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Abstract
Chronic kidney disease (CKD) is a significant concern for individuals with type 1 diabetes (T1D), impacting their quality

of life and healthcare costs. Identifying T1D patients at greater risk of developing CKD is crucial for preventive measures.

However, it is challenging due to the asymptomatic progression of CKD and limited nephrologist availability in many

countries. This study explores machine learning algorithms to predict CKD risk in T1D patients using ten years of

retrospective data from the Epidemiology of Diabetes Interventions and Complications clinical trial. Eleven machine

learning algorithms were applied to twenty-two readily available features from T1D patients’ routine check-ups and self-

assessments to develop 10-year CKD risk prediction models. In addition, we also proposed a heterogeneous ensemble

model (STK) using a stacking generalization approach. The models’ performance was evaluated using different evaluation

metrics and repeated stratified k-fold cross-validation. Several predictive models showed reliable performance in CKD risk

prediction, with the proposed ensemble model being the best performing with an average accuracy of 0.97, specificity of

0.98, sensitivity/recall of 0.96, precision of 0.98, F1 score of 0.97, Kappa and MCC score of 0.94, AUROC of 0.99, and

Precision-Recall curve of 0.99. The proposed machine learning approach could be applicable for CKD risk prediction in

T1D patients to ensure the necessary precautions to overcome the risk.
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1 Introduction

Chronic kidney disease (CKD) is a progressive condition in

which the kidneys gradually lose function over time. It is

characterized by a decline in kidney function, which can

lead to a buildup of waste products and fluids in the body.

The most accurate measure of total kidney function is the

glomerular filtration rate (GFR), which indicates the vol-

ume of fluid our kidney filters in a unit of time. Kidney

Disease Improving Global Outcomes (KDIGO) guidelines

2012 and current international guidelines define a person as

having CKD if their estimated glomerular filtration rate

(eGFR) has been less than 60 mL=min=1:73 m2 for over

three months [1]. CKD is a major challenge to public

health worldwide, as 10% of the total population is pre-

dicted to have CKD [2]. The yearly medical costs per

patient with CKD can reach as high as $65,000 [3]. In

addition, there is a higher chance of additional adverse

health hazards, such as an increased risk of mortality, end-

stage renal disease (ESRD) progression, and heart and

artery problems. CKD is one of the major causes of death

in the USA, and in 2019, it was the 12th leading cause of

death globally [4, 5].

Diabetes is the leading cause of CKD, and 1 in 3 adults

with diabetes may have CKD. For type 1 diabetes (T1D)

patients, this ratio is even higher. More than 50% of

patients with T1D have a chance of developing CKD [6].

The most common cause of end-stage renal disease in the

West is diabetes CKD, which is also linked to a higher risk

of cardiovascular events [7, 8]. In addition, when a diabetes

patient is affected with CKD, their health-related quality of

life decreases, and healthcare costs increase significantly

[9, 10].

However, the positive side is that CKD is a non-com-

municable disease. The risk of CKD in T1D patients can be

prevented or delayed through appropriate dietary and
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lifestyle adjustments and chronic kidney disease-targeted

interventions [11–13]. Identifying T1D patients with CKD

risk is crucial for this purpose. Unfortunately, this task can

be difficult because CKD progression is asymptomatic in

most cases [4]. In addition, in many countries, the

nephrologists’ density is very low. According to the

International Society of Nephrology Global Kidney Health

Atlas (ISN-GKHA), in 2016 the nephrologist density in

underprivileged countries was only 0.318 per million

population [14]. Hence, an automated CKD prognosis

model for T1D patients to identify the patients with a

greater risk of developing CKD can be helpful in ensuring

more intensive management to avoid CKD.

Recently, disease prediction and prognosis using

machine learning (ML) techniques have shown consider-

able promise [15, 16]. We can find several ML-based CKD

prognostic models in the literature. However, only a few of

them were focused on diabetes patients, and even fewer

were focused on T1D patients. Chan et al. (2021) utilized a

combination of electronic health records and biomarkers of

1146 diabetes patients and random forest (RF) to develop a

prognostic model to predict sustained eGFR decline or

kidney failure within five years [17]. Though they achieved

an area under the receiver operating characteristic curve

(AUROC) of 0.77, their use of biomarkers made it chal-

lenging to implement this model in many places. Allen

et al. (2022) used extreme gradient boosting (XGB) and RF

machine learning algorithms to predict diabetic kidney

diseases within five years upon diagnosis of type 2 diabetes

and achieved an AUROC of over 0.75 [18]. In another

study by Kanda et al. (2022), a large retrospective cohort

from a Japanese insurance company was used to develop

ML models to predict the risk of developing CKD and

heart failure in type 2 diabetes patients [19]. Using the

XGB algorithm, they achieved an AUROC of 0.718 for five

years of CKD risk prediction. However, none of these two

models considered type 1 diabetes patients.

Type 1 diabetes is distinct from type 2 diabetes [20].

Type 2 diabetes is closely related to lifestyle, food habits,

and ethnicity, and its risk can be reduced by following a

healthy diet and lifestyle. On the other hand, type 1 dia-

betes is a genetic disorder where patients’ immune system

attacks and destroys insulin-producing cells in the pan-

creas. As a result, patients need to take insulin injections to

control their blood glucose levels. Unlike type 2 diabetes,

lifestyle changes cannot reduce the risk of type 1 diabetes.

Research conducted by Kristófi et al. (2021) shows that

type 1 diabetes patients have a 1.4–3.0-fold higher risk of

CKD than type 2 diabetes patients [21]. As a result, a

prognosis model dedicated to type 1 diabetes patients

should be a more viable option. Unfortunately, very limited

work has been done in this field.

In one study, Niewczas et al. (2017) studied the risk

factors and mechanisms of end-stage renal disease (ESRD)

in patients with type 1 diabetes (T1D) and chronic kidney

disease [22]. The study analyzed serum metabolomic pro-

files in a prospective cohort of 158 T1D patients with

proteinuria and impaired renal function. Over a median

follow-up of 11 years, the study identified seven modified

metabolites (C-glycosyltryptophan, pseudouridine, O-sul-

fotyrosine, N-acetylthreonine, N-acetylserine, N6-car-

bamoylthreonyladenosine, and N6-acetyllysine) in the

patient’s serum that were strongly associated with renal

function decline and the onset of ESRD, independent of

clinical factors. This study also calculated estimated

glomerular filtration rate slopes from serial serum crea-

tinine measurements and established the time to start

ESRD. In another study, Pilemann-Lyberg et al. (2019)

considered two biomarkers (PRO-C6 and C3M) from 663

T1D patients with normoalbuminuric and macroalbumin-

uric. They estimated the relation of these biomarkers with

adverse outcomes in patients with T1D, including a decline

in eGFR and ESRD, using Cox proportional hazards

models [23]. This research reported that sPRO-C6 was

linked to a higher risk of renal function decline and the

development of end-stage renal disease (ESRD). However,

these models considered type 1 diabetes patients who

already had CKD or other kidney complications. In addi-

tion, they used complex features like biomarkers or

metabolites and tried to find their association with ESRD.

None of these models used machine learning and were not

suitable for predicting the risk of CKD in T1D patients.

Recently, Sripada et al. (2023) utilized data from the

T1D exchange registry in the USA to develop a machine

learning model to predict diabetic nephropathy in T1D

patients [24]. This research achieved the best performance

with an F1-score of 0.67 and AUC of 0.78 using the ran-

dom forest model. Colombo et al. (2020) aimed to provide

contemporary data on the rates and predictors of renal

decline in individuals with type 1 diabetes [25]. The study

also employed ridge regression to create a model for pre-

dicting renal disease progression in T1DM patients and

achieved a mean squared correlation (Pearson r2) of 0.745.

In one of our previous studies, we developed a nomogram-

based CKD prediction model for T1D patients using mul-

tivariate logistic regression with 90.04% accuracy [26]. In

another study, we evaluated the performance of traditional

machine learning algorithms for predicting CKD in T1D

patients [27]. However, these models are applicable to

identifying existing CKD and are not suitable for predict-

ing the risk of developing CKD in the future. In addition,

the accuracy of the first two studies was relatively low.
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Vistisen et al. (2021) focused on developing a robust

prediction model for end-stage kidney disease (ESKD) in

individuals with type 1 diabetes [28]. Their research uti-

lized ridge regression for model development and a pop-

ulation-based cohort of over 5000 Danish adults with type

1 diabetes, spanning from 2001 to 2016. The prediction

model, which accounted for the risk of death as a com-

peting factor, incorporated various clinical parameters,

including age, sex, diabetes duration, kidney function,

albuminuria, blood pressure, HbA1c levels, smoking, and

cardiovascular disease history. The model demonstrated

excellent discrimination, particularly for the 5-year risk of

ESKD with a C-statistic of 0.888. However, the model was

designed to identify the risk of ESKD and was unsuit-

able for predicting general CKD risk in T1D patients.

Additionally, the derivation cohort was imbalanced, with

only 5.5% of the participants developing ESKD, and no

steps were taken to address this imbalance. The C-statistic

alone does not address the class imbalance, and the

reported result may lead to biased estimations of the

model’s performance. To our knowledge, no other pre-

diction models have been developed to assess the risk of

CKD progression in the type 1 diabetic population.

In this study, we sought to develop and validate a

machine learning-based prognosis model that could predict

the risk of developing CKD among type 1 diabetes patients

without a history of kidney disease. The primary research

question was: is it possible to identify the risk of devel-

oping CKD in T1D patients using readily available routine

data? We hypothesize that applying various machine

learning algorithms to the longitudinal data of T1D patients

will enable accurate prediction of CKD risk. We applied

eleven supervised machine learning classification algo-

rithms, including linear, nonlinear, ensemble, bagging,

artificial neural, and deep learning neural networks, to

develop 10-year CKD risk prediction models for T1D

patients. After analyzing the performance of these models,

we proposed a robust heterogeneous ensemble model using

a stacking generalization technique for CKD risk predic-

tion in T1D patients through an innovative combination of

the best-performing models from each category. To train

our model, we consider the features easily available from

T1D patients’ regular check-ups and self-assessments. Our

main challenge was to develop a reliable risk prediction

model using a simple dataset that would enable the iden-

tification of T1D patients at high risk of developing CKD

within a 10-year time frame. Other challenges were iden-

tifying the most important features for CKD risk prediction

from T1D patients’ routine check-up data and determining

the optimal number of features for achieving the best

machine learning model performance. We introduced a

strategic feature ranking and optimization approach with

combinations of different data pre-processing techniques to

overcome these challenges.

Our research introduces a novel approach to predicting

the risk of CKD in T1D patients. To the best of our

knowledge, this would be the first machine learning-based

10-year CKD risk prediction model for type 1 diabetes

patients. Unlike previous related models that primarily

focus on ESRD outcomes, our study pioneers the predic-

tion of general CKD risk in T1D patients over a 10-year

horizon. Notably, our model relies solely on readily

available features from patients’ regular check-ups and

self-assessments, facilitating early interventions. Contrast-

ing existing models that may depend on complex variables,

our approach simplifies the process, making it accessible to

a broader range of healthcare settings. The innovation

extends to the development of an advanced heterogeneous

ensemble model, combining diverse machine learning

techniques to achieve superior performance even with

straightforward features. Furthermore, this study introduces

a strategic feature ranking and optimization approach to

enhance model efficiency and accuracy. Another major

contribution of our research is the provision of essential

features from routine check-ups of T1D patients for CKD

risk prediction.

By utilizing our proposed prognosis model, healthcare

providers can identify T1D patients at high risk of developing

CKD within a 10-year timeframe. This proactive approach

empowers patients to take necessary precautions and inter-

ventions to address this potential threat. Furthermore, our

model holds particular promise for T1D patients in develop-

ing nations, where access to nephrologists is limited. This

research will serve as a valuable resource to bridge the

healthcare gap and improve early CKD risk detection.

2 Methods

Our study followed a systematic process encompassing

data collection, sample selection, data pre-processing,

feature ranking, machine learning model training, and

performance evaluation. A schematic diagram illustrating

this process is provided in Fig. 1. Each step is compre-

hensively explained in the subsequent subsections.

2.1 Data source and study population

We reviewed 1375 T1D patients’ 10-year retrospective

longitudinal data from the Epidemiology of Diabetes

Interventions and Complications (EDIC) clinical trial. This

trial was carried out by the National Institute of Diabetic,

Digestive, and Kidney Diseases (NIDDK), USA, to

examine how rigorous diabetes therapy affected the T1DM
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population [29, 30]. The EDIC trial started in 1994 at 28

sites in the USA and Canada and is still ongoing. In this

trial, clinical parameters were measured following standard

methodologies in the EDIC central biochemistry labora-

tory, and long-term quality control procedures were

established to prevent measurement drift [30, 31]. Patients’

demographic and behavioral data were collected through

self-assessments. The EDIC study measured patients’ body

mass index, glycated hemoglobin level, blood pressure,

serum creatinine level, and estimated GFR annually. In

contrast, albumin excretion rate and fasting lipid levels

were measured every two years [31]. The chronic kidney

disease epidemiology collaboration (CKD-EPI) method

was used to calculate the estimated GFR [31, 32]. More

details of this dataset can be found in our previous two

articles [26, 27].

To develop our model, we considered 10-year retro-

spective longitudinal data from the EDIC trial between

the period of the year 1999 and the year 2008. Patients

younger than 18 years old were excluded from our study.

In addition, we excluded T1D patients with CKD or

other kidney diseases at the baseline. We also excluded

the patients who discontinued the EDIC trial or died for

non-CKD reasons. All samples with missing values in

the output class were also excluded. Ultimately, we

selected 1309 samples, of which 110 (8.40%) developed

CKD during the specified time frame, as depicted in

Fig. 1.

2.2 Outcomes and variables

Our study aimed to solve a binary classification problem

with two possible outcomes: CKD and non-CKD. CKD

was defined as having an eGFR of less than

60 mL=min=1:73 m2. If a sample developed CKD during

the 10-year follow-up period, it had the CKD class. We

represented the CKD class with 1 and the non-CKD class

with 0. We considered 22 variables to train our models.

Among these variables, 2 were demographic characteris-

tics: age and sex (Female); 5 were medical history: dura-

tion of insulin-dependent diabetes (IDDM_DUR),

hypertension (HT), hyperlipidemia (HLIP), current smok-

ing (SMOKE), current drinking (DRINK); 3 were medical

treatment information: multiple daily insulin injections

(MDI), on anti-hypertensive medication (ANTIHYP), on

angiotensin-converting enzyme inhibitors or angiotensin

receptor blockers medication (ACEARB); 4 were physical

examination data: body mass index (BMI), systolic blood

pressure (SBP), diastolic blood pressure (DBP), mean

blood pressure (MBP); and 7 were laboratory values: gly-

cated hemoglobin (HBA1C), albumin excretion rate

(AER), serum creatinine (eSCR), total cholesterol (CHL),

high-density lipoprotein (HDL), low-density lipoprotein

(LDL), triglycerides (TRIG). Fourteen features (AGE,

IDDM_DUR, BMI, SBP, DBP, MBP, HBA1C, CHOL,

HDL, LDL, TRIG, eSCR, AER, eGFR) had numerical

values, and other features had binary (yes/no) values. We

Fig. 1 Schematic diagram of the overall procedure
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Fig. 2 The population distribution of a binary attributes and b numerical attributes
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used 1 to represent yes and 0 to represent no. Figure 2

represents the population distribution of all attributes.

2.3 Data pre-processing

Data cleaning and data pre-processing are vital to clinical

model development. Different machine learning algo-

rithms’ performance can vary significantly based on data

pre-processing. We applied data augmentation, feature

scaling, and outlier detection techniques in this study to

process our data.

Our primary data had only 12 missing values in 5

samples. As we had longitudinal data, we replaced the

missing values with patients’ next year’s data. Our dataset

was imbalanced; among the 1309 samples, 110 samples

were CKD-positive. Imbalance data can produce biased

results. We applied the SMOTE-Tomek data augmentation

technique [33] to balance the dataset. The SMOTE-Tomek

approach combines the Synthetic Minority Oversampling

Technique (SMOTE) [34] and the Tomek Links [35]

under-sampling technique. Here, SMOTE produces artifi-

cial data for the minority class, and Tomek Links removes

majority class samples most closely related to the minority

group. In contrast to random oversampling, which only

copies a few random examples from the minority class,

SMOTE creates instances based on the distance between

each data point and the minority class’s closest neighbors,

resulting in new examples that are unique from the

minority class’s original data [33]. We used self-written

Python code and the imbalanced-learn open-source Python

library [36] for data augmentation.

The numerical attributes of our dataset had a vast dif-

ference in range and magnitude, and feature scaling could

help to increase our machine learning models’ accuracy

and convergence speed. We explored three feature scaling

techniques: min–max normalization (MinMax), standard-

ization or z-score normalization (StdScal), and robust

scaling (RobScal). The min–max normalization scales the

numerical values of a feature to a range (usually 0 to 1)

based on that feature’s maximum and minimum values. On

the other hand, standardization transfers the feature’s value

so that the mean becomes zero and the standard deviation

becomes one. However, both techniques are sensitive to

outliers, as outliers can often influence the sample

mean/variance and min–max values negatively. The robust

scaling technique changes the median and scales the data

according to the quantile range; thus, this technique is less

sensitive to outliers than the other two techniques. We used

the open-source Python library Scikit-learn [37] to imple-

ment all feature scaling techniques.

Our data had outliers in several features. We applied the

interquartile range (IQR) method and isolation forest (IF)

algorithm [38] for outlier detection and removal. In the

IQR method, we kept instances that are in the range of

1:5� Q3� Q1ð Þ, where Q1 and Q3 are the first quartiles

and second quartiles, respectively. The IF algorithm is a

random forest-based outlier detection technique that

returns the anomaly score of each sample used in the

algorithm [38]. We used the Scikit-learn library [37] for

implementing outlier detection algorithms.

However, there is no general guideline for optimal data

pre-processing procedures in machine learning-based

applications. In this study, we have applied ten different

combinations of these data pre-processing techniques to

create ten separate datasets (DS-1 to DS-10). All machine

learning models were applied to each dataset to determine

the best-performing combination for each model.

2.4 Machine learning models development

2.4.1 Machine learning models

Twelve supervised machine learning classification algo-

rithms were applied to develop 10-year CKD risk predic-

tion models for T1D patients. We chose these machine

learning algorithms from four categories: linear, nonlinear,

ensemble method, and artificial neural network. We used

three linear algorithms: logistic regression (LR) [39], linear

discriminant analysis (LDA) [40], and Naı̈ve Bayes (NB)

[41]. These are classic machine learning algorithms widely

used in classification problems. We also used three popular

nonlinear algorithms: support vector classifier (SVC) [42],

decision tree (DT) [43], and k-nearest neighbors (KNN)

[44]. We used the open-sourced Python library Scikit-learn

[37] to implement these algorithms.

Ensemble methods combine the predictions of a group

of individually trained classifiers (such as decision trees) to

classify new data points [45]. This relatively more complex

approach usually provides better classification results than

a single model [46]. In this study, we applied two bagging

ensemble methods: random forest (RF) [47] and extremely

randomized tree (ET) [48], and a boosting ensemble

method: extreme gradient boosting (XGB) [49]. Scikit-

learn open-source Python library [37] was used to imple-

ment all ensemble models.

In addition, we explored two artificial neural network

models, multi-layer perceptron (MLP) [50] and TabNet

[51] to build our prediction models. MLP is a classical

neural network model widely used with many applications.

TabNet is a relatively new approach that follows deep

neural network (DNN) architecture and was developed by

the Google AI team in 2019 [51]. TabNet is specially

designed to work with tabular data. Although DNNs have

shown significant success with audio, video, and image

data, their performance was relatively poor with tabular

data compared to different decision tree-based ensemble
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methods [51]. TabNet has a special sequential attention-

based architecture, which enables it to outperform tree-

based ensemble methods in many applications [51]. We

used the PyTorch [52] implementation of the TabNet

model, and for the MLP model, we used Scikit-learn [37].

In addition to the individual machine learning models,

we proposed a powerful heterogeneous ensemble model

(STK) using a stacking generalization approach [53]. The

motivation behind adopting an ensemble approach lies in

its ability to enhance prediction accuracy by leveraging the

diverse strengths of multiple base models. The architecture

of a stacking generalization model consists of two or more

base models, also referred to as level-0 models, and a meta-

model, designated as the level-1 model. The key concept

here is that the meta-model learns how to best combine the

predictions from the base models to produce an improved

final output. This approach follows four algorithm steps.

1. Base model selection: The first step is to choose a set

of diverse base models (also known as level-0 models)

that will form the foundation of the ensemble.

2. Meta-model selection: Next, choose a meta-model

(level-1 model) that will learn how to combine the

predictions from the base models to optimize the final

prediction.

3. Training the meta-model: During the training phase,

utilize the predictions generated by the base models,

along with the original outputs (ground truth labels), as

meta-data to train the meta-model. The meta-model

learns to assign weights to each base model’s predic-

tion to achieve the best combination.

4. Weighted combination: Once the meta-model is

trained, it assigns weights to the predictions of the

base models. These weights reflect the importance or

reliability of each base model’s output. When making

predictions for new, unseen samples, the final predic-

tion is determined by combining the outputs of the base

models using the learned weights.

For our heterogeneous ensemble model (STK), we

strategically selected the best-performing models from

various categories, including linear (LDA), nonlinear

(KNN), bagging ensemble method (RF), boosting ensem-

ble method (XGB), and artificial neural networks (MLP),

as our base models. We employed a logistic regression

algorithm as the meta-model to harmonize base models’

predictions and derive an optimized ensemble output.

During the training phase, we utilized the predicted outputs

from the five base models, alongside the original outputs,

as meta-data to train the meta-model. It learned to assign

weights to each base model’s prediction, effectively cap-

turing the unique strengths of each model. The final pre-

diction for an unseen sample was then determined based on

these learned weights using the following equation:

P Y ¼ 1jXð Þ ¼ 1

1þ e w0þw1x1þw2x2þw3x3þw4x4þw5x5ð Þ ð1Þ

where

• P Y ¼ 1jXð Þ is the probability of the positive class

(CKD).

• X represents the input features, in our case, outputs of

five base models.

• x1, x2, …, x5 are the output of base model 1, base model

2, …, and base model 5.

• w0, w1, w2, …, w5 are the learned weights assigned to

each base model’s prediction.

• e is the base of the natural logarithm.

The overall architecture of our STK model is depicted in

Fig. 3. To implement this ensemble approach, we utilized

the Scikit-learn open-source machine learning library for

Python [37].

2.4.2 Cross-fold validation

We applied repeated stratified k-fold cross-validation from

Scikit-learn [37] to train and test our ML models. A single

train-test split or even a single run of the k-fold cross-

validation procedure may produce a biased estimation of

model performance. The repeated stratified k-fold cross-

validation yields a more generalized result by doing the

stratified cross-validation process [54] more than once and

presenting the mean result across all folds from all runs. In

our study, we used fivefold cross-validation with five times

repetitions. Among the fivefold-split data, fourfolds (80%

of the total sample) were used to train all ML models, and

the remaining fifthfold (20% of the total sample) was used

to evaluate the models. We used stratified k-fold, so the

CKD and non-CKD class ratios were similar in every fold.

2.4.3 Hyperparameter optimization

Machine learning models have several parameters that

must be learned from the data. We can fit the model

parameters by training a model using existing data. How-

ever, machine learning models also have a special set of

parameters known as hypermeters, which cannot be fit this

way. Hyperparameters are used to customize a model and

need to be set before training the model. As a result,

hyperparameters can greatly influence model performance,

and finding appropriate values for hyperparameters is

essential. In this study, we applied a grid search approach

[55] using the Scikit-learn [37] Python machine learning

library to optimize hyperparameters. The list of hyperpa-

rameters from different models we selected to optimize is

given in Table 1.
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Here, the ‘solver’ hyperparameter in the LR algorithm is

the optimization algorithm used to find the coefficients of

the logistic regression model. Common choices include

‘liblinear,’ ‘lbfgs,’ ‘newton-cg,’ and ‘sag.’ The choice of

solver impacts the convergence speed and is often selected

based on the size and characteristics of the dataset. For

example, ‘liblinear’ uses a coordinate descent algorithm

suitable for small datasets, while ‘lbfgs’ uses a quasi-

Newton method suitable for larger datasets. The ‘solver’

hyperparameter in LDA, NB has a similar role. The

hyperparameter ‘learning rate’ in XGB, MLP, and TabNet

controls the step size during the optimization process. It

influences how quickly or slowly the model adapts to the

training data. A lower learning rate makes the model

converge more slowly but can result in better generaliza-

tion, while a larger learning rate can speed up convergence

but may lead to overfitting. The ‘n_estimators’ hyperpa-

rameter in RF, XGB, and ET determines the number of

decision trees that will be used in the ensemble. Increasing

the number of trees can lead to a more powerful model but

can also make it more computationally intensive. It is

crucial to strike a balance between model performance and

computational resources. The ‘Max_depth’ hyperparameter

specifies the maximum depth or levels of each decision tree

in tree-based ensemble methods. It controls the complexity

of individual trees. A shallow tree (low max_depth) is less

complex but may underfit the data, while a deep tree (high

max_depth) is more complex and may overfit. Setting an

appropriate max_depth is crucial for balancing bias and

variance. Similarly, other hyperparameters influence model

performance in some way and need to be selected

appropriately.

2.4.4 Feature selection

Our dataset had 22 features. We tried to optimize the

number of features for each machine-learning model using

a feature ranking approach. First, we used all features to

train an ML model. Then, we ranked the features based on

their importance in predicting CKD and created a ranked

dataset. After that, we trained the same model using the

top-1 features, top-2 features, top-3 features, and so on up

to the top 22 features and reported the best-performing

model with the minimum number of features. This process

was repeated for each model across all datasets, from DS-1

to DS-10, ensuring a comprehensive evaluation. Our

objective was to ascertain the most effective combination

of essential feature sets, data pre-processing techniques,

and machine learning algorithms for accurate CKD risk

prediction in T1D patients. Five of our ML models (RF,

XGB, ET, DT, and TabNet) had feature-importance

methods, which we used for feature ranking while training

these models. Other ML models (KNN, SVC, CNB, LDA,

LR, MLP, STK) did not have the feature-importance

method, and we used the XGB feature ranking algorithm to

crate the ranked dataset before training these models. We

chose XGB because, in our previous study [27], it provided

the best feature ranking result on similar data.

2.5 Statistical analysis and performance metrics

We applied the Shapiro–Wilk test [56] on the dataset to

identify numerical features that followed the Gaussian

distribution. The homogeneity of variance for both the

CKD and non-CKD groups was examined using Levene’s

test [53]. We used the open-source Python package SciPy

Fig. 3 The architecture of the

heterogeneous ensemble model

using a stacking generalization

approach
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Table 1 Machine learning models with hyperparameters to be optimized

Models Hyperparameters

LR 1. Solver: algorithm to use in the optimization problem

2. Penalty: the norm of the penalty

3. c: inverse of regularization strength

4. Class_weight: weights associated with classes

NB 1. Alpha: additive smoothing parameter

2. Norm: whether or not a second normalization of the weights is performed

LDA 1. Solver: algorithm to use in the optimization problem

DT 1. Max_depth: the maximum depth of the tree

2. Min_samples_split: the minimum number of samples required to split an internal node

3. Min_samples_leaf: the minimum number of samples required to be at a leaf node

4. Max_features: the number of features to consider when looking for the best split

5. Criterion: the function to measure the quality of a split

KNN 1. n_neighbors: number of neighbors

2. Weights: weight function used in prediction

3. Algorithm: the algorithm used to compute the nearest neighbors

4. Metric: metric to use for distance computation

SVC 1.c: regularization parameter

2. Kernel: specifies the kernel type to be used in the algorithm

RF 1. n_estimators: the number of trees in the forest

2. Max_features: the number of features to consider when looking for the best split

3. Criterion: the function to measure the quality of a split

4. Max_depth: the maximum depth of a tree

5. Min_samples_split: the minimum number of samples required to split an internal node

6. Min_samples_leaf: the minimum number of samples required to be at a leaf node

XGB 1. n_estimators: number of gradient-boosted trees

2. Learning_rate: boosting learning rate

3. Gamma: minimum loss reduction required to make a further partition on a leaf node of the tree

4. Reg_alpha: l1 regularization term on weights

5. Reg_lambda: l2 regularization term on weights

6. Base_score: the initial prediction score of all instances, global bias

ET 1. n_estimators: the number of trees in the forest

2. Max_depth: the maximum depth of the tree

3. Min_samples_split: the minimum number of samples required to split an internal node

4. Min_samples_leaf: the minimum number of samples required to be at a leaf node

5. Max_features: the number of features to consider when looking for the best split

6. Max_leaf_nodes: grow trees with max_leaf_nodes in best-first fashion

7. Criterion: the function to measure the quality of a split

MLP 1. Hidden_layer_sizes: number of hidden layers and units in each hidden layer

2. Activation: activation function for the hidden layer

3. Solver: algorithm for weight optimization

4. Alpha: strength of the l2 regularization term

5. Learning_rate: learning rate schedule for weight updates

6. learning_rate_init: the initial learning rate used

TabNet 1. Learning_rate: learning rate for gradient descent training

2. Batch_size: the number of data rows to process in each training step

3. Optimizer_type: algorithm for optimization
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[57] and Pingouin [58] for the Shapiro–Wilk and Levene’s

tests, respectively. In both tests, we used a p-value of 0.05.

For baseline characteristics of the patients, quantitative

features are displayed as means and standard deviation

(Sd), while qualitative factors are shown as frequency and

percentage (%). We compared these values with CKD and

non-CKD groups using the two-sample T-test (quantitative

attributes) and Chi-squared test (qualitative attributes) with

a p-value 0f 0.05.

We applied several metrics to evaluate the developed

ML models’ performance, including specificity (Sp), sen-

sitivity (Sn), precision (Pr), recall (Re), accuracy (Acc),

and F1 score. We also applied Cohen’s Kappa (Kappa) [59]

and Matthews Correlation Coefficient (MCC) [60] to verify

the models’ performance and reliability further. In addi-

tion, the area under the receiver operating characteristic

(AUROC) curve [61] and the precision-recall (PR) curve

[62] of the best-performing model from each algorithm

were plotted to compare their performance. The Scikit-

learn library [37] was used to calculate all metrics. We

used the Python open-source libraries Matplotlib [63] and

Seaborn [64] for our graphical representation and plotting.

Our data were imbalanced, so we considered the F1 score

as the primary evaluation metric.

3 Results

3.1 Baseline characteristics

A total of 1309 patients were included in this study; 620

were females (47.4%), and 689 were males (52.6%).

During the ten-year time period, 110 patients developed

CKD. Table 2 represents the baseline characteristics of the

participants. The average age was 39.8 (?/6.9) years, the

average diabetes duration was 18.3 (?/4.9) years, and the

average eGFR was 108 mL=min=1:73 m2. According to

the Shapiro–Wilk test result, only two features (DBP,

MBP) had the normal distribution, and the other features

had skewness. The population distribution of the features

(see Fig. 1b) also represents similar findings. Ten features

(AGE, DRINK, ACEARB, HLIP, BMI, SBP, DBP, CHOL,

HDL, LDL) exhibit homogeneous variance for the two

groups, according to Levene’s test result. HT, DRINK,

ACEARB, ANTIHYP, MBP, HBA1C, CHOL, TRIG,

eSCR, AER, and eGFR attributes’ values showed a sig-

nificant difference in CKD and non-CKD groups.

3.2 Result of data pre-processing

We created ten separate datasets using different data pre-

processing techniques and used all these datasets to train

and test our ML models. The details of each dataset are

presented in Table 3. Our primary dataset was imbalanced.

Among 1309 samples, only 8.40% (110 samples) had CKD

class. After applying the SMOTE-Tomek data augmenta-

tion technique, we got a balanced dataset (DS-2) of 2394

samples with 50.08% (1199 samples) of CKD samples. We

used outlier removal techniques on the augmented dataset

(DS-2). The IQR outlier detection technique removed

samples more aggressively than the Isolation Forest (IF)

algorithm. The sample size became 1705 and 2154 after

applying IQR and IF outlier removal techniques, respec-

tively. Figure 4 shows the impact of outlier removal on

numerical attributes.

3.3 Performance of machine learning models

In this study, we applied 12 machine learning algorithms to

develop a 10-year CKD risk prediction model for type 1

diabetes patients. The hyperparameters of each model were

optimized using grid search (optimized values are given in

Supplementary Table 1). All 12 models were applied to all

ten datasets, DS-1 to DS-10, created by different pre-pro-

cessing combinations. Detailed results for these models

across the ten datasets are provided in Supplementary

Tables 3 to 12. Notably, most models’ performance on the

primary dataset, without any pre-processing (DS-1), was

suboptimal. Despite achieving over 90% accuracy, this

outcome was skewed due to dataset imbalance, rendering

the results biased and misleading. None of the models

attained an F1 score or Kappa value exceeding 50%,

affirming their inadequate performance.

However, employing various data augmentation, outlier

detection, and feature scaling methods significantly

improved model performance, albeit with varying impact

across models. Tree-based models demonstrated robustness

against outliers and feature range differences, yielding

consistent results across DS-2 to DS-10. Conversely, arti-

ficial neural network models (MLP, TabNet) proved sen-

sitive to feature range differences, with improved

performance observed with different feature scaling tech-

niques (DS-8, DS-9, DS-10). Linear and nonlinear models

also benefited from processed data, displaying enhanced

performance. Table 4 outlines the performance of the

models that achieved the best results in these ten datasets.

Our proposed heterogeneous stacking ensemble model

(STK) showed superior results in nearly all datasets,

boasting F1 scores ranging from 0.94 to 0.97.

In Table 5, we summarize the performance of all models

across all datasets, presenting the best-performing model

for each algorithm, the pre-processed dataset, and the

number of features (N) used to achieve optimal perfor-

mance. We consider the F1 score, kappa values, and the

number of features to be the primary evaluation metrics for
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selecting the best model. According to the evaluation

metrics, our customized heterogeneous stacking ensemble

model (STK) achieved the best performance with an

average classification accuracy of 0.97, specificity of 0.98,

sensitivity/recall of 0.96, precision of 0.98, F1 score of

0.97, Kappa and MCC score of 0.94, AUROC of 0.99, and

Precision-Recall curve of 0.99. MLP and TabNet models

came in second and third place with an accuracy and F1

score of 0.95 and 0.94, respectively. LDA, KNN, and RF

were the best linear, nonlinear, and ensemble models with

an accuracy and F1 score greater than 0.90. In contrast, the

performance of NB and DT models was relatively poor

compared to other models.

We also generated the Area Under the Receiver Oper-

ating Characteristic (AUROC) curve and precision-recall

(PR) curve plots for all models across the ten datasets (DS-

1 to DS-10), as depicted in Supplementary Figs. 1 to 10.

The AUROC evaluates the trade-off between true positive

and false positive rates, and the PR curves assess the pre-

cision-recall trade-off. AUROC is effective for balanced

datasets, while PR curves are more suitable for imbalanced

datasets, especially when precision is critical. Initially,

models performed poorly on DS-1 based on PR curves but

showed improvement on subsequent datasets (DS-2 to DS-

10). In Fig. 5, we plot the AUROC and PR curves of

models that achieved the best result for each of the ten

datasets, and in Fig. 6, we compare the AUROC and PR

curves of the best-performing models and the dataset to

achieve the result. Both figures follow similar trends, as in

Tables 4 and 5. STK achieved the highest AUROC and PR

Table 2 Baseline characteristics of the participants

Value Overall non-CKD CKD P-Value Test

Sample 1309 1199 110

AGE, mean (Sd) Years 39.8 (6.9) 39.7 (6.8) 41.2 (8.3) 0.070 Two-Sample T-test

FEMALE, n (%) 0 689 (52.6) 634 (52.9) 55 (50.0) 0.632 Chi-squared

1 620 (47.4) 565 (47.1) 55 (50.0)

IDDM_DUR, mean (Sd) Years 18.3 (4.9) 18.4 (4.9) 18.0 (5.1) 0.484 Two-Sample T-test

HT, n (%) 0 897 (68.5) 849 (70.8) 48 (43.6) \ 0.001 Chi-squared

1 412 (31.5) 350 (29.2) 62 (56.4)

HLIP, n (%) 0 883 (67.5) 819 (68.3) 64 (58.2) 0.039 Chi-squared

1 426 (32.5) 380 (31.7) 46 (41.8)

SMOKE, n (%) 0 1083 (82.7) 1002 (83.6) 81 (73.6) 0.012 Chi-squared

1 226 (17.3) 197 (16.4) 29 (26.4)

DRINK, n (%) 0 791 (60.4) 710 (59.2) 81 (73.6) 0.004 Chi-squared

1 518 (39.6) 489 (40.8) 29 (26.4)

MDI, n (%) 0 164 (12.5) 137 (11.4) 27 (24.5) \ 0.001 Chi-squared

1 1145 (87.5) 1062 (88.6) 83 (75.5)

ACEARB, n (%) 0 1073 (82.0) 1006 (83.9) 67 (60.9) \ 0.001 Chi-squared

1 236 (18.0) 193 (16.1) 43 (39.1)

ANTIHYP, n (%) 0 1018 (77.8) 959 (80.0) 59 (53.6) \ 0.001 Chi-squared

1 291 (22.2) 240 (20.0) 51 (46.4)

BMI, mean (Sd) kg/m2 27.0 (4.3) 27.1 (4.3) 26.9 (4.4) 0.692 Two-Sample T-test

SBP, mean (Sd) mmHg 120.7 (13.5) 120.0 (12.9) 128.6 (17.2) \ 0.001 Two-Sample T-test

DBP, mean (Sd) mmHg 75.3 (9.1) 75.0 (8.8) 78.3 (11.3) 0.004 Two-Sample T-test

MBP, mean (Sd) mmHg 90.4 (9.4) 90.0 (9.0) 95.1 (12.1) \ 0.001 Two-Sample T-test

HBA1C, mean (Sd) % 8.1 (1.4) 8.0 (1.3) 9.3 (1.9) \ 0.001 Two-Sample T-test

CHOL, mean (Sd) mg/dL 188.9 (35.3) 187.6 (34.3) 202.3 (42.4) 0.001 Two-Sample T-test

HDL, mean (Sd) mg/dL 56.4 (14.7) 56.5 (14.7) 55.5 (14.9) 0.496 Two-Sample T-test

LDL, mean (Sd) mg/dL 114.5 (30.5) 113.7 (29.9) 123.2 (35.5) 0.008 Two-Sample T-test

TRIG, mean (Sd) mg/dL 90.6 (64.7) 88.0 (63.0) 118.3 (76.7) \ 0.001 Two-Sample T-test

eSCR, mean (Sd) mg/dL 0.8 (0.2) 0.8 (0.1) 0.9 (0.3) \ 0.001 Two-Sample T-test

AER, mean (Sd) mg/24 h 64.4 (293.0) 36.1 (146.3) 373.1 (830.6) \ 0.001 Two-Sample T-test

eGFR, mean (Sd) mL/min/1.73m2 108.1 (13.5) 109.2 (12.0) 95.8 (21.2) \ 0.001 Two-Sample T-test
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curve values for all datasets except DS-1. Notably, the STK

model demonstrated perfect AUROC and PR curve values

of 1 in DS-6, DS-7, DS-9, and DS-10. As shown in Fig. 6,

other models also exhibited high AUROC and PR curve

values (above 90%) using different datasets, except for NB

and DT models. Like other performance metrics, these two

models also achieved the lowest results here.

The feature ranking and the number of features varied

significantly with different data pre-processing techniques

and machine learning algorithms. Our heterogeneous

stacking ensemble model (STK) achieved the best perfor-

mance using SMOTE-Tomek data augmentation and Iso-

lation Forest (IF) outlier removal technique (DS-7). This

model used the top 20 features ranked by the XGB feature

ranking algorithm, see Fig. 7. LR, LDA, SVC, and ET

models also achieved their best results using the same

dataset.

Table 3 Different data pre-processing combinations

Dataset Data augmentation Outlier detection Feature scaling Total sample CKD sample CKD%

DS-1 None None None 1309 110 8.40

DS-2 SMOTE-Tomek None None 2394 1199 50.08

DS-3 SMOTE-Tomek None StdScal 2394 1199 50.08

DS-4 SMOTE-Tomek None MinMax 2394 1199 50.08

DS-5 SMOTE-Tomek None RobScal 2394 1199 50.08

DS-6 SMOTE-Tomek IQR None 1705 701 41.11

DS-7 SMOTE-Tomek IF None 2154 1051 48.79

DS-8 SMOTE-Tomek IF StdScal 2154 1051 48.79

DS-9 SMOTE-Tomek IF MinMax 2154 1051 48.79

DS-10 SMOTE-Tomek IF RobScal 2154 1051 48.79

Fig. 4 The distribution of numerical attributes with box plots: with and without outliers
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All tree-based models (DT, RF, ET, XGB) achieved

their best performance with DS-2, which was prepared

using only the SMOTE-Tomek data augmentation tech-

nique. RT, ET, and XGB models used 17 variables, while

DT used only 12. However, the DT model’s performance

was poor compared to other tree-based models. The KNN

model had the best result using DS-5 (pre-processed using

the SOMET-Tomek and RobSacl). The ANN models used

DS-9, and the NB model used DS-6 to achieve their best

performance. A complete list of ranked features used in

each best-performing model is given in Supplementary

Table 2.

4 Discussion

Chronic kidney disease (CKD) is a significant threat to

global public health and is anticipated to affect 10% of the

world’s population [2]. The medical treatment for CKD

patients can be very expensive [3], and there is always a

greater risk of adverse health complications. CKD was the

12th leading cause of global death in 2019 [5]. Type 1

diabetes (T1D) patients are most vulnerable to CKD, and

more than 50% of T1D patients run the risk of developing

CKD [6]. Diabetes CKD is the most common cause of end-

stage renal disease in the West and is also linked to higher

cardiovascular risk [7]. In addition, CKD significantly

impacts type 1 diabetes patients’ health-related quality of

life and healthcare costs [9, 10]. However, CKD is a non-

communicable disease, and the risk of CKD can be reduced

or prevented through proper medication, diet, and lifestyle

[11–13]. For this purpose, the identification of T1D patients

with a greater risk of developing CKD is vital to ensure

proper treatment to avoid the risk.

However, CKD progression can be asymptomatic in

most cases [4]. In addition, the nephrologist density is

inferior in many countries. In 2016, there were only 0.318

nephrologists per million people in underprivileged coun-

tries, according to the International Society of Nephrology

Global Kidney Health Atlas (ISN-GKHA) [14]. As a result,

identifying CKD risk in T1D is challenging. To overcome

these problems, a computer-aided CKD risk prediction

model for T1D patients can be a valuable option. Unfor-

tunately, limited research has been conducted in this sector.

There are some machine learning (ML)-based CKD risk

prediction models for type 2 diabetes (T2D) patients.

Table 4 Performances of

models that achieved the best

result in individual datasets

Dataset Best Model N Sp Sn/Re Pr Acc F1 Kappa MCC

DS-1 NB 20 0.94 0.47 0.41 0.90 0.44 0.38 0.38

DS-2 STK 20 0.96 0.94 0.96 0.95 0.95 0.90 0.90

DS-3 STK 20 0.96 0.94 0.96 0.95 0.95 0.90 0.90

DS-4 STK 21 0.96 0.92 0.96 0.94 0.94 0.88 0.88

DS-5 STK 22 0.95 0.94 0.95 0.94 0.94 0.89 0.89

DS-6 STK 19 0.98 0.93 0.97 0.96 0.95 0.92 0.92

DS-7 STK 20 0.98 0.96 0.98 0.97 0.97 0.94 0.94

DS-8 STK 22 0.97 0.95 0.97 0.96 0.96 0.92 0.92

DS-9 STK 21 0.97 0.93 0.97 0.95 0.95 0.90 0.91

DS-10 STK 21 0.97 0.95 0.96 0.96 0.95 0.91 0.91

Table 5 Comparative

performance analysis of best-

performing models from each

algorithm

Model Dataset N Sp Sn/Re Pr Acc F1 Kappa MCC

LR DS-7 19 0.94 0.90 0.93 0.92 0.92 0.84 0.84

NB DS-6 15 0.83 0.79 0.76 0.81 0.77 0.61 0.61

LDA DS-7 21 1.00 0.88 1.00 0.94 0.93 0.88 0.88

DT DS-2 12 0.80 0.80 0.80 0.80 0.80 0.60 0.60

KNN DS-5 17 0.81 1.00 0.84 0.91 0.91 0.81 0.82

SVC DS-7 21 0.87 0.90 0.87 0.88 0.88 0.77 0.77

RF DS-2 17 0.92 0.94 0.92 0.93 0.93 0.87 0.87

XGB DS-2 17 0.87 0.93 0.88 0.90 0.91 0.81 0.81

ET DS-7 17 0.88 0.92 0.88 0.90 0.90 0.81 0.81

MLP DS-9 22 0.93 0.97 0.93 0.95 0.95 0.90 0.90

TabNet DS-9 22 0.94 0.95 0.94 0.94 0.94 0.89 0.89

STK DS-7 20 0.98 0.96 0.98 0.97 0.97 0.94 0.94
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Fig. 5 a AUROC curve, b PR

curve of the models that

achieved the best result in

individual datasets
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Fig. 6 Comparison of

a AUROC curve and b PR

curve of the best-performing

models for individual machine

learning algorithms and

corresponding dataset
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However, a CKD risk prediction model dedicated to T1D

patients would be more appropriate. T2D is mainly a

lifestyle disease, whereas T1D is a genetic disorder where

patients’ immune system attacks and destroys insulin-pro-

ducing cells in the pancreas. T1D patients need to take

insulin injections to control their blood glucose levels.

Unlike type 2 diabetes, lifestyle changes cannot reduce the

risk of type 1 diabetes. Moreover, T1D patients have a

1.4–3.0-fold higher risk of CKD than type 2 diabetes

patients [21]. Unfortunately, we found limited studies on

T1D patients for CKD risk prediction.

In this study, we employed a diverse set of ML models,

including linear, nonlinear, bagging, boosting, and deep

learning, to predict CKD risk in T1D patients over a

10-year period. The selection of these ML models was

driven by their inherent strengths, each offering unique

advantages. Logistic regression (LR), Naı̈ve Bayes (NB),

and linear discriminant analysis (LDA) provided inter-

pretability, enabling us to understand the influence of

individual features on CKD risk. Decision tree (DT) and

k-nearest neighbors (KNN) excelled in capturing nonlinear

relationships in the data, while the support vector classifier

(SVC) offered robustness against noise. Random forest

(RF), extremely randomized tree (ET), and extreme gra-

dient boosting (XGB) models leveraged ensemble learning

to enhance predictive performance. Multi-layer perceptron

(MLP) and TabNet, our deep learning models, demon-

strated the ability to handle complex patterns in the data.

We evaluated the performance of these models on our

dataset to identify the top-performing models. Finally, we

proposed a strategic combination of the best-performing

models from each category into a customized heteroge-

neous stacking ensemble model (STK) to leverage the

strengths of every category. This ensemble approach was

motivated by the desire to harness the complementary

strengths of diverse models, ultimately improving predic-

tion accuracy. The grid search method was applied to

optimize hyperparameters for all ML models (see Table 3

and Supplementary Table 1).

We used 10-year retrospective longitudinal data of 1375

patients from the Epidemiology of Diabetes Interventions

and Complications (EDIC) clinical trial [29, 30]. After

applying excluding criteria (see Fig. 1), we selected 1309

samples where 8.40% of samples developed CKD within

the 10-year timeframe. We considered 22 features readily

available from T1d patients’ routine check-ups and self-

assessment (see Table 2) in our study. We tried to solve a

binary classification problem, where the outcomes were

CKD and non-CKD classes. If a sample developed CKD

within ten years, it had the CKD class; otherwise, it had the

non-CKD class. For pre-processing the data, we applied ten

different combinations of data augmentation, feature scal-

ing, and outlier detection techniques and created ten sep-

arate datasets, DS-1 to DS-10 (see Table 3).

We employed a feature ranking approach to determine

the optimal number of features for optimal model perfor-

mance. We began by training a machine learning model

using all available features and then ranked the features

based on their significance in predicting CKD. Next, we

trained and tested the same model using various subsets of

the top-ranked features, starting with the top-1 feature and

progressing up to the top-22 features. By doing so, we

aimed to identify the model with the best performance

using the least number of features. The RF, XGB, ET, DT,

and TabNet models utilized their own feature importance

methods for feature ranking. For models KNN, SVC, CNB,

LDA, LR, MLP, and STK, we used the XGB algorithm for

feature ranking before training. We observed that the fea-

ture ranking and optimal feature number varied depending

on the combination of data pre-processing techniques and

machine learning algorithms used. However, in most cases,

the highest-ranked features were albumin excretion rate

(AER), serum creatinine (eSCR), estimated glomerular

filtration rate (eGFR), glycated hemoglobin (HBA1C),

duration of insulin-dependent diabetes (IDDM_DUR),

AGE, and current drinking (DRINK) (refer to Supple-

mentary Table 2 for more details).

We used repeated stratified k-fold cross-validation with

fivefold and 5-time repetitions to train and test all ML

models. We used specificity, sensitivity/recall, precision,

accuracy, F1 score, AUROC curve, and precision-recall

curve to evaluate each model’s performance. Cohen’s

Kappa (Kappa) and Matthews Correlation Coefficient

(MCC) were also used to verify the models’ reliability. We

Fig. 7 Feature ranking by the XGB on the dataset DS-7; pre-

processed using the SMOTE-Tomek data augmentation technique and

the Isolation Forest outlier detection algorithm
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iteratively applied each model across all datasets, from DS-

1 to DS-10, to find the appropriate combination. Initially,

model performance on the primary dataset (DS-1) was

suboptimal but improved significantly by applying differ-

ent data augmentation, outlier detection, and feature scal-

ing techniques. However, the models’ performance varied

on different datasets (refer to Supplementary Tables 3 to 12

for more details). Tree-based models showed robustness

against different feature ranges and outliers, while neural

network models were sensitive to feature scaling.

Overall, our proposed heterogeneous stacking ensemble

model (STK) consistently demonstrated superior perfor-

mance across nearly all datasets (see Table 4) and achieved

the highest result using DS-7 and the top 20 features ranked

by the XGB algorithm (see Table 5). Employing SMOTE-

Tomek data augmentation and Isolation Forest (IF) outlier

removal techniques during data pre-processing contributed

to the STK model’s remarkable results. It achieved an

average accuracy of 0.97, specificity of 0.98, sensitivity/

recall of 0.96, precision of 0.98, F1 score of 0.97, Kappa

and MCC score of 0.94, AUROC of 1.00, and Precision-

Recall curve of 1.00. This model was closely followed by

MLP and TabNet, with an average F1 score of 0.95. LDA

and KNN were the best-performing linear and nonlinear

models, with an average F1 score of 0.93 and 0.91,

respectively. LDA had the best precision value of 1.0, and

KNN had the best recall value of 1.0. RF was the best

ensemble method with similar results. Five models (STK,

LR, LDA, SVC, and ET) achieved their best performance

using the SOMET-Tomek data augmentation and Isolation

Forest outlier detection technique (DS-7). In comparison,

tree-based models showed the most robustness against

outliers and achieved the best performance without using

feature scaling and outlier detection techniques (DS-2).

In the context of the current body of literature, our

research fills a significant gap in the lack of predictive

models for the risk of CKD progression in type 1 diabetes

patients without previous experience of CKD or other

kidney diseases. Prior studies have primarily focused on

end-stage renal disease (ESRD) or existing CKD. In

addition, these studies used different complex features,

making their findings unsuitable for practical use in most

cases. For example, studies conducted by Niewczas et al.

[22] and Pilemann-Lyberg et al. [23] mainly focused on

finding associations between ESRD in T1D patients and

different biomarkers or metabolites. They also considered

diabetes patients who already had CKD or other kidney

disease. In opposition, our study targeted explicitly pre-

dicting general CKD risk in T1D patients without any

previous kidney disease and included readily available

features from T1D patients’ routine check-ups and self-

assessments.

Sripada et al. [24] used the random forest algorithm to

develop a prediction model for diabetic nephropathy in

T1D patients and achieved the best performance with an

F1-score of 0.67 and AUC of 0.78. Colombo et al. [25]

employed ridge regression to create a model for predicting

renal disease progression, achieving a mean squared cor-

relation (Pearson r2) of 0.745. In one of our previous

investigations, we created a 90.04 percent accurate nomo-

gram-based CKD prediction model for T1D patients using

multivariate logistic regression. However, these models

were designed to identify existing CKD rather than pre-

dicting future risks. In contrast, our research was designed

to predict the risk of developing CKD within a 10-year

timeframe. This forward-looking approach addresses the

critical need to identify patients at risk before the disease

progresses to a severe stage.

Research conducted by Vistisen et al. [28] aimed to

develop a robust prediction model for 5-year risk of ESKD

in individuals with T1D. The model used ridge regression

to demonstrate a C-statistic of 0.888 for end-stage kidney

disease (ESKD) risk prediction. However, our model rep-

resents a substantial improvement over this approach.

While they concentrated on predicting ESKD in T1D

patients, our model forecasts the risk of developing CKD

within a higher timeframe, allowing for early intervention.

Vistisen et al.’s study did not address class imbalance

adequately. In contrast, we meticulously addressed class

imbalance through data pre-processing strategies. We also

employed a wide range of evaluation metrics to ensure a

comprehensive understanding of model efficacy. This

comprehensive evaluation guarantees a thorough assess-

ment of model performance under various conditions.

Our research introduces a pioneering approach to pre-

dicting the risk of CKD in patients with T1D. To our

knowledge, this is the first machine learning-based model

capable of forecasting CKD risk in T1D patients over a

10-year period, moving beyond the conventional focus on

ESRD. Our model stands out by relying exclusively on

readily available data from routine check-ups and patient

self-assessments, streamlining the predictive process and

enabling early interventions. In contrast to previous models

that might incorporate complex variables, our approach

prioritizes simplicity, widening its applicability across

diverse healthcare settings. The innovation extends to the

development of an advanced heterogeneous ensemble

model, harnessing the strengths of various machine learn-

ing techniques to achieve superior predictive performance

even with straightforward features. Furthermore, our sys-

tematic feature ranking and optimization approach

enhanced model efficiency and provided a list of essential

features for CKD risk prediction in T1D patients, making

our research a valuable contribution to this field. Another
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major advantage of this study is that we used a dataset from

the EDIC trial, which gathers data at 28 EDIC clinic

locations throughout the USA and Canada, ensuring a

variety of patient types.

However, certain limitations of our study should be

acknowledged. The proposed research is solely dedicated

to predicting CKD risk type 1 diabetes patients, though

type 2 diabetes is more prevalent than type 1 diabetes. In

future work, we plan to extend our research to encompass

type 2 diabetes patients, leveraging our established

methodology to develop tailored CKD risk prediction

models. Secondly, we did not have an external validation

dataset, which necessitates future testing on different

cohorts to establish the model’s generalizability. We aim to

collaborate with healthcare institutions to validate and

implement our predictive models in real-world clinical

settings, fostering their practical utility and impact. In

addition, our approach employed a subset of available

hyperparameters for optimization, suggesting that further

exploration of hyperparameter space could yield even more

refined models.

5 Conclusion

In this study, we applied twelve machine learning algo-

rithms to develop 10-year CKD risk prediction models for

type 1 diabetes patients. We used data from 1375 type 1

diabetes patients from the Epidemiology of Diabetes

Interventions and Complications (EDIC) clinical trial to

train our models. The dataset consisted of 22 readily

available features, and we applied various data pre-pro-

cessing techniques, including data augmentation, outlier

detection, and feature scaling, to improve the data quality.

We evaluated the performance of our machine learning

models using repeated stratified k-fold cross-validation

with fivefold and five-time repetitions. Specificity, sensi-

tivity, precision, recall, accuracy, F1 score, Cohen’s Kappa

(Kappa) value, and Matthews Correlation Coefficient

(MCC) were used as evaluation metrics. After performing

an extensive evaluation of all models, we found our cus-

tomized heterogeneous stacking ensemble model (STK) as

the best-performing CKD risk prediction model with an

average accuracy of 0.97, specificity of 0.98, sensitivity/

recall of 0.96, precision of 0.98, F1 score of 0.97, Kappa

and MCC score of 0.94, AUROC of 0.99, and Precision-

Recall curve of 0.99. The proposed model can be a valu-

able resource for identifying the risk of developing CKD in

T1D patients, particularly those in developing nations with

limited access to nephrologists.
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