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Abstract
Healthcare stands out as a critical domain profoundly impacted by Internet of Things (IoT) technology, generating vast

data from sensing devices as IoT applications expand. Addressing security challenges is paramount for a successful IoT

healthcare framework, with blockchain technology offering a decentralized structure for robust data protection and secure

data exchange within multi-node IoT networks. The research introduces a secure IoT healthcare diagnostic model

empowered by deep neural networks, emphasizing encryption, safe transactions, and healthcare diagnostics as key com-

ponents. Notably, the model incorporates innovative techniques like the orthogonal particle swarm optimization algorithm

for sharing medical images and a neighborhood indexing sequence method for hash value encryption. The development of

an optimized deep neural network-based classification model for illnesses, validated through extensive trials, demonstrates

superior performance metrics compared to existing decision-making techniques, with significant improvements in f-

Measure (96.25%), sensitivity (93.26%), specificity (94.26%), and accuracy (93.26%). This study’s scientific contribution

lies in its innovative approach to securing IoT-healthcare diagnosis models, validated performance enhancements using

real-world datasets, and insightful recommendations for future research directions, fostering advancements in healthcare

technology for enhanced patient care and system efficiency.
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1 Introduction

Internet of Things (IoT) technology-based healthcare

applications have been significantly explored such that

medical decision-making is automatically provided to every

user [1, 2]. These include remote patient management

(RPM), which comprises a variety of clinical applications,

such as frequent signal observation utilizing implanted

sensors, arrhythmia prediction and fall detection, oxygen

regularization, and healthcare vitals tracking [3, 4]. How-

ever, the approach is not frequently adopted since it lacks

stability, fault tolerance, and security [5, 6]. Electronic health

applications use medical IoT equipment to obtain physio-

logical data from patients, which can be used by attackers,

causing data protection concerns [7, 8]. In certain instances,

the systems are quite fragile, especially when dealing with a

large number of specialized interactions [9, 10].

1.1 Research domain

Traditional e-Health models can suffer efficiency reduc-

tions and service interruptions due to cyberattacks like

ransomware and denial of service (DoS) [11]. Medical data

have recently piqued the curiosity of cybercriminals [1]. A

study by the US Department of Health and Human Services

(HHS)1 found that between 2009 and 2018, there were
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almost 2000 data breaches. There were partial data brea-

ches involving doctors, medical professionals, and care-

givers. Hackers can eavesdrop by using Bluetooth, Zigbee,

Wi-Fi, DoS, or insider attacks [5]. Moreover, conventional

edge and cloud operations exhibit inefficiencies in securing

patient data against unauthorized access [12]. The utiliza-

tion of blockchain technology for storing and processing

patient data eliminates the need for centralized fog or cloud

authentication [13]. The potential of blockchain technology

has spurred developers to create privacy-preserving

e-health modules. Uddin et al. [14] illustrated the assess-

ment of user memory, permissions, and security through a

patient agent (PA) integrated into an intelligent gateway,

facilitating the secure uploading of medical information to

a tailored blockchain. The PA is responsible for selecting

blockchain providers for scheduling clinical data, pro-

cessing tasks, and managing memory space. Uddin et al.

[15] expand the PA’s role to include maintaining several

blockchain and storage media, such as a local computer or

the cloud, to maintain security. Tuli et al. [16] developed a

fog-computing paradigm based on a lightweight block-

chain infrastructure termed a fog bus. Medical sensors and

other edge devices can be integrated with the blockchain

using universal broker software. The broker’s primary

function is to distribute work among the fog’s other tools.

E-Health can be compromised due to concerns about pri-

vacy and security because of the presence of the universal

broker module. Figure 1 shows some of the vital healthcare

parameters that can be acquired using the IoT technology.2

1.2 Blockchain technology fundamentals

Blockchain technology is described as a collection of

blocks. There are 4 sub-sections to a single block including

transaction data, hash value of the previous block, current

block, and time-stamp of the transaction. Blockchain has

been used to record transactions in the past as a common

digital ledger. Because each block carries a cryptographic

measure of the previous block, an attacker will be unable to

recover the data. A cryptographic hash value is used to

access all transactions in this method, which is validated by

every miner. As seen in Fig. 2, it is made of blocks for each

transaction and has identical values across the whole led-

ger. As a result of the blockchain, it is possible to com-

municate detailed records in a way that is both open and

private. One of the sources in the blockchain is decen-

tralized storage, and a huge amount of data can be kept and

linked via the last block by utilizing an intelligent contract

code. In recent years, decentralized databases such as

Swarm, Litecoin, Monero, Siacoin, Interplanetary File

System (IPFS), and BigchainDB have emerged. Internet-

based, sensor-based, and knowledge-based categories for

IoT were defined by Pham et al. [17]. Specifically, IoT is a

collection of devices linked together via the internet to

generate large amounts of data. The use of RFID and

other sensor-dependent services is referred to as sensor-

based IoT. Knowledge-based IoT is a collection of data

used in meaningful fields. IoT technology refers to a new

approach in which a variety of devices with unique iden-

tifiers communicate with one another through the internet.

IoT security, privacy, and fault tolerance issues increase as

the number of data sources increases. Using a blockchain

approach for the IoT can alleviate these issues. A dis-

tributed framework for vulnerability assessment, trust, and

security is provided by several blockchain approaches.

Based on the aforementioned aspects, specific research

challenges in the current study domain include

1. Security challenges in IoT healthcare systems due to

the vast amount of data generated by sensing devices.

2. The need to protect sensitive patient information and

ensure data integrity in IoT healthcare frameworks.

3. Secure exchange of data and resources across multi-

node IoT networks poses a significant challenge.

4. Safeguarding the transmission of medical data between

interconnected devices within the healthcare infras-

tructure is crucial.

5. Implementing robust security measures to mitigate

risks and vulnerabilities in IoT-enabled healthcare

systems.

6. Maintaining a secure environment for data transmis-

sion, storage, and processing in complex intercon-

nected healthcare networks.

Fig. 1 Smart Healthcare Parameters by IoT

2 Source: https://www.cbinsights.com/research/internet-of-medical-

things-5g-edge-computing-changing-healthcare/.
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7. Building trust in IoT healthcare solutions by addressing

security challenges to protect patient privacy and

confidentiality.

1.3 Major contribution

In IoT applications such as smart homes, smart cities, the

medical industry, and farming, blockchain offers additional

advantages such as lower power consumption, decreased

processing strain, faster response times, and increased

security. A peer-to-peer network for administration and

attack resistance is created using blockchain technology.

Conspicuously, blockchain and IoT can be used to manage

and build a wide range of products and services. Based on

the aforementioned aspects, some of the major contribu-

tions of the presented model are as follows;

1. Deep neural network (DNN)-inspired secure intelligent

IoT-medical diagnosis models are the primary focus of

the current research.

2. A secure transaction employing picture steganography,

hash value encryption, and medical diagnostics is

presented as the vital components of the proposed

model.

3. Medical images are secretly shared using an orthogonal

particle swarm optimization technique.

4. A neighborhood indexing sequence technique is used

to encrypt hash values.

5. An optimized DNN is employed as a classification

model to assist in an illness diagnosis.

Figure 3 shows the generic view of blockchain-inspired

healthcare architecture [18]. The study adds scientific value

by introducing a novel method to secure IoT-healthcare

diagnosis models, showcasing performance enhancements,

validating results with real-world datasets, and suggesting

future research pathways. Paper Organization Sect. 2

presents a state-of-the-art literature review in the current

domain of study. Section 3 presents the proposed model for

secure disease diagnosis. The presented model is validated

for performance assessment in Sect. 4. Finally, Sect. 5

concludes the paper with future research directions.

2 State-of-the-art healthcare frameworks:
blockchain perspective

Mavrogiorgou et al. [26] suggested a framework that

enables all organizations in the health ecosystem to get

multimodal, actionable information from heterogeneous

data. These data are then managed, combined, and aggre-

gated to create new data structures, such as Holistic Health

Records (HHRs). In contrast, the mechanism develops

various data management techniques covering the entire

data path, from data acquisition and cleaning to data inte-

gration, modeling, and interpretation, to effectively con-

struct the HHRs. However, the scalability and

interoperability of the framework across different health-

care settings and systems may be a challenge. Benaich

et al. [27] offered a novel solution that strengthens EHR

systems by utilizing the decentralized and immutable na-

ture of blockchain technology in conjunction with cutting-

Fig. 2 Blockchain Structure
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edge encryption methods like the Advanced Encryption

Standard and Zero Knowledge Proof Protocol. According

to the authors, blockchain technology can effectively

address major challenges with electronic health records

(EHRs), such as fragmented data and interoperability

issues. This can be achieved by facilitating secure and

transparent data exchange, which can improve care coor-

dination, quality, and cost-effectiveness among healthcare

facilities. While the use of blockchain technology and

encryption methods strengthens EHR systems, the potential

limitations in terms of scalability, energy consumption, and

integration with existing healthcare infrastructure need to

be addressed for widespread adoption. Singh et al. [28]

provides a comprehensive discussion on how to adapt

blockchain to satisfy the specific needs of IoT to develop

blockchain-based IoT (BIoT) applications. Several ele-

ments that affect the planning, creation, and implementa-

tion of a BIoT application are discussed, along with current

challenges and future directions for advancement. Finally,

a set of suggestions is given to assist future BIoT

researchers and developers in comprehending some of the

issues that must be resolved before the implementation of

the next wave of BIoT applications. Challenges related to

data privacy, scalability, and interoperability between

diverse IoT devices and platforms need to be carefully

considered for successful implementation. A blockchain-

based therapeutic strategy combining mobile edge com-

puting (MEC) and cloud computing was proposed by

Alqaralleh et al. [19]. MEC-Cloud-based blockchain nodes

were used to calculate the therapeutic data gathered from

doctors and patients, enabling fixed, unspecified, secure,

and visible sharing. Images, music, text, and video files

recorded in multiple databases were hashed and stored on

the blockchain. Experimental implementation showed that

energy consumption is higher with MEC blockchains that

remove bandwidth and analytical compute requirements of

the cloud. Challenges related to energy consumption,

scalability, and efficient integration with existing health-

care systems may impact its practical implementation.

Using the smart contract, Kakkar et al. [20] created a

framework for an automated remote patient monitoring

system. A laptop or mobile device with intelligence col-

lects the data acquired by body sensors. Ethereum-based

smart contracts were used to store the data acquired from

the IoT device. Moreover, electronic health records are

recorded on the blockchain for security purposes. While the

automated remote patient monitoring system using Ether-

eum-based smart contracts enhances data security, ensuring

the compatibility of smart contracts with diverse IoT

devices and addressing potential vulnerabilities in the

system’s design are critical aspects to consider for robust

implementation. Security measures in healthcare and IoT

are both a problem and a solution, according to Tariq et al.

[29]. Egala et al. [21] advocated for the use of a block-

chain-based healthcare information accessing strategy with

a centralized cloud for storing medical data. However, the

advocacy for blockchain-based healthcare information

accessing strategy with centralized cloud storage raises

concerns about data centralization, potential single points

of failure, and the scalability of the system to handle large

volumes of medical data securely. To examine the vul-

nerability of the network routing process, Sagu et al. [22]

established a multi-level model for secure processing in

IoT healthcare. However, the complexity of implementing

and maintaining such a model across diverse IoT devices

and networks may pose challenges for practical

Fig. 3 Conceptual View of Blockchain-inspired Smart Healthcare
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deployment. Soni et al. [30] implemented a customized

healthcare information distribution framework in which an

application is used to collect information from IoT devices.

Blockchain technology of hyperledgers was used to verify

the integrity of the data.

Kumar et al. [25] utilized the FHIR chain to distribute

healthcare data in a safe and scalable manner. Decentral-

ized ledger modules, according to Gorbunova et al. [23],

are responsible for maintaining authentication and data

integrity in the emergency medical response. Confidential

information can be shared, saved, and retrieved using a

tamper-proof distributed ledger. Moreover, IoT protocol

was used to cover the extension of authentication mes-

sages. In terms of medical information liquidity, aggrega-

tion, utility, similarity, and immutability, Attaran [24]

defined the applicability of blockchain in patient-specific

interoperability. There are 2 types of fall risk variables

identified by Lu et al. [31] including medical and ecolog-

ical. Based on data and expert recommendations, these

vulnerability factors are categorized from low to high.

Consortium blockchain was used to secure data to ensure

that data are interoperable, authenticated, and accessible

for older individuals who are at high risk of falling. Using a

lightweight blockchain for IoT, Pal et al. [32] suggested an

IoT-based e-Health solution. The assumption is made that a

peer-to-peer computer system built with virtual nodes is an

overlay network. A cluster head (CH) of an overlay net-

work validates the IoT medical equipment before data is

sent to cloud servers. Numerous lightweight security

mechanisms were implemented by authors to protect the

patient’s trust in the e-Health system. Based on node

characteristics, the CH was picked for a limited period.

Two levels of a cloud computing-based blockchain were

proposed by Duan et al. [33]. The primary level of the

blockchain is used to keep track of all the actions, avoiding

the need for expensive proof-of-work processing. In the

presented technique, once the data have been logged, the

second level of the blockchain performs data storage. To

govern access to storage and power of IoT devices, Abdi

et al. [34] developed a distributed framework based on

blockchain. There is a management hub connecting IoT

devices and blockchain in the presented technique. More-

over, access to wireless sensor network policies is restric-

ted to a certain blockchain node in the management hub.

The blockchain’s access policy is implemented via smart

contracts. Based on the aforementioned works, a minimal

number of studies focused on block-enabled IoT approa-

ches in healthcare. To enhance security, a more effective

hash value encryption method is required. Conspicuously,

an IoT-based healthcare diagnostic paradigm is built on a

secure deep neural network (DNN)-based blockchain

technology. DNN is an effective classifier as it is capable

of performing feature engineering. As a result, it can learn

at a quicker rate without the need for an explicit repre-

sentation of these traits. Moreover, based on the compre-

hensive literature review, Table 1 is formulated to depict

the novel aspects of the proposed model in comparison

with the state-of-the-art literature works.

2.1 Research gaps

Based on the aforementioned aspects, the following

research gaps have been identified.

1. Limited focus on block-enabled IoT approaches in

healthcare: Despite the growing interest in blockchain

technology and IoT applications in healthcare, there is

a scarcity of studies that specifically explore the

integration of blockchain with IoT devices to enhance

security and interoperability in healthcare settings.

2. Lack of emphasis on more effective hash value

encryption methods: While security is a critical aspect

in healthcare data management, there is a need for

research to develop and implement improved hash

value encryption methods to enhance data protection

and confidentiality in IoT-based healthcare systems.

3. Inadequate exploration of the application of deep

neural network (DNN)-based blockchain technology in

healthcare diagnostics: The potential of utilizing DNN-

based blockchain technology for healthcare diagnostics

remains underexplored, highlighting a gap in research

focusing on leveraging advanced classifiers like DNNs

for enhancing diagnostic accuracy and efficiency in

healthcare settings.

4. Limited research on comprehensive models combining

blockchain technology with deep neural networks for

healthcare applications: The integration of secure

DNN-based blockchain technology for healthcare

diagnostics presents a novel approach, indicating a

gap in the existing literature regarding the development

and evaluation of comprehensive models that leverage

both technologies for improved healthcare outcomes.

3 Proposed model

Figure 4 depicts the conceptual model for secure health-

care data processing using blockchain technology [35].

Initially, IoT devices receive data from end-users. The

proposed technique is used to secretly share healthcare

images. Moreover, the NIS algorithm is used to hash the

acquired data measures. Finally, the diagnosed condition is

identified using the proposed neural network model. The

detailed functionality has been explained ahead.
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3.1 Fundamentals of optimized particle spam
algorithm (OPSA)

The particle spam algorithm (PSA) includes a random

collection of particles to find the optimal outputs. Specifi-

cally, every particle’s position in the search space, as well

as its distance from the swarm’s ideal particle, is consid-

ered for computation. As a result of an optimization

problem, all particles’ features are processed from the

global optimum. Individual best and global best are 2

modules based on PSA. A particle’s location can be used to

determine the original model. The best particles in the

swarm are used in the global best selection procedure,

which gains comprehensive knowledge. The essential

aspect of upgrading the convergence rate of optimization

algorithms is OBL (opposition-based learning). Efficient

implementation of OBL can identify optimal candidate

solutions to a given problem by taking into account both

Table 1 State-of-the-art comparison ( 1 available, – not available)

References Alqaralleh et al.

[19]

Kakkar et al.

[20]

Egala et al.

[21]

Sagu et al.

[22]

Gorbunova et al.

[23]

Attaran

[24]

Kumar et al.

[25]

Proposed

Security 1 1 1 1 1 1 1 1

IoT – 1 1 – 1 – – 1

Quantification 1 1 1 1 1 – 1 1

Healthcare 1 1 1 1 1 1 1 1

Data

visualization

– – – – – – – 1

Performance

analysis

– – – – – 1 1 1

Prediction – – 1 – 1 – – 1

Anomaly

prediction

– – – – – – – 1

Stability – – – – – 1 – 1

Accuracy – – – – – – – 1

Fig. 4 Blockchain Procedure
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the current and previous populations. Mathematically, let

M be a real number represented as M[y, z]. M0 is the

inverse number, and its representation is as follows:

M0 ¼ yþ z�M

The following explanation applies to an e-dimensional

search space.

M0j ¼ yj þ zj �Mj

such thatMj varies fromM1,...,Me, and Mj is the number of

dimensions in that search space.

3.2 OPSA-inspired security technique

OSPA enables the transmission of an encrypted message

from the sender to many recipients using picture

steganography. By using the proposed OPSA technique, a

private picture can be used for security purposes. In the

presented strategy, the placements of the embedding points

are carefully chosen to maximize the PSNR (peak signal-

to-noise ratio). Steganography can be used to share hidden

images with the proposed OPSA. Figure 5 shows the steps

that make up the proposed OPSA approach. Optimal

embedding spots can be acquired after the maximal itera-

tions are achieved. A secure input picture can be created by

using the private shares that have been created.

3.3 Encryption technique

A newly designed character encoding scheme is presented

to operate on traversal data by employing 0 and 1. It uses

valid data from nearby bits of the input character to assign

the minimal code words for each character contained in the

input sequence. However, it is necessary to compare the 2

resulting code words to determine the optimal measure for

the given bit count (i.e., 0 s or 1 s). The proposed model

requires D bits to record compressed information for input

sequences of length O, as demonstrated below:

Dbits ¼
XO

j¼1

NISoptðjÞ þ control� bits

where NISopt indicates an optimal coding word containing

bits. To get the best compression ratio, the suggested

method requires 8 extra control bits. Using the proposed

approach, the maximum bits required to preserve a unique

character are computed as follows.

NISch�av ¼
Dbits

O
; 0\NISch�av\5

Compression efficiency improves with lower Dbits and

NISch-av rates. The presented approach uses a maximum of

4 bits to store a single character. To store a character, it

uses minimally one bit and hence delivers the best com-

pression possible.

3.3.1 Encryption technique: working procedure

The detailed working principle of the proposed technique is

presented in the current section. Alphanumeric letters and

special symbols are used to begin the text in the presented

framework. Characters are learned by the model and con-

verted to ASCII rates. Binary values are generated from the

ASCII values. The binary equivalent of the input character

is used to initiate the bit traversal, which then defines each

bit as either 0 or 1. Moreover, the control bit is saved as

either 00 or 10 depending on whether the first bit identified

Fig. 5 OPSA-inspired Security Technique (variables are defined

accordingly)
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is 0 or 1. The presented technique begins traversing

assessing the second bit as a reference so that 0 s may be

identified and their places recorded. Code words 00-x are

used to record the position of the 0 s, and the procedure is

repeated until all 7 0 s have been identified. The following

codeword is recorded if the traversal reaches the final bit.

Once the 0-based processes have been traversed, the

1-based processes are subsequently traversed. Similar to

0-based traversal, the procedure is the same for the

1-based. 2 words serve as a code. When comparing the two,

the presented technique selects the one with the minimal

bits. Conspicuously, each encoded character is joined with

the control bits to generate the compressed file.

Compression and decompression are the same in the

presented approach, which utilizes symmetrical compres-

sion. Decoding does not require any additional data to be

sent along with the compressed data. A compressed file is

first learned using binary code of 0 and 1, and transfor-

mation is carried out. When 00 is set as the control bit, it

means that the initial 7 bits are 0, and the compression

procedure begins. If the code is 0-specific, the measure of

0 s occupies the matching reference point. The first bit is

reconstructed from control bits to pick a printable charac-

ter. In the next step, the remaining spots are filled with

values of 1 s. Similarly, in 1-based traversal, the code word

is placed in the 1 s position and the other locations are

filled with 0 s. The ASCII values of each character’s

codewords are then revised. Finally, the ASCII values are

transformed into alphanumeric characters, and the original

text is reformatted without affecting its contents.

3.3.2 Medical diagnosis model

Deep neural networks (DNN) are used to control the pre-

sented framework’s hidden and output components for

medical diagnosis for imagery data. At the time of imple-

mentation, a DNN consists of pre-training and fine-tuning

phases for healthcare images. Deep belief networks (DBN)

are used at the beginning of the training phase and feed-

forward phase where input transmits from the initial layer

to the output layer via intermediary layers, resulting in

multi-level architecture. System optimality is provided by

the hidden units, as it enables the system to give the nec-

essary initiations. Numerous researchers have developed

the RBM (restricted Boltzmann machine) to reduce the

constraints of DNN. Specifically, RBM is composed of

stochastic hidden and final units. The final units are

assigned to the training vector during the startup step.

Mathematically, it is represented as

Gðw; iÞ ¼ �
XJ

j¼1

XK

k¼1

OpTGjkwkik �
XJ

j¼1

bjwj �
XK

k¼1

akik

where OpTGjk indicates the communication between wk

and hidden unit ik, b, a are the normalization bias. J, K

represents the visible and non-visible nodes. Numeration of

hidden nodes in RBM can be obtained from the interme-

diary measure of (Wj, ik)data without direct impact.

P ik ¼
1

w

� �
¼ r

Xm

j¼1

OpTGjkwj þ bk

 !

The normalization function r(y) indicates the sigmoid

function 1
ð1þeyÞ; wk and ik indicate unbiased samples. At the

verification level, the intermediary nodes are expanded to

deploy the steepest function in the probabilistic log as

follows

dOpTGjk/ðwkikÞdata � ðwkikÞreconstruction
In the training method, a multi-layered RBM is constructed

in a variety of configurations. By rearranging current

weights and biases, the RBM layers can incorporate the

behaviors. The basic back-propagation approach is used in

the tuning phase. The normal layer of the DNN can be used

to classify the dataset. O best features are used as input and

the hidden layers are used to project the DNN. Similarly,

the back-propagation procedure begins with the weight

load gained in the beginning phase, and the resulting ideal

weight is structured by training phases utilizing systematic

data gathering. The OPSA method is used during the fine-

tuning stage of the DNN to tune the parameters and thereby

improve classification performance for disease analysis.

Figure 6 shows the overall working procedure.

4 Experimental validation

4.1 Experimental design

The presented model was tested using a benchmark dataset

of ELCAP Public Lung Image Database3 on a PC with an

i7-9700 CPU processor, an Nvidia 2060 graphics card, 32

GB of RAM, and 512 GB of SSD storage with 1 TB of

HDD disc space. From the entire collection, 3000 images

are selected. Figure 7 shows some of the samples of images

from the acquired database.

4.2 Simulation environment

The proposed model is validated using the following con-

figuration. The input node of DNN has 100 neurons, the

3 http://www.via.cornell.edu/lungdb.html.
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hidden layer is comprised of 50 neurons, and the average

activation is set to 0.6 with a weight decay of 0.02%. The

particle size is set to 99 with inertia weights between 0.8

and 0.2. Cross-validation is also used to divide the dataset

into train and test classes. Space savings (SS) and

Fig. 6 Medical Image-based Diagnosis procedure

Fig. 7 ELCAP Public Lung Sample Image
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compression ratio (CR) are 2 metrics used to validate a

file’s compression efficiency.

4.3 Statistical analysis

A framework’s compression ratio is determined by divid-

ing its uncompressed data by its compressed data. For

performance assessment, 5 images have been represented

as Image A, Image B, Image C, Image D, and Image E. For

comparative analysis, baseline techniques of grey wolf

optimization (GWO) and particle swarm optimization

(PSO) were used. Numerous statistical parameters were

estimated including accuracy, f-measure, specificity, and

precision. Additionally, PSNR analysis, encryption tech-

nique analysis, and space save analysis were carried out for

performance validation.

4.4 PSNR Analysis

The OPSA algorithm’s output and the reconstructed pic-

tures are shown in Fig. 8. Specifically, the generic image is

discreetly used to communicate the medical image as it

results in superior PSNR values for all of the test photos.

As shown in Table 2, the OPSA algorithm’s PSNR is

higher than that of other approaches. Average PSNR values

of 30.21 and 31.48 were obtained by the PSO and GWO

algorithms, respectively, for Image A, while 34.87 was

achieved by the OPSA method. The proposed model

achieved a PSNR value of 35.65 dB for Image B, whereas

the PSO and GWO techniques achieved PSNR values of

30.25 and 32.65 dB, respectively. A similar trend was

observed for Image C where the proposed model registered

an enhanced measure of PSNR value (36.59), whereas PSO

and GWO techniques produced lower PSNR values of

29.65 and 33.56, respectively. PSNR values of 37.98 and

32.65 dB were achieved by the OPSA and PSO algorithms,

respectively, on test Image D, whereas GWO obtained

PSNR values of 34.48 dB. PSNR for Image E has been

calculated by the OPSA algorithm to be 38.48dB, whereas

the PSNRs for the PSO and GWO algorithms are numer-

ated to 28.65 dB and 34.15 dB, respectively. Figure 9

shows the graphical results of the proposed approach.

Henceforth, based on the aforementioned results, it can be

concluded that the presented technique is more effective in

image analysis as compared to state-of-the-art decision-

making techniques.

4.5 Encryption technique analysis

The proposed ETA analysis is performed using statistical

significance analysis. The null hypothesis was defined as

compression of data is not effective in the proposed model.

Therefore, the alternate hypothesis is defined as data

compression is effective. It is shown in Table 3 that the

outcomes of the proposed (NIS) algorithm under varied

transaction counts are compared with the state-of-the-art

LZW (Lempel-Ziv-Welch) and LZMA (Lempel-Ziv-Mar-

kov chain) technique. The compressed iterations should be

less in size than the original Iterations. The proposed

technique has successfully compressed 600 iterations with

an initial size of 700 bytes to 350 bytes. With a compressed

size of 590 bytes for LZW and 575 bytes for LZMA, the

proposed model is better in terms of compression analysis.

The presented technique achieved enhanced compression

by compressing 1200 iterations with an initial size of 1380

bytes to 520 bytes. On the other hand, the LZW and LZMA

techniques performed less optimally, with maximum

compressed sizes of 1082 and 950 bytes, respectively.

Similarly, for 1800 iterations with an initial size of 2015

bytes, LZW and LZMA models produced less compression

with 1654 bytes and 1546 bytes. In comparison, the pro-

posed technique was able to obtain a compressed size of

950 bytes. A compressed size of 1650 bytes has been

reached by the presented technique with 3000 Iterations at

a size of 3520 bytes. On the other hand, the compressed

sizes of 2952 bytes and 2645 bytes were achieved by the

LZW and LZMA models, respectively. These results are

mapped with the p-value of 0.02 which is less than the 0.05

value for statistical significance analysis. Henceforth, the

null hypothesis is rejected. Therefore, data compression is

effective in the proposed model.

4.6 Compression ratio (CR) analysis

Blockchain hash values are analyzed for estimating the

compression ratio measure. The findings are shown in

Table 4 (Figs 10 and 11). It is important to mention that a

greater CR number indicates enhanced performance. The

suggested method has a CR of 1.99 after 600 iterations,

while the CRs of the LZW and LZMA models are only

1.15 and 1.26, respectively. The proposed method gener-

ated a CR of 1.85 for 1200 iterations, while the LZW and

LZMA models had CRs of 1.02 and 1.20, respectively.

While the LZW and LZMA algorithms generated com-

pression ratios for 1800 iterations numerated to 1.005 and

1.15, respectively, the presented method produced a better

CR measure of 1.175. The proposed method has a CR of

1.65, whereas the LZW and LZMA models have CRs of

1.0023 and 1.102, respectively, after 2400 iterations.

Similarly, the presented method has a CR of 1.55, whereas

the LZW and LZMA models have a CR of 1.001 and 1.095,

respectively, after 3000 iterations. Conspicuously, it can be

concluded that the presented technique is more effective in

data compression in comparison with other techniques.
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4.7 Space save analysis

The proposed model results for space savings (SS) are

shown in Table 5 (Fig. 12). It demonstrates the

effectiveness of SS in reducing the amount of space

required by the blockchain hash values. Better performance

is associated with a higher SS. The proposed method has a

high SS of 48.65%, whereas the LZW and LZMA models

have a substantially lower SS of 12.48% and 16.25%,

respectively, after 600 iterations. While LZW and LZMA

models have yielded lesser scores of 18.25 and 22.36%, the

proposed technique has obtained a score of 42.36% in 1200

Fig. 8 Segmented Image

Table 2 PSNR ratio

Image PSO OPSA GWO

Image A 30.21 34.87 31.48

Image B 30.25 35.65 32.65

Image C 29.65 36.59 33.56

Image D 32.65 37.98 34.48

Image E 28.65 38.48 34.15

Fig. 9 Comparative Analysis: PSNR

Table 3 Comparative analysis

Iterations Original Proposed LZW LZMA

600 700 350 590 575

1200 1380 520 1082 950

1800 2015 950 1654 1546

2400 2780 1350 2658 2454

3000 3520 1650 2952 2645

Table 4 Comparative analysis: compression ratio

Iterations Proposed LZW LZMA

600 1.99 1.15 1.26

1200 1.85 1.02 1.20

1800 1.75 1.005 1.15

2400 1.65 1.0023 1.102

3000 1.55 1.001 1.095
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iterations. In the case of 1800 iterations, the proposed

algorithm generated an SS of 35.65%, whereas the LZW

and LZMA models generated SS of 25.26% and 28.25%,

respectively. While the LZW and LZMA models yielded

SS of 24.25% and 26.56%, the presented technique has

yielded an SS of 32.26%. Similar trends were observed in

the case of 3000 iterations where the proposed technique

obtained superior results. Therefore, it can be concluded

that in the current scenario, the proposed model is better

and more effective in SS in comparison with the state-of-

the-art techniques.

4.8 Statistical analysis

Figures 13, 14, 15, and 16 compare the classifier findings

based on statistical metrics of accuracy, sensitivity, speci-

ficity, and F-Measure. Mathematically, these statistical

metrics are computed based on True positive (TP), True

negative (TN), False negative (FN), and False positive

(FP). The mathematical formulation is represented as

Accuracy ¼ TPþ TN

TPþ TNþ FPþ FN

Sensitivity ¼ TP

TPþ FN

Specificity ¼ TN

FPþ TN

F �Measure ¼ 2 � Precision � Recall
Precision þ Recall

¼ 2 � TP
2 � TPþ FPþ FN

1. Accuracy Assessment: The proposed DNN-based clas-

sification model achieved an accuracy of 93.26% when

compared to the linear regression model, which

achieved an accuracy of 82.36%. With accuracy rates

of 89.56% and 79.56%, the MLP and RBF algorithms

are superior to the linear regression model but less

optimal than the proposed model. The accuracy levels

of the ANN (86.25%) and DNN (88.25%) models are

also considerably higher. At 75.15%, the KNN model

is less optimal for accuracy analysis.

2. Sensitivity Assessment: In comparison with the pro-

posed DNN-based classifier’s sensitivity analysis

(93.26%), KNN’s simulation output has the lowest

level of sensitivity (76.21%), which was used to rank

the models. With sensitivity levels of 81.95% and

86.21%, the RBF and DNN approach outperformed the

linear regression model (81.45%). There are even

better results using the ANN, which has achieved a

sensitivity of 85.98%. Henceforth, the proposed model

is more sensitive in accurately classifying data.

3. Specificity Assessment: The linear regression model

does averagely in comparison with the proposed DNN-

based classification model (94.26%) in terms of

specificity, achieving 83.26%. On the other hand,

RBF and MLP approaches have achieved a higher

degree of specificity of 86.32% and 84.65%, respec-

tively. The ANN and KNN models have yielded

Fig. 10 Comparative Analysis: Size Ratio

Fig. 11 Comparative Analysis

Table 5 Save space analysis

Iterations Proposed LZW LZMA

600 48.65 12.48 16.25

1200 42.36 18.25 22.36

1800 35.65 25.26 28.25

2400 32.26 24.25 26.56

3000 28.45 22.26 24.15

Fig. 12 Comparative Analysis: Space Saving
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88.44% and 74.32% specificity, respectively. A speci-

ficity of 84.15% was achieved using the DNN

approach.

4. F-Measure Assessment: A similar trend was seen for

the F-Measure analysis for the proposed approach.

Specifically, the presented technique registered an

enhanced measure of 96.25% in comparison with

Fig. 13 Accuracy Analysis

Fig. 14 Sensitivity Analysis

Fig. 15 Specificity Analysis
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83.26% (MLP), 81.14%(Linear regression),

82.22%(ANN), 83.14%(RBF), 79.25% (KNN), and

83.14% (DNN).

Several factors have contributed to the model’s success,

including the use of OPSA for secret sharing, an effective

hash value encryption mechanism, and the parameter

tweaking of the DNN model. Henceforth, it can be con-

cluded from Table 6 that the presented approach is better

than the state-of-the-art classification technique for

healthcare data.

4.9 Research implications

The research contributions can be emphasized both prac-

tically and academically as follows:

4.9.1 Practical contributions

1. Enhanced Security Measures: The utilization of deep

neural network (DNN)-driven secure intelligent IoT-

medical diagnosis models enhances the security of

healthcare data, ensuring patient privacy and

confidentiality.

2. Secure Data Transmission: The incorporation of secure

transactions involving picture steganography, hash

value encryption, and medical diagnostics facilitates

safe and confidential data exchange, crucial for main-

taining the integrity of sensitive medical information.

3. Advanced Image Sharing Techniques: The use of

orthogonal particle swarm optimization for secret

sharing of medical images enhances data privacy and

security, enabling efficient and secure transmission of

critical healthcare visuals.

4. Robust Encryption Methods: The implementation of a

neighborhood indexing sequence technique for hash

value encryption strengthens data protection, safe-

guarding against unauthorized access and ensuring the

integrity of medical data.

5. Improved Diagnostic Accuracy: The optimized DNN

classification model aids in illness diagnosis, contribut-

ing to enhanced accuracy in identifying and categoriz-

ing medical conditions, thereby improving patient care

outcomes.

4.9.2 Academic contributions

1. Innovative Research Focus: The primary focus on

DNN-inspired secure intelligent IoT-medical diagnosis

models contributes to the academic field by introducing

innovative approaches to healthcare data security and

diagnosis.

2. Novel Methodologies: The presentation of novel

methodologies such as picture steganography, orthog-

onal particle swarm optimization, and neighborhood

indexing sequence techniques adds to the academic

discourse on secure data transmission and encryption

in healthcare settings.

3. Algorithmic Contributions: The utilization of advanced

algorithms in the proposed model, including DNN

Fig. 16 F-Measure Analysis

Table 6 Performance analysis

Method Accuracy Sensitivity Specificity F-Measure

OPSA-DNN 93.26 93.26 94.26 96.25

MLP 89.56 86.25 84.65 83.26

Linear 82.36 81.45 83.26 81.14

ANN 86.25 85.98 88.44 82.22

RBF 79.56 81.95 86.32 83.14

KNN 75.15 76.21 74.23 79.25

DNN 88.25 86.21 84.15 83.14
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optimization for classification tasks, offers insights into

the application of cutting-edge technologies for med-

ical diagnosis within academic research.

4. Validation through Trials: The validation of the model

through extensive trials provides empirical evidence of

its effectiveness, contributing to the academic literature

by demonstrating practical applications of secure IoT-

medical diagnosis models in real-world scenarios.

5. Potential for Future Research: The research sets a

foundation for further academic exploration in the

areas of secure IoT applications in healthcare, encryp-

tion techniques, and advanced diagnostic models,

paving the way for future research advancements in

the field.

5 Conclusion

The current paper delves into the development of a secure

IoT healthcare diagnosis model that leverages IoT devices

for data collection, the OPSA algorithm for secure medical

image sharing, and hash value encryption for data protec-

tion. Scientifically, the study contributes to advancing

secure IoT-healthcare diagnosis models by showcasing

improved decision-making, data protection, and compres-

sion capabilities, setting a foundation for enhanced

healthcare outcomes through innovative technology inte-

gration. The OPSA-DNN-based illness diagnosis model

was proposed for effective decision-making and validated

using a large-scale benchmark dataset of lung disease. The

results showcased the model’s ability to secure medical

image transmission, achieve a high PSNR value, and out-

perform existing decision-making models in terms of sta-

tistical measures like f-Measure (96.25%), sensitivity

(93.26%), specificity (94.26%), and accuracy (93.26%).

Additionally, the NIS model demonstrated superior com-

pression capabilities for blockchain-hashed data. Future

research endeavors should delve deeper into the proposed

technique by exploring dictionary-based encoding approa-

ches to further enhance its performance. It is imperative to

address the limitations encountered in the current study,

such as scalability issues, interoperability challenges, and

real-world implementation constraints. Recommendations

for future studies include conducting more extensive test-

ing across diverse datasets, refining the model’s algorith-

mic components, and considering practical implications for

seamless integration into healthcare systems. By address-

ing these aspects in-depth and incorporating valuable

insights from the study’s limitations, future research can

advance the field of secure IoT healthcare diagnosis models

and contribute to improved healthcare outcomes.
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