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Abstract
Ethereum has emerged as a major platform for decentralized apps and smart contracts with the heightened interest in

cryptocurrencies in recent years. Investors and market participants in the cryptocurrency space will find it increasingly

important to use reliable price prediction models as Ethereum’s popularity grows. To better estimate Ethereum prices

around the world, we propose ‘‘EtherVoyant,’’ a novel hybrid forecasting model that combines the advantages of ARIMA

and SARIMA methods. To improve its forecasting abilities, EtherVoyant uses Ethereum price history to train ARIMA and

SARIMA components independently before fusing their predictions. With the help of feature engineering and data

preparation, we further improve the model so that it can deal with real-world difficulties like missing values and seasonality

in the data. We also investigate hyperparameter optimization for the model’s best possible performance. We compare

EtherVoyant’s forecasts against those of the more conventional ARIMA and SARIMA models to determine its efficacy. By

providing more precise and trustworthy price forecasts, our trial results suggest that EtherVoyant is superior to the

individual models. The importance of this study resides in the fact that it will lead to the creation of a sophisticated time

series forecasting model that will be useful to cryptocurrency investors, traders, and decision-makers. We hope that by

making EtherVoyant available on a worldwide scale, we will help advance the field of cryptocurrency analytics and

encourage wider adoption of blockchain-based assets.
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1 Introduction

Cryptocurrency markets, notably exemplified by Ethereum,

have become integral components of the global financial

landscape, fostering new paradigms in finance and invest-

ment [1]. The dynamism and volatility inherent in these

markets necessitate sophisticated forecasting models to

empower investors [2], traders [3], and industry partici-

pants [4]. This study delves into the significance of

Ethereum price prediction, offering a comprehensive

analysis of forecasting methodologies and their

implications.

Ethereum, with its smart contract functionality, has

evolved into a linchpin of blockchain technology [5]. Its

market, characterized by rapid fluctuations, presents a

unique challenge and opportunity [6]. Accurate prediction

of Ethereum prices is not merely a speculative exercise; it

forms the backbone of strategic decision-making for vari-

ous stakeholders [7]. Understanding the dynamics of

Ethereum pricing is crucial for traders aiming to optimize

investments, investors seeking informed entry or exit

points, and industry participants navigating the nuances of

this transformative financial ecosystem [8].

The motivation driving this research lies in the pivotal

role Ethereum plays in shaping decentralized applications

and financial instruments [9]. As Ethereum’s impact

extends globally, the ability to forecast its prices becomes

paramount. The repercussions of precise prediction rever-

berate across diverse domains—from mitigating risks in

investment portfolios to aiding policymakers in
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understanding the evolving nature of decentralized finance.

The motivation is, therefore, rooted in the recognition that

Ethereum’s influence transcends individual transactions,

impacting the broader financial landscape [10].

Accurate Ethereum price forecasts are not merely

desirable but imperative [11]. In a market where shifts can

be abrupt and substantial, the consequences of miscalcu-

lations are profound. This study addresses the pressing

need for reliable predictive models, acknowledging that the

implications extend far beyond individual profit margins

[12]. The repercussions touch upon the stability and trust in

emerging financial instruments, further underlining the

urgency to refine and innovate in the realm of Ethereum

price prediction [13].

As we delve into the EtherVoyant model and its com-

parative analyses, this study strives to provide not only

predictive insights but also a nuanced understanding of the

Ethereum market’s intricacies. The ensuing sections not

only present models but unravel the layers of challenges

and opportunities in Ethereum price forecasting, with a

vision to empower stakeholders in navigating this evolving

financial frontier [14].

The biggest obstacle is creating an effective Ethereum

price prediction model that can account for market

volatility, seasonality, and abnormalities. By combining the

advantages of ARIMA and SARIMA to take use of their

complimentary capacities, we aim to alleviate the limita-

tions of conventional forecasting methods by developing a

novel hybrid model, EtherVoyant.

The following are some of the goals of this research:

• To improve Ethereum price forecasts, we will construct

the EtherVoyant hybrid forecasting model, which

utilizes both the ARIMA and SARIMA approaches.

• To manage missing values, outliers, and other data

irregularities in the Ethereum price dataset, feature

engineering and data pretreatment will be performed.

• To improve the EtherVoyant model’s performance and

produce more accurate price predictions, we will

investigate hyperparameter tuning strategies.

• To show the superiority of the EtherVoyant model in

terms of forecasting accuracy by comparing its fore-

casts to those of individual ARIMA and SARIMA

models.

• To help global stakeholders make better investment and

risk management decisions in the cryptocurrency sector

by providing more accurate Ethereum price predictions

using the EtherVoyant model.

This study’s goals are to further our knowledge of

Ethereum as a key blockchain asset and to contribute to the

field of cryptocurrency analytics. The improved forecasting

capabilities of the EtherVoyant model may help businesses

and investors all over the world better manage the volatile

cryptocurrency market.

The following are a few of the major findings from the

study:

Several significant advances in the art of predicting the

value of cryptocurrencies have been made thanks to the

proposed study:

• A major advancement is the creation of the EtherVoy-

ant hybrid forecasting model. EtherVoyant provides a

more reliable method for predicting Ethereum prices by

combining the advantages of the ARIMA and SARIMA

methods. The innovative architecture of this model

smoothes over the gap between standard time series

models and the unique difficulties of cryptocurrency

price data.

• This research shows that the EtherVoyant model is

superior to both the ARIMA and SARIMA models

when predicting Ethereum values, as shown through

extensive experimental and evaluation work. EtherVoy-

ant’s improved precision can help market participants

in the cryptocurrency industry implement more effec-

tive risk mitigation and investment methods.

• The research uses cutting-edge feature engineering and

data preparation techniques to account for practical

issues including missing data, outliers, and seasonality.

The model’s ability to catch intricate patterns and

movements in Ethereum price data is enhanced by these

methods, allowing for more precise predictions.

• The study finds the best settings for the EtherVoyant

model by investigating different hyperparameter tweak-

ing strategies. This method of tuning improves the

model’s performance and reliability by making sure it

makes optimal use of available historical data to make

precise predictions.

• Investors, dealers, and businesses all over the world

who deal in cryptocurrencies may be affected in various

ways by the EtherVoyant model’s capacity to deliver

more accurate Ethereum price predictions. Due to the

dynamic and volatile nature of the cryptocurrency

market, the model helps stakeholders make educated

decisions and implement effective risk management

strategies.

• This study contributes to the developing field of

cryptocurrency analytics, which is crucial to compre-

hending blockchain-based assets like Ethereum.

Research provides a comprehensive methodological

framework for developing and evaluating hybrid fore-

casting models for cryptocurrency price prediction; the

EtherVoyant model is a major advancement in the

application of state-of-the-art time series forecasting

techniques to analyze and predict cryptocurrency

Neural Computing and Applications

123



prices. Future work in the field of bitcoin analytics can

build off of this approach.

2 Related work

The potential of cryptocurrencies to alter the global

financial system has garnered a lot of attention in recent

years [1]. Among these crypto assets, Ethereum stands out

as a pioneering decentralized blockchain platform that

makes it possible for smart contracts and decentralized

apps to disrupt numerous markets [2]. LSTM-GRU time

series forecasting models have showed potential in

enhancing Ethereum price prediction in the US [3], thanks

to their capacity to capture complex patterns and trends in

sequential data. To further improve these models’ fore-

casting ability, researchers have investigated the possibility

of incorporating other, exogenous variables, such as

macroeconomic data, legislative events, and adoption

metrics. In order to forecast the value of Ethereum tokens

using deep learning, network motif analysis has been used

[4]. This technique makes use of network motifs to deci-

pher the intricate interplay between tokens and calculate

future token prices. It has been suggested [5] that short-

term price movements in cryptocurrencies can be predicted

using a combination of technical indicators and deep

learning. This combined method is an attempt to capture

the interplay between pricing data’s short- and long-term

dynamics. Predicting the value of cryptocurrencies by an

examination of social media sentiment has been investi-

gated [6]. Researchers have attempted to measure the

impact of market mood on cryptocurrency prices by mining

price changes from the Reddit network’s sentiment. Pre-

dictions of bitcoin prices have been made using ensemble

methods of machine learning [7]. To improve price pre-

dictions’ accuracy and reliability, these models mix several

learning techniques. The popularity of transformers in NLP

tasks indicates that they may be useful in capturing long-

range dependencies in bitcoin price data [8]. The precision

and accuracy of models built with machine learning have

been measured empirically [9]. These tests demonstrate the

ability of LSTM-GRU models to surpass current approa-

ches to Ethereum price prediction and illustrate their

supremacy in this area. The effects of free/libre/open-

source software development on software engineering

curricula have been studied [10], along with the advantages

and disadvantages. This study adds to our knowledge of

how open-source software design can affect pedagogical

methods. Several cryptocurrency exchanges have made

heavy use of machine learning and deep learning models

for price prediction [11]. In this analysis, we compare the

accuracy of different models for predicting bitcoin values

on different markets. LSTM and embedding networks have

been investigated by researchers as potential tools for

better predicting bitcoin price fluctuations [12]. This

method highlights the promise of using attentive LSTM

and embedding networks to predict the future value of

cryptocurrencies. The strengths and limitations of several

machine learning approaches have been compared and

contrasted in a study on cryptocurrency price prediction

[13]. The use of FB-Prophet for time series forecasting of

Ethereum price has been explored to shed light on potential

future price movements [14]. The cryptocurrency price

forecasting method used by FB-Prophet is straightforward

and easy to understand. Predicting the price of a cryp-

tocurrency using a deep learning system has increased

investor knowledge of the market [15]. This study aids in

clarifying the role of deep learning in economic prediction.

By combining stance detection with transformers, analysts

can use sentiment analysis to anticipate changes in bitcoin

prices [16]. This research shows how effective transform-

ers may be in capturing market mood. For the purpose of

predicting the price of Ethereum, topological data analysis

has been used [17]. This study compares the accuracy of

Ethereum price forecasts using k-NN and multiple poly-

nomial regression, advancing our knowledge of topological

approaches to financial forecasting [18]. The results of this

research investigating the effectiveness of both conven-

tional and ML-based approaches are presented. Using long

short-term memory (LSTM) networks, researchers have

looked into Ethereum price time series forecasting [19].

Price data with temporal dependencies is found to be well

captured by LSTM networks. It has been suggested [11]

that the price of cryptocurrencies can be predicted using an

ensemble and multimodal technique. To improve forecast

accuracy, this method makes use of many data sources and

models. There is a well-organized overview [20] on the use

of machine learning-based time series analysis to forecast

bitcoin prices. This research provides a state-of-the-art

review on bitcoin price prediction. Researchers have used

network motif analysis to look into the intricate connec-

tions between tokens and their values [21]. Using this

method, we can see how the structure of the network

influences our ability to anticipate prices. Spatial indicators

for attaining healthy and sustainable cities have been the

subject of research [22], and it has been found that these

indicators can be developed utilizing open data and open-

source software. This study aids in clarifying the function

of free and open-source software in urban planning and

design. Predictions of bitcoin values using deep learning

algorithms have been made in an effort to raise investor

education [23]. This research demonstrates how useful

deep learning could be for economic prediction. Predic-

tions of cryptocurrency prices using machine learning have

been systematically compared [24]. The research sheds

Neural Computing and Applications

123



light on the benefits and limitations of different prediction

methods.

In recent years, the transformative potential of cryp-

tocurrencies, especially Ethereum, in reshaping the global

financial system has been a focal point of research [1].

Ethereum’s innovative decentralized blockchain platform,

enabling smart contracts and decentralized apps, has dis-

rupted various markets [2]. The application of LSTM-GRU

time series forecasting models in Ethereum price prediction

in the US has demonstrated promise, leveraging their

ability to capture intricate patterns in sequential data [3].

To enhance forecasting accuracy, researchers have

explored incorporating exogenous variables such as

macroeconomic data, legislative events, and adoption

metrics into LSTM-GRU models. Network motif analysis,

using motifs to decipher the intricate interplay between

tokens, has been employed for forecasting Ethereum token

values [4]. The intersection of technical indicators and

deep learning has been proposed for short-term price

movement predictions in cryptocurrencies [5].

Various studies have investigated prediction methods,

ranging from social media sentiment analysis [6] to

ensemble machine learning techniques [7]. The integration

of transformers, known for their efficacy in NLP tasks, has

been explored to capture long-range dependencies in bit-

coin price data [8]. LSTM networks have been utilized to

capture temporal dependencies in Ethereum price time

series forecasting [19]. Despite the plethora of research, a

critical research gap persists in the lack of comprehensive

models capable of effectively capturing the myriad patterns

and dependencies in the volatile cryptocurrency market.

Existing literature predominantly focuses on LSTM-GRU

models, transformers, sentiment analysis, and other meth-

ods, with limited standardization of evaluation metrics and

result comparisons. Notably, there is a dearth of studies

addressing how to enhance prediction accuracy by incor-

porating external factors such as macroeconomic data and

regulatory developments.

The identified research gap lies in the absence of stan-

dardized evaluation metrics and comprehensive models

capable of accommodating the complexity of the cryp-

tocurrency market. While LSTM-GRU models and similar

techniques show promise, a critical need exists to establish

a benchmark for comparison and to explore avenues for

improving prediction accuracy. This research aims to

address these limitations by providing a comparative

analysis, contributing to the establishment of standardized

evaluation metrics, and proposing models that integrate

external variables. Table 1 shows the comparative table.

The lack of comprehensive and robust models that can

successfully capture the numerous patterns and dependen-

cies found in the volatile and complex cryptocurrency

market is the main research gap in the field of bitcoin price

prediction utilizing machine learning and deep learning

techniques. There has been a lot of research on LSTM-

GRU models, transformers, sentiment analysis, and other

methods, but there has not been nearly as much work done

to standardize evaluation metrics and compare results.

Even less study has focused on how to improve prediction

accuracy by including external elements such as macroe-

conomic data and regulatory developments. If this knowl-

edge gap could be closed, investors and other market

participants would have better tools at their disposal to

predict the future value of cryptocurrencies. By undertak-

ing this study, we seek to not only contribute to the current

understanding of Ethereum price prediction but also to

offer practical tools for investors and market participants.

Closing the knowledge gap identified will empower

stakeholders with robust and reliable forecasting instru-

ments, facilitating a more nuanced and informed approach

to navigating the dynamic landscape of cryptocurrency

investments.

3 Materials and methods

In this section, we detail the resources and procedures that

went into creating and testing the EtherVoyant hybrid

forecasting model, which we claim can be used to reliably

predict Ethereum price movements in the future. Data

collection, preprocessing, model construction, and evalua-

tion are all a part of the study technique. Features, hyper-

parameter adjustment, and metrics for gauging

EtherVoyant’s performance are all discussed in detail. The

forecasting algorithm is trained and tested using past

Ethereum price data. Advanced time series techniques,

especially ARIMA and SARIMA, are incorporated into the

EtherVoyant model to manage the particular peculiarities

of cryptocurrency price data. In order to take advantage of

their synergies and improve forecasting accuracy, we

explain how to combine these methods. We also go over

how feature engineering and data preparation were used to

the Ethereum price dataset to deal with real-world issues

such as missing values and seasonality. The EtherVoyant

model makes use of these methods to accurately reflect the

fluctuations and complexity of the cryptocurrency market.

In addition, we dive into the hyperparameter tuning pro-

cess, where we test out different parameter settings to find

the sweet spot for the model’s efficiency. EtherVoyant’s

ability to make accurate and trustworthy Ethereum price

forecasts relies on its hyperparameters, which were care-

fully chosen. Finally, we detail the criteria we used to

compare EtherVoyant’s predictions to those of ARIMA

and SARIMA models separately. Critical to convincing

others of EtherVoyant’s merit and verifying its capacity to
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equip stakeholders with more accurate and informed

Ethereum price predictions is the evaluation process.

3.1 Dataset description

The dataset utilized in this investigation spans from August

7, 2015, to October 18, 2021, covering a comprehensive

timeframe for Ethereum price analysis. The dataset

encompasses various essential elements, detailed in

Table 2:

Each entry in the time series is uniquely identified by its

corresponding value in the ‘‘Date’’ column. Daily price

variations are comprehensively documented through the

‘‘Open,’’ ‘‘High,’’ ‘‘Low,’’ and ‘‘Close’’ columns, with the

‘‘Adj Close’’ column incorporating adjustments related to

corporate activities. The ‘‘Volume’’ column provides

valuable insights into market liquidity and investor interest,

reflecting daily trading activity.

The EtherVoyant model is trained, validated, and tested

on this dataset, and its performance is compared to that of

individual ARIMA and SARIMA models during the course

of the study. As a result of Ethereum’s extensive price

history, stakeholders can make informed judgements in the

fast-moving cryptocurrency market (Figs. 1, 2, 3, 4, 5, and

6).

3.2 Data preprocessing

The success of the EtherVoyant model construction relies

on a high-quality dataset, and this can only be achieved

through careful data pretreatment. Steps in this procedure

include normalizing the data, removing outliers, and

dealing with missing values.

3.2.1 Handling missing values

For numerous causes, such as insufficient data collection or

data entry mistakes, the dataset may have some missing

values. We use imputation approaches to address missing

values, such as filling them in using the mean, median, or

interpolation based on neighboring values.

3.2.2 Removing outliers

When the data distribution is skewed by outlying values,

the model’s accuracy can suffer. Using statistical tools such

Table 1 Comparative table
References Technique Dataset Outcome

[1] LSTM-GRU USA Ethereum price data Improved predictions

[2] Network motif analysis Ethereum token data Positive results

[3] Technical indicators ? DL Cryptocurrency price data Successful forecasting

[4] Sentiment analysis Reddit network sentiment data Sentiment impact studied

[5] Ensemble ML Cryptocurrency price data Enhanced accuracy

[6] Transformers Cryptocurrency price data Long-range dependencies

[7] LSTM-GRU Not specified Not specified

[8] LSTM-GRU Not specified Not specified

[9] LSTM-GRU Cryptocurrency price data High accuracy achieved

[10] Not specified Not specified Not specified

[11] Machine learning Crypto exchanges data Price predictions

[12] LSTM ? embedding Bitcoin price data Improved forecasting

[13] Comparison of ML methods Cryptocurrency price data Comparative insights

[14] FB-Prophet Ethereum price data Reliable forecasts

[15] DL algorithm Cryptocurrency price data Increased awareness

Table 2 Dataset feature

description
Feature Description

Date The date of the recorded Ethereum price

Open The opening price of Ethereum on the specified date

High The highest price of Ethereum during the trading day

Low The lowest price of Ethereum during the trading day

Close The closing price of Ethereum on the given date

Adj close Ethereum’s market close price adjusted for corporate movements

Volume Ethereum’s trading volume on the specified day
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as the Z-score and the interquartile range (IQR), we find

extreme values and either eliminate them or replace them

with more reasonable ones.

3.2.3 Data normalization

To ensure that no single characteristic dominates the model

training process due to its bigger magnitude, normalization

of the data is required. Min–Max scaling and Z-score

normalization are two common normalization methods.

The equations for preparing the data are as follows:

3.2.4 Handling missing values

Let’s call the feature vector X the one that is lacking some

data.

Take the feature vector after a certain imputation pro-

cedure has been applied, X_filled.

Xfilled ¼ Impute Xð Þ

3.2.5 Outlier removal

Let X represents the feature vector that contains the

outliers.

The feature vector after outliers have been removed or

replaced is denoted by X_cleaned.

Xcleaned ¼ Remove Outliers Xð Þ

3.2.6 Data normalization

The feature vector that needs normalization is denoted by

X.

Take the normalized feature vector, X_normalized, as an

example.

Xnormalized ¼ Normalize Xð Þ

In order to provide reliable Ethereum price predictions,

the EtherVoyant model requires high-quality input data

that have been cleaned of missing values and outliers and

has features scaled correctly (Fig. 7).

Fig. 1 Visualization of each feature versus time
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3.3 Feature engineering

The EtherVoyant model’s ability to capture intricate pat-

terns and correlations in the Ethereum price data is greatly

improved by the feature engineering process, in which we

change and produce new features from the original dataset.

In order to make the existing features more useful and

pertinent to the forecasting assignment, feature engineering

seeks to extract meaningful information and correlations

from them (Fig. 8).

Fig. 2 Ethereum price analysis

Fig. 3 Ethereum trading volume
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3.4 ARIMA model

Using a combination of autoregression, differencing, and

moving average components, ARIMA (AutoRegressive

Integrated Moving Average) is a popular time series fore-

casting model. Time series data in which the mean and

variance are constant across time are well-suited for the

ARIMA model. Figure 9 shows the ARIMA model archi-

tecture. To ensure the efficacy of the ARIMA model, we

conducted the augmented Dickey–Fuller (ADF) test to

evaluate the stationarity of the Ethereum price data. The

ADF test is a critical statistical tool for time series analysis

that helps us understand the behavior of the underlying

data. The ADF test results indicated that the Ethereum

price series was non-stationary. Non-stationarity implies

that statistical properties like mean and variance change

over time. In the context of time series forecasting, non-

Fig. 4 Pairwise plots for Ethereum price data
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stationary data can pose challenges as traditional models

often assume a constant statistical structure.

Non-stationarity can adversely affect the performance of

the ARIMA model. ARIMA, being a model designed for

stationary time series, might yield inaccurate results when

applied to non-stationary data. To address this, differencing

is employed. Differencing is a technique used to stabilize

the mean and make the data more amenable to modeling. In

our case, differencing involves computing the differences

between consecutive Ethereum prices. This transforms the

non-stationary series into a stationary one, allowing the

ARIMA model to capture the underlying patterns more

effectively (Fig. 9).

ARIMA is denoted by the notation ARIMA (p, d, q),

where:

p: How many lags (autoregressive terms) the model

employs.

Fig. 5 Pair plots for Ethereum price data
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d: The amount of differentiation that must be applied to

the time series such that it remains stationary.

q: Model’s term count for moving averages.

The ARIMA model equation can be represented as

follows:

y tð Þ ¼ cþ R ui � y t � ið Þð Þ þ R hi � e t � ið Þð Þ þ e tð Þ

In which y(t) represents the point in time value of the

series. The constant term, or intercept, is denoted by t. c.

ui are the autoregressive coefficients, which show how

previous data points have affected the current value.

(t) is the error term due to white noise at time t.

hi are the moving average coefficients, signifying the

influence of previous mistake words on the present value.

The following are the main components of the ARIMA

model:

Stationarity check: Statistical techniques, such as the

augmented Dickey–Fuller (ADF) test, are used to deter-

mine whether the time series data are stationary. Differ-

entiation is used to make data stationary (difference

parameter d) if it is not already.

Analysis of the autocorrelation function (ACF) and

partial autocorrelation function (PACF) is performed to

determine the best values for the autoregressive term

(p) and moving average term (q).

Model fitting: Using the estimated values of p, d, and q,

the ARIMA model is fitted to the adjusted time series data.

Maximum likelihood estimation is used to determine val-

ues for the model’s parameters (_i and _i).

Model forecasting: The time series’ future values are

then projected using the ARIMA model.

The ARIMA model can effectively capture linear trends

and autocorrelations in univariate time series data. Accu-

rate forecasts in the presence of outliers and seasonality

may necessitate further adjustment, however, and it may

not be able to handle complex nonlinear interactions.

3.5 SARIMA model

In order to account for seasonality in time series data, the

ARIMA model was extended to become SARIMA (Sea-

sonal AutoRegressive Integrated Moving Average). When

the values in a time series demonstrate distinct seasonal

trends across set time periods (daily, weekly, or monthly),

this method can be very helpful. Similar to the ARIMA

section, an ADF test was conducted for the SARIMA

model. The non-stationarity of the Ethereum price data was

reaffirmed, emphasizing the necessity for proper prepro-

cessing steps. The SARIMA model encounters similar

challenges with non-stationary data. Hence, differencing is

Fig. 6 Correlation heatmap of

Ethereum price data
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once again employed to induce stationarity. Figure 10

shows the SARIMA model architecture.

If we write SARIMA as SARIMA (p, d, q) (P, D, Q, s),

then we have the SARIMA model:

p: The total amount of lags (autoregressive terms) in the

model’s non-seasonal section.

d: The amount of differencing that must be applied to

the non-seasonal time series in order for it to become

stationary.

q: The length of time that the non-seasonal moving

average is applied.

P: The total number of seasonal autoregressive terms

(lags) in the model.

D: The required level of differencing to ensure seasonal

time series stationarity.

A: The seasonal model’s term count of moving averages.

s: The time frame associated with the seasonality (e.g., 7

for weekly seasonality and 12 for monthly seasonality).

Fig. 7 Data cleaning a before and after box plots and b before and after violin plots
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The SARIMA model equation can be represented as

follows:

y tð Þ ¼ cþ R ui � y t � ið Þð Þ þ R hi � e t � ið Þð Þ
þ R Ui � y t � isð Þð Þ þ R Hi � e t � isð Þð Þ þ e tð Þ

where:

y(t) is the value of the time series at time t.

c is the constant term or intercept.

ui are the autoregressive coefficients in the non-seasonal

part, representing the impact of the past observations on the

current value.

Fig. 8 Feature engineering a before and after box plots and b before and after violin plots

Fig. 9 ARIMA model architecture
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eðtÞ is the white noise error term at time t.

hi is the moving average coefficients in the non-seasonal

part, representing the impact of past error terms on the

current value.

Ui is the autoregressive coefficients in the seasonal part,

representing the impact of past seasonal observations on

the current value.

Hi is the moving average coefficients in the seasonal

part, representing the impact of past seasonal error terms

on the current value.

s is the seasonal period, indicating the number of time

periods in one seasonal cycle.

The SARIMA model captures seasonal patterns in data

through seasonal differencing and the selection of seasonal

autoregressive and moving average terms (P, D, Q), but the

key processes for fitting the SARIMA model are similar to

those in the ARIMA model. The SARIMA model can

successfully capture complicated patterns and trends in

seasonal data, and it works well with time series data that

include both seasonal and non-seasonal components.

3.6 EtherVoyant model

Combining the best features of the ARIMA and SARIMA

models, the EtherVoyant model is a revolutionary hybrid

time series forecasting model that can accurately anticipate

Ethereum values. It takes advantage of both the seasonal

and non-seasonal features of the time series data to identify

long-term trends and patterns in the price of cryptocur-

rencies. EtherVoyant represents a novel hybrid approach

that amalgamates the strengths of both ARIMA and

SARIMA models to enhance Ethereum price prediction

accuracy. Each model has its merits and limitations;

ARIMA excels in capturing linear trends, while SARIMA

is adept at handling seasonality. EtherVoyant begins by

decomposing the Ethereum price time series into trend,

seasonality, and residual components. This decomposition

is pivotal for isolating the specific characteristics that

ARIMA and SARIMA models are best suited to address.

ARIMA Component: The trend component, representing

the underlying linear patterns, is fed into an ARIMA

model. ARIMA is well-suited for capturing these linear

trends, providing a foundation for the overall prediction.

SARIMA Component: Simultaneously, the seasonality

component undergoes modeling with SARIMA. SARIMA

excels in capturing cyclic patterns within the data,

enhancing the model’s ability to adjust for recurring market

behaviors. By integrating ARIMA and SARIMA in this

manner, EtherVoyant optimally combines their strengths.

ARIMA tackles the linear aspects, while SARIMA excels

in handling seasonality, offering a more comprehensive

understanding of Ethereum’s price dynamics. EtherVoyant

strategically overcomes the limitations of each model.

ARIMA, being inherently linear, might struggle with

nonlinear elements. The introduction of SARIMA allows

EtherVoyant to address nonlinear, seasonality-driven fluc-

tuations, significantly improving the model’s adaptability

to the complex and dynamic nature of cryptocurrency

market. EtherVoyant (p, d, q, P, D, Q, s) is the mathe-

matical notation for the EtherVoyant model:

p: The number of autoregressive terms (lags) used in the

non-seasonal part of the model.

d: The degree of differencing required to make the non-

seasonal time series stationary.

q: The number of moving average terms used in the non-

seasonal part of the model.

P: The number of autoregressive terms (lags) used in the

seasonal part of the model.

D: The degree of differencing required to make the

seasonal time series stationary.

Q: The number of moving average terms used in the

seasonal part of the model.

s: The seasonal period (e.g., 7 for weekly seasonality

and 12 for monthly seasonality).

To make more reliable Ethereum price forecasts, the

EtherVoyant model combines the equations of ARIMA and

SARIMA models, taking into account both non-seasonal

Fig. 10 SARIMA model architecture
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and seasonal factors. Figure 11 shows the EtherVoyant

model architecture.

The following equation can be used to illustrate the

EtherVoyant model:

y tð Þ ¼ cþ R ui � y t � ið Þð Þ þ R hi � e t � ið Þð Þ
þ R Ui � y t � isð Þð Þ þ R Hi � e t � isð Þð Þ þ e tð Þ

where:

y(t) is the value of the Ethereum price at time t.

c is the constant term or intercept.

u_i is the autoregressive coefficients in the non-seasonal
part, representing the impact of the past observations on the

current Ethereum price.

e(t) is the white noise error term at time t.

h_i is the moving average coefficients in the non-sea-

sonal part, representing the impact of past error terms on

the current Ethereum price.

U_i is the autoregressive coefficients in the seasonal

part, representing the impact of past seasonal observations

on the current Ethereum price.

H_i is the moving average coefficients in the seasonal

part, representing the impact of past seasonal error terms

on the current Ethereum price.

The seasonal period, denoted by the symbol s, is the

number of years in a complete seasonal cycle.

Using the ARIMA and SARIMA model fitting proce-

dures, the values of p, d, q, P, D, Q, and s are determined

and used to train the EtherVoyant model on historical

Ethereum price data. Maximum likelihood estimation is

used to determine the model’s parameters.

The EtherVoyant model successfully captures seasonal

and non-seasonal patterns in Ethereum price data by

merging the ARIMA and SARIMA models. This makes

EtherVoyant a robust and reliable model for estimating the

future value of Ethereum.

All in all, the EtherVoyant model is a useful resource for

boosting global Ethereum price predictions and aiding

decision-making in the cryptocurrency market because to

its new hybrid approach, consideration of seasonality,

enhanced accuracy, and contributions to the field of time

series forecasting.

3.7 Stationarity testing with augmented Dickey–
Fuller (ADF) test

In time series analysis, ensuring stationarity is pivotal for

the efficacy of models such as ARIMA and SARIMA. The

augmented Dickey–Fuller (ADF) test emerges as a funda-

mental tool in assessing stationarity. This section outlines

the null hypothesis being tested and the implications of the

ADF results for each model (Table 3).

Fig. 11 EtherVoyant model architecture

Table 3 Augmented Dickey–Fuller (ADF)

Model ADF Statistic p-value Conclusion

ARIMA -4.62 0.0001 Series is stationary

SARIMA -3.95 0.0023 Series is stationary

EtherVoyant -5.21 0.00005 Series is stationary
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ARIMA vs. SARIMA: The SARIMA model outper-

forms ARIMA across all metrics, suggesting the signifi-

cance of seasonal components in Ethereum price

fluctuations.

EtherVoyant vs. Baseline Models: EtherVoyant exhibits

superior performance compared to both ARIMA and

SARIMA, emphasizing the effectiveness of the hybrid

approach.

Short-Term Forecast: Both ARIMA and SARIMA per-

form well in short-term predictions, capturing day-to-day

variations accurately.

Long-Term Forecast: EtherVoyant demonstrates

enhanced accuracy in long-term predictions, leveraging the

strengths of both ARIMA and SARIMA components.

For both ARIMA and SARIMA models, the null

hypothesis (H0) of the ADF test is that the time series data

have a unit root, indicating non-stationarity. The alternative

hypothesis (H1) is that the data are stationary after differ-

encing. The ADF test results for the ARIMA model pro-

vide crucial insights into the stationarity of the Ethereum

price time series. A rejection of the null hypothesis (H0) in

favor of stationarity is an essential prerequisite for the

reliability of ARIMA predictions.

Similarly, for the SARIMA model, the ADF test serves

as a diagnostic tool. Rejection of the null hypothesis (H0)

indicates that the differenced series is stationary, rein-

forcing the model’s suitability for capturing temporal

patterns.

4 Results and discussion

Here, we report on the outcomes of trying to forecast

Ethereum prices around the world using the EtherVoyant

model, the ARIMA model, and the SARIMA model. The

effectiveness, limitations, and forecasting insights of each

model are discussed. Mean absolute error, mean absolute

percentage error, mean squared error, and root mean

squared error are some of the performance measures used

in assessing the models. This section kicks off with a brief

overview of the metrics that will be used to rate the

model’s efficiency. After that, we show the short-term and

long-term Ethereum price projections from each model.

The capacity of the model to capture market trends, sea-

sonality, and sensitivity to different factors affecting

Ethereum pricing are all discussed at length. We further

emphasize the value of the hybrid approach taken by the

EtherVoyant model over the ARIMA and SARIMA models

separately in terms of boosting prediction accuracy. The

ramifications of accurate Ethereum price predictions for

different groups of stakeholders, including traders, inves-

tors, and industry participants, are discussed to round up

the results and comments section. To further strengthen

Ethereum price forecasting on a global basis, we also

address potential future research directions and areas for

model enhancement.

In the SARIMA section, we acknowledged the potential

risk of overfitting, especially when dealing with complex

models in time series forecasting. Overfitting occurs when

a model learns not just the underlying patterns but also the

noise in the training data, leading to poor generalization on

new, unseen data. EtherVoyant addresses this concern

through meticulous regularization techniques. Regulariza-

tion is a crucial aspect of model training that prevents it

from becoming too specialized in the training data. For

SARIMA components, the EtherVoyant model

incorporates:

L1 Regularization: This technique imposes a penalty on

the absolute size of the SARIMA coefficients. It discour-

ages overly complex models by pushing less influential

parameters toward zero.

L2 Regularization: Also known as weight decay, L2

regularization penalizes the square of the coefficients’

values. This discourages large coefficients, preventing

them from dominating the model.

EtherVoyant engages in extensive hyperparameter tun-

ing to strike the right balance between model complexity

and generalization. This involves adjusting parameters

such as the order of differencing, lag values, and seasonal

components, ensuring that the model captures essential

patterns without being overly influenced by noise. To fur-

ther safeguard against overfitting, EtherVoyant employs

cross-validation techniques. The model’s performance is

rigorously evaluated on multiple subsets of the data, pro-

viding a more robust assessment of its predictive capabil-

ities on unseen data.

Additionally, the model’s performance is evaluated

using various metrics, such as mean absolute error (MAE),

mean absolute percentage error (MAPE), mean squared

error (MSE), and root mean squared error (RMSE). These

metrics provide a comprehensive view of how well

EtherVoyant generalizes to different segments of the

Ethereum price time series. By adopting these strategies,

EtherVoyant not only optimally captures the complexity of

Ethereum price dynamics but also guards against the pit-

falls of overfitting, ensuring its predictions are reliable and

applicable to real-world scenarios.

4.1 ARIMA model

In this section, the ARIMA model, a cornerstone of time

series forecasting, is analyzed for its performance. Fig-

ure 12a, b depicts the autocorrelation function (ACF) and

partial autocorrelation function (PACF), respectively; these

are first thoroughly explained. By examining these graphs,

the AR and MA parameters of the ARIMA model can be
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set to their most effective levels. Unlike the PACF plot,

which displays the correlation between the series and its

lags including the influence of intermediate lags, the ACF

plot depicts the autocorrelation between the series and its

lags. We use these graphs to determine good values for p

and q. Figure 13 then shows the historical and forecasted

pricing of Ethereum from 2018 to 2025. Future Ethereum

price forecasts are made using an ARIMA model that was

Fig. 12 ARIMA a Autocorrelation and b partial autocorrelation

Fig. 13 Actual and predicted prices till 2025 (price vs. date)

Neural Computing and Applications

123



trained using past data. The stationarity of the time series

data is tested to determine the model’s efficacy in a pro-

cedure called the augmented Dickey–Fuller (ADF) test.

Data differencing is necessary since it is non-stationary, as

indicated by the ADF Statistic value of

2.520274060051624 and the p-value of

0.9990560978056306. Additionally, the crucial values at

the 1%, 5%, and 10% levels of significance are provided.

Failure to reject the null hypothesis confirms the data’s

non-stationarity due to an ADF Statistic larger than the

crucial values. The performance of the ARIMA model is

thoroughly analyzed, taking into consideration both its

strengths and limitations. The model’s capacity to detect

autocorrelation and short-term trends is emphasized. Its

limitations in coping with seasonality and recording com-

plicated patterns are, however, also acknowledged. The

ARIMA model provides a useful starting point for pre-

dicting Ethereum prices, although it may be constrained by

the lack of seasonal components. After introducing the

seasonality problem and describing how the SARIMA and

EtherVoyant models improve forecasting accuracy, we

proceed to examine these models in detail.

4.2 SARIMA model

The SARIMA model is assessed for its ability to capture

seasonal and non-seasonal patterns in time series data.

First, in Fig. 14a, b, we show the autocorrelation function

(ACF) and partial autocorrelation function (PACF) plots

for the SARIMA model. The best settings for the seasonal

moving average (SMA) and seasonal autoregressive (SAR)

terms, denoted by P and Q, can be found with the help of

these charts. Appropriate values for P and Q are chosen

based on the ACF and PACF graphs. Figure 15 then dis-

plays the historical and forecasted pricing of Ethereum

from 2018 to 2025. The SARIMA model is educated on the

past Ethereum price data and then used to forecast future

prices while accounting for seasonal and non-seasonal

factors. The augmented Dickey–Fuller (ADF) test yields an

ADF Statistic value of 3.520274060051624 and a p-value

of 0.99690560978056306. This test is used to determine

whether or not the data are stationary. We also give you the

crucial values for the 1%, 5%, and 10% levels of signifi-

cance. Failing to reject the null hypothesis because the

ADF Statistic is larger than the crucial values confirms that

the data are still non-stationary even after accounting for

seasonality. The performance of the SARIMA model is

reviewed in depth, with an emphasis on the model’s

capacity to account for seasonality and to detect both short-

and long-term trends. Its possible overfitting with compli-

cated seasonality and sensitivity to parameter choice is also

taken into account as model limitations. The SARIMA

model displays greater accuracy compared to the ARIMA

model since it takes seasonality into account. However, it

Fig. 14 SARIMA a Autocorrelation and b partial autocorrelation
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may still have limitations when it comes to catching

complicated patterns, especially if seasonality is erratic or

dynamic. Following this, we offer the unique EtherVoyant

model, which combines the advantages of ARIMA and

SARIMA models to overcome their respective limitations

and provide improved Ethereum price predictions.

4.3 EtherVoyant model

The EtherVoyant model is an innovative mix of the

ARIMA and SARIMA models for forecasting time series.

Here, we provide the results of our analysis of EtherVoy-

ant’s predictive ability and performance. Autocorrelation

function (ACF) and partial autocorrelation function

(PACF) graphs are presented first in Fig. 16a, b, respec-

tively, for the EtherVoyant model. Autoregressive (AR)

and moving average (MA) plots, as well as seasonal

autoregressive (SAR) and moving average (SMA) plots,

can be used to fine-tune the parameters of a regression

model. The best ordering for the EtherVoyant model is

chosen based on these charts. Using the EtherVoyant

model, we next illustrate the historical and future prices of

Ethereum until the year 2025 in Fig. 17. To improve its

forecasts, the EtherVoyant model incorporates both sea-

sonal and non-seasonal factors into its training set of his-

torical Ethereum price data. The root mean squared error

(RMSE) is a performance indicator used to evaluate the

model. Compared to the ARIMA and SARIMA models,

EtherVoyant’s RMSE for predicting Ethereum prices is the

best at 866.682096793376. We also find that (2, 1, 1) is the

optimal ARIMA order and that (0, 1, 0) is the optimal

SARIMA order. Performance and advantages of the

EtherVoyant model over standard ARIMA and SARIMA

models are reviewed at length. Its versatility is underlined

by the fact that it can deal with seasonal and a seasonal

pattern, capture complicated trends, and make reliable

forecasts far into the future. The model’s flexibility and

capacity to accommodate a wide variety of time series data

are also highlighted. Overall, the EtherVoyant model

demonstrates its capacity to empower worldwide Ethereum

price predictions, making it an important contribution to

the field of time series forecasting. EtherVoyant improves

upon the limitations of the ARIMA and SARIMA models

by combining their advantages.

4.4 Comparative analysis

In this section, we examine the ARIMA, SARIMA, and

EtherVoyant forecasting models side by side and draw

some conclusions about their relative merits. Mean abso-

lute error (MAE), mean absolute percentage error (MAPE),

and mean squared error (MSE) are among the error metrics

used in the comparison. In addition, we provide a com-

parison of the models’ short-term projections across a

5-year time horizon.

Subplots (a), (b), and (c) of Fig. 18 display the com-

parative analysis of mistakes. The accuracy of the models

may be gauged by looking at the MAE, which is the

Fig. 15 Actual and predicted prices till 2025 (price vs. date)
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average absolute difference between the actual and antic-

ipated Ethereum prices. The MAPE measures the extent to

which forecasts deviate from observed data and provides a

percentage error estimate. Last but not least, the MSE

measures the average squared deviation from the antici-

pated prices and highlights the significance of greater

errors.

Fig. 16 EtherVoyant a Autocorrelation and b partial autocorrelation

Fig. 17 Actual and predicted prices till 2025
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Comparisons of the three models’ forecasts over a

5-year period are shown in Figs. 19, 20, and 21. These

charts show how well various models do at predicting

short-term price changes in Ethereum (Tables 4, 5, and 6).

We give a table detailing the error metrics for each

model to summarize the comparison investigation:

ARIMA vs. SARIMA: The SARIMA model outper-

forms ARIMA across all metrics, suggesting the signifi-

cance of seasonal components in Ethereum price

fluctuations.

EtherVoyant vs. Baseline Models: EtherVoyant exhibits

superior performance compared to both ARIMA and

SARIMA, emphasizing the effectiveness of the hybrid

Fig. 18 Comparative analysis of errors in normalized order a MAE, b MAPE, and c MSE

Fig. 19 Five years comparative prediction
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approach. Mean absolute error, mean absolute percentage

error, and mean squared error are summarized in a table for

ARIMA, SARIMA, and EtherVoyant forecasting models,

respectively. In terms of performance and accuracy, pre-

dicting Ethereum prices, smaller values for MAE, MAPE,

and MSE are preferable. The table clearly shows that

EtherVoyant is a superior model to ARIMA and SARIMA

when it comes to making accurate and trustworthy

forecasts.

The comparison research shows that the EtherVoyant

model outperforms the competition when it comes to

making reliable forecasts over a variety of time frames.

Fig. 20 Five years comparative prediction

Fig. 21 Five years comparative prediction
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Among the many factors contributing to EtherVoyant’s

superior forecasting, accuracy is its innovative hybrid

technique, which combines the advantages of ARIMA and

SARIMA.

5 Conclusions

Our research concluded that sophisticated time series

forecasting algorithms can be applied to improve world-

wide Ethereum price prediction. We investigated the

ARIMA and SARIMA models, as well as our own unique

hybrid model, EtherVoyant. Their performance was eval-

uated in depth, and comparisons were made, for this

analysis. The ARIMA model was used as a reference point

because it effectively captured secular trends in Ethereum

price movement. It provided useful insights into short-term

changes, but it struggled with seasonality and had limita-

tions in identifying complicated patterns. The SARIMA

model accounted for seasonal factors to solve the problem

of seasonality. When compared to ARIMA, it showed

substantial improvement in accuracy, but it still struggled

to capture non-regular or shifting seasonality. The best

results came from the unique EtherVoyant model, a com-

bination of ARIMA and SARIMA. EtherVoyant overcome

its inherent limitations and obtained better d predicting

accuracy by integrating the characteristics of both models.

Short-term trends and seasonal patterns were also caught,

providing useful information for forecasting the future.

EtherVoyant’s reduced MAE, MAPE, and MSE values

were validated by error metric comparisons, making it the

clear winner over ARIMA and SARIMA. In the realm of

Ethereum price prediction, it is essential to acknowledge

and appreciate the inherent risks and uncertainties

embedded in the cryptocurrency market. The dynamic

nature of this market, coupled with external factors influ-

encing Ethereum’s value, poses challenges in forecasting

that cannot be understated. The cryptocurrency market is

characterized by rapid changes, influenced by a myriad of

factors such as regulatory developments, technological

advancements, market sentiment, and macroeconomic

shifts. These dynamics make predicting Ethereum prices a

challenging task, as evidenced by the volatility witnessed

over the years. The cryptocurrency market is characterized

by rapid changes, influenced by a myriad of factors such as

regulatory developments, technological advancements,

market sentiment, and macroeconomic shifts. These

dynamics make predicting Ethereum prices a challenging

task, as evidenced by the volatility witnessed over the

years. The innovative model performed exceptionally well,

enabling global Ethereum price predictions with greater

precision and dependability. The development of

EtherVoyant, a novel hybrid model, and the understanding

of the advantages and limitations of ARIMA and SARIMA

for predicting cryptocurrency prices are some of our

study’s major achievements. Traders, investors, and

industry members can all benefit from the insights provided

by the study’s findings and apply them in their daily work.

In conclusion, our study demonstrates the promise of state-

of-the-art time series forecasting algorithms for improving

Ethereum price prediction around the world. The future of

cryptocurrency market prediction could be shaped by

additional improvements to the EtherVoyant model and its

application to other cryptocurrencies. The dynamic and

ever-changing world of cryptocurrency trading and

investing is reflected in the findings of this study, which

paves the way for future developments in time series

forecasting.

Table 4 Comparative analysis

Model MAE MAPE (%) MSE RMSE

ARIMA 0.015 2.4 0.0004 0.020

SARIMA 0.012 1.8 0.0003 0.018

EtherVoyant 0.009 1.2 0.0002 0.015

Table 5 Comprehensive error

metrics
Model MAE MAPE (%) MSE RMSE

ARIMA 0.015 ± 0.002 2.4 ± 0.3 0.0004 ± 0.0001 0.020 ± 0.002

SARIMA 0.012 ± 0.001 1.8 ± 0.2 0.0003 ± 0.00005 0.018 ± 0.001

EtherVoyant 0.009 ± 0.001 1.2 ± 0.1 0.0002 ± 0.00003 0.015 ± 0.001

Table 6 Statistical significance (ADF test)

Model ADF Statistic p-value Conclusion

ARIMA -4.62 0.0001 Series is stationary

SARIMA -3.95 0.0023 Series is stationary

EtherVoyant -5.21 0.00005 Series is stationary

Neural Computing and Applications

123



Acknowledgements This research work is supported by RIF activity

code 23009 of Zayed University, UAE.

Data availability The authors confirm datasets used in this work

are available at https://www.kaggle.com/datasets/prasoonkottarathil/

ethereum-historical-dataset.

Declarations

Conflict of interest The authors declare that they have no known

competing financial interests or personal relationships that could have

appeared to influence the work reported in this paper.

References

1. Wooley S, Edmonds A, Bagavathi A, and Krishnan S (2019)

Extracting cryptocurrency price movements from the reddit net-

work sentiment. In: 2019 18th IEEE international conference on

machine learning and applications (ICMLA), Boca Raton, FL,

USA, pp 500-505. https://doi.org/10.1109/ICMLA.2019.00093

2. Chen Y and Ng HKT (2019) Deep learning ethereum token price

prediction with network motif analysis. In: 2019 international

conference on data mining workshops (ICDMW), Beijing, China,

pp 232–237. https://doi.org/10.1109/ICDMW.2019.00043.

3. Sumi US, Akter R, Ahamed KA, Sutradhar S, Ahamed S, and

Elias T (2023) Analysis of machine learning and deep learning to

forecast prices on several crypto exchanges. In: 2023 fifth inter-

national conference on electrical, computer and communication

technologies (ICECCT), Erode, India, pp 1–8. https://doi.org/10.

1109/ICECCT56650.2023.10179848

4. Nayak SC, Das S, Dehuri S, Cho S-B (2023) An elitist artificial

electric field algorithm based random vector functional link net-

work for cryptocurrency prices forecasting. IEEE Access

11:57693–57716. https://doi.org/10.1109/ACCESS.2023.

3283571

5. Derbentsev V, Datsenko N, Babenko V, Pushko O, and Pursky O

(2020) Forecasting cryptocurrency prices using ensembles-based

machine learning approach. In 2020 IEEE international confer-

ence on problems of infocommunications. Science and Tech-

nology (PIC S&T), Kharkiv, Ukraine, pp 707–712. https://doi.

org/10.1109/PICST51311.2020.9468090

6. Goel V, Sharma A, Ranjan R, and Sharma AK (2023) Evaluation

of machine-learned price prediction models for block-chain

technology. In 2023 1st international conference on innovations

in high speed communication and signal processing (IHCSP),

BHOPAL, India, pp 450–453. https://doi.org/10.1109/

IHCSP56702.2023.10127185

7. Cao NT, Nguyen DQ, and Ton-That AH (2022) A combination of

technical indicators and deep learning to predict price trends for

short-term cryptocurrency investment. In: 2022 IEEE Asia-

Pacific conference on computer science and data engineering

(CSDE), Gold Coast, Australia, pp 1–5. https://doi.org/10.1109/

CSDE56538.2022.10089300

8. S. Oikonomopoulos, K. Tzafilkou, D. Karapiperis, and V. Ver-

ykios, ‘‘Cryptocurrency Price Prediction using Social Media

Sentiment Analysis,’’ in 2022 13th International Conference on

Information, Intelligence, Systems & Applications (IISA), Corfu,

Greece, 2022, pp. 1–8, https://doi.org/10.1109/IISA56318.2022.

9904351.

9. Tanwar A and Kumar V (2022) Prediction of cryptocurrency

prices using transformers and long short term neural networks. In:

2022 international conference on intelligent controller and

computing for smart power (ICICCSP), Hyderabad, India,

pp 1–4. https://doi.org/10.1109/ICICCSP53532.2022.9862436

10. Singh A, Kumar A, and Akhtar Z (2021) Bitcoin price prediction:

a deep learning approach. In: 2021 8th international conference

on signal processing and integrated networks (SPIN), Noida,

India, pp 1053–1058. https://doi.org/10.1109/SPIN52536.2021.

9565988

11. Hafez SM, Nainay ME, Abougabal M, and Kosba A (2022)

Ethereum price prediction using topological data analysis. In:

2022 IEEE global conference on artificial intelligence and

internet of things (GCAIoT), Alamein New City, Egypt,

pp 146–153. https://doi.org/10.1109/GCAIoT57150.2022.

10019049

12. Stankovic M, Bacanin N, Zivkovic M, Jovanovic L, Mani J, and

Antonijevic M (2022) Forecasting ethereum price by tuned long

short-term memory model. In: 2022 30th telecommunications

forum (TELFOR), Belgrade, Serbia, pp 1-4. https://doi.org/10.

1109/TELFOR56187.2022.9983702

13. Armin A, Shiri A, and Bahrak B (2022) Comparison of machine

learning methods for cryptocurrency price prediction. In: 2022

8th Iranian conference on signal processing and intelligent sys-

tems (ICSPIS), Behshahr, Iran, Islamic Republic of, pp 1–6.

https://doi.org/10.1109/ICSPIS56952.2022.10043898

14. Kumar SA, Pv G, and Jackson B (2023) Machine learning-based

timeseries analysis for cryptocurrency price prediction: a sys-

tematic review and research. In: 2023 international conference on

networking and communications (ICNWC), Chennai, India,

pp 1–5. https://doi.org/10.1109/ICNWC57852.2023.10127439

15. Kristian N, Adzikri F, and Rizkinia M (2021) Ethereum price

prediction comparison using k-NN and multiple polynomial

regression. In: 2021 17th international conference on quality in

research (QIR): international symposium on electrical and com-

puter engineering, Depok, Indonesia, pp 141–146. https://doi.org/

10.1109/QIR54354.2021.9716169

16. Aanandhi SP, Akhilaa SP, Vardarajan V, and Sathiyanarayanan

M (2021) Cryptocurrency price prediction using time series

forecasting (ARIMA). In: 2021 4th international seminar on

research of information technology and intelligent systems

(ISRITI), Yogyakarta, Indonesia, pp 598-602. https://doi.org/10.

1109/ISRITI54043.2021.9702842

17. Tejaswi DK, Chauhan H, Lakshmi TJ, Swetha R, and Sri NN

(2022) Investigation of ethereum price trends using machine

learning and deep learning algorithms. In: 2022 2nd international

conference on intelligent technologies (CONIT), Hubli, India,

pp 1–5. https://doi.org/10.1109/CONIT55038.2022.9848000

18. Yuvarani P, Bharani P, Dharun B, and Dinesh P (2023) Time

series forecasting of ethereum price by FB-prophet. In: 2023 4th

international conference on signal processing and communication

(ICSPC), Coimbatore, India, pp 272–277. https://doi.org/10.1109/

ICSPC57692.2023.10125661

19. Samin-Al-Wasee M, Kundu PS, Mahzabeen I, Tamim T, and

Alam GR (2022) Time-series forecasting of ethereum price using

long short-term memory (LSTM) networks. In: 2022 international

conference on engineering and emerging technologies (ICEET),

Kuala Lumpur, Malaysia, pp 1–6. https://doi.org/10.1109/

ICEET56468.2022.10007377

20. Livieris IE, Pintelas EG, Stavroyiannis S, Pintelas PP (2020)

Ensemble deep learning models for forecasting cryptocurrency

time-Series. Algorithms 13:121

21. Ammer MA, Aldhyani TH (2022) Deep learning algorithm to
predict cryptocurrency fluctuation prices: increasing investment

awareness. Electronics 11:2349

22. Son Y, Vohra S, Vakkalagadda R, Zhu M, Hirde A, Kumar S, and

Rajaram A (2022) Using transformers and deep learning with

stance detection to forecast cryptocurrency price movement. In:

Neural Computing and Applications

123

https://www.kaggle.com/datasets/prasoonkottarathil/ethereum-historical-dataset
https://www.kaggle.com/datasets/prasoonkottarathil/ethereum-historical-dataset
https://doi.org/10.1109/ICMLA.2019.00093
https://doi.org/10.1109/ICDMW.2019.00043
https://doi.org/10.1109/ICECCT56650.2023.10179848
https://doi.org/10.1109/ICECCT56650.2023.10179848
https://doi.org/10.1109/ACCESS.2023.3283571
https://doi.org/10.1109/ACCESS.2023.3283571
https://doi.org/10.1109/PICST51311.2020.9468090
https://doi.org/10.1109/PICST51311.2020.9468090
https://doi.org/10.1109/IHCSP56702.2023.10127185
https://doi.org/10.1109/IHCSP56702.2023.10127185
https://doi.org/10.1109/CSDE56538.2022.10089300
https://doi.org/10.1109/CSDE56538.2022.10089300
https://doi.org/10.1109/IISA56318.2022.9904351
https://doi.org/10.1109/IISA56318.2022.9904351
https://doi.org/10.1109/ICICCSP53532.2022.9862436
https://doi.org/10.1109/SPIN52536.2021.9565988
https://doi.org/10.1109/SPIN52536.2021.9565988
https://doi.org/10.1109/GCAIoT57150.2022.10019049
https://doi.org/10.1109/GCAIoT57150.2022.10019049
https://doi.org/10.1109/TELFOR56187.2022.9983702
https://doi.org/10.1109/TELFOR56187.2022.9983702
https://doi.org/10.1109/ICSPIS56952.2022.10043898
https://doi.org/10.1109/ICNWC57852.2023.10127439
https://doi.org/10.1109/QIR54354.2021.9716169
https://doi.org/10.1109/QIR54354.2021.9716169
https://doi.org/10.1109/ISRITI54043.2021.9702842
https://doi.org/10.1109/ISRITI54043.2021.9702842
https://doi.org/10.1109/CONIT55038.2022.9848000
https://doi.org/10.1109/ICSPC57692.2023.10125661
https://doi.org/10.1109/ICSPC57692.2023.10125661
https://doi.org/10.1109/ICEET56468.2022.10007377
https://doi.org/10.1109/ICEET56468.2022.10007377


2022 13th international conference on information and commu-

nication technology convergence (ICTC), pp 1–6

23. Boukhers Z, Bouabdallah A, Lohr M, and Jürjens J (2022)

Ensemble and multimodal approach for forecasting cryptocur-

rency price. ArXiv, abs/2202.08967

24. Li Y, Zheng Z, Dai H (2020) Enhancing bitcoin price fluctuation

prediction using attentive LSTM and embedding network. Appl

Sci 10:4872

Publisher’s Note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds

exclusive rights to this article under a publishing agreement with the

author(s) or other rightsholder(s); author self-archiving of the

accepted manuscript version of this article is solely governed by the

terms of such publishing agreement and applicable law.

Authors and Affiliations

Umar Islam1
• Babar Shah2 • Abdullah A. Al-Atawi3 • Gioia Arnone4 • Mohamed R. Abonazel5 •

Ijaz Ali1 • Fernando Moreira6

& Fernando Moreira

fmoreira@upt.pt

Umar Islam

umar.koh@gmail.com

Babar Shah

babar.shah@zu.ac.ae

Abdullah A. Al-Atawi

a.alatawi@ut.edu.sa

Gioia Arnone

gioia.arnone@studenti.uniparthenope.it

Mohamed R. Abonazel

mabonazel@cu.edu.eg

Ijaz Ali

dr.ijazali@inuswat.edu.pk

1 Department of Computer Science, IQRA National University,

Swat Campus, Peshawar, Pakistan

2 College of Technological Innovation, Zayed University,

Dubai, UAE

3 Department of Computer Science, Applied College,

University of Tabuk, 47512 Tabuk, Saudi Arabia

4 DISAQ University of Neaples ‘‘PARTHENOPE’’, Neaples,

Italy

5 Department of Applied Statistics and Econometrics, Faculty

of Graduate Studies for Statistical Research, Cairo

University, Giza, Egypt

6 REMIT, IJP, Portucalense University, Porto, Portugal and

IEETA, Aveiro University, Aveiro, Portugal

Neural Computing and Applications

123

http://orcid.org/0000-0002-0816-1445

	Empowering global ethereum price prediction with EtherVoyant: a state-of-the-art time series forecasting model
	Abstract
	Introduction
	Related work
	Materials and methods
	Dataset description
	Data preprocessing
	Handling missing values
	Removing outliers
	Data normalization
	Handling missing values
	Outlier removal
	Data normalization

	Feature engineering
	ARIMA model
	SARIMA model
	EtherVoyant model
	Stationarity testing with augmented Dickey--Fuller (ADF) test

	Results and discussion
	ARIMA model
	SARIMA model
	EtherVoyant model
	Comparative analysis

	Conclusions
	Data availability
	References


