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Abstract
Accurate and early disease prediction enables patients to plan and improve their quality of life in the future. Early detection

of neurodegenerative diseases, such as Parkinson’s disease, is a high priority and a significant challenge in which

physicians must act quickly to diagnose and predict the risk of disease severity. Machine learning (ML) models combined

with feature selection (FS) techniques can assist physicians in quickly diagnosing a disease. FS technique optimally subsets

features to improve model performance and reduce the number of tests required for a patient, thereby speeding up

diagnosis. This paper proposes an e-diagnosis approach based on ML-FS algorithms to detect Parkinson’s disease using

data obtained from Parkinson’s Progression Markers Initiative (PPMI) Online study. Also, it can be considered patient-

oriented research as it uses self-reported online collected data. The results of six FS techniques pre-applied to classification

algorithms named logistic regression, random forest, support vector machine, CatBoost, extreme learning machine, and

XGBoost are shown in this study. Chi-square, mutual information, and analysis of variance (ANOVA) filter-based FS

methods, while sequential feature selection, Boruta, and recursive feature elimination are considered wrapper methods. The

outcomes show that random forest when trained on features selected by the recursive feature elimination technique help to

build an efficient and effective approach for detecting Parkinson’s disease.
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1 Introduction

Parkinson’s disease (PD) is a disorder of the central ner-

vous system that immensely affects functions controlled by

it. The quality of life of a large population above 60 years

old is adversely affected by this progressive neurodegen-

erative disease globally [1]. PD is caused by the loss of

neurons that produce dopamine in the substantia nigra. Due

to this, the level of dopamine decreases and causes atypical

brain activity. Research has established that the progression

of PD has stages based on the reduction of dopaminergic

neurons [2]. Resting tremors, bradykinesia, and rigidity are

the most common motor symptoms of PD, and non-motor

symptoms such as loss of olfactory, sleep behavior disor-

der, and cognitive and behavioral changes are also preva-

lent [3]. Treatment is effective in the early stage compared

to later stages. Non-motor symptoms, recognized in the

premotor or prodromal stage of PD, precede the motor

symptoms in the mid or advanced stage. Currently, treat-

ments are available only to maintain quality of life by

relieving symptoms early on, and no cure is available for

PD. Hence, detecting PD early is crucial to stagnating or

delaying disease progression [4]. Several studies predicted

that the prevalence of PD would skyrocket in the coming

decades [5]. The increase in the global burden of PD is

attributed primarily to the increasing number of older

people worldwide. Other reasons are contributions from
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other long-prevailing diseases and environmental factors

poised to significantly fuel the growth of PD worldwide.

Cost of health facilities, geographical reasons, and

transportation limitations restrict individuals from taking

benefits of clinical-based medical systems through in-per-

son visits. For example, nearly one-third of persons with

PD rarely visit a neurologist in the USA [6]. However,

academic medical research centers are taking advantage of

technological advances, digital medicine facilities, online

healthcare systems, web-based strategies, real-time moni-

toring systems, and digital diagnosis decision systems to

provide healthcare to many PD patients worldwide. In

recent years, electronic health records have contributed

significantly to understanding the diagnosis and progres-

sion of PD [7]. Technology-enabled healthcare systems

helped the acquisition of data with ease through online/

web-based systems and wearable health devices. Data is

also collected through self-reported medical conditions

from many patients using questionnaires and assisting in

designing patient-oriented healthcare systems. Digital

cohorts nowadays ease data acquisition. However, the

incompleteness and reliability of data are still challenging.

The incompleteness of datasets can be addressed to a very

large extent these days by machine learning tech-

niques. An approach involves the utilization of imputation

algorithms or algorithms specifically designed to work with

sparse datasets that are capable of handling missing data.

Furthermore, varying levels of data completeness can be

adapted by ML models by including informative and rel-

evant features. By employing feature selection techniques,

ML algorithms can prioritize the data points that contribute

the most to predictive or diagnostic accuracy, effectively

mitigating the effects of missing or incomplete data [8].

However, it should be acknowledged that while ML tech-

niques can address the incompleteness of data to some

extent, the reliability of data remains still a significant

challenge. To address the reliability of data, a multi-faceted

approach is necessary, encompassing rigorous data vali-

dation procedures, cross-validation techniques, and domain

expertise. Hence, these systems need to be validated from

traditional clinical in-person data studies, expert opinions,

and assessments by neurologists/clinicians [9]. However,

some projects such as Fox Insight (FI) [10, 11] and

Parkinson’s Progression Markers Initiative Online (PPMI

Online) [12, 13] are underway with a reasonable degree of

agreement and well-designed questionnaires to collect and

evaluate the data for PD.

Machine learning (ML) algorithms learn and extract

meaningful patterns from available data to design digital

diagnosis decision systems. ML has created enhanced

interest in the diagnosis/prediction approach in many

biomedical conditions such as diabetes [14], cardiovascular

disease [15, 16], risk of coronavirus disease [17], human

reproduction health including studies of embryos [18, 19],

brain disorder [20], and mental health [21, 22], in addition

to the diagnosis of PD. However, most studies have used

data generated through invasive procedures, in-person

clinic visits, and expensive protocols. It is notable that for

more accurate detection of PD, more than one visit is

necessary since, in the first visit investigations, pathologi-

cally confirmed PD is only 80% accurate [23]. Hence,

longitudinal study of patients is vital to predicting PD

accurately. Deep learning (DL) algorithms are used to

analyze imaging or gait movements of PD patients, but

generating such data require proper setup and is challeng-

ing when done remotely; hence, in-person visits to

healthcare systems are necessary [24]. Studies also used

multi-modal data to identify PD or stages of PD. However,

these studies have high computational time and cost.

In the present study, data were extracted from PPMI

Online Project and its characteristics were studied and

compared with available contemporary datasets. This data

has more than 120 characteristics that may or may not be

relevant to identify PD. Hence, selected characteristics, as

suggested by feature selection techniques, were used to

differentiate PD from Healthy Controls (HC). More than

one feature selection technique was used to get the best

possible results and verify them. Data was trained on var-

ious ML classification algorithms based on bagging or

boosting, statistical or feedforward learning, and deter-

ministic or probabilistic concepts. The main objective of

this study is to design an approach that eases the prediction

process of PD with the least number of characteristics and

reduces the need for invasive biomarkers or clinic visits to

identify PD. It is well known that PD patients face diffi-

culty even in everyday activities; hence, traveling and

visiting medical research centers is a strenuous task for

them. Therefore, an online-only approach can help them

reduce their struggle to reach clinicians. Hence, we have

attempted to design an online approach to identify pro-

dromal PD with non-motor and subtle motor symptoms.

Applying feature selection methods with classification

models for PD detection is not novel, however, significant

contributions are made in the current study using this

approach. Firstly, the focus is on analyzing self-reporting

online data, which have unique challenges and opportuni-

ties compared to traditional clinical datasets. Online data

often come in large volumes and diverse formats, neces-

sitating robust processing and analysis techniques to

extract meaningful insights. Secondly, to the best of our

knowledge, this study represents the first attempt to analyze

PPMI Online data and statistically compare it with tradi-

tional clinical datasets. Additionally, the classification

results are validated using explainable AI techniques for

PD detection. By using explainable AI methods, the aim is

to enhance the transparency and interpretability of the

19210 Neural Computing and Applications (2024) 36:19209–19230

123



models, thereby providing insights into the underlying

factors contributing to PD diagnosis. While the existence of

previous studies combining FS with ML for PD detection is

acknowledged, the novelty of the research lies in the

application to online data and the validation using

explainable AI techniques. Unfortunately, due to the

approach’s novelty and the dataset’s challenging nature, a

direct comparison with existing methods is deemed not

feasible.

The utilization of online datasets by academic medical

research centers to extend routine medical and preventive

care for PD patients globally is investigated. With tech-

nological advancements and the growing availability of

digital healthcare solutions, digital medicine facilities,

online healthcare systems, web-based strategies, real-time

monitoring systems, and digital diagnosis decision systems

are being leveraged by medical research centers to improve

online healthcare services. Motivated by the potential

benefits of these online initiatives, the current study focuses

on analyzing online data and statistically comparing it with

well-established offline data sources. Through this com-

parative analysis, the aim is to establish the value and

impact of online healthcare strategies in providing timely

and effective healthcare services to individuals affected by

PD, thereby contributing to the advancement of remote

healthcare delivery. The paper proceeds to represent, in

Sect. 2, the related work on PD using various techniques

reported, and in the next section (Sect. 3), description of

data, and statistical analysis of data given. Section 4

describes the methodology, preprocessing techniques

applied to data, feature selection, and models used for

training. Results and explanations of decisions taken by

models are reported in Sect. 5. A comparison of different

approaches to the prediction of PD is analyzed in this

section. In the next section, this study has concluded with

advantages and limitations. Finally, future aspects of this

work are described in Sect. 6.

2 Related work

In the literature, several studies have been conducted using

ML and DL algorithms on Parkinson’s disease. Classifi-

cation or Diagnosis of PD, present stages and progression

of PD, or differential diagnosis were the main aim of these

studies. Various data modalities such as neuroimaging data

(MRI, SPECT, and PET) [25, 26], gait movement [27],

voice recordings [28], handwriting patterns [29],

biomarkers including CFS [30, 31], sleep behavior [32],

RNA [33], Wearable sensor data [34], and Patient Ques-

tionnaires [35] were used to detect PD. In a recent review

work Mei et al. [36] studied 209 publications, and nearly

170 publications were focused on the classification of PD

from healthy control based on a single or more than one

data modality. According to the study, ML-assisted clinical

decision systems for the diagnosis of PD have high

potential. They also suggested these systems can also be

used in the early detection of PD with the adoption of novel

biomarkers. In the present study, the main focus was on the

literature which has physical and biomarker features and

also deals with premotor and motor symptoms to screen

and understand the significant symptoms. Prashanth et al.

in 2014 [37] observed in their study of prodromal phase

characteristics that premotor symptoms such as olfactory

loss and sleep disorders predate the occurrence of first

clinical features by years or even decades. They diagnosed

early PD using support vector machine (SVM) and clas-

sification tree methods and yielded high accuracy of 85%.

In another study, Berg et al. [38] described research criteria

and probability methodology based on age and diagnostic

information such as motor and non-motor clinical symp-

toms, clinical signs, and ancillary diagnostic tests for the

diagnosis of prodromal PD using a Bayesian naive classi-

fier with more than 80% certainty in 2015. Fereshtehnejad

et al. [39] studied the independence of prodromal markers

and concluded that Movement Disorder Society (MDS)

prodromal criteria had 81.3% sensitivity for conversion to

PD. They have also evaluated the association between

prodromal PD likelihood ratios and the time to conversion

in the REM sleep behavior disorder (RBD) cohorts.

Mahlknecht et al. determined the predictive value of

olfactory dysfunction for neurodegenerative disease in

cohorts with idiopathic REM sleep behavior disorder

(iRBD). Olfactory function, particularly odor identifica-

tion, is a significant non-motor feature that may help to

predict neurodegenerative diseases such as Lewy body

disease and PD with the help of other non-motor features

like sleep disorder [40].

Non-motor and motor symptoms combined with other

modalities of data were also studied to identify PD. For

example, in the year 2016, Prashant et al. [41] also studied

the combination of non-motor, cerebrospinal fluid (CSF),

and striatal binding ratio (SBR) from SPECT imaging to

detect preclinical PD. They yielded 96.40% accuracy using

the SVM classifier. Multimodal study of clinical informa-

tion such as motor and non-motor characteristics,

biospecimen results, and neuroimaging outputs was used

by Zhang et al. [42] for the classification of PD subtypes

using long short-term memory (LSTM). They have also

found that the progression rate of motor and non-motor

symptoms is independent of each other. In another study,

Mabrouk et al. studied non-motor and motor symptoms

with image-derived features using five ML algorithms and

achieved the highest accuracy of 82.2% [43]. Severson

et al. [44] have discovered the progression and states of PD

using the ML algorithm based on motor and non-motor
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symptoms. Through the study, the heterogeneous nature of

PD has been accounted for especially in its early course.

Extreme gradient boosting (XGBoost) and logistic regres-

sion techniques were used for the prediction of clinically

significant depression and also identified depressive dis-

turbances in Parkinson’s disease (dPD) as the most sig-

nificant determinant of quality of life in 2020, Gu et al.

[45]. In another study, Leger et al. [46] performed two

binary classifications, one was between early PD versus

HC and another was early PD versus SWEDD (scans

without evidence of dopamine deficit). General additive

(GAM) model yielded 0.92 AUC score for PD versus HC,

while performance for PD versus SWEDD was lower for

all models used in the study (XGBoost got AUC 0.86).

Non-motor clinical and biomarker features are less effec-

tive in discriminating early PD from SWEDD as compared

to HC from PD. In 2022, Martinez-Eguiluz et al. [47]

evaluated 9 ML algorithms for discriminating PD from HC

using non-motor clinical PD features and achieved the best

performance of SVM with 86.3% accuracy. With the

advancement of technology, it can be possible to remotely

diagnose and monitor PD. Prince et al. used mobile health

data and multisource ensemble learning with convolutional

neural networks (CNNs) and achieved an accuracy of

82.0%. However, they have not studied inter-source rela-

tionships between various features and data can have noise

and irrelevant information [48]. Other than structural data,

the study of medical reports using natural language pro-

cessing (NLP) can also be used to diagnose stages of PD

further. Frasca et al. [49] have proposed a technique to

categorize the patients using the correlation between the

biomedical information of medical reports collected during

the visits. Doc2Vec, latent Semantic Analysis, and Tex-

t2Vec techniques were used to correlate the data of each

patient’s medical report. Despite various techniques used to

detect PD, there is no standard approach that can online

identify the prodromal phase of PD with only motor and

non-motor symptoms. Therefore, in this study, we have

designed an approach that detects PD with minimum

questionnaires and eases the life of the patients. We applied

state-of-the-art methods for feature selection and model

training to optimize the performance of the proposed

approach. Both filter (ANOVA, mutual information (MI),

and chi-square) and wrapper methods (sequential feature

selection, recursive feature elimination, and Boruta) used

separately to analyze their impact on feature selection.

Additionally, various classification algorithms including

CatBoost, extreme learning machine (ELM), logistic

regression (LR), random forest (RF), SVM, and XGBoost

were utilized to examine their effectiveness and interac-

tions with the feature selection techniques. This method-

ology allowed for a thorough investigation into the effects

of different algorithms and techniques on each other,

providing valuable insights into optimal model perfor-

mance and feature relevance. These models cover a range

of techniques such as ensemble methods (bagging with RF

and boosting with XGBoost), probabilistic modeling (LR

and SVM can be used for probability estimation), and

regression (ELM and LR can perform regression tasks).

Furthermore, to enhance the robustness and interpretability

of the findings, the results were validated using explainable

AI techniques. By employing explainable AI methods,

insights into the decision-making process of the model are

aimed to be provided, thereby increasing confidence in the

reliability and validity of the results.

3 Dataset

PPMI Online is part of the PPMI study that aims to

understand the risk and predictive factors for PD. It is an

observational study that started on July 28, 2021, to expand

the original PPMI study. Original PPMI [12] is an ongoing,

longitudinal study started in 2011 that aims to identify

clinical, imaging, genetic, and physical features of the

patients for the progression of PD. Initially, for this work,

data was gathered from de novo-diagnosed PD from 33

participating sites worldwide. PPMI questionnaires are

developed in collaboration with multidisciplinary teams of

researchers, clinicians, and experts in Parkinson’s disease.

Questionnaires undergo rigorous validation processes to

ensure their reliability, validity, and relevance to the study

population. The PPMI clinical protocol involves detailed

assessments of motor and non-motor symptoms, cognitive

function, and quality of life using standardized scales such

as the Movement Disorder Society-Unified Parkinson’s

Disease Rating Scale (MDS-UPDRS) [50], Montreal

Cognitive Assessment (MoCA) [51], and others. The data

was downloaded on 25 May 2022, with 22,953 participants

(including both PD and healthy) enrolled for the PPMI

Online study. 18,580 participants have visited screening

and contributed data longitudinally and cross-sectionally in

one or more online meetings using a web-based platform.

The inclusion criteria for PDs:

1. Male or female 18 years or above

2. Diagnosis of Parkinson’s disease

Same is true for healthy controls in terms of age, and

gender, who have not received a diagnosis of Parkinson’s

disease. PPMI Online study is designed with 10 charac-

teristics of questionnaires each characteristic has one or

more study assessments listed in Table 1.

These self-reported questionnaires include demographic

information, socioeconomic status, family history related

to Parkinson’s disease, motor and non-motor aspects of the

participants. PPMI Online also includes medical history
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like injury on the head, diagnosis of diabetes, depression,

Erectile dysfunction, COVID-19, and habitual behavior

such as caffeine consumption and smoking frequency.

3.1 Demographic and physical features

Demographic characteristics, the score of motor experience

of daily living (UPDRS-II) [52], and the geriatric depres-

sion score (GDS) [53] of both groups (PD and HC) are

reported in Table 2. PPMI Online is an online self-reported

dataset, hence to validate the characteristics of this dataset

it is necessary to compare them with other recent research

studies of PD. PPMI dataset is also accessible with PPMI

Online dataset which is a longitudinal observational

research study assessed with in-person visits of cohorts. For

statistical characteristics comparison, 197 HC and 490 PD

cohorts were considered from the PPMI dataset. PPMI

Online PD patients (67.41 years) were significantly older

than PPMI PD patients (62 years). While HC is older for

PPMI (61.30 years) as of PPMI Online (56.68). Healthy

Female percentage in PPMI Online (63.37%) was higher as

compared to PPMI (34.52%) while the proportion of PD

Females is comparable for both datasets (39.48 and

35.61%). In the literature [11], Fox Insight (FI) study also

collected online data for PD cohorts only. In the present

experiment, Tables 1 and 3 from the literature [11] are also

compared for the reported datasets with PPMI Online

dataset. The FI dataset has a comparable mean age of

65.77 years with PPMI Online PD cohorts. Both datasets

lack equalities of gender, racial, and ethnic diversity for PD

Table 1 Details of

characteristics and study

assessments of PPMI Online

Project

Characteristics Study assessments

Cognition Cognitive change

Family history-online Family history of Parkinson’s Disease:1st Degree Relatives

Medical-online Assessment of constipation (Online)

Caffeine consumption (Online)

COVID-19 history (Online)

Head injuries (Online)

Health history: annually (Online)

Health history: quarterly (Online)

History of falls: baseline (Online)

History of falls: surveillance (Online)

Medication history (Online)

Smoking history (Online)

Motor/MDS-UPDRS-online MDS-UPDRS Part I:non-motor aspects

MDS-UPDRS Part II: motor aspects

Participant motor function questionnaire

Neurobehavioral tests-online Geriatric depression scale (Online)

Parkinson anxiety scale (Online)

Neuropsychological tests Penn Parkinson’s daily activities questionnaire-15

Patient status Age of Parkinson’s disease diagnosis (Online)

High interest questions for Non-PD cohort (Online)

High interest questions for PD cohort (Online)

Hyposmia 1Qx from remote (Online)

Parkinson’s disease history: return study visit for Non-PD cohort (Online)

Parkinson’s disease history: return study visit for PD cohort (Online)

Participant-visit information (Online)

Sleep disorder tests Epworth sleepiness scale (Online)

Parkinson’s disease sleep scale: PDSS-2 (Online)

PPMI RBD sleep questionnaire (Online)

RBD1Q: postuma acting out dreams (Online)

Subject enrollment Participant enrollment status

Subject demographics Race and ethnicity (Online)

Registration information (Online)

Socioeconomic status (Online)
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cohorts. It is well established that characteristics of PD also

depend upon gender, race, and ethnicity; hence, it is

important to consider all these aspects into account while

designing a medical application approach to avoid dis-

criminatory outcomes and sub-optimal results [54]. In

PPMI Online, the proportion of healthy females is signifi-

cantly higher, while the proportion of females suffering

from PD is still under-represented. Although right now,

whites are dominating this study, perhaps in the near future

PPMI Online aims to expand internationally [55].

3.2 Motor aspects of experiences of daily living

UPDRS-II has been calculated by questionnaire using the

Movement Disorder Society-Sponsored Revision of the

Unified Parkinson’s Disease Rating Scale-Part-II (UPDRS-

II) which is used to assess the relationship between quality

of life and difficulties of PD patients. Mean UPDRS-II

score for PPMI Online was 11.23 calculated for PD cohort,

FI reported 12.11 and for PPMI score was 5.9 only. Apart

from the cumulative UPDRS-II score, the proportion (re-

porting greater than 0) of each characteristic from Motor

Aspects of Experiences of Daily Living for PD cohort is

reported in Table 3. In the questionnaire, 58.48% of the PD

Table 2 Demographic and other

characteristics of PPMI Online

Dataset

Project PPMI Online PPMI FI

Features PD HC PD HC PD

Age (years)

Ranges

67.41 (9.09)

(23–97)

56.68 (13.55)

(18–91)

62 (9.8)

(29–85)

61.3 (11.1)

(30–83)

65.77 (9.49)

(18–98)

Male (%)

Female (%)

60.52

39.48

36.63

63.37

64.39

35.61

65.48

34.52

54.44

45.56

UPDRS-II Score

Ranges

11.23 (7.99)

(0–52)

1.69 (3.39)

(0–24)

5.9(4.3)

(0–52)

NA 12.11 (8.26)

(0–52)

GDS 4.17 (3.64) 1.14 (3.27) 2.5(2.5) 1.3 (2.2) NA

Family History (1st degree) (%) 17.06 53.89 13.09 48.02 22.32

Education (years) 16.45 (3.73) 16.71(3.74) 15.4(3.2) 16.3 (2.8) NA

Race

White 96.24 96.69 92.42 91.13 96.85

Non-White 03.76 03.31 7.58 8.87 03.15

Hispanic or Latino 03.50 03.82 2.13 3.28 3.81

Non-Hispanic 96.50 96.18 97.87 96.72 96.19

Table 3 Percentage of PD cohort with difficulty assesses by UPDRS-II

Project PPMI Online PPMI FI

UPDRS Part II Patient Questionnaire: motor aspects of experiences of daily living (M-EDL) PD cohorts with difficulty (%)

Speech 57.55 33.89 58.48

Saliva and drooling 48.95 36.49 51.36

Chewing and swallowing 37.36 13.03 35.43

Eating tasks 45.68 28.20 48.01

Dressing 57.75 40.52 60.76

Hygiene 42.61 25.59 43.24

Handwriting 69.41 61.85 70.82

Doing hobbies and other activities 64.99 36.73 62.93

Turning in bed 50.63 25.59 62.76

Tremor 51.98 86.02 79.71

Getting out of bed, car or deep chair 54.59 38.63 71.13

Walking and balance 59.53 36.73 69.57

Freezing 27.56 04.74 31.28
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cohort from the FI study and 57.55% PD cohort from PPMI

Online accepted problem in the speech and hence this

feature is comparable for both datasets. However, the PD

cohort from FI faced a significantly higher struggle than the

PD cohort from PPMI Online dataset. For example,

62.67% of PD cohort from the FI study experienced diffi-

culty turning in bed while only 50.63% were from PPMI

Online dataset. Other motor aspects of experiences of daily

living such as Tremors (79.71%), Getting Out of Bed, Car,

or Deep Chair (71.13%), and Walking and Balance

(69.57%) are also more difficult for the PD cohort from FI

study, as reported in Table 3. PD cohorts from PPMI

dataset faced tremors very frequently; nearly 86.02% of

participants had tremors. Problems in Chewing and Swal-

lowing (13.07% vs 37.36%) and Freezing (4.47% vs

27.56%) are rare in the participants of PPMI dataset as

compared to PPMI Online dataset. Additionally, 35.43%

and 31.28% of participants of the FI dataset have difficulty

in Chewing and Swallowing and Freezing, respectively,

which is similar to the PPMI Online dataset.

3.3 Cognitive instrumental activities of daily
living

Penn Parkinson’s Daily Activities Questionnaire-15 [56] is

also asked to assess the cognitive instrumental activities of

daily living in PPMI Online study. Features were scored

based on PD patient’s difficulty in performing Daily

Activities on the following scale: ‘‘none,’’ ‘‘a little,’’

‘‘somewhat,’’ ‘‘a lot,’’ and ‘‘cannot do.’’ Each characteristic

is scored 4–0 (total score range = 0–60) with higher scores

indicating better Daily Activities functions. In Table 4,

percentage of PD and HC cohort with difficulty (cumula-

tive proportion for 3–0, as score 4 represents no difficulty)

was reported for each characteristic. Problem in cognitive

instrumental activities of daily living is more in PD patients

as compared to HC. No other referenced comparator cohort

had a Penn Parkinson’s Daily Activities Questionnaire-15

at the time of data download.

4 Methodology

In this study, an approach of e-diagnosis to detect PD was

proposed (Fig. 1). The questionnaire data from the PPMI

Online dataset were preprocessed to obtain features rele-

vant to the context of PD. Multiple FS techniques were

then applied to obtain the most significant attributes. Fur-

thermore, multiple classifiers were trained and evaluated on

these selected features. The machine-made decisions to

select optimal subsets of features and ML algorithms were

validated using the interpretations provided by SHAP.

4.1 Preprocessing of data

After unifying the questionnaire, data were preprocessed

by dropping features that have more than 70% missing

values like hypertension or high blood pressure diagnosis,

age of high blood pressure diagnosis, and head injury

during life, from this study. A total of 120 features

including cohort (PD or not PD) have been considered

from the different questionnaires of online screening and

online meeting-1 (OL01) in the current study. A ques-

tionnaire is related to the return study of the participants, in

that participants have to reconfirm their current status of

PD or Non-PD also available in the data. The response to

this questionnaire, 43 previously claimed PD patients have

been either not sure or not diagnosed with PD, while 75

healthy controls have been diagnosed with PD since

enrollment. Data of all these individuals were removed

from this experiment to avoid any confusion. Hence, the

total number of samples is reduced to 18,462 (HC =

12,811, PD = 5651). The missing values of the remaining

features were imputed using the K-nearest neighbor (KNN)

imputation algorithm for both classes separately after that

data were rescaled from standard scaling to avoid the effect

of different scales in the data. A comparison of datasets

with imputation and without imputation trained on RF is

reported in Appendix 1.

Data were divided into two parts—90% of data was used

for feature selection, training, and validation and 10% of

the data was kept safe to evaluate the model. Training

dataset was split into ten folds, of which nine were used for

training the models and one for validation.

In the online meeting-2 (OL02), questionnaires related

to smoking and Epworth Sleepiness Scale were also

included with basic questionnaires including cognitive

change, motor, and non-motor features. The number of

participants reduced in the second online visit and

approximately 8400 participants responded. To establish

the impact of smoking and the Epworth Sleepiness Scale

on PD patients, a separate dataset has been created by

including these two features with the previous dataset on

Patient Id. The number of participants was 7403 after

removing missing value instances. The study of this data is

reported in Appendix 2.

To bring transparency to the ML model’s decision

without affecting model efficiency, Shapley Additive

Explanations (SHAP) algorithm [57] has been used. SHAP

algorithm works on Shapley values which have a strong

mathematical foundation. It explains the impact of each

feature on the output variable, helps to estimate the sig-

nificant features, and clarifies the decision made by the

algorithm using the XGBoost model.
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4.2 Interpretability of features with SHAP values

The relationship between feature and SHAP values is also

visualized using scatter plots in Fig. 2. Randomly 15 fea-

tures are selected to understand the behavior of features.

SHAP value represents the impact of the feature’s value on

the output of the model for that individual instance’s pre-

diction. In our study, the units are logarithms of the odds of

prediction of PD. The SHAP module also involves another

feature that the plotted feature interacts most with auto-

matically and if the interaction effect is present between

two features, it is well visible with a vertical pattern of

coloring. The light gray area in the background is a his-

togram that shows the distribution of values on the plot.

Each dot represents an individual participant (row). In

Fig. 2a, participants who have a change in handwriting

have more probability of having PD as compared to those

who do not have any change. Hence, this feature can be a

Table 4 Percentage of participants with problems in daily cognitive activities

Penn Parkinson’s daily activities questionnaire-15 PD cohorts with problem

(%)

HC cohorts with problem

(%)

Difficulty reading the newspaper or magazine 28.42 13.84

Difficulty keeping track of the time 16.15 8.34

Difficulty counting money 12.83 5.05

Difficulty reading complex instructions 34.65 18.55

Difficulty handling an unfamiliar problem 36.91 26.81

Difficulty explaining how to do something involving several steps to another

person

47.64 23.31

Difficulty remembering a list of 4 or 5 errands without writing it down 74.41 67.30

Difficulty using a map to tell where to go 26.12 21.29

Difficulty remembering new information like phone numbers or simple

instructions

66.10 59.13

Difficulty doing more than one thing at a time 64.82 46.03

Difficulty learning to use new gadgets or machines around the house 50.14 37.18

Difficulty understanding your personal financial affairs 25.29 19.39

Difficulty maintaining or completing a train of thought 57.60 42.99

Difficulty discussing a TV show, book, movie, or current events 42.08 19.09

Difficulty remembering what day and month it is 29.71 17.43

Fig. 1 Proposed approach to detect Parkinson’s disease
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(a) Handwriting smaller than it once was (b) Difficulty in typing (c) Cognitive change

(d) Urinary Problem (e) Sense of Smell (f) Change in voice

(g) UPDRS-II Score (h) Age (i) Descent of Ashenaji jewish

(j) Facial Expression (k) Gender (l) Essential tremor

(m) Diabetes (n) Difficulty in counting money (o) tremor on wake-up

Fig. 2 Scatter plot of features and their SHAP values
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significant feature because it has clearly distinguished

SHAP values for the diagnosis of PD. In Fig. 2b for most

of the participants, typing is not at all difficult; however, if

the typing is difficult, it can contribute to predicting PD. In

Fig. 2d, if a person has a severe urinary problem and also

has some difficulty in the sense of smell, then this inter-

action helps in the prediction of PD. In Fig. 2e, it is visible

that the problem in sense of smell is more in the higher age.

Figure 2f shows that difficulty in speech (UPDRS-II score)

and softness of voice are correlated. The value of UPDRS-

II score significantly helps in the prediction of PD

(Fig. 2g). In Fig. 2h, older participants with high UPDRS-

II value have more chances to suffer from PD as compared

to young participants with lower scores. Females very often

snore have less chance to have PD, while males with the

same symptom have higher chances (Fig. 2k). Tremor on

wake-up is also a contributing factor for predicting PD

shown in Fig. 2o.

4.3 Feature selection techniques

It is not necessary that each feature in the dataset contains

some relevant information. Feature selection techniques

were used in the current study to understand the significance

of features and distinguish the important features from the

dataset. Using feature selection techniques, it is easy to

obtain and interpret information from selected features. In

addition, this avoids overfitting of ML algorithms, and

requirement of computational resources is also reduced.

Filter methods such as ANOVA [58], chi-square [59],

and MI [60] have been used to assess the statistical sig-

nificance of the features. ANOVA is a statistical test that

computes the variance among groups. The variance of

groups can be explained or unexplained. The features

independent of the target variable are removed from the

dataset. This test is used when input variables are contin-

uous and the output variable is categorical in a classifica-

tion problem. Mutual information is the measure of the

mutual dependence between the dependent and the inde-

pendent variable. If the two random variables are inde-

pendent, the value of MI is equal to zero. Chi-square test is

an interdependence test to measure the dependence

between categorical feature variables and a categorical

target variable. These methods are fast and their compu-

tational cost is low even so it is not necessary they suggest

a stable subset because the interaction between the features

and with classifiers are not considered by these methods.

In wrapper methods, ML algorithms are used to search

optimized feature subsets using all possible combinations

of features based on the evaluation condition. Wrapper

methods identify an optimal subset of features because of

their exhaustive nature. In the present study, three wrapper

methods are used namely Boruta [61], Sequential Forward

Selection (SFS), and Recursive Feature Elimination (RFE).

Boruta Algorithm is also a statistically grounded technique

and works well without any user-defined threshold. It

defines the threshold by adding shadow features to the

dataset. Then, RF classifier trains on this extended dataset

to get important features. Although it can handle interac-

tions between variables yet it does not deal with highly

correlated features. SFS is a greedy search algorithm

started with a null feature set and seeks the optimal feature

subset by iteratively picking features based on the classifier

performance. It is observed that by adding new features,

previously selected features may become obsolete. RFE is

also a greedy search algorithm that takes a full set of fea-

tures and iteratively removes the worst-performing feature.

It then ranks the features based on the sequence of their

elimination. The main advantage of this algorithm is that it

keeps only those features that are most relevant in pre-

dicting the target variable.

4.4 Machine learning algorithms

ML and DL models have significant results for the auto-

matic diagnosis of diseases. In this experiment, six ML

algorithms namely SVM, RF, LR, XGBoost, CatBoost, and

ELM were used to analyze the PPMI Online dataset. Pre-

diction of PD and healthy control is a binary classification

problem. SVM, LR, ELM, and RF were implemented from

the sklearn library in Python. XGBoost and CatBoost were

implanted from their respective official sites.

Random forest is one of the most powerful ML algo-

rithms. It has its roots in ensemble machine learning

algorithms where many classifiers have been parallelly

trained on the randomly selected subset of features (boot-

strapped samples). In the final step, the decision was made

based on the decision of all the classifiers by majority

voting or by the applying average rule. The pooling of base

classifiers compensates for the weakness of individual base

classifiers and most of the time results are accurate. The

random forest has decision trees as base classifiers which

are grown to the maximum of their size and unpruned.

Ideally, all these decision trees should be less correlated to

produce an accurate classification result.

SVM is based on statistical learning algorithms used for

both classification and regression. In classification, the

main goal of this algorithm is to design a higher dimen-

sional hyperplane that can segregate data between correct

categories. The dimension of the hyperplane depends upon

the number of vectors/features. SVM is effective in high-

dimensional space and also memory efficient.

Logistic regression is also borrowed from the field of

statistics that estimates the probability of an event using

independent variables of data. It is a simple and efficient

algorithm for binary classification problems; however, it
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can be extended into multiple classifications. It achieves

very good results on the data which have linearly separable

classes. LR also performs extremely robustly and accu-

rately for datasets that have nonlinear relationships

between independent and dependent variables.

Extreme learning machine is a feedforward network that

uses Moore–Penrose generalized inverse to set its weights

instead of gradient-based backpropagation. ELM is much

faster than previously designed networks because the

backpropagation technique makes the learning process

slower. Research revealed ELM outperformed classical

machine learning algorithms in training time and accuracy.

It has many application domains such as medicine, robot-

ics, chemistry, economy, and transportation [62].

Both XGBoost and CatBoost are gradient-boosting

algorithms. Gradient boosting is an ensemble learning

algorithm that is designed to generate the prediction

through a set of interconnected several classifiers. In

XGBoost and CatBoost, classifiers are arranged in a

sequential manner where each next classifier learns from

the previous classifier’s errors. Random forest is also an

ensemble learning algorithm where base classifiers are

designed in parallel and their decisions are independent of

each other. However, with the gradient boosting algorithm

each new classifier makes the decision based on the pre-

decessor classifier. CatBoost classifier is specially designed

for categorical features while in the case of XGBoost it is

necessary to encode them before training.

All classifiers except ELM are optimized using the Grid

Search optimization technique. In this experiment, tenfold

cross-validation has been used for the evaluation of trained

machine-learning algorithms. In tenfold cross-validation,

trained data was split into 10 parts, where 9 parts were used

for model training and one part was for testing the trained

model. Mean accuracy of all the folds has been calculated

for the evaluation of models. Metrics from different

quadrants of the confusion matrix like Precision, speci-

ficity, F1-Score, and sensitivity are also reported. It is

important to consider the True positive rate in the medical

dataset, hence sensitivity is a crucial metric in this study.

ROC-AUC score is also calculated to check that models are

learning from both classes. We have reported all these

metrics on the test dataset (10% of the entire dataset) also

which kept separated after preprocessing.

5 Results and discussion

5.1 Result with preprocessed full features
dataset

Preprocessed dataset with full features used to train

machine learning algorithms SVM RF, LR, XGBoost,

CatBoost, and ELM. In Table 5, highest mean accuracy

was achieved with the CatBoost classifier 96.73 using the

tenfold cross-validation technique on the training dataset.

Although the dataset has class imbalance, still most of the

classifiers have learned from both classes and got AUC

scores ranging from 89.27 to 94.91%. Result is appealing

yet it is very difficult to collect nearly 115 attributes from

individual participants, and hence, feature selection has

been performed.

5.2 Result with filter method

5.2.1 ANOVA

To select the best k features from ANOVA feature selec-

tion method, a loop has been designed that ranges from 1 to

all features of the dataset. After each iteration, the model

was trained with the resulting feature subset and evaluated

on a previously separated test dataset. Through this

experiment, the best accuracy has been achieved at 93.11%

with 52 features by random forest classifier. Therefore,

performance metrics were calculated on this 52 features

subset, reported in Table 6 using SVM RF, LR, XGBoost,

CatBoost, and ELM Classifiers. CatBoost classifier out-

performs all other classifiers and achieved the highest mean

accuracy of 94.22% (shown in bold in Table 6).

To understand the importance of selected features,

Fig. 3 is plotted for the features selected by ANOVA.

Feature updrs2 (UPDRS-II) is the most significant feature

and is directly proportional to the experience of difficulties

increasing in daily living. The second most significant

feature DFCLTYTYPE_OL (more difficulty typing, using

mouse, or touchscreen) is also related to difficult experi-

ences in ordinary tasks and has been asked in the Motor

Function Questionnaire. The third most important feature

PDSS_TREMOR_ON_WAKE_OL (experience tremor on

wake-up) comes from the sleep study of the participant

which asked questions about sleep quality.

Absolute SHAP values are also plotted for the selected

features set in Fig. 4, which shows the importance of a

Table 5 Mean performance metrics with full feature dataset

Model Accuracy Precision Recall AUC F1-score

CatBoost 96.73 – 0.56 95.86 93.69 94.64 0.94

ELM 95.48 ± 0.58 94.15 92.54 94.93 0.94

LR 94.34 ± 0.51 92.58 90.13 93.92 0.91

RF 95.42 ± 0.68 93.16 92.37 94.91 0.93

SVM 94.16 ± 0.72 92.42 89.85 93.29 0.91

XGBoost 91.72 ± 0.10 89.59 88.53 89.27 0.89
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feature in predicting the Parkinson’s. The mean absolute

effect of features represented here, however, does not

explain in a positive or negative way. Again UPDRS-II is

the most significant feature, while in spite of the

DFCLTYTYPE_OL feature, PDSS_TREMOR_-

ON_WAKE_OL feature becomes the second most impor-

tant feature according to SHAP values. In the last bar,

cumulative importance of less important features (38 fea-

tures) is plotted, and their collective contributions are even

less as compared to the most important feature (UPDRS-

II). Hence, it may be possible that features selected by

ANOVA are not the optimized feature set.

5.2.2 Mutual information

Same experiment was conducted with mutual information

and achieved 93.28% accuracy with 64 top-ranked features

on the test dataset reported in Table 7. Hence, 64 features

were selected to train the various classifiers. Highest mean

accuracy achieved through tenfold was 94.63 with RF

classifier. F1 scores (0.93) also suggested both CatBoost

and RF have classified each instance whether it belongs to

HC or PD class accurately (the highest values are shown in

bold).

Weight of the selected features by MI algorithm is given

in Fig. 5. (For visual convenience only best 14 features are

plotted.) MI has also ranked UPDRS-II as the most sig-

nificant feature, while it considered WRTSMLR_OL

(smaller handwriting from previous) as the second most

important feature. Again CatBoost classifier has performed

better than all other classifiers and has yielded 94.43%

accuracy. Both ELM and RF classifiers have performed

similarly and achieved nearly 93% accuracy. Although MI

has selected more features than ANOVA, still it does not

increase the accuracy. Both ANOVA and MI have selected

almost the same features; however, feature ranking is dif-

ferent even so achieve similar accuracy as shown in Fig. 6.

5.2.3 Chi-square test

Chi-square has suggested 101 features and achieved the

highest accuracy of 92.69% using Random Forest Classi-

fier on the test dataset. Chi-square does not select features

properly as shown in Fig. 6, as with 20 features it achieved

accuracies below 80%. From all these 101 features, SVM

RF, LR, XGBoost, CatBoost, and ELM Classifiers have

been trained, and mean accuracy and other metrics are

reported in Table 8. Despite a large number of features,

any of the models did not learn much and hence it can be

concluded that features selected by chi-square algorithms

Table 6 Mean performance metrics with feature selected by ANOVA

Model Accuracy Precision Recall AUC F1-score

CatBoost 94.22 – 0.51 93.19 93.19 93.43 0.93

ELM 93.28 ± 0.63 91.93 92.28 92.89 0.92

LR 91.13 ± 0.53 90.31 89.46 91.12 0.89

RF 93.47 ± 0.65 91.95 92.29 92.87 0.92

SVM 91.53 ± 0.47 90.63 89.14 90.84 0.89

XGBoost 89.65 ± 0.80 87.52 88.45 89.31 0.87

Fig. 3 F-statistic of top ranked-14 features by ANOVA

Fig. 4 Mean SHAP value of features selected by ANOVA

Table 7 Mean performance metrics with feature selected by MI

Model Accuracy Precision Recall AUC F1-score

CatBoost 94.43 ± 0.47 93.44 93.42 93.56 0.93

ELM 93.70 ± 0.60 92.44 92.76 92.95 0.92

LR 91.84 ± 0.60 91.10 89.41 91.41 0.90

RF 94.63 – 0.57 93.36 93.66 93.98 0.93

SVM 91.89 ± 0.52 91.05 89.61 91.06 0.90

XGBoost 89.77 ± 0.89 87.58 88.78 88.48 0.88
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are less relevant to predicting the Parkinson’s. It can be

concluded that CatBoost has performed better with a large

number of feature subsets (shown in bold) and yielded

better results than other classifiers.

5.3 Result with wrapper method

Filter methods are fast and easy to use even so they may or

may not provide an optimized feature subset which dilutes

the objective of this study. Hence, wrapper methods are

also used to get the best feature subset with a minimum no.

of features.

5.3.1 Boruta (RF)

Boruta identified 20 significant features using RF classifier.

This algorithm has the ability to capture all features that are

relevant to the target variable without suggesting any

threshold value. All the above-mentioned six classifiers

were trained using the selected feature subset, and results

are reported in Table 9. From the result, it is clearly visible

that there is no significant difference in the result as

compared to the results of filter methods except for RF

classifiers. However, the number of features is reduced to

almost one-fourth of the features selected by the filter

method without any decline in mean accuracy. RF has

outperformed all other classifiers and achieved 95.19%

mean accuracy on the training dataset (shown in bold in

Table 9).

SHAP model was trained to understand the importance

of features. Figure 7 shows the positive and negative

relationship of the feature with the target variable (PD or

Not). The x-axis represents the Shapley value and y-axis

represents features. Features are sorted by the mean SHAP

value, i.e., most significant features are at the top. All the

observations are visible with respective feature values. The

values of the feature are represented by the color of the

point. The UPDRS-II score is the most significant feature

and has a large distribution of the Shapley values while

features like TRBBUTTN_OL (trouble in buttoning buttons)

and FTSTUCK_OL (Feet seem to get stuck to the floor)

have almost zero impact on predicting PD. The lower value

of UPDRS-II score has a negative relationship with PD and

higher score has a positive relationship. An ordinal feature

like PDSS_TREMOR_ON_WAKE_OL (tremor on wake-

up) if the value is zero has a negative impact; however, as

the frequency of tremor increases, impact on model output

also increases. From Fig. 7, it can be concluded that a few

features from the subset selected by Boruta have very small

impact on the model’s output. Hence, more optimized

feature subsets need to be searched using some exhaustive

search methods.

Fig. 5 Weight of selected features by MI algorithm

Fig. 6 Accuracy (%) versus number of features for filter methods

Table 8 Mean performance metrics with feature selected by chi-

square

Model Accuracy Precision Recall AUC F1-score

CatBoost 94.87 – 0.50 94.02 93.87 94.67 0.93

ELM 93.51 ± 0.62 92.21 92.53 93.99 0.92

LR 92.34 ± 0.52 91.59 90.13 92.94 0.90

RF 93.49 ± 0.68 92.25 92.47 93.94 0.91

SVM 92.17 ± 0.69 91.43 89.87 92.29 0.90

XGBoost 89.81 ± 0.88 87.65 88.73 88.37 0.88

Table 9 Mean performance metrics with feature selected by Boruta

Model Accuracy Precision Recall AUC F1-score

CatBoost 94.61 ± 0.40 93.40 93.56 94.01 0.93

ELM 93.80 ± 0.56 92.29 92.85 93.55 0.92

LR 91.77 ± 0.46 89.71 90.20 91.15 0.89

RF 95.19 – 0.54 94.38 94.07 94.56 0.94

SVM 91.59 ± 0.46 89.39 88.16 91.29 0.89

XGBoost 90.74 ± 0.89 88.57 88.69 90.32 0.88
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5.3.2 Sequential feature selection (SFS)

The same experiment has been designed for SFS as

designed for ANOVA and MI methods to select the

k number of features. Since wrapper methods perform a

greedy search approach to get the best feature subset, they

are slow compared to the Filter method. However, the

results are very promising so the computational cost can be

neglected. SFS recommended 12 features, and the mean

accuracy on this subset was similar to the full feature set in

Table 10 (highest values are shown in bold).

Almost all the features picked by wrapper methods are

the same. Both RFE and SFS suggested motor aspects of

daily living are the most important symptom. SHAP

algorithm is also used to predict PD with the SFS identified

feature set with the test set. A few instances were taken as

examples, the probability of PD is calculated as shown in

Fig. 8, the base value is the average of the model output

over the dataset, and for this study, it is 0.30. Base value

implies that if for any instance all the feature values are

missing it will give the prediction as 0.30. Feature values

are mentioned below the arrow and f(x) is the predicted

value for the current instance. Pink arrows represent fea-

tures that proposed the model toward PD and blue repre-

sents healthy. The size of the arrow represents the impact

of that feature. Considering the decision threshold as 0.50

represents values equal to or above 0.50 was classified as

PD and below 0.5 as healthy. In Fig. 8a, one instance

(called A for convenience) has been tested on the SHAP

model, output has correctly predicted PD by model, and the

value of UPDRS-II score has the highest impact and is

supported by other symptoms like tremors on wake-up,

shaking of Arm or Legs with old age on predicting PD. In

another example, it is a real negative case, person (B) is

healthy and correctly predicted by the model shown in

Fig. 8b. Here UPDRS-II score is very low, which implies

no difficulty in daily life experience. Although the partic-

ipant has a First-degree relative diagnosed with PD, still

with other features interaction it contributes to a negative

impact on prediction.

For better understanding, it is crucial to know the false

negative and positive cases also. So that it can analyze why

the model is predicting wrong for some scenarios. In the

first example, in Fig. 9a, a younger participant (C) has a

high value of UPDRS-II score and sometimes his heart

beats fast. The model intends to classify it as negative

(healthy); however, it was positive. In the second example,

in Fig. 9b, an older participant (D) did not have a high

UPDRS-II score intended as a PD patient; however, it was

negative. Other factors such as tremors on waking up and

getting up at night to pass the urine could explain the

diagnosis of PD or not. One more instance has been taken

named as E. He was a middle-aged participant, who had

slight difficulty in the daily experiences of life and reported

shaking of arms or legs also yet the model has induced E to

be healthy as shown in Fig. 9c.

5.3.3 Recursive feature elimination (RFE)

One more wrapper method is used to select the feature

subset. RFE has achieved 95.48% accuracy only with 14

features in Table 11 (highest results are shown in bold).

The most important symptoms are the motor aspect of

experience in daily living, experiencing tremors on walk-

ing. From the experiment, it came to be noticed that

Handwriting smaller than before can be a significant

symptom of PD. Relation between selected features and

with cohort was visualized using a heatmap in Appendix 3.

Fig. 7 Impact of feature value on prediction of PD for training dataset

Table 10 Mean performance metrics with feature selected by SFS

Model Accuracy Precision Recall AUC F1-score

CatBoost 94.57 ± 0.61 93.99 93.18 93.58 0.92

ELM 93.96 ± 0.59 93.24 93.54 92.69 0.92

LR 92.53 ± 0.61 91.65 91.18 92.12 0.91

RF 94.92 – 0.55 94.16 93.53 93.76 0.93

SVM 92.37 ± 0.58 92.16 91.33 91.46 0.90

XGBoost 92.26 ± 0.98 92.09 91.89 91.02 0.90
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SHAP model was trained with the features suggested by

the RFE algorithm. Same instances (which were previously

taken for SFS) were taken to evaluate the effect of the new

features on the models’ output. Instance A and Instance B

correctly predicted PD and health, respectively, shown in

Fig. 10. Instance A, in Fig. 10a, has high UPDRS score

which can be considered a reason to make decision as PD.

This decision is supported by tremor and shaking hands

and legs. While B has an UPDRS-II score of only 1 and

reported no shakes in arms or legs and no changes in

handwriting. However, B may feel the loss of smell and for

this reason, the impact of HYPOSAMIA_OL was on the

right side of the x-axis in Fig. 10b. Nonetheless, the model

has predicted accurately B as healthy.

Again check false negative (C) and false positive

(D) instances of SFS featured model for this RFE featured

trained model. Here, Instance C was shifted more toward

PD as shown in Fig. 11a, however, showing the wrong

prediction as healthy. It is a real positive case, while for

instance D (Fig. 11b) prediction as healthy is correct

despite the age (74 years) of the participant and score on

the Geriatric Depression Scale which is more than 5. Other

factors such as no change in handwriting or voice explain

the decision as healthy. When considering E, the

Fig. 8 Correct prediction of real positive (a) and real negative (b) instances (A and B, respectively) by SHAP model train with SFS feature

subset

Fig. 9 Incorrect prediction of real positive (a, c) and real negative (b) instances (C, D, and E, respectively) by SHAP model train with SFS

feature subset

Table 11 Mean performance metrics with feature selected by RFE

Model Accuracy Precision Recall AUC F1-score

CatBoost 94.86 ± 0.76 93.51 93.71 93.62 0.90

ELM 94.38 ± 0.53 93.84 91.31 93.21 0.91

LR 92.02 ± 0.75 91.93 87.13 90.78 0.87

RF 95.48 – 0.65 94.96 93.41 93.22 0.93

SVM 92.06 ± 0.46 91.89 89.33 90.01 0.98

XGBoost 91.72 ± 0.90 90.59 88.55 90.28 0.88
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participant has difficulty in typing, change in voice, small

handwriting, shaking of arms or legs, and reported tremors

on waking up. Therefore, the prediction of PD is correct.

He is a real positive case, in Fig. 11c.

Hence, the features suggested by RFE algorithms are

more informative as compared to all other algorithms used

in the present study. The decision-making ability increased

with the symptoms such as a softer voice than the previous,

smaller handwriting than previous, difficulty in typing, and

the problem in sense of smell.

ANOVA, MI, and chi-square (filter methods) efficiently

identified features with strong statistical relationships with

the target variable (PD or HC), along with helping in the

reduction of dimensionality and removal of noise from the

dataset for the present study. SFS, RFE, and Boruta

(wrapper method) assessed feature subsets iteratively,

selecting the most relevant features by evaluating their

impact on model performance (classification accuracy). By

comparing the results of these feature selection techniques

and the full dataset (with 120 attributes), robust selection of

features contributing optimally to model classification

efficiency was ensured. For instance, accuracy with the

Full Feature Dataset ranged from 91.27 to 96.73%. Simi-

larly, ANOVA-selected 52 features dataset achieved sim-

ilar accuracy ranges. MI algorithm selected 64 features and

got 94.63% accuracy, while chi-square produced results

with a larger number (101) of attribute sets. Wrapper

methods selected smaller feature sets compared to filter

methods; for example, Boruta identified 20 significant

features with 95.19% accuracy. UPDRS-II score is the

Fig. 10 Correct prediction of real positive (a) and real negative (b) instances (A and B, respectively) by SHAP model train with RFE feature

subset

Fig. 11 Incorrect prediction of real positive (a) instance (C) by SHAP model trained with REF feature subset. Correct prediction of real negative

(b) and Real positive (c) instances (D and E, respectively) by SHAP model trained with REF feature subset
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most significant feature for most algorithms. SFS recom-

mended 12 features with mean accuracy similar to the full

feature set, while RFE achieved 95.48% accuracy with

only 14 features. Filter methods helped identify statistically

linked features, and wrapper methods fine-tuned these traits

using machine learning to create optimized sets for better

classification by these models. It is concluded from the

results that RF has outperformed all the classifiers for

almost every feature subset. Therefore, the RF classifier

was used to evaluate test data. Results with all the feature

subsets are reported in Table 12. RFE and Boruta have

yielded accuracy above 94%. MI and SFS have similar

accuracy although there was a significant difference in the

number of features in both subsets (values in bold are the

highest for the parameter). The ROC-AUC curve is also

plotted to understand the performance of RF on different

feature subsets. It is visible in Fig. 12 that the RF classifier

performs equally well on all the feature subsets.

6 Conclusion

The present study proposed an e-diagnosis approach to

discriminating PD from healthy controls. It is well estab-

lished from previous research that early PD symptoms can

be quantified to detect PD. Here, a self-reported online

dataset extracted from the PPMI Online project was studied

and its characteristics were used to detect PD. The demo-

graphic and health status characteristics that are relevant

for the detection of PD, present in this dataset. A com-

parative analysis of this dataset with established datasets

(FI and PPMI) validated the characteristics. In addition, we

studied the discriminatory quality of each feature using the

Shapley Additive Explanations algorithm and the results

conclude that some symptoms are more accurately capable

of classifying between PD patients and HC. SVM, LR,

CatBoost, ELM, XGBoost, and RF were used to classify

PD patients from HC using features extracted from well-

drafted questionnaires. Significant characteristics were

selected using filter and wrapper methods from PPMI

Online dataset to improve the classification capability of

ML models. Filter methods suggested statistical relevance

to a large feature subset, while wrapper methods identified

optimized feature subsets using ML algorithm. ANOVA,

MI, and chi-square recommended subsets 52, 64, and 101

feature, respectively. Boruta advocated for 20 features

primarily composed of motor and non-motor aspects of

life. SFS identified 12 features and best accuracy on this

subset was 93.63% with RF classifier. RFE suggested 14

features and that UPDRS-II score is the most significant

feature to predict PD. RF achieved the highest mean

accuracy of 95.48% on RFE feature subsets. In the dataset,

healthy controls are overrepresented and hence the per-

formance of classifiers was also evaluated using metrics

such as AUC and F1-score. It can be concluded from the

results that classifiers have learned from both classes. The

distribution of both the classes in train and test datasets was

also maintained as in the original dataset. The proposed

approach can assist clinicians to determine prodromal PD

with high accuracy and also contribute to the digital health

system.

One of the main limitations of this study was that the

dataset has a significantly higher representation of whites

than of other races. Hence, in the future, if data will be

available globally, this approach can be optimized for the

generic population. Also, a study will be conducted to

screen, identify subtypes of PD, and categorize the specific

symptoms for each subtype. Furthermore, the progression

of PD can be modeled and identify stages in the future.

Appendix 1

See Table 13.

Table 12 Performance metrics with RF classifier on test dataset

Feature subset Accuracy Precision Recall AUC F1-score

ANOVA 92.98 92.47 91.73 92.71 0.91

Chi-square 92.55 92.16 91.24 92.18 0.91

MI 93.82 92.88 92.63 93.56 0.92

Boruta 94.78 93.70 93.45 93.20 0.93

SFS 93.63 92.78 92.47 93.25 0.92

RFE 94.95 93.69 93.68 93.78 0.93

Fig. 12 ROC curves for RF classifier trained on different feature

datasets

Neural Computing and Applications (2024) 36:19209–19230 19225

123



Appendix 2

PPMI Online is a longitudinal study; in this project some

features were collected at the time of screening, while

some were collected in different online meetings. Ques-

tionnaires related to smoking and Epworth Sleepiness

Scale (ESS) were not collected before the online meeting-2

(OL02). Hence to evaluate the effect of these features we

have included them in the main study. Since PPMI Online

is an online project, hence it is not mandatory that every

registered participant complete all the questionnaires of

every online meeting. Only 8419 participants responded in

OL02, after removing missing value instances only 7403

participants remained for the study. We have scaled data

after unifying questionnaires. Dataset was split into two

parts for training(90%) and testing(10%) purposes.

To select significant features, RFE algorithm was used.

This algorithm has suggested 15 features including ESS_-

total(Epworth Sleepiness Score). RF classifier was trained

on the training dataset only with 15 features. The model

was tested using the test dataset, and results are reported in

Table 14. To check the impact of the selected features on

the detection of PD, SHAP model was also trained. In

Fig. 13, the significance of features to identify PD was

plotted. First-degree relatives have PD that was the most

important feature followed by UPDRS-II score. ESS_total

was also considered in the best 15 features, while features

related to smoking were not selected even in the best 30

features.

Appendix 3

See Fig. 14.

Table 13 Comparison of

performance metrics on imputed

and non-imputed dataset

Dataset Accuracy Precision Recall AUC F1-score

Without imputation (n = 14,210) 95.40 95.23 95.85 95.17 95.12

KNN(2) 96.82 96.03 96.52 96.88 96.14

KNN(4) 96.97 96.11 96.10 96.63 96.55

KNN(8) 96.43 95.81 95.41 98.51 95.96

Highest results are achieved using KNN(4) as shown in bold in the table

Data split—90% training and 10% testing

Model—Random forest

Table 14 Performance metrics

on the dataset included second

meeting features

Dataset Accuracy Precision Recall AUC F1-score

Dataset including 0L02 features

(n = 7403)

97.44 97.38 97.49 97.66 97.43

Fig. 13 Impact of feature value on prediction of PD for dataset
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