologies for evaluating the perfor-

mance of metaheuristic-based selective ensembles.

• Analysing the practical applications of metaheuristic-

based selective ensembles in real-world settings.

• Exploring implementation challenges and limitations of

metaheuristic-based selective ensembles.

• Delving into prospective research directions for advanc-

ing metaheuristic-based selective ensembles.

After identifying the research questions, the 2-level

searching process displayed in Table 1 is conducted on

Scopus, an Elsevier’s abstract and citation database, using

the methodology described by Fahimnia et al. [55] to

collect pertinent research studies published between 2013

and July 2023.1 On the first search level, the initial query is

applied on the ‘‘title, abstract, keywords’’ fields. Then, the

searching outcomes are further searched for the study’s

indexed keywords using the filter query to order to draw

more accurate analysis conclusions.

Following the initial search, which returned 1673

research results, the filtering procedure yielded 1109

research results. The search space is then restricted to

English-language ‘‘journal’’ and ‘‘conference’’ papers only,

excluding book series and chapters. This whittled down the

raw data set to 1053 papers representing the main source of

information for literature study with regard to ensemble

selection in general. The publications of ensemble pruning

that regards such metaheuristic-based methods are then

identified through the following selection strategy.

Fig. 4 Research process of the study’s review

1 Publications are extracted on 24th July 2023.
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The studies included for this review ought to make use

of such a metaheuristic-based ensemble approach, and they

should offer the barest amount of information regarding the

suggested search approach to ensemble selection. Mean-

while excluded from the screening process are publications

that are not available or inaccessible through an online

repository. Additionally, publications that do not directly

address the topic at hand are also disregarded.

So as to find the publications that should be considered

for the review, the above-mentioned technical filtering

procedure has been carried out using Pandas dataframes.2

To be taken into account, an abstract of an extracted

publication must contain at least one word from the

inclusion_list3 and must not contain any words from the

exclusion_list.4 The dataset was reduced by this approach

to 287 publications. A manual filtering procedure is then

used to remove papers that are not pertinent or those could

not be reached. The final 201 research papers deemed

relevant after that analysis were eventually moved on to the

next step of the reviewing process. Additionally, the

inclusion list is expanded by 29 papers based on cross-

referencing, bringing the total number of publications

reviewed to 230. It is worthy to emphasize that papers

employed metaheuristics in their ensemble learning pro-

cess but not during the ensemble pruning stage are regar-

ded as being out of the scope of the current review.

4 Selective ensembles: preliminary statistics
and bibliometric analysis

This section is devoted to introducing some preliminary

statistics and the trends for metaheuristic-based selective

ensembles. In particular, it offers a preliminary biblio-

metric analysis of the 230 publications that are chosen, of

which 66% are journal articles and 34% are conference

papers. The following subsections are covering distribution

of publications over years (subSect. 4.1), top contributing

affiliated countries (subSect. 4.2), top contributing co-au-

thors (subSect. 4.3), co-occurrence network of indexed

keywords (subSect. 4.4), and top-cited publications

(subSect. 4.5).

4.1 Distribution of publications over time

Plotting the number of papers chronologically from 2013 to

July 2023 reveals the publishing trend shown in Fig. 5.

Except for a single significant drop in 2018, the gradual

increase in the trend indicates that metaheuristic-based

selective ensemble learning is an active field of research.

Additionally, the preliminary data show that the selected

publications are appeared in 159 journals and conference

proceedings with 59 publishers. Figure 6 shows the top 10

publishers with (198 papers). It could be seen that most

studies have been published by Institute of Electrical and

Electronics Engineers (IEEE) (32%), Elsevier (28%), and

Springer (22%).

Figure 7 presents the top 10 journals/conferences based

on the total contribution of each journal. These journals

covered about 26% (i.e. 61 paper) of all selected publica-

tions in the past decade. It is worth noting that the majority

of them are highly esteemed journals/conferences in the

fields of computer science, artificial intelligence,

Table 1 Scopus search queries used for the publication selection process

Initial

query

‘‘search-based ensemble’’ OR ‘‘searched ensemble’’ OR ‘‘evolutionary ensemble’’ OR ‘‘meta-heuristic ensemble’’ OR

‘‘metaheuristic ensemble’’ OR ‘‘optimization-based ensemble’’ OR ‘‘optimisation-based ensemble’’ OR ‘‘selective ensemble’’ OR

‘‘ensemble selection’’ or ‘‘ensemble pruning’’ or ‘‘prune ensemble’’ OR ‘‘reduce ensemble’’ OR ‘‘ensemble reduction’’ OR

‘‘optimize ensemble’’ OR ‘‘optimise ensemble’’ OR ‘‘ensemble optimization’’ OR ‘‘ensemble optimisation’’ OR ‘‘ensembles

pruning’’ OR ‘‘prune ensembles’’ OR ‘‘reduce ensembles’’ OR ‘‘ensembles reduction’’ OR ‘‘optimize ensembles’’ OR ‘‘optimise

ensembles’’ OR ‘‘ensembles optimization’’ OR ‘‘ensembles optimisation’’ OR ‘‘ensembled pruning’’ OR ‘‘prune ensembled’’ OR

‘‘reduce ensembled’’ OR ‘‘ensembled reduction’’ OR ‘‘optimize ensembled’’ OR ‘‘ensembled optimization’’ OR ‘‘ensembling

pruning’’ OR ‘‘prune ensembling’’ OR ‘‘reduce ensembling’’ OR ‘‘ensembling reduction’’ OR ‘‘optimize ensembling’’ OR

‘‘ensembling optimization’’ OR ‘‘optimise ensembling’’ OR ‘‘ensembling optimisation’’ OR ‘‘classifiers pruning’’ OR ‘‘classifiers

reduction’’ OR ‘‘classifier selection’’ OR ‘‘selective classifiers’’.

Filter

query

‘‘ensemble learning’’ OR ‘‘selective ensembles’’ OR ‘‘ensemble pruning’’ OR ‘‘ensemble selection’’ OR ‘‘classifier fusion’’ OR

‘‘selective ensemble’’ OR ‘‘ensemble classification’’ OR ‘‘multiple classifiers’’ OR ‘‘multiple classifier systems’’ OR

‘‘heterogeneous ensembles’’ OR ‘‘ensemble classifier’’ OR ‘‘ensemble methods’’ OR ‘‘selective ensemble learning’’ OR

‘‘ensemble of classifiers’’ OR ‘‘classifier ensembles’’ OR ‘‘ensemble forecasting’’ OR ‘‘ensemble optimization’’ OR

‘‘optimization’’ or ‘‘optimization algorithms’’ OR ‘‘evolutionary algorithms’’ OR ‘‘heuristic algorithms’’.

2 The analytical work is conducted by Python 3.10.9 programming

language under Spyder (5.4.3) as a working platform, and nltk (3.7.2)

as well as pandas (1.5.3) as implementation libraries.
3 Inclusion_list = [’meta-heuristic’, ’Metaheuristic’, ’heuristic’,

’evolutionary’, ’genetic’, ’swarm’, ’trajectory-based’, ’population-

based’, ’search-based’, ’search based’].
4 Exclusion_list = [’clustering-based’, ’cluster ensemble’, ’clustering

ensemble’, ’mathematical-based’, ’mathematical programming’,

’probabilistic-based’, ’probabilistic ensemble’, ’ordered-based’,

’ordering-based’, ’ordered ensemble’, ’ranking-based’].
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engineering, operations research, and knowledge discov-

ery. This further demonstrates how the research of selective

ensemble learning has incorporated methods from the

computer science community and real-world applications

from a variety of fields.

4.2 Top contributing affiliated countries

Depending on author affiliations, Fig. 8—which is pro-

duced using the Datawrapper tool [57]—depicts the

geographical locations of the top contributing countries in

the 230 selected publications. The geographical dispersion

makes it abundantly evident that organizations and

research institutions around the world have expressed

interest in metaheuristic-based selective ensemble mod-

elling. As indicated by the colour legend showing the

percentage of publications, greater contributions are made

by authors affiliated with Chinese institutions, with 31% of

all selected publications. The USA comes second (7%),

Brazil (6%), and the UK (5%). Then, with 4% of selected

Fig. 5 Publishing trend of

metaheuristic-based selective

ensembles

Fig. 6 Top publishers

contributing to publications of

metaheuristic-based selective

ensembles

Fig. 7 Treemap of top 10 journals/conferences contributing to publications of metaheuristic-based selective ensembles
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publications, the third group of authors are affiliated to

Canada, India, and Iran.

4.3 Top contributing co-authors

To form the collaboration network of authors who con-

tribute to the publications of metaheuristic-based selective

ensembles, co-authors of the chosen publications are all

collected. Each identified author is therefore listed along

with her/his co-authors. Then, the toolkits Gephi [58] and

VOSviewer [59] are used to create the graph, shown in

Fig. 9, and calculate nodes degrees (i.e. the number of

connections that the node has to other nodes in the net-

work) as well as the overall link weight (i.e. the total

number of pairwise occurrences in selected publications).

The size of nodes reflects the node degree, while the link-

width represents to the connection weight.

It could be seen, from this graph, that Zhu, Xuhui; Tang,

Jian; Liang, Jing; Hu, Yi; Nguyen, Tien Thanh; Ni, Zhiwei;

and Krawczyk, Bartosz; are in general the most collabo-

rative authors in the field within the period under consid-

eration. Table 2 illustrates the top 10 joint authors based on

link weights. The most prominent joint authors are Zhu,

Xuhui, and Ni, Zhiwei, followed by Krawczyk, Bartosz,

and Woźniak, Michał.

4.4 Co-occurrence network of indexed keywords

The indexed keywords5 from the selected publications are

all collected to form a co-occurrence network. A minimum

of 2 pairwise occurrences is required to include joint

keywords in the analysis. Each identified keyword is

therefore listed along with the other keywords that are

occurred with it, and then, the network of the collected

keywords is generated using Gephi and VOSviewer

toolkits. Figure 10 reveals that genetic algorithms, learning

systems, evolutionary algorithms, classification, particle

swarm optimization, algorithms, and learning algorithms

are the most often used technical keywords overall.

A significant portion of the selected publications are

generally dealing with classification-related issues and

primarily employing evolutionary metaheuristics, particu-

larly genetic ones. The graph also shows that the most

popular algorithms for swarm intelligence are particle

swarm optimization (PSO) and ant colony optimizer. From

the application perspective, the most commonly utilized

keywords are anomaly detection, image analysis, digital

storage, credit scoring, and medical diagnosis, especially

breast cancer.

With regard to the joint occurrences, based on total link

weights, Table 3 displays the most popular 10 joint

indexed keywords. It could be seen that evolutionary

algorithms with learning systems as well as classification

with genetic algorithms both are coming together on the

5 Indexed keywords are the classification keywords used by Scopus.

Fig. 8 Geographical locations of the top contributing affiliated countries
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top of the list. Accordingly, the usage of all the mentioned

keywords could enable accurate indexing and searching for

papers pertaining to metaheuristic-based selective

ensembles.

4.5 Top-cited publications

Focusing on citations,6 the top 10 cited papers of meta-

heuristic-based selective ensembles from 2013 to July 2023

are: [60, 61], [62–65], [66–68] and [69].

The paper of Krawczyk et al. [60] entitled ‘‘cost-sensi-

tive decision tree ensembles for effective imbalanced

classification’’ is identified as the most cited paper. In this

study, an effective ensemble design algorithm is proposed

for imbalanced classification based on cost-sensitive

learning and random feature subspaces. It is a technical

paper where the authors propose effective framework for

ensemble selection by the use of evolutionary algorithm to

optimize a cost-sensitive ensemble decision trees (DTs).

The investigation also shows that the paper ranks second

is the one entitled ‘‘A hybrid ensemble pruning approach

based on consensus clustering and multi-objective evolu-

tionary algorithm for sentiment classification’’ by Onan

6 Citations are retrieved from the bibliometric data of the selected

publications, as identified on 24th July 2023.

Fig. 9 Authoring collaboration network of metaheuristic-based selective ensembles

Table 2 Top 10 co-authors in metaheuristic-based selective ensem-

bles literature

Author 1 Author 2 Link weight

Zhu, Xuhui Ni, Zhiwei 8

Krawczyk, Bartosz Woźniak, Michał 6

Zhu, Xuhui Ni, Liping 5

Zhu, Xuhui Jin, Feifei 5

Zhu, Xuhui Cheng, Meiying 5

Tang, Jian Liu, Zhuo 5

Tang, Jian Chai, Tianyou 5

Tang, Jian Yu, Wen 5

Zhu, Xuhui Li, Jingming 4

Krawczyk, Bartosz Schaefer, Gerald 3
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et al. [61]. The study aims to build an efficient sentiment

classification technique, by developing a new hybrid

ensemble pruning model that utilizes both multi-objective

Pareto-based evolutionary algorithm and clustering

techniques.

Additionally, the study entitled ‘‘A novel multi-stage

hybrid model with enhanced multi-population niche

genetic algorithm: An application in credit scoring’’ by W.

Zhang et al. [65] is the third in citation ranks. In this study,

a novel multi-stage hybrid ensemble model is proposed

based on an enhanced multi-population niche GA. It is

evident that the model is efficient especially with regard to

the prediction of credit scoring.

5 Metaheuristics and ensemble selection:
recent technical contributions

After conducting the preliminary systematic analysis based

on the 230 papers selected as described in Sect. 3, and in

order to ensure a comprehensive coverage of the in-depth

review that follows, a robust selection process is employed

to evaluate and identify the more significant publications

Fig. 10 Network of keywords co-occurrence in metaheuristic-based selective ensembles publications

Table 3 Top 10 joint keywords in metaheuristic-based selective

ensembles literature

Keyword 1 Keyword 2 Weight

Learning systems Evolutionary algorithms 29

Classification Genetic algorithms 26

Learning systems Genetic algorithms 24

Learning systems Learning algorithms 23

Learning systems Classification 21

Learning systems Artificial intelligence 19

Optimization Evolutionary algorithms 18

Classification Evolutionary algorithms 17

Learning systems Particle swarm optimization 15

Forecasting Genetic algorithms 15
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for inclusion. In the first place, priority is given to incor-

porating the top 50 cited papers representing fundamental

works that have considerable impacts on the topic at hand.

Then, in order to acknowledge the most recent develop-

ments in the field, the rest of publications is evaluated,

resulting in adding 39 more publications from the years

2022–2023. The final selected list of publications is, by no

means inclusive, representing the outcome of a screening

process to evaluate, uncover and group related studies, and

give priority to those with original research or distinct

viewpoints.

Based on a total of 89 publications reviewed, this sec-

tion is dedicated to summarizing those that introduce novel

technical developments with regard to metaheuristic-based

selective ensemble learning (38 publications). The rest of

the selected publications covering real-world applications

will be reviewed in Sect. 6.

In the sequel, publications contribute to technical

aspects are categorized into 3 groups based on the branch

of metaheuristics that authors deploy. Table 4 summarizes

the published technical developments that handling tra-

jectory-based selective ensembles. Table 5 provides a

summary of those concerned with evolutionary-based

selective ensembles. Finally, Table 6 is specified for those

interested in swarm-based selective ensembles. For every

publication, the corresponding table demonstrates citation,

objectives and main contribution, applied techniques, and

models’ performance measures.7

6 Metaheuristic-based selective ensembles
in real-world applications

The main purpose of this section is to provide an overview

of the practical contributions found in the publications of

metaheuristic-based selective ensembles during the past

decade (57% of the 89 publications selected). It should be

mentioned that some of these publications contribute the-

oretically to the domain and then apply the newly devel-

oped models on specific real-world applications.

Overall, 5 main practical domains are covered based on

the percentage of practical publications found in the

selected literature. They could be arranged in descending

order, as illustrated in Fig. 11, as follows. Information

technology is the subject of 27% of applications, medical-

based applications (24%), industrial engineering (20%),

financial management (14%), and agricultural and envi-

ronmental applications representing (8%).

6.1 Information technology applications

In this study, the applications of metaheuristic-based

selective ensembles in information technology are cate-

gorized into 3 groups, involving human-based activity and

emotion recognition, software engineering, and image-

based applications.

Concerning human-based activity recognition, Fatima

et al. [70] provide a new methodology for activity recog-

nition in smart homes by using a GA to optimize the output

generated by the multiple classifiers. For emotion recog-

nition, He et al. [71] suggests a novel Firefly-integrated

optimization algorithm to recognize different types of

emotions. A ranking probability objective function is

employed by the proposed algorithm to ensure adequate

recognition accuracy with minimal features. Darekar et al.

[72] introduces a novel and automated speech-emotion

recognition model based on an ensemble of neural net-

works and a newly proposed optimization technique called

‘‘Arithmetic Exploration updated Wild-Beast Model’’.

In terms of software engineering, Krawczyk and Woź-

niak [73] develop a new evolutionary-based ensemble

model for malware detection by using cost-sensitive clas-

sification trees and random feature subspaces. Also, Jodavi

et al. [74] introduce a novel ensemble-based anomaly

detection method called ‘‘DbDHunter’’ for detecting drive-

by download attacks. Jodavi et al. [75] suggest a new

binary classifier ensemble to detect obfuscated JavaScript

code based on PSO. Mauša and Galinac [76] analyse the

performance of evolving diverse ensembles using genetic

programming for software defect prediction with unbal-

anced data, by using colonization and migration operators

in conjunction with 3 ensemble selection strategies for the

multi-objective evolutionary algorithm. Malhotra and

Khanna [77] present 4 ensemble learning algorithms by

merging 7 separate PSO-based classifiers as ensemble

constituents to forecast software change.

Furthermore, based on omni-ensemble learning, a new

Bagging method for class-imbalance learning is devised by

Mousavi et al. [78] for software defect prediction. Tajoddin

and Abadi [79] suggest a new method for detecting

anomalous malware in registry data. To identify known and

particularly unknown malware that manipulate registry

keys and values for malevolent purposes, the proposed

model employs an ensemble classifier made up of multi-

nomial classifiers. Recently, Jadhav et al. [80] propose a

3-phase selective ensemble methodology by using omni-

ensemble learning to predict software effort in industrial

and manufacturing processes.

When it comes to image-based applications, based on

GA and SVMs, a new hybrid evolutionary framework is

proposed by Goh and Thing [81] to select the best features7 The most important of these performance measures are defined in

Sect. 7.
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and classifiers for detecting image tampering in digital

forensics. In addition, Zhao et al. [82] offer a new multi-

objective sparse ensemble learning model for remote

sensing image change detection where an evolutionary

multi-objective GA is exploited to find sparse ensemble

classifiers with strong performance.

Another research that might be included in this category

is the work conducted by Ramos et al. [83] for the purpose

of classifying motor imagery in brain-computer interface

applications. In this research, different designs of classifier

ensembles are assessed and compared with other approa-

ches on 3 different subjects.

6.2 Medical-based applications

For the medical-based applications, research studies con-

ducted for breast cancer diagnosis are of the top category.

By employing different techniques, many studies have

been developed to provide new frameworks and medical

decision systems for the early detection of breast cancer.

For example, cost-sensitive DTs based on GA is the main

framework used by Krawczyk et al. [84] and Krawczyk

et al. [85] as well. Support vector data description, random

subspace, and memetic firefly-based algorithm are the main

components of the medical system suggested by Krawczyk

and Filipczuk [86]. Naı̈ve Bayes, KNN, random forest, and

SVMs are used as base learners in the stacking-based

Table 4 Summary of technical publications introducing trajectory-based selective ensembles

Source Study’s objectives and main contributions Base learners Ensemble

strategy

Ensemble

optimization

Final model

performance

measure

[150] A new ensemble pruning methodology is

presented based on Randomized Greedy

Selective Strategy and Ballot in order to

improve the limitations of the directed

Hill-Climbing algorithm

Artificial neural networks

(ANNs)

Ballot voting

with

randomized

greedy

selective

strategy

Hill-

climbing

Error counts

[151] A novel measure known as ‘‘Human-Like

Foresight’’ is proposed and used for

ensemble pruning with Hill-Climbing

optimization algorithm

DTs, K-nearest neighbours

(KNN), Naı̈ve Bayes,

Multilayer Perceptron, and

Support Vector Machines

(SVMs)

Soft voting Hill-

climbing

Accuracy

[152] A new algorithm (GraspEns) is developed

for ensemble selection. The suggested

approach is improved by the random

factor incorporated into it to realize multi-

start searching and applicably enlarge the

search range of the greedy approaches

DTs AdaBoost GRASP Error rates

[153] A unique randomized greedy ensemble

pruning method is created to expand the

search space of the traditional directed

Hill-Climbing ensemble pruning while

keeping the same level of temporal

complexity

Circular back-propagation

networks

Majority voting Hill-

climbing

Misclassification

percentages

[154] A novel margin-based measure is proposed

to regulate the directed search of

ensemble pruning

DTs Bagging Hill-

climbing

Margin-based

measure

[105] Together with path-relinking, Variable

Neighbourhood Search and GRASP

algorithms, a unique greedy randomized

dynamic ensemble selection technique is

proposed

Extreme learning machine

(ELMs)

Bagging GRASP and

path-

relinking

algorithm

Error rates

[106] Instead of choosing the classifiers with the

highest competence under certain criteria,

a distinctive dynamic ensemble algorithm

is suggested to generate a greedy

randomized selection of relevant

classifiers to form the ensemble

SVMs Majority voting Path-

relinking

and

GRASP

algorithms

Error rates
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Table 5 Summary of technical publications introducing evolutionary-based selective ensembles

Source Study’s objectives and main

contributions

Base learners Ensemble strategy Ensemble optimization Final model

performance

measure

[155] Without applying any class

decomposition techniques, a

new Genetic-based ensemble

pruning algorithm (GAB-EPA)

is proposed for multi-class-

imbalanced problems

DTs Weighted voting GA G-mean, multi-

class AUC,

sensitivity

[156] A new method called ‘‘classifier

ensemble based on subspace

learning (CEBSL)’’ is presented

to improve the performance of a

predetermined classifier based

on a given dataset

KNN, linear

discriminant

analysis,

multilayer

perceptron, and

SVMs

Majority voting GA Accuracy

[62] A two-step approach is developed

for evolving ensembles using

Genetic Programming for

unbalanced data. The approach

combines multiple Pareto-

approximated front members

into a single genetic solution to

represent the optimal ensemble

Naı̈ve Bayes and

SVMs

AdaBoost, Bagging,

Composite Vote

Function (CSVote),

and Composite

Logical Function

(CSLogic)

Genetic programming G-mean

[60] An effective ensemble design

algorithm is developed for

imbalanced classification based

on cost-sensitive learning and

random feature subspaces

DTs Weighted voting Evolutionary algorithm Accuracy and

ROC analysis

[157] Based on a two-part structure GA,

a novel algorithm for classifier

as well as feature selection is

introduced in order to reduce

misclassification rates in multi-

classifier systems,

KNN, linear

discriminant

analysis, and

naı̈ve Bayes

Test several combining

rules, such as Voting,

Min, Max, Median,

and Product

GA Error rates

[158] A new general framework is

developed to formulate the

classifier ensemble problem with

both sparsity and diversity

learning dimensions

ANNs Test several techniques,

such as bagging,

sparsity learning, and

AdaBoost

GA Precision,

F-measure,

Sensitivity, and

Sparsity

[159] The ensemble selection task is

carried out based on the

weighted accuracy and diversity

(WAD) technique, and a new

developed measure is used to

assess the quality of the

classifier ensemble

DTs Bagging GA and hill-climbing Harmonic mean of

accuracy and

diversity

[160] A new algorithm, called

LARSEN-ELM, is developed to

deal with the unavoidable weak

robustness of classical ELMs for

blended data

ELMs Weighted average GA Mean square error

[161] Using 20 benchmarking

databases, a new approach

called ‘‘Classifier Subset

Selection’’ is introduced for

ensemble pruning based on an

evolutionary algorithm

DTs, KNN, naı̈ve

Bayes, random

forest, repeated

incremental

pruning, and

SVMs

Stacking Estimation of distribution

algorithm

Accuracy

[162] By combining static and dynamic

selection strategies based on a

multi-objective GA, a new

Test 46

heterogeneous

base classifiers

Test several combining

rules, such as Voting,

GA Accuracy
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Table 5 (continued)

Source Study’s objectives and main

contributions

Base learners Ensemble strategy Ensemble optimization Final model

performance

measure

hybrid methodology for

ensemble learning is provided

Min, Max, Median,

and Product

[163] So as to avoid the computational

burden of an exhaustive search,

subforest selection technique is

proposed to reduce the size of

base learners with maintaining

high accuracy as well

DTs Decision forest GA Accuracy

[63] By means of GA, a new pruning

method that combines several

diversity matrices is proposed

Multilayer

perceptron

Bagging GA Accuracy

[61] Based on selective ensembles, an

efficient sentiment classification

technique is developed. The

proposed method involves

hybrid ensemble pruning that

utilizes both multi-objective

Pareto-based evolutionary

algorithm and clustering

techniques

Bayesian logistic

regression, naı̈ve

Bayes, KNN, and

DTs

Majority voting Pareto-based evolutionary

algorithm

Accuracy

[164] For multi-class problems, a novel

evolutionary ensemble-based

technique called evolutionary

inversion of class distribution in

overlapping areas for multi-

class-imbalanced learning is

introduced

DTs Bagging and AdaBoost GA G-mean

[165] For classification purposes, a

novel self-adaptive stacking

ensemble model (SSEM) is

proposed

DTs, Naı̈ve Bayes,

Logistic

Regression, and

Random Forest

Stacking GA Accuracy, AUC,

F-measure,

Matthew’s

correlation

coefficient, and

Sensitivity

[166] To generate a collection of

optimum neural networks, a

novel learning technique based

on metaheuristics is suggested

for constructing an ensemble

system. The main purpose of the

suggested model is to reduce the

amount of time needed for

optimization

Feedforward neural

networks

A new proposed

combining method

similar to Bagging and

Boosting

Master–Slave optimization

algorithm

Root mean square

error

[68] In order to accomplish precise and

reliable time series forecasting, a

novel ensemble deep learning

model is proposed where base

learners are improved through a

new dynamic error correction

method

Evolutionary deep

neural networks

Stacking with Kernel

Ridge Regression as

meta-learner

Non-dominated sorting

genetic algorithm II

(NSGA-II)

Multiple measures

of error rates

[167] To enhance the quality of the

selective ensemble and shorten
the training time for neural

networks, a multi-objective

evolutionary ensemble model is

developed, and an acceleration

technique based on Gaussian

random field is implemented

ANNs Select best candidate

network

Differential evolution

algorithm based on

Gaussian Random Field

Accuracy
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genetic programming models developed by Ali and Majid

[87] and Majid and Ali [88].

In addition to breast cancer, a novel approach for

invasive ductal carcinoma classification is proposed by

Alkhaldi and Salari [89] by utilizing Cartesian genetic

programming algorithm for ensemble optimization with

convolutional neural networks as base learners.

For diabetes, based on multiple criteria, ant colony

optimization swarm intelligence algorithm is used by

Alghamdi et al. [90] to build an accurate selective

ensemble model for diabetic retinopathy detection. Also,

Singh and Singh [91] design a new stacking-based evolu-

tionary ensemble learning system called ‘‘NSGA-II-

Stacking’’ to predict the beginning of Type-2 diabetic

mellitus (T2DM) 5 years in advance.

Other medical-based applications, could be recognized

as follows. Mousavi et al. [92] suggest an ensemble

pruning and rotation forest (EP-RTF) model as a new

method for predicting human microRNAs target. Akkasi

and Varoglu [93] propose a new community-based deci-

sion-making approach to improve biochemical named

entity recognition systems using PSO swarm-based selec-

tive ensemble learning. Also, L. Nguyen et al. [94] con-

struct a new ensemble framework called ‘‘iANP-EC’’ for

identifying anti-cancer natural products. Further, Notash

et al. [95] develop a horizontal-vertical image scanning

(HVIS) tool by using GA-based ensemble model to mea-

sure lymphedema arm volume.

6.3 Industrial engineering applications

For observing and diagnosing mean changes in multivari-

ate manufacturing processes, a helpful model, made pos-

sible by swarm-based ensemble of quantization networks,

is proposed by W. Yang [96]. Also, a hybrid selective

ensemble model is introduced by W. Yang et al. [97] based

on ANNs and PSO to classify out-of-control signals into

categories of mean and/or variance abnormalities. In pet-

roleum industry, Al-Qutami et al. [98] suggest a framework

for virtual flow metering by using hybrid ensemble-based

model where neural networks and regression trees are

combined and pruned by a trajectory-based Simulated

Annealing algorithm.

Moreover, based on multimodal evolutionary algorithm,

Hu et al. [99] suggest a unique data-driven evolutionary

ensemble learning forecasting model in an effort to

enhance the precision and intelligence of short-term load

forecasting systems which can lead to more efficient power

generation and modern power systems management. In

addition, the problem of feature selection in the Silicon

content prediction model is considered from a different

angle, and an altered non-dominated sorting differential

evolution algorithm is proposed by X. Wang et al. [100] to

simultaneously maximize 2 competing goals: accuracy and

variety of base learners. Furthermore, a generic evolu-

tionary ensemble learning approach for surface roughness

Table 5 (continued)

Source Study’s objectives and main

contributions

Base learners Ensemble strategy Ensemble optimization Final model

performance

measure

[168] A general framework for classifier

selection and fusion is

developed based on a 4-step

protocol called ‘‘Classifiers,

Initialization, Fitness function,

and Evolutionary algorithm’’.

Test 24

heterogeneous

base classifiers

Majority voting Estimation of Distribution

algorithm and GA

Accuracy

[169] An evolutionary bagged ensemble

learning approach (EvoBagging)

is proposed so as to iteratively

improve the ensemble by

providing diversity in the bags

DTs Bagging GA Accuracy

[7] The study introduces a guided

search-based pruning schema

that effectively explores large-

size ensembles, resulting in a

near-optimal sub-ensemble with

lower computational

requirements and improved

prediction time

DTs, Naive Bayes,

Multinomial Log-

linear Models,

and KNN

Bagging Forward Search,

Backward Search, Hill-

Climbing, Simulated

Annealing, Grey Wolf

optimizer, and binary

GA

Accuracy
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Table 6 Summary of technical publications introducing swarm-based selective ensembles

Source Study’s objectives and main

contributions

Base learners Ensemble strategy Ensemble

optimization

Final model

performance

measure

[170] A novel approach called (BeeOWA) is

presented to construct highly accurate

binary classifier ensembles

KNN, Mixture of Gaussian,

Parzen-window density

estimation, and support

vector data description

Exponential

induced ordered

weighted

averaging

operator

Artificial bee

colony

AUC

[66] A novel technique for forming efficient

binary classifier ensembles is

introduced by combining a swarm

intelligence ensemble pruning

algorithm with weighted classifier

fusion module

Random subspace Weighted voting

schema based on

average

lightness of

fireflies

Firefly Accuracy

[171] A novel two-phases ensemble selection

method (2PS) is introduced based on

two different search algorithms

DTs, KNN, multilayer

perceptron, and SVMs

Soft voting Firefly and

forward

search

algorithms

Accuracy

[172] To get good results in classification

issues, an improved discrete artificial

fish swarm algorithm combined with

margin distance minimization for

ensemble pruning (IDAFMEP) is

presented employing a combination of

diversity measure and heuristic

approach

ELMs Bagging Artificial fish

swarm

algorithm

Accuracy

[173] A hybrid ensemble pruning approach

employing coevolution binary

glowworm swarm optimization and

reduce-error (HEPCBR) is proposed to

solve the trade-off between maximizing

model performance and classifiers

diversity as well

ELMs Majority voting Glowworm

swarm

optimizer

Precision

[174] A novel approach to ensemble pruning,

named EPEMBM (Ensemble Pruning

via Migratory Binary Glowworm

Swarm optimization and Margin

Distance Minimization), is introduced

to solve many issues of selective

ensemble learning

ELMs Majority voting Glowworm

swarm

optimizer

Accuracy

[175] By using a new metaheuristic approach

combined with a roulette wheel

selection, the study presents a novel

selective ensemble classifier with

dynamic weights

KNN Weighted voting Ant Lion

optimizer

G-mean

[108] By using a novel cost sensitivity fitness

function, an effective metaheuristic

optimization-based ensemble model is

introduced

ANNs Majority voting PSO and

competitive

swarm

optimization

G-mean and

F-measure

[176] A hybrid dynamic ensemble pruning

framework for time series prediction is

developed

ELMs Meta-predictor

based on

optimization

methods

GA, PSO, and

artificial

Fish swarm

Root mean

square error

and mean

absolute error

[177] A new ensemble technique is proposed

based on the Perturbation Binary Salp

swarm algorithm as well as a new

introduced combined diversity measure

ELMs Majority voting Salp swarm

algorithm

Misclassification

percentages
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prediction is proposed by Xie et al. [101] based on a pool

of ten effective regressors.

For fault diagnosis in manufacturing processes, Pei-

mankar et al. [102] propose a binary variant of the multi-

objective particle swarm optimization (bi-MOPSO) tech-

nique to classify power transformer failures. The suggested

approach simultaneously chooses the classifiers with the

highest accuracy and diversity. Next, by utilizing dissolved

gas analysis on the oil of the power transformers, the

chosen classifiers are merged to identify the real defects in

the power transformers. Based on the same techniques,

Peimankar et al. [69] complete their research by develop-

ing a new 2-step ensemble selection approach for fault

diagnosis of power transformers. For fault diagnosis of

rotary machinery, a novel method is proposed by using

PSO-based selective ensemble learning and probabilistic

neural networks by Z. Wang et al. [64].

Finally, a multi-objective teaching–learning-based

swarm optimization algorithm for ensemble pruning in

random forest (RF) is proposed by Wan et al. [103], with

the goal of enhancing both the accuracy and speed of RF in

the context of rolling bearing fault diagnosis. The intro-

duced algorithm is specifically designed to maximize

classification accuracy and minimize classification time,

enabling the identification of a subforest that achieves

superior accuracy in diagnosing rolling bearing faults while

expediting the classification process.

6.4 Financial management applications

With regard to credit scoring prediction and assessment,

effective trajectory-based selective ensemble models,

based on GRASP and ELMs, are proposed by T. Zhang

et al. [104] as well as T. Zhang and Dai [105]. Ye and Dai

[106] suggest a distinctive greedy randomized dynamic

ensemble selection algorithm for credit risk assessment to

generate relevant classifiers of the ensemble by employing

SVMs, Path-Relinking, Variable Neighbourhood Search,

and GRASP algorithms. Additionally, W. Zhang et al. [65]

propose a novel multi-stage hybrid ensemble model based

on an enhanced multi-population niche GA.

More financial-based applications in the selected pub-

lications are proposed, including the following. Dinh et al.

[107] introduce a 2-phases ensemble learning model for

daily exchange rate prediction by using ANNs and differ-

ential evolution algorithm. While, Safi et al. [108] use a

novel cost sensitivity fitness function in an effort to provide

an effective metaheuristic PSO-based ensemble model for

financial distress prediction. As for customer churn pre-

diction, a large-scale benchmark study is conducted by

Bogaert and Delaere [109] to compare the most novel

ensemble methods and their selection strategies. The con-

ducted study involves extensive comparison between 14

homogeneous and 13 heterogeneous ensembles by

employing 10 of the most common metaheuristics.

6.5 Agricultural and environmental applications

In agricultural domain, Chaudhary et al. [110] propose a

new ensemble-based PSO approach with intent to enhance

the performance outcomes of ensemble vote in order to

predict vegetable crop diseases. Environmentally, Zhu

et al. [111] introduce an efficient selective ensemble model

based on artificial fish swarm algorithm and ELMs for the

sake of effectively forecasting urban haze pollution.

Ekmekcioğlu et al. [112] develop, based on GA and PSO

combined with AdaBoost and random forest, an effective

ensemble model for hydraulic efficiency assessment of

stormwater grate inlets. Moreover, H. Zhang et al. [113]

introduce a GA-based selective ensemble approach in order

to estimate the uniaxial compressive strength of rock in a

convenient and precise manner.

Fig. 11 Treemap of publications percentage of the top practical applications
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6.6 Other applications

In an effort to generate a population of high-performing

networks with the appropriate configuration and initial-

ization combinations, the evolutionary ensemble neural

network pool (EENNP) approach is introduced by Ai et al.

[33] to efficiently predict household power demand.

Moreover, Koohestani et al. [114] introduce an ensemble

model for analysing driving behaviour. Their model com-

prises 2 main components. The first involves ensembling,

where KNN, SVMs, and naı̈ve Bayes algorithms are

enhanced through bagging, boosting, and voting ensemble

learning techniques. And the second incorporates the

application of 4 evolutionary optimization algorithms to

reduce ensemble size, namely the ant lion optimizer, grey

wolf optimizer, and PSO.

Finally, based on SVMs and random subspace, a new

PSO selective ensemble model is introduced by Z. Wang

et al. [41] for accurate highway traffic flow state identifi-

cation. Furthermore, Bu et al. [115] develop a novel hybrid

intelligent image generation method called ‘‘IGASEN-

EMWGAN’’ for ship painting defects by using GA

improved by the Simulated Annealing algorithm.

7 Discussions and main findings

This section aims to provide a comprehensive analysis of

the current state-of-the-art metaheuristic-based selective

ensembles based on the 89 publications that have been

extensively addressed in Sects. 5 and 6. Therefore, in the

following sequence, the research key aspects that have

been identified, in Sect. 3, could be appropriately handled.

7.1 Main categories of metaheuristic-based
selective ensembles

The systematic analysis conducted so far unequivocally

demonstrates that there are 3 fundamental categories of

metaheuristic-based selective ensembles, including trajec-

tory-based, evolutionary population-based, and swarm

population-based. A fourth hybrid-based category emerges

from combining 2 or more of the mentioned 3 categories of

metaheuristics in selecting classifiers. Figure 12 demon-

strates that ensemble pruning is frequently carried out, with

evolutionary-based algorithms in more than half of the

selected publications (52%), while ensemble selection

based on swarm intelligence ranks second with (32%).

Studies using trajectory-based algorithms come in third

place with 11%. Merely 5% of the chosen literature com-

prises research that integrates various types of

metaheuristics.

In general, the utilization of population-based meta-

heuristics is prevalent, accounting for approximately 84%

of cases, and is generally favoured over trajectory-based

algorithms in the context of selective ensemble modelling.

The extant literature under examination contributes valu-

able insights distinguishing between these distinct

approaches. A comprehensive summary of the distin-

guishing factors between trajectory and population-based

metaheuristics is provided in Table 7.

7.2 Key algorithms of metaheuristic-based
selective ensembles

Out of the 89 selected publications, Fig. 13 displays the

Treemap of the top 5 algorithms employed in the addressed

literature in terms of base learners, ensembles, and opti-

mizers. The figure shows that decision trees (28%), support

vector machines (25%), K-nearest neighbours (23%), arti-

ficial neural networks (15%), and naı̈ve Bayes (14%) have

been employed in the majority of cases as base learners.

The top ensemble learners, namely bagging (19%),

weighted voting (18%), majority voting (18%), weighted

average (9%), and AdaBoost (8%) are applied in most

cases. The top metaheuristics used for ensemble pruning

are genetic algorithm (GA) (35%), particle swarm opti-

mization (PSO) (18%), firefly (7%), hill-climbing (6%),

and greedy randomized adaptive search procedure

(GRASP) (5%).

In practice, it is important to note that the in-depth

analysis conducted in Sect. 6 reveals that Genetic algo-

rithm is mostly used in information technology, medical, as

well as agricultural and environmental applications. On the

other hand, GRASP is popular among those provide prac-

tical studies in financial management, while PSO is popular

among those interested in industrial engineering.

7.3 Criteria for choosing the ensemble base
learners

With regard to the identified selection criteria, base learn-

ers could be selected based on the overall model perfor-

mance, diversity, complexity, or efficiency. Performance

suggests that the goal of ensemble selection is to maximize

a certain performance metric, such as accuracy, or mini-

mize model errors or misclassifications. Diversity denotes

that the purpose is to identify the most diverse classifiers to

obtain a complementary subset of learners, while com-

plexity indicates that the intention is to minimize the model

complexity by reducing the number of selected base

learners. Finally, efficiency implies that the goal is to

reduce the overall time of computations.

After a thorough analysis, it is evident, as shown in

Fig. 14, that most published cases have interest in
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performance (54%) and diversity (35%). Merely 6% of

authors are intrigued by complexity, whereas the remaining

5% are drawn to efficiency. Overall, none of these criteria

is sufficient on its own in most cases. Approximately 72%

of the addressed publications integrate multiple selection

criteria, rendering them multi-objective, especially when it

comes to performance together with diversity. In contrast,

just 28% of the publications have been carried out with a

single-objective basis.

Fig. 12 Categories of metaheuristics used for selective ensemble learning

Table 7 Comparison between trajectory-based and population-based algorithms

Factors of

comparison

Trajectory-based algorithms Population-based algorithms

Nature of the

problem

May be preferred for problems with a single optimal solution Well-suited for scenarios where the goal involves attaining

multiple optimal solutions or navigating trade-offs among

conflicting objectives

Problem

complexity

Perform better in scenarios characterized by simpler or well-

structured optimization landscapes

Tend to handle complex and high-dimensional problems well

due to the population diversity

Exploration

and

exploitation

These algorithms emphasize exploitation over exploration

since they focus more on exploring a trajectory to improve

the current solution

These algorithms involve maintaining a diverse set of

solutions, facilitating the exploration of the solution space as

well as the exploitation of promising regions

Speed of

convergence

May converge faster to a local optimum but they are sensitive

to the starting point

Exhibit slower convergence in most cases, but they can provide

more robust solutions over time

Parallelization The sequential nature of these algorithms imposes restrictions

on their parallelization capabilities

These algorithms are frequently adaptable to parallelization

Memory

requirements

Require lower memory since they focus on a single trajectory Require more memory to store and manage the population

Algorithmic

complexity

They are simpler in terms of algorithmic design Involve more complex mechanisms in their design

Fig. 13 Treemap of the top 5 base learners, ensembles, and optimizers
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7.4 Performance evaluation in metaheuristic-
based selective ensembles

Once the selective ensemble model for prediction/classifi-

cation has been developed, it is critical to understand how

well it works. The exact performance of the model could be

determined if it is possible to test it on all potential input

objects. Unfortunately, this is unlikely to happen, so an

estimate of the performance will have to suffice [116]. In

the literature, there are many metrics that could be used to

estimate the performance of supervised ensemble learning

algorithms such as accuracy, precision, sensitivity, speci-

ficity, F-measure, and area under the ROC curve (AUC)

[117], [118]. In selected publications, Fig. 15 shows the

most widely used metrics. It is clear that overall accuracy is

the most employed performance measure (23%) followed

by sensitivity (18%), AUC (13%), F-measure (13%), and

G-mean (10%).

In binary classification problems, instances of each

class, whether being classified correctly or incorrectly,

could be counted, and arranged in what is known as

confusion matrix representing the 4 possible outcomes. As

illustrated in Table 8, the correctly classified instances

appear on the 2 cells of the matrix main diagonal, whereas

the off-diagonal cells reveal the numbers of instances that

have been misclassified.

Based on the confusion matrix, the mentioned top 5

metrics that could be used for evaluating a classifier’s

performance with varying evaluation emphases could be

summarized as follows [118], [119].

• Accuracy is the proportion of the correctly classified

instances over the total number of instances It is

calculated as follows: Accuracy ¼ TPþTN
TPþTNþFPþFN

h i

• Sensitivity refers to the rate at which positive instances

are correctly classified. It evaluates the classifier’s

ability to correctly distinguish positive instances. It is

calculated as follows: Sensitivity ¼ TP
TPþFN

h i

• F-Measure is the harmonized mean of both Precision

and Sensitivity, and it could be calculated as follows:

F �Measure ¼ 2�TP
FPþFNþ2�TP

h i

• G-Mean is the geometric mean of true positive and true

negative rates. It could be calculated as follows:

G�Mean ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

TP
TPþFN � TN

TNþFP

qh i

• AUC is the area beneath the receiver operating char-

acteristic (ROC curve) which is a 2-dimensional

representation of the trade-off between true positive

and false positive rates. AUC measures a classifier’s

ability to discriminate between classes. It is the

probability that the classifier will prioritize a randomly

selected positive instance higher than a randomly

selected negative instance. For more details and repre-

sentations see [120].

Based on the investigated literature, the following issues

are determined to be essential to consider while assessing

the metaheuristic-based ensemble models in general. First

and foremost, identifying the nature of the problem at hand,

whether classification or regression, governs the selection

of the relevant metrics that ensure accurate evaluation

Complexity 
6% Effeciency

5%

Diversity
35%

Performance
54%

Fig. 14 Selection criteria in metaheuristic-based selective ensembles

Fig. 15 Top 10 performance

measures in the selected

publications
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across different types of tasks. Also, of importance is to

choose a measure that is robust to variations in the datasets

and generalizable across different settings in order to pro-

vide consistent and reliable evaluations of model perfor-

mance. Further, researchers should realize that using

different performance metrics may emphasize different

aspects of model performance that could be non-com-

mensurable or even conflicting. Therefore, it is necessary

to consider the trade-offs between these metrics and choose

the most appropriate ones based on the specific require-

ments of the practical problem under concern [121].

With regard to classification tasks, additional points

should also be considered. First, understanding the classi-

fication task—binary, multi-class, multi-label, or hierar-

chical—is deemed vital since different tasks might need

different performance measures. Second, it is also impor-

tant to consider the characteristics of the deployed dataset,

especially the class distribution. This is due to the fact that

there are some metrics that are not suitable to be used in

class-imbalance situations [122, 123]. Overall, most

machine learning researchers evaluate the performance of

the developed classifiers by using various metrics, and

there is no consensus on a single measure. However,

Redondo et al. [124] propose a unified performance mea-

sure (UPM) to be used for assessing binary classifiers. The

suggested UPM considers all components of the confusion

matrix and is defined as the harmonic mean of recall,

specificity, precision, and negative predictive rate. It

evaluates classifier performance on both positive and

negative classes, independently of the dominant class,

making it stable and more suitable for imbalanced classi-

fication tasks. Diego et al. [125] extend the proposed metric

to multi-class problems, calling it the general performance

score (GPS), and Rezk and Selim [126] have recently

suggested and applied a revised version of UPM measure

called weighted unified performance measure (WUPM)

which imposes trade-off weighting scheme for its 4 metric

components.

7.5 Programmes for metaheuristic-based
selective ensemble modelling

Based on the 48 publications in which authors mention the

computational tools they used, Fig. 16 depicts the software

programs and tools mentioned in the selected literature.

With 52% of the deployment, it is evident that MATLAB is

the most widely used programming tool for metaheuristic-

based selective ensemble modelling. Python programming

language ranks second with 19%, followed by Weka [127]

with 19% of the publications addressed. Additional tools,

each with 2%, include genetic algorithm optimization

toolbox (GAOT) [128], Java programming language,

machine learning for language toolkit (Mallet) [129], PR-

Tools [130], and R programming language.

It is noteworthy that during the review process, it has

been found that an extensive Python library for optimiza-

tion, denoted as ‘‘pyMetaheuristic’’, has been made avail-

able on GitHub by Raiser [131]. Also, a recently open-

source library for contemporary metaheuristic algorithms

in Python named ‘‘MEALPY’’, is published by Van Thieu

and Mirjalili [132]. Both of these libraries have demon-

strated effectiveness, and so it could help many researchers

in their computational work. Additionally, an online plat-

form presenting recent metaheuristics, accompanied by

supplementary MATLAB and Python codes, has been

established by Mirjalili [133].

8 Implementation challenges, limitations,
and key considerations of metaheuristic-
based selective ensembles

This section is dedicated to discussing the challenges and

limitations facing the implementations of metaheuristic-

based selective ensembles across diverse domains and

Table 8 Confusion matrix for binary classification

Predicted class

1 0

Actual class 1 True positive (TP) False negative (FN)

0 False positive (FP) True negative (TN)

Fig. 16 Software programmes used for metaheuristic-based selective

ensembles
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practical contexts. Identifying these issues could help

researchers and practitioners better understand the practical

implications and potential pitfalls of using these techniques

and, accordingly, conduct successful application and

interpretation in various problem-solving scenarios. It is

believed that by addressing these challenges the robustness

and applicability of metaheuristic-based ensemble methods

could be enhanced in real-world applications.

In their research, Sorensen and Glover [11] clarify that

there is a trade-off between deterministic/analytical algo-

rithms and metaheuristics such that deterministic algo-

rithms provide optimal solutions but struggle with

computational complexity, while with metaheuristic algo-

rithms, there is no guarantee that solutions found will be

globally optimal as they prioritize finding satisfactory

solutions within a reasonable timeframe.

Another significant issue of concern is the ‘‘curse of

dimensionality’’, which makes most metaheuristic algo-

rithms less effective as the problem size increases, partic-

ularly in large-scale problems [134]. In this context,

Chopard and Tomassini [135] illustrate that one of the most

critical limitations that metaheuristics might encounter

when dealing with complex problems is the fact that they

do not have a worst-case time complexity bound like

deterministic algorithms, making it difficult to predict how

well they would perform in certain situations. Typically,

while metaheuristic algorithms can perform extremely well

in some cases, they may struggle or take excessive time in

others, leading to unpredictable outcomes. In such a situ-

ation, Rajwar et al., [24] elucidate that although meta-

heuristics could theoretically find optimal solutions if time

is unlimited, practical constraints necessitate finding solu-

tions within reasonable timeframes, highlighting a gap

between theory and implementation.

Additional drawback of several metaheuristic algo-

rithms is their partially unresolved mathematical analysis,

making them less mathematically rigorous compared to

other domains, and a definitive theoretical framework to

address this problem is lacking [24, 25]. Pursuant to X.

S. Yang [136], this problem is mainly caused by the non-

linear, complicated, and stochastic nature of the interac-

tions between the multiple components of metaheuristics.

Moreover, the characteristics of the problem being

solved could greatly influence the efficacy of metaheuris-

tics, producing a challenge in selecting the most suit-

able metaheuristic algorithm without knowing much about

the problem beforehand [135]. This issue is closely related

to the ‘‘No free lunch theorem’’, which suggests that there

is no one algorithm that outperforms all others on every

possible problem. This emphasizes the importance of

carefully understanding the problem domain before

selecting or designing the metaheuristic algorithm. To put

it another way, as acknowledged by X. S. Yang [137],

while the theorem states that no optimization algorithm is

superior to all others across all problems, there might still

be opportunities to identify problem-specific characteristics

that can be utilized to improve the performance of a par-

ticular metaheuristic algorithm. Additional information

with regard to the challenges associated with each category

of metaheuristic algorithms is available in [138], [139],

[140].

When considering metaheuristics-based selective

ensembles, understanding the challenges and limitations

associated with hybridizing metaheuristics and ensemble

learning methods is crucial for progress in the field’s lit-

erature. While combining metaheuristics with other

ensemble algorithms can boost their performance and

robustness, it also introduces complexities and potential

drawbacks. One challenge lies in determining the optimal

combination of algorithms and techniques so as to achieve

the desired improvements without compromising efficiency

[20, 141]. Moreover, pursuant to Surabhi and Yogesh

[142], integrating diverse algorithms requires careful con-

sideration of compatibility, hyper-parameter tuning, and

computational cost. Furthermore, hybridization may

increase the complexity of the resulting ensemble, making

it more difficult to analyse its behaviour or to interpret its

results. Generally, achieving a balance between the benefits

of hybridization and its challenges necessitates thorough

experimentation, validation, and refinement [143, 144].

Researchers often encounter similar challenges when

attempting to combine multiple metaheuristics, as dis-

cussed by Ting et al. [145]. Further insights into the

challenges of integrating or hybridizing metaheuristics

with machine learning algorithms in general could be

found in [146].

With regard to the methodological considerations, there

are some issues that should be taken into account to

enhance the understanding of metaheuristics as suit-

able strategies for ensemble pruning, including theoretical

developments, standardizing procedures for statistical

evaluation, and defining standards for problem design and

metric definition [141], [24]. All of the mentioned restric-

tions highlight the field’s complexity and the necessity of

rigorous and robust methodologies in undertaking meta-

heuristic-based ensemble research.

Based on the extensive review conducted and the chal-

lenges discussed, it is demonstrated that researchers should

keep in mind several key factors and considerations when

applying metaheuristic-based selective ensembles in

diverse practical settings. These factors could be summa-

rized as follows.

Firstly, it is essential to evaluate whether a given

problem follows the assumptions and requirements of the

chosen metaheuristic-based ensemble approach. This is

owing to the fact that problem characteristics vary widely,
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including factors such as size, complexity, and structure.

Secondly, so as to achieve best performance, metaheuristic

algorithms often have various parameters that need to be

fine-tuned, where optimal parameter settings may vary

depending on the problem domain and context. Therefore,

it is very important to emphasize that researchers should

conduct hyper-parameter tuning experiments to determine

the most effective parameter configurations for each

application scenario. Thirdly, it is found that computational

resources, such as computing power and memory, have a

significant impact on the efficiency of metaheuristic-based

selective ensemble models. To guarantee scalability and

performance in resource-constrained environments, light-

weight algorithms or parallel computing techniques might

be required. Furthermore, the efficiency of metaheuristic-

based selective ensembles is highly dependent on both the

quantity and quality of the utilized datasets. As a result,

when developing and assessing ensemble models, data

issues (e.g. noise, duplicates, outliers, and missing values)

must be taken into account.

By carefully considering these factors and conducting

empirical studies across diverse domains, researchers can

effectively evaluate the generalizability and applicability

of metaheuristic-based selective ensembles, thus advancing

their understanding and deployment in practical settings.

9 Conclusions and prospective research
directions

The current study delves into the dynamic convergence of

ensemble learning, with a specific focus on the emerging

domain of metaheuristic-based selective ensembles with

emphasis on optimization-based methods. The investiga-

tion encompasses diverse metaheuristics, including trajec-

tory-based and population-based approaches. Noteworthy

examples from the literature demonstrate the success of

metaheuristic-based selective ensembles across diverse

domains.

Based on a thorough examination of literature spanning

the last decade, this comprehensive review aims to cate-

gorize trajectory-based and population-based methodolo-

gies, identify common algorithms, and systematically

examine the practical applications of selective ensembles

in various fields. By addressing the crucial research aspects

of concern, the study provides profound insights into recent

developments, prevalent trends, and potential directions,

serving as a valuable guide for researchers and practition-

ers navigating the evolving landscape of metaheuristic-

based selective ensembles.

Some of the prospective research directions that are

elicited by the review systematic analysis could be high-

lighted as follows. First, employing selective ensemble

techniques to unsupervised clustering-based problems by

composing 2 or more clustering models, is a promising

direction of improvements in this field. Ensemble cluster-

ing is still a subject of few studies, and more work must be

done before it can be considered as recognized field of

research [20].

Second, it is evident that the majority of the provided

models are optimized based on genetic algorithms, particle

swarm optimization, firefly, hill-climbing, and greedy

randomized adaptive search procedure. Therefore, the

impact of the new, cutting-edge metaheuristics, like arti-

ficial jellyfish search [147], corona virus [148], chef-based

optimization [149], crayfish [53], and puma optimizer [54]

need to be further investigated, compared, and applied.

Third, although many of the real-world problems require

multiple class learning models, it is observed that just 5%

of the addressed literature includes studies that incorporate

multiple categories of metaheuristics. Thus, research in this

field could be enhanced by developing appropriate hybrid

multi-class models.

Fourth, instead of fixing the ensemble size beforehand,

researchers may consider allowing the metaheuristic to

dynamically determine the optimal ensemble size during

the optimization process. This can be done by introducing

an additional decision variable for the ensemble size and

letting the metaheuristic decide the most suitable number

of base learners.

Fifth, extending the optimization process to not only

select classifiers but also dynamically optimize their hyper-

parameters during the metaheuristic’s iterations could

enhance the adaptability of the ensemble to different

datasets.

In conclusion, the study identifies prospective research

directions, including the exploration of selective ensemble

techniques for unsupervised clustering-based problems, the

investigation of cutting-edge metaheuristics, such as arti-

ficial jellyfish search, corona virus, and crayfish optimiza-

tion algorithm, and the developments of hybrid multi-class

models, augmenting the dynamic determination of

ensemble size during optimization, and optimizing the

hyper-parameters within metaheuristic iterations. These

directions offer a robust roadmap for advancing the

understanding and application of metaheuristic-based

selective ensembles. At last, it is imperative to mention that

the accuracy and completeness of this review are contin-

gent on the limitations and constraints of Scopus biblio-

metric coverage.
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ensemble of classifiers trained on selective samples. Neuro-

computing 482(1):197–211

8. Blum C, National S, Li X (2008). Swarm intelligence in opti-

mization. In: C Blum, D Merkle (Eds.), Swarm intelligence.

natural computing series. (pp. 43–85). Springer, Berlin,

Heidelberg.

9. Zhou ZH (2012) Ensemble methods: foundations and algo-

rithms. Taylor & Francis, Oxfordshire
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