
ORIGINAL ARTICLE

Application of machine learning to model the pressure poisson
equation for fluid flow on generic geometries

Paulo Sousa1 • Alexandre Afonso2,3 • Carlos Veiga Rodrigues1

Received: 9 October 2023 / Accepted: 28 April 2024 / Published online: 30 May 2024
� The Author(s) 2024

Abstract
This study addresses the importance of enhancing traditional fluid-flow solvers by introducing a Machine Learning

procedure to model pressure fields computed by standard fluid-flow solvers. The conventional approach involves enforcing

pressure–velocity coupling through a Poisson equation, combining the Navier–Stokes and continuity equations. The

solution to this Poisson equation constitutes a substantial percentage of the overall computational cost in fluid flow

simulations, therefore improving its efficiency can yield significant gains in computational speed. The study aims to create

a versatile method applicable to any geometry, ultimately providing a more efficient alternative to the conventional

pressure solver. Machine Learning models were trained with flow fields generated by a Computational Fluid Dynamics

solver applied to the confined flow over multiple geometries, namely wall-bounded cylinders with circular, rectangular,

triangular, and plate cross-sections. To achieve applicability to any geometry, a method was developed to estimate pressure

fields in fixed-shape blocks sampled from the flow domain and subsequently assemble them to reconstruct the entire

physical domain. The model relies on multilayer perceptron neural networks combined with Principal Component Analysis

transformations. The developed Machine Learning models achieved acceptable accuracy with errors of around 3%.

Furthermore, the model demonstrated enhanced computational efficiency, outperforming the classical PISO algorithm by

up to 30 times.

Keywords Machine learning � Deep learning � Computational fluid dynamics � Incompressible flows � Poisson Eq

1 Introduction

Artificial Intelligence (AI) algorithms have been expanding

toward scientific computation [1], predicting protein

structures in biology [2], optimizing drug discovery [3, 4],

accelerating material discovery [5], aiding climate model-

ing [6–8] and enhancing Computational Fluid Dynamics

(CFD) solvers [9–11]. Broadly, there are three groups of

models: (i) purely data-driven models working blindly to

physical laws and requiring large amounts of data; (ii)

physics-informed models that respect governing equations

and boundary conditions [12]; and (iii) hybrid approaches

of those two groups. Commonly the application of AI to

physical problems aims to create an ambitious model that

outputs a solution to the problem. Alternatively, the aim

may focus on a surrogate model replacing a component of

the physical solver to accelerate computations, e.g. turbu-

lence closures in CFD models [13], or enhance the

solution [10].

& Alexandre Afonso

aafonso@fe.up.pt

Paulo Sousa

pauloacunhasousa@hotmail.com

Carlos Veiga Rodrigues

calvr@vestas.com

1 Modelling & Analytics, Vestas Wind Systems A/S,

Technology Centre Porto, Rua Lionesa,

4465-671 Matosinhos, Porto, Portugal

2 Transport Phenomena Research Center, Faculdade de

Engenharia, Universidade do Porto, Rua Dr. Roberto Frias,

4200-465 Porto, Porto, Portugal

3 ALiCE, Associate Laboratory in Chemical Engineering,

Faculdade de Engenharia, Universidade do Porto, Rua Dr.

Roberto Frias s/n, 4200-465 Porto, Portugal

123

Neural Computing and Applications (2024) 36:16581–16606
https://doi.org/10.1007/s00521-024-09935-0(0123456789().,-volV)(0123456789().,- volV)

http://orcid.org/0000-0003-2825-0709
http://crossmark.crossref.org/dialog/?doi=10.1007/s00521-024-09935-0&domain=pdf
https://doi.org/10.1007/s00521-024-09935-0

Fluid flow is a highly complex phenomenon for which

analytical solutions are frequently unattainable in many

engineering applications. Instead, numerical simulation

alongside experimental studies plays an essential role in

modeling. CFD is the process of employing numerical

methods to solve mathematical models that describe fluid

flow. Generally, these are based on the discretization of the

Navier–Stokes (NS) equations over a computational grid

that characterizes the volume occupied by the fluid. The

computation of a pressure field that is consistent with the

flow velocity is governed by a Poisson equation whose

solution comprehends a significant percentage of the

computational cost.

Deep learning (DL) is a subset of Machine Learning

(ML) based on artificial neural networks (ANN), typically

claimed to mimic the human brain allowing it to learn from

a large dataset. It is inspired by information processing of

biological systems and has been successfully applied to

problems such as computer vision [14], speech recogni-

tion [15], drug design [16], medical image analysis [17],

material inspection [18], board and video game [19] and in

some of these even surpassing the human expert perfor-

mance [20]. Algorithms and DL networks can be of

immense complexity to tackle a specific problem. Some

examples of supervised learning algorithms are generally

distinguished as i) Multilayer perceptrons (MLP): Con-

sisting of a collection of connected units (neurons) which

act together as a network to map an input to an output; ii)

Convolutional neural networks (CNNs): Commonly used

to analyze visual imagery and are a regularized version of

MLP. CNNs take advantage of hierarchical patterns in

data, and are a specialized type of neural networks that uses

the convolution mathematical operation instead of matrix

multiplication [21]; iii) Recurrent neural networks (RNNs):

Typically used for sequential data or time series analysis,

commonly used in natural language processing and speech

recognition. iv) Graphical neural networks (GNNs):

Incorporating graphical models to capture intricate rela-

tionships between variables, particularly useful when

complex dependencies exist among data elements orga-

nized in a graph structure. One application of ML models

in CFD is in assisting flow solvers by replacing computa-

tions with surrogate models that improve execution time

whilst decreasing resource consumption. One candidate is

the Poisson equation used to compute the pressure field as

it requires significant computational effort. Additionally,

the ability to find solutions to the Poisson equation is not

merely useful for fluid dynamics problems, but can be

applied to other physics problems such as heat transfer,

electromagnetism, and astronomy. Recent studies solved

Poisson equations with ML techniques employing

CNNs [22, 23] or even GNNs [24]. Examples of applica-

tions to CFD include Özbay et al [25] where a CNN

architecture was used to compute the pressure field for 2D

cartesian meshes, Illarramendi et al [26] which coupled a

CNN model with a traditional interactive solver to ensure

user-defined accuracy and Weymouth [27] where a tech-

nique to accelerate classic Multi-Grid methods was pro-

posed. Nonetheless, there are open challenges such as the

generalization to different geometries and the ability of

ML-based surrogate models to cope with laminar and tur-

bulent flow regimes.

In this work, several fluid flow simulations were com-

puted using the open-source CFD software OpenFOAM

v6 [28] to construct multiple datasets. An algorithm cap-

able of dealing with any geometry was designed and used

to construct ML surrogate models capable of solving the

pressure Poisson equation in CFD solvers. The novelty of

the proposed approach is in its flexibility to tackle any kind

of geometry by ensuring the neural network (NN) is

decoupled from the CFD mesh. This enables the applica-

tion of a trained surrogate model to any flow domain.

Furthermore, application to different flow regimes was

attempted by taking advantage of the the structure of the

Poisson system of equations, as it was independent of

assuming laminar or turbulent regime when solving the

flow, the latter employing eddy-viscosity turbulence

models.

Section 2 introduces the methodology, and Sect. 3

describes the numerical setup. The attained results are

displayed in Sect. 4. Section 5 finishes by presenting the

Conclusions.

2 Methodology | mathematical models

2.1 Fluid-flow solver

The fluid-flow simulation was performed with the Open-

FOAM v6 [28] CFD toolbox, whose computer model is

based on the NS equations discretized over a numerical

grid using the Finite Volume Method (FVM) [29]. Both

laminar and turbulent flow regimes were encompassed in a

general set of equations with further changes associated

with the respective regime: while for laminar flow the

stress tensor is the Stokes law of friction [30], for turbulent

flow a Boussinesq eddy-viscosity is employed together

with further equations to model turbulence quantities.

All flow simulations were performed in a time-depen-

dent approach by integrating the equations with the back-

ward Euler scheme. The Pressure Implicit with Split

Operator (PISO) algorithm [31] was used to ensure con-

sistency between the velocity and pressure fields. The

following text addresses a minimal description of the flow

model sufficient to depict how ML methods can be inte-

grated. Further details on CFD modeling may be found in

16582 Neural Computing and Applications (2024) 36:16581–16606

123

OpenFOAM [28] and Moukalled et al. [29], namely the

treatment of boundary conditions and discretization for

unstructured grids.

2.1.1 Laminar flow regime

Following Schlichting and Gersten [30] the conservation of

momentum for a Newtonian fluid undergoing incom-

pressible flow is governed by:

ou

ot
þ ðu � rÞ u ¼ �rpþr � sþ ab; ð1Þ

where u is the flow velocity vector with each component

describing the velocity along each spatial coordinate, p

corresponds to the kinematic pressure,1 s is the deviatoric

stress tensor and the ab term is the net acceleration of all

body forces acting on the fluid. Tensor s is related to the

rate-of-strain tensor, S ¼ 1
2
½ruþ ðruÞt�, by

s ¼ m 2 S� I
2

3
r � u

h i
; ð2Þ

where I is the identity tensor. Incompressible flow is

characterized by negligible changes in density during fluid

flow and can be assumed in a wide range of applications.

This is not exclusive of liquids, rather, it applies to any

fluid under specific flow conditions, highlighting its broad

applicability. Considering incompressibility, the velocity

field becomes solenoidal, and a continuity equation gov-

erning the conservation of mass is given by:

r � u ¼ 0: ð3Þ

In addition to eqs. (1–3), initial and spatial boundary

conditions must be specified to fully solve the system.

2.1.2 Turbulent flow regime

Many engineering applications focus on flows under tur-

bulent regimes. The main characteristic of this flow regime

is the presence of eddies and vortices, which promote

better mixing and more fluid momentum transfer in con-

trast to laminar flow [32]. According to Wang et al [33],

turbulent flow is characterized by chaotic and irregular

fluid motion.

Turbulent flows of Newtonian fluids are associated with

high Reynolds number (Re) defined as Re ¼ UL=m with U

and L being representative scales of velocity and length,

while m is the fluid kinematic viscosity [30].

Under turbulent regime, generally it is not feasible to

simulate the instantaneous flow field as the required com-

puter resources would be prohibitive. Instead, the flow may

be described in terms of the statistics of its fields. To tackle

this the NS equations are averaged to establish a mean

field, with any deviation from it being modeled as a fluc-

tuation field, in a procedure known as Reynolds decom-

position. Following an unsteady Reynolds-averaged

Navier–Stokes (uRaNS) approach [30], the u field becomes

representative of the average fluid velocity. This allows to

use the same formulation as in eqs. (1) and (3), with

changes to the deviatoric stress tensor s to accommodate

for extra terms, i.e. Reynolds stresses, together with further

changes to the boundary conditions near walls.

The stress terms for flow under turbulent regime were

modeled via a Boussinesq eddy-viscosity and the k-x SST

turbulence model, with resolved laminar sub-layer to better

cope with adverse pressure gradients. A detailed descrip-

tion is given in Appendix A.

2.1.3 Pressure-momentum coupling

Analytical solutions for most flows are currently unattain-

able due to the mathematical properties of eq. (1), namely

the non-linearity of the advection term and the need to

simultaneously solve the continuity eq. (3), i.e. the cou-

pling between u and p. The PISO algorithm [31] was

proposed to address this problem as it provides stable re-

sults and reduces computational effort when compared to

iterative methods [34]. Rather than solving all the coupled

equations iteratively, PISO splits the operator into an

implicit momentum predictor and multiple explicit cor-

rection steps.

An algebraic system of equations was obtained by

employing the FVM to discretize eq. (1) in a computational

grid [29], resulting in:

M � U ¼ �rpþ ab; ð4Þ

where M is a matrix of coefficients, and U the velocity

field. Note that eq. (4) is the same for both laminar and

turbulent flow regime formulations, as these merely imply

changes to values in M.

A Poisson equation for pressure is derived by coupling

eq. (4) with eq. (3):

r � ðA�1rpÞ ¼ r � ðA�1 Hþ A�1 abÞ; ð5Þ

where A is the matrix with the diagonal components of M,

and H arises from theMU� ab ¼ AU �H decomposition.

Equation (5) can be solved to yield a pressure field that can

be used to correct the velocity field to satisfy mass

conservation.

Considering constant viscosity a similar procedure may

be used to derive an analytical form of the pressure Poisson

equation by taking the divergence of eq. (1), resulting in:1 Kinematic pressure is the fluid pressure divided by the fluid density,

thus given in units of length2 � time�2 instead of

mass � length�1 � time�2.

Neural Computing and Applications (2024) 36:16581–16606 16583

123

o

oxi

op

oxi

� �
¼ � o

oxi

o uiuj
� �
oxj

� �
; ð6Þ

as shown by Ferziger and Perić [35] in index notation

which is valid for laminar flow after subtracting the hy-

drostatic pressure from the p field, i.e. equivalent to

removing the gravity acceleration from the ab term. Once

again considering incompressibility, in vector form eq. (6)

can be shown to be equivalent to

r2p ¼ �ru : ðruÞt : ð7Þ

2.2 Surrogate model

2.2.1 Fundamentals of Deep Learning

The basic unit of the ANN is an artificial neuron and its

output follows the equation

y ¼ f
XN
i¼1

xiwi þ bi

 !
; ð8Þ

where f represents the activation function, wi the weight of

the neuron i, and bi the bias of the present neuron. A neural

network consists of multiple connected layers which con-

sist of multiple neurons. The output of a node i from layer l

is calculated as:

ali ¼ f zli
� �

¼ f
XN
j¼1

xljw
l
ji þ bli

 !
; ð9Þ

where f can be any chosen activation function, and wl
ji the

weight of the neuron j, where j represents nodes at layer

l� 1, in neuron i from layer l. The bias bli represents a

zero-order coefficient associated with node i from layer l.

The training process consists of sequentially computing

each node output ali from the input layer through all the

hidden layers until the last as in eq. (9). This process is

called forward propagation which ends in a computed

prediction. The predicted output Ypred can be compared to

the known label Y, and the discrepancy between these

values is evaluated through a chosen loss function as in

J ¼ LðYpred; YÞ: ð10Þ

The derivatives of the loss in relation to the weights wji and

bias bli at every node i and layer l are also computed and

used to update the weights in a process called backward

propagation.

2.2.2 Model input

The surrogate model aims to match a set of input fields to

the pressure field p, such that the latter can be predicted

from such inputs. The inputs consist of flow-field data and

an extra argument that represents the geometry. A signed-

distance function (SDF) was established so to provide

information on the distance to the nearest wall at each

position x of the computational domain, defined as:

SDFðxÞ ¼ min dðx; oXbÞ; dðx; oXoÞð Þ ifx 2 X;
0 ifx 2 Xo;

�

ð11Þ

where X represents the computational domain where fluid

exists and Xo the domain encompassed by the obstacle.

The oXb and oXo represent the boundaries of X and Xo,

respectively.

Two model families were established based on how the

flow field is input into the model: Mu and Mf ðuÞ. An

overview of the model families is illustrated in Fig. 1. In

Mu models the input flow field corresponds to the com-

ponents of the velocity field u. An alternative family of

models,Mf ðuÞ, is established by using the r.h.s. of eq. (7) as

input, hence f ðuÞ ¼ �ru :ðruÞt.

2.2.3 Data sampling and normalization

The CFD model was run to provide data fields to train the

ML model, and to serve as a reference to assess the error of

the ML model predictions. To ensure the flow fields are

referred to consistently, a characteristic time-scale was

defined as t� ¼ /=U1;c where / is the characteristic length

and U1;c is the centerline velocity at the inlet. The CFD

model was run for a total time of 300 t� to fully capture the

dynamic behavior of the flow. The sampling was per-

formed with a time step of Dt ¼ 3 t�, resulting in 100 fields

extracted from each simulation run.

The flow fields were normalized as u� ¼ u=maxðjujÞ or
f ðuÞ� ¼ f ðuÞ=maxðjuj2Þ, depending on the model family

Mu or Mf ðuÞ, respectively. The kinematic pressure field

was normalized as p� ¼ p=maxðjuj2Þ.
Instead of training the ML model with a monolithic

dataset (as done in most applications of NN models) each

temporal frame of a CFD simulation was decomposed into

hundreds of thousands of different blocks, as illustrated in

Fig. 2. This allowed generalization to different geometries.

Using Latin Hyper-cube Sampling (LHS) [36] N blocks

were sampled from the CFD domain.

Training with the real values of pressure after pre-pro-

cessing and sampling would consist of an ill-posed opti-

mization problem as the random pressure offsets in the

solution are not correlated with the inputs, i.e. the same

input value can have multiple different outputs depending

on the boundary conditions. To tackle this, the pressure

spatial mean, p�, was removed from each output block, e.g.

16584 Neural Computing and Applications (2024) 36:16581–16606

123

p0 ¼ p� � p�. The normalization of a field quantity / was

/� ¼ /=maxðj/jÞ, hence bounding /� to ½�1; 1�.
The loss function for eq. (10) was defined as the mean

squared error (MSE),

MSE ¼ 1

Npoints

XNpoints

i¼1

ĥ� h
h i2

; ð12Þ

where Npoints was the number of grid points where an

estimation was computed, h corresponds to the reference

values, i.e. the CFD results, and ĥ the values computed

with the surrogate model on this set of points.

The error metrics considered for evaluating the models

accuracy consisted of BIAS,

BIAS ¼ 1

Npoints

XNpoints

i¼1

ĥ� h
	

; ð13Þ

standard-deviation error (STDE),

STDE ¼ 1

Npoints�1

XNpoints

i¼1

ĥ� ĥ
	
2" #1

2

; ð14Þ

where ĥ is the mean of the predicted values, and root mean

squared error (RMSE)

RMSE ¼ 1

Npoints

XNpoints

i¼1

ĥ� h
	
2" #1

2

; ð15Þ

and afterward normalizing each of those by dividing them

by maxðhÞ � minðhÞð Þ.
The set of CFD results consisted of simulations char-

acterized by different Re numbers defined as

Re ¼ U1 D=m, where D is the cylinder diameter and U1
the mean longitudinal inlet velocity.

2.3 Blocks assembly into the flow domain

Once the solution field for each block is predicted by the

ML surrogate model, an assembly algorithm was devel-

oped to reconstruct the full pressure field, as illustrated in

Fig. 3a. The pressure value at location (0) is taken as the

reference pressure to ensure the fulfillment of the outlet

fixed value boundary condition and was set to 0 for sim-

plicity. The assembly process begins by placing the pre-

dicted field of the first block into the domain and applying

its initial correction at (0) to meet the boundary condition.

Subsequently, the predicted field of the second block from

the same row is placed, and a correction is applied at (1) to

ensure consistency in the intersection zone, facilitating

coherence between the two blocks. This incremental

placement and correction process is repeated until reaching

the left end of the domain for the first row. Similar

reconstructions and corresponding corrections are done

incrementally up to the left end of the domain. Once the

first row is completed, corrections are made at the upper

end of the new block in the intersection zone indicated by

(n?1). This iterative process continues until the entire

domain is fully defined.

Having considered the fixed value boundary condition at

the furthest downstream centroid (and not in the cell face

where the boundary condition is defined) a correction must

be applied to the whole domain. Considering the schematic

Fig. 1 Model families classified

based on the input fields

Fig. 2 Representation of the sampling method from the original

domain

Neural Computing and Applications (2024) 36:16581–16606 16585

123

representation from Fig. 3b, enforcing the gradient in the

nearby upstream cell to be equal to the gradient at the

outlet boundary, i.e.

ðpð1;0Þ � pð0;0ÞÞ=ðDx=2Þ ¼ ðpð2;0Þ � pð1;0ÞÞ=Dx, one can

estimate the deviation caused by the incorrect assumption

reaching

pdeviation ¼ pð1;:Þ �
1

3
pð2;:Þ : ð16Þ

The corrected pressure field is computed by removing the

deviation, pcorr ¼ p� pdeviation, leading to consistent results

with respect to the reference fields.

The model architecture, size of the blocks, and NN

training-related hyper-parameters such as batch size,

learning ratio, and moving average parameters were

properly optimized. Since some of these (such as the model

architecture and the size of the blocks) are not easily

decoupled from the assembly algorithm, all of the above

were optimized considering the surrogate model as a

whole, i.e. using the RMSE normalized of the surrogate

model results as the target. The alternative would be to

consider the parameters that better optimize the NN indi-

vidually but not in the way it interacts with the assembly

process. The only parameter whose influence could be

partially decoupled from the NN training was the overlap

ratio, i.e. the ratio between the overlap region size and the

block size, but it was also optimized considering the whole

surrogate model accuracy. Refer to Appendix B to follow

the parameters selection process.

2.4 Neural Network architecture

The NN model developed can be classified as an MLP with

3 hidden layers, whose purpose is to act as a transfer

function between velocity and pressure values. Follow-

ing Sousa [37] a Principle Component Analysis (PCA) was

applied to the input and output layers of the NN model,

hence acting as encoder and decoder stages as shown in

Fig. 4. Rectified Linear Unit (RELU) and Linear activation

functions were used in the hidden and output layers,

respectively.

The application of PCA and its subsequent truncation to

a few Principal Components (PC) that explain most of the

variance found on the input data saves large amounts of

computational resources since it helps the model training

by reducing the dimensionality of the input/output data,

and only yield the most relevant information.

In the current setup, the PCs were attained from the

normalized values directly (cf. Sect. 2.2.3) without apply-

ing further operations such as standardization.

3 Numerical setup

3.1 Training and evaluation method

After proper hyperparameter tuning, the training was done

with the different families of geometries listed in Table 1

and the same Re number, but its performance was also

accessed for different flow conditions to study the gener-

alization capability. The training convergence criteria

consisted of stopping whenever the decrease in the loss

value, computed from eq. (10), considering the test dataset

(i.e. the group of blocks sampled according to Sect. 2.2.3)

was lower than 0.1% over 250 epochs. Each of the fol-

lowing evaluations was performed based on 100 temporal

frames from 4 different simulations with different obstacles

(from the same family of geometries) providing a repre-

sentative evaluation of the model performance over the

whole family of geometries as well as predicting the

dynamical behavior of each one. The notation to identify

the models is defined in Table 2.

Fig. 3 Assembly algorithm methods

16586 Neural Computing and Applications (2024) 36:16581–16606

123

Regarding the number of blocks to be extracted from

each temporal frame, N, it was necessary to arrive at a good

compromise between accuracy and training cost. Using all

available blocks would be infeasible in terms of compu-

tational cost and would bring mostly redundant informa-

tion, therefore two distinct N were tested: N1 ¼ 500 and

N2 ¼ 2500 (resulting in a total number of blocks per sim-

ulation of Ntotal;1 ¼ 5� 104 and Ntotal;2 ¼ 2:5� 105 for N1

and N2, respectively). Further details on the size of the

datasets used are provided in Appendix C for models Mu

and MfðuÞ. It is shown that the application of PCA achieves

dimensionality reduction (i.e. reduction of the total number

of points attained by multiplying the input and output sizes

by the number of samples) of up to 3 orders of magnitude.

The convergence curves from the training of each model

can also be found in Appendix C.

3.2 Data generation - CFD setup

The training and test cases consisted of flow around a bi-

dimensional obstacle in confined flow as represented in

Fig. 5 for the � obstacle, where H is the distance between

plates, and n̂ the unit vector perpendicular to the domain

boundary at any point. The boundaries and corresponding

boundary conditions are defined in Table 3 according to

Fig. 5 following OpenFOAM [28] nomenclature. The flow

was induced by the inlet velocity where it to was specified

to follow the analytical solution for fully developed lami-

nar flow between parallel plates given by uðyÞ ¼

3U1=2 1� y=hð Þ2
h i

where y is the distance from the

centerline, h half of the distance between plates and U1 the

mean longitudinal velocity.

The generated meshes had finer refinement near every

wall as illustrated in Fig. 6.

The simulations performed at high Re numbers had a

different numerical setup. Since for pressure and velocity

the boundary conditions were maintained, only the

boundary conditions for the additional variables: the tur-

bulent kinetic energy, k, and specific turbulent dissipation

rate, x, are defined in Table 4 following OpenFOAM [28]

nomenclature. The free-stream values, i.e. at the inlet, had

to be estimated, hence the following relations were taken

k1 ¼ 3

2
U1Ið Þ2; ð17Þ

U1 is the free stream velocity, here defined as the mean

inlet velocity and I the turbulence intensity which was set

to 10% and

Fig. 4 Schematic representation

of the multilayer perceptron

(MLP) neural network. Adapted

from Liang et al [38]

Table 1 Dataset symbology and kind of obstacle

Dataset Symbol

Circular obstacle �
Square obstacle h

Triangular obstacle /

Inclined plate obstacle /

Table 2 Description of the models and their symbology based on the

training datasets

Training datasets Model symbol

� M �

�, h M �, h

�, h, / M �, h, /

�, h, /, / M �, h, /, /

Neural Computing and Applications (2024) 36:16581–16606 16587

123

x1 ¼ C
�1

4
l

ffiffiffi
k

p

‘
; ð18Þ

where l is the turbulent length scale which was defined

based on the characteristic inlet length scale, L, as

‘ ¼ 0:07L [39], Cl is a turbulence model constant which

was set to Cl ¼ 0:09. These free stream conditions were

taken following OpenCFD [40] guidelines in agreement

with the broader recommendation on Menter [41]. The

estimations used for the turbulent quantities are not precise,

hence the region of interest, i.e. the obstacle, was distanced

10 L and 25 L from the inlet and outlet, respectively, with L

as the characteristic length. The boundary conditions are

defined using the nomenclature from OpenFOAM, further

information can be found either in the documentation or in

the source code.

The mesh was refined to guarantee that the elements

adjacent to the wall were within the viscous sub-layer,

hence at yþ\5 [42, c.f.]. This practice avoids the use of

logarithmic boundary layer wall functions, as that implies

constant-stress conditions for those near-wall grid cells.

Fig. 5 Simulation case

representation with domain

dimensions and boundary

conditions

Table 3 Boundary conditions

for laminar flow
Boundary u p

1 - Inlet codedFixedValue zeroGradient

2 - Top & bottom walls noSlip fixedFluxPressure

3 - Obstacle noSlip fixedFluxPressure

4 - Outlet pressureInletOutletVelocity fixedValue

Fig. 6 Mesh illustration for

each obstacle: a �, bh, c /, d /.
For illustration purposes, the

mesh density is 1
100

of the

original

Table 4 Boundary conditions

for turbulent flow quantities
Boundary k x

1 - Inlet fixedValue fixedValue

2 - Top & bottom walls fixedValue omegaWallFunction

3 - Obstacle fixedValue omegaWallFunction

4 - Outlet inletOutlet inletOutlet

16588 Neural Computing and Applications (2024) 36:16581–16606

123

4 Results

4.1 Model Mu

The first results obtained consisted in the testing of M �, M

�;h, M �;h; /, and M �;h; /, / to predict within all the fam-

ilies of geometries in flows characterized by the training Re

number, Re ¼ 100, as presented in Table 5.

From Table 5 an increase in training data diversity

allows the model to improve its generalization to multiple

geometries. Incrementation in training datasets resulted in

a tendency to increase overall performance, but also

impaired results for a particular dataset, i.e. a model trained

with multiple datasets (including the test data) had lower

performance in a particular obstacle than the model trained

only with the test dataset. This effect came from the dif-

ficulty of overfitting to a particular case. Regarding the

number of samples from each time frame, N, it is already

possible to conclude the inadequacy of using N2 datasets

since the improvements seen do not compensate for the

training increased computational cost. This amount of

samples from each flow field introduced redundant data

leading to overfit. To visually illustrate predictions from

Table 5, in Fig. 7 a single flow field is shown for each

geometry.

Table 6 shows the contribution of each dataset to the

training to inspect the influence of each training set on the

surrogate model accuracy. The results from M / showed to

be promising since, by learning from only the / dataset, the

model could make accurate predictions across all the other

flows. The overall accuracy across different datasets was

accompanied by the difficulty in predicting the training

datasets, i.e., the higher complexity of these flows

dynamical structures. This allowed the NN to learn dif-

ferent flow patterns with only one family of geometries,

indicating a richer learning process. Therefore, an increase

in the number of simulations or further obtaining larger

flow diversity, by producing additional simulations with

the same obstacles tilted in the / and / datasets, could be

very beneficial to the training.

The uncertainty in the results may be decomposed into

two parts: the uncertainty of the trained NN to accurately

output the pressure in each block regardless of the rest of

the flow domain geometry; and the uncertainty in the

assembly procedure.

As mentioned in Sect. 2.3 the assembly procedure

ensures the consistency between neighbor blocks by

removing bias estimated based on the overlapping regions.

The discussion of the results was focused on the first part of

uncertainty, but the assembly algorithm may be responsible

for most of the remaining error seen in the easier-to-predict

cases (such as the � and h datasets), and by increasing

error in the cases where the NN performs the worst. Small

errors in the blocks may be heavily weighted by this

algorithm. The uncertainty here arises both from how the

domain is integrated, i.e. whether it is integrated over the

longitudinal direction and afterward spanwise or the

reverse order, and the way the agreement between the

pressure field of neighbor blocks is ensured.

Tested each surrogate model at Re ¼ 100, its perfor-

mance in extrapolation was inspected on flow conditions

corresponding to Re ¼ 10, 50, 500 and 1000 flows over the

Table 5 Mu results from training with multiple datasets and tested in Re ¼ 100 flows. Every error metric, Errorð/Þ was normalized according to

Errorð/Þnorm ¼ Errorð/Þ=ð/max � /minÞ

Model Error metric � dataset h dataset / dataset / dataset

(%) N1 N2 N1 N2 N1 N2 N1 N2

M � BIAS 0.42 – 0.04 0.61 0.30 – 6.90 – 9.06 – 0.11 – 2.49

STDE 1.13 1.03 2.08 2.45 10.01 12.3 12.87 13.84

RMSE 1.20 1.04 2.17 2.46 12.16 15.27 12.87 14.07

M �;h BIAS – 0.83 – 0.28 – 0.33 – 0.17 – 8.86 – 8.71 – 4.51 – 2.76

STDE 1.32 1.19 0.91 0.87 10.76 10.09 15.37 12.66

RMSE 1.56 1.22 0.97 0.89 13.94 13.33 16.02 13.93

M �;h; / BIAS – 0.17 – 0.62 – 0.13 – 0.36 – 0.18 0.86 3.25 3.53

STDE 1.70 1.58 1.00 0.98 1.89 1.81 5.51 5.60

RMSE 1.71 1.70 1.01 1.04 1.90 2.00 6.39 6.62

M �;h; /, / BIAS – 0.48 – 1.11 – 0.45 – 0.45 – 0.54 – 0.51 0.20 – 0.64

STDE 1.90 2.07 1.34 1.49 1.85 2.14 3.01 3.06

RMSE 1.96 2.35 1.41 1.56 1.93 2.20 3.02 3.13

Bold values indicate the best results

Neural Computing and Applications (2024) 36:16581–16606 16589

123

� obstacle in Table 7. N2 datasets did not bring important

improvements in the tests at the training Re number,

therefore N2 results were removed from the following

tables. The reference data to evaluate the predictions within

turbulent regime consisted of simulations at Re ¼ 3� 105

and 4� 105. The results from these evaluations were also

appended to Table 7.

Table 7 results showed the difficulty of generalization to

other flow conditions, particularly at low-Re numbers

where the flow becomes stationary with no dynamical

structures, and at Re numbers orders of magnitude higher

than the training Re number. As the test simulations were

at different flow regimes, the NN failed to predict the

pressure upstream of the obstacle and the overall pressure

gradient, resulting in large errors. At Re ¼ 10, friction

Fig. 7 Mu prediction examples for each geometry at Re ¼ 100

Table 6 Mu results trained with each dataset and tested in Re ¼ 100 flows. Every error metric, Errorð/Þ was normalized according to

Errorð/Þnorm ¼ Errorð/Þ=ð/max � /minÞ

Model Error metric � dataset h dataset / dataset / dataset

(%) N1 N2 N1 N2 N1 N2 N1 N2

M � BIAS 0.42 – 0.04 0.61 0.30 – 6.90 – 9.06 – 0.11 – 2.49

STDE 1.13 1.03 2.08 2.45 10.01 12.30 12.87 13.84

RMSE 1.20 1.04 2.17 2.46 12.16 15.27 12.87 14.07

M h BIAS – 1.96 – 3.17 0.04 – 0.27 – 11.50 – 9.05 – 2.32 – 3.78

STDE 4.05 6.48 0.77 0.75 13.53 11.16 12.02 12.79

RMSE 4.50 7.22 0.77 0.80 17.75 14.37 12.24 13.37

M / BIAS – 0.99 – 2.52 – 1.04 – 1.58 – 0.03 – 0.39 3.03 2.98

STDE 3.89 4.28 2.56 3.35 1.83 1.42 5.81 6.23

RMSE 4.01 4.97 2.77 3.70 1.83 1.47 6.55 5.47

M = BIAS – 2.17 – 2.78 – 0.66 – 1.55 – 6.16 0.70 – 1.34 – 1.16

STDE 4.88 5.84 3.60 4.42 9.04 9.25 3.15 2.53

RMSE 5.34 6.47 3.96 4.68 10.94 9.28 3.42 2.78

Bold values indicate the best results

16590 Neural Computing and Applications (2024) 36:16581–16606

123

losses introduced by the obstacle resulted in an increase of

the pressure upstream and steeper pressure gradients in the

downstream region (cf. Fig. 8a). On the opposite side, at

turbulent regime, Re ¼ 3� 105, friction losses were

overpredicted (cf. Fig. 8b). Both were not accurately pre-

dicted. The error was mainly due to BIAS.

In the laminar regime, friction losses are known to

increase with the viscosity (or decrease with the Re num-

ber), i.e. with the decrease of the Re, therefore it is clear

that in different Re number flows estimating these

quantities must correctly account for the viscosity. The

surrogate models lacked information to correctly find the

relation between velocity and pressure fields consistently

for different Re without the explicit inclusion of the vis-

cosity, thus the problem may be ill-posed for training with

different Re numbers.

Despite the mentioned limitation, it was still possible to

see an improvement trend within the tests at Re ¼ 50, 500,

and 1000, as long as the flow conditions are similar.

Training with more complicated geometries (cf. M �, h, /,

Table 7 Mu extrapolation test in the laminar regime. Prediction case: � dataset. Every error metric, Errorð/Þ was normalized according to

Errorð/Þnorm ¼ Errorð/Þ=ð/max � /minÞ

Model Error metric (%) Re ¼ 10 Re ¼ 50 Re ¼ 500 Re ¼ 1000 Turbulent

M � BIAS – 28.36 – 4.62 – 3.58 – 4.92 54.82

STDE 28.43 13.05 14.42 17.62 33.38

RMSE 40.16 13.84 14.86 19.23 64.19

M h BIAS – 29.9 – 13.41 – 16.44 – 20.52 48.68

STDE 30.1 15.20 14.99 22.89 31.12

RMSE 42.43 20.27 22.25 30.74 57.78

M / BIAS – 29.07 – 2.75 7.53 6.60 54.74

STDE 29.07 15.70 14.21 16.25 28.09

RMSE 41.11 15.94 16.08 17.54 51.66

M = BIAS – 28.43 – 3.11 1.43 – 1.79 43.36

STDE 27.58 14.13 13.54 15.97 33.38

RMSE 39.61 14.47 13.62 16.07 64.19

M �, h BIAS – 28.86 – 9.62 – 5.93 – 10.14 46.99

STDE 28.64 12.92 13.83 16.95 31.51

RMSE 40.66 16.32 15.05 19.75 56.58

M �, h, / BIAS – 29.12 – 5.62 3.95 0.60 52.78

STDE 29.35 13.26 13.16 15.58 34.09

RMSE 41.34 14.40 13.74 15.59 34.57

M �, h, /, / BIAS – 28.37 – 5.10 1.85 2.35 51.92

STDE 28.36 11.2 10.08 11.68 35.49

RMSE 40.11 12.31 10.24 11.91 62.90

Bold values indicate the best results

Fig. 8 Mu accuracy in extrapolation

Neural Computing and Applications (2024) 36:16581–16606 16591

123

/ results on Table 7), introduced different flow character-

istics that could be similar to other Re flows in the � cases,

considerably improving the estimations. This trend could

steadily go into lower errors, however, the ill-posed opti-

mization problem may eventually set a lower limit

impossible of being surpassed. This limit would go up in

concordance with the increase in the Re test range.

The difficulties in extrapolation tests allowed us to

understand the inadequacy of extending a model trained

with only one Re number flows to general usage, however,

an improving trend was visible as long as new training

examples were added, hereby represented by the increment

of simulation data with different obstacles to the training

dataset, showing an increase in performance up until M �,
h, /, / - u in moderate Re-number flows. For both high and

low Re numbers the results were completely inadequate

(cf. Table 7). The results showed the model difficulty in

estimating the upstream pressure, directly related to an

inadequate prediction of the head pressure losses caused by

the obstacle, and pressure gradient downstream of the

object resulting in high BIAS. Further improving the sur-

rogate model and allowing training/extrapolation to dif-

ferent Re numbers, it could be required to either pre-

process the data differently, allowing to disconnect the

pressure values from the viscous effects, or change the

inputs and outputs given in training. More details about the

training can be found in Appendix B.

4.2 Model Mf(uÞ

The relevance of this approach comes from leveraging the

knowledge of the differential equation governing the phe-

nomenon. Results from M fðuÞ were captured for each

geometry in Table 8 enabling direct comparison with the

Mu results from Table 6.

The current approach proved challenging as the

immense amount of variance present in the f ðuÞ field

severely crippled the model learning process. However,

with the proper pre-processing, given by the PCA trans-

formation, it could potentially be used to generalize to any

problem represented by the Poisson differential equation as

in equation (7) provided the potential field here represented

by f ðuÞ applied in its general form. Several PCs were

necessary to represent a sufficient amount of the input

variance, therefore an upper limit was defined: the number

of PCs had to jointly represent up to 95% of the total

variance without surpassing the upper limit defined by the

hidden layers width (512 neurons). Since this was an

additional test, hyperparameter tuning was not performed

prior to the application of this NN.

From Table 8, MfðuÞ had far lower performance when

compared to results from models Mu, but with the

appropriate hyperparameter tuning these results have a

large margin of improvement. However, some information

was in agreement with the results from Table 6 with

complex flow conditions providing richer training.

M fðuÞ models were also tested in extrapolation and the

results are shown in Table 9. Every model failed in pre-

dicting low Re number flows exactly as Mu models due to

the same reason. However, in medium to high-Re numbers,

models M � - f ðuÞ and M = - f ðuÞ achieved better results.

M fðuÞ in moderate Re numbers was able to achieve

relatively good predictions when compared to its prediction

at the training Re number, which suggests that the f ðuÞ
input field could be more sensible to changes in Re number

by heavily weighting variations in the velocity field.

At Re ¼ 10, M fðuÞ also provided unacceptable predic-

tions. Lastly, in extrapolation into turbulent regime, the

results from M fðuÞ were far superior to results of models

Mu, reaching an overall superior accuracy with every

single model as illustrated in Fig. 9 for a single example.

These results at 3000� 4000� the training Re number may

be an indication of the superior adequacy of using f ðuÞ as
input to predict in such different flow conditions, or just an

indication of the incomplete adjust to the training set

providing moderate errors in a large range of flow condi-

tions. Regarding the evaluation tests at turbulent regime,

given that the simulation set was generated based on a

uRaNS turbulence model simulation approach, the corre-

sponding f ðuÞ field formulation should account for Rey-

nolds stress terms. However, the DNS formulation, eq. (7),

was taken to use the NNs previously trained with the

laminar cases directly.

4.3 Performance evaluation

To assess the usefulness of the developed surrogate model,

its computational performance was benchmarked against

the conventional PISO algorithm as implemented in

OpenFOAM pisoFoam solver. Model M �, h, /, / was

selected for the benchmarking.

The overlap ratio, i.e. the ratio between the overlap

region size and the block size is used to assemble the full

flow domain based on multiple blocks (cf. Section 2.3 and

Fig. 3), determines the number of calls to the NN and the

number of calls to the reconstruction loop, hence it has

high impact on the model performance. Therefore it is

taken as a parameter on the following evaluations.

The evaluation procedure consisted of comparing the

execution time taken in 1000 calls to the PISO method and

the surrogate model using a single core from an Intelr

Xeonr Processor E5-2650.

Figure 10 shows the speedup factor attained when using

the surrogate model, with the PISO algorithm

16592 Neural Computing and Applications (2024) 36:16581–16606

123

implementation as is in OpenFOAM as a reference. As

detailed in Appendix B the results shown in the Results

Section used an overlap ratio ¼ 0:75 since it seemed to

show the best possible results. However, the current results

show that lower overlap ratios can be used to decrease

computational cost with a very low loss of accuracy as

shown in Fig. 11 which displays the average RMSE nor-

malized as a function of the overlap ratio for all simulation

types.

The simulation cases showed very little influence on the

time of a surrogate model call (c.f. Tables 14, 15 and 16).

The performance of the surrogate model was agnostic to

the case geometric complexity since it predicts each block

and reconstructs the full domain with the same set of steps

independently of the simulation geometry. The number of

cells in the CFD mesh had a low impact on the surrogate

model, since it only impacted the interpolation operations,

i.e. interpolating from a grid defined from the CFD mesh

cell centers converted to a uniform grid of points from

Table 8 MfðuÞ results trained with each dataset and tested in Re ¼ 100 flows. Every error metric, Errorð/Þ was normalized according to

Errorð/Þnorm ¼ Errorð/Þ=ð/max � /minÞ

Model Error metric ð%Þ � dataset h dataset / dataset / dataset

M � BIAS 0.59 – 0.68 – 4.25 2.52

STDE 2.52 9.03 14.01 11.06

RMSE 2.59 9.06 14.64 11.35

M h BIAS 3.03 5.14 – 8.42 7.92

STDE 18.26 12.80 14.30 13.24

RMSE 18.51 13.80 16.60 15.43

M / BIAS – 8.88 – 6.40 1.08 – 5.76

STDE 8.60 9.41 5.98 8.09

RMSE 12.37 11.38 6.08 9.93

M = BIAS – 3.15 – 2.22 – 3.43 – 5.82

STDE 28.81 5.60 11.19 6.35

RMSE 8.33 6.02 11.70 8.61

Bold values indicate the best results

Table 9 M fðuÞ extrapolation test. Prediction case: � dataset in laminar regime.Every error metric, Errorð/Þ was normalized according to

Errorð/Þnorm ¼ Errorð/Þ=ð/max � /minÞ

Model Error metric ð%Þ Re ¼ 10 Re ¼ 50 Re ¼ 500 Re ¼ 1000 Turbulent

M � BIAS – 28.44 – 2.40 6.82 3.14 11.82

STDE 27.92 14.07 12.74 17.58 13.58

RMSE 39.85 14.27 14.45 17.86 18.01

M h BIAS – 26.68 – 12.57 – 6.65 – 19.39 5.95

STDE 21.97 26.72 30.77 33.10 14.37

RMSE 34.56 29.52 31.48 38.36 15.55

M / BIAS – 33.38 – 15.77 – 10.73 – 16.30 – 24.52

STDE 30.16 14.78 13.37 17.33 12.36

RMSE 44.99 21.62 17.15 23.79 27.45

M = BIAS – 30.40 – 9.59 2.39 – 1.11 3.56

STDE 28.81 10.55 12.29 12.22 8.50

RMSE 41.95 14.26 12.52 12.27 9.22

Bold values indicate the best results

Neural Computing and Applications (2024) 36:16581–16606 16593

123

where the blocks were extracted. For a complete view of

these results the reader may refer to Appendix D. In these

detailed results, some uncertainty can be detected. This

came from the variability in the high-performance com-

puting node performance as a function of the load it was

submitted to. This variability could not be removed.

The surrogate model yielded higher advantages in terms

of computation expenses for complex cases (where the

PISO would perform many iterations until reaching con-

vergence) and cases with meshes with a high number of

cells.

For the sake of visualization, only the average speedups

attained in each type of flow case were shown. Tables with

the time-dependent results are provided in Appendix D.
Fig. 9 M fðuÞ accuracy in extrapolation at Re ¼ 3� 105

Fig. 10 Average speedup

obtained by using the ML

surrogate model to solve the

pressure Poisson equation in a

CFD simulation. The average

speedup is defined as the ratio

between the execution time of

the PISO algorithm as

implemented in OpenFOAM

and the execution time of the

surrogate model

Fig. 11 Average RMSE

normalized when using the ML

surrogate model to solve the

pressure Poisson equation in a

CFD simulation. The results

from the PISO algorithm, as

implemented in OpenFOAM,

were used as a reference

16594 Neural Computing and Applications (2024) 36:16581–16606

123

These results both in terms of performance and accuracy

show that a combination of PCA and a simple MLP was

found to be efficient and capable of being adequately

trained with low computational resources. Using PCA to

replace whether the encoding or decoding layers provided

training efficiency as demonstrated in Sousa [37] and

Appendix B.

5 Conclusions

An algorithm capable of dealing with any geometry was

proposed and used to construct ML surrogate models

capable of solving the pressure Poisson equation in CFD

solvers with low to moderate errors by ensuring the neural

network (NN) is decoupled from the CFD mesh. This

enables the application of a trained surrogate model to

generic flow geometries.

Two types of ML surrogate models were established

based on the selected set of inputs: models that took the

velocity field as input were referred to as Mu, and the ones

receiving the source term of the pressure Poisson equation

as input were called M fðuÞ.

• Mu models revealed to be good interpolators, managing

to predict with very low error in every test case within

training flow conditions (cf. Tables 5 and 6).

• Mu models trained with every dataset (M �, h, /, / - u)

had a maximum amount of RMSE normalized of 3%

and performed with RMSE normalized lower than 2%
in the remaining datasets while enabling speedups of up

to 30 times when compared to the classical PISO

algorithm.

• The effect of a fivefold increase in the number of

training samples from each CFD simulation (i.e. from

N1 to N2) was depicted by Tables 6 and 7 and was

shown not to be beneficial.

• Increased diversity in the training dataset improved the

overall performance of each model in the training flow

conditions and even in extrapolation (cf. Tables 5 and

7).

• The surrogate models failed at extrapolation into very

different flow conditions, as those failed to learn the

correct mapping between friction losses and the Re

number. However, the improvement trend with the

increase in training data diversity suggested the possi-

bility of this model having practical application near the

training conditions given that it is trained with larger

diversified datasets.

• M fðuÞ models showed to be able to learn how to solve

the Poisson equation with medium errors and had some

capacity for generalization. The moderate accuracy in

some extrapolation tests accompanied by medium

errors in the training tests also indicated that the NN

could not properly fit the training examples. This may

have come from the non-optimization of the NN

hyperparameters and the amount of variance from its

input flow field.

• A combination of PCA and a simple MLP was found to

be efficient and capable of being adequately trained

with low computational resources, without losing

accuracy. Using PCA to replace whether the encoding

or decoding layers provided training efficiency.

Future works will focus on:

• Improving the training formulation of Mu to enable a

well-formulated optimization problem for learning flow

characteristics over a wide range of Re numbers. It was

hypothesized that having the pressure gradient (instead

of the pressure) as the output of the NN and integrating

it over the domain could lead to obtaining a pressure

field with more consistent gradients over a wide range

of flow conditions;

• Better tuning the M fðuÞ parameters and adding

additional pre-processing to the input field to access if

this model can be capable of accurate extrapolation;

• Optimizing the assembly algorithm and reducing the

uncertainty associated with it. This requires an uncer-

tainty analysis of the assembly algorithm and NN sep-

arately, as individual components.

Appendix A The k-x SST turbulence model

Following eq. (1) the Newtonian deviatoric stress tensor, s,
was defined for laminar flows in eq. (2). For turbulent

flows, it is given by the combination of both viscous and

turbulent stresses, the latter modeled with a Boussinesq

eddy-viscosity hypothesis [43]:

s ¼ sv � qu0u0 ¼ ðlþ ltÞ ½2 S� 2

3
Ir � U� � 2

3
I q k;

ðA1Þ

where l and lt are the molecular and eddy viscosities,

S ¼ 1
2
½rUþ ðrUÞt� is the rate-of-strain tensor, I the

identity tensor, and q the fluid density. u0 is the velocity

fluctuations coming from the decomposition of the velocity

vector, u, in its average, U, and fluctuation components:

u0 ¼ u� U; ðA2Þ

and k is the turbulent kinetic energy defined as k ¼ 1
2
u0 � u0.

To close the system of equations, it is necessary to

estimate a value for the eddy viscosity, lt. To this end,

among the two-equation models, the k-� and k-x could be

used. These have their respective advantages, but the k-x

Neural Computing and Applications (2024) 36:16581–16606 16595

123

SST (Shear Stress Transport) turbulence model [41] con-

nected both by the use of blending functions, F1 and F2

(below defined in equations (A6) and (A10)). It is well

known that the k-� is not accurate in near-wall regions and

k-x is inaccurate when dealing with high-pressure gradi-

ents and too sensitive to the free stream values of x [44].

To overcome the previous challenges, the blending func-

tions retain the k-x model characteristics in the near-wall

flow, and k-� is used away from the walls. The k-x SST is

often characterized by its good behavior in adverse pres-

sure gradients and separating flow [45]. The transport

equations for k and x are:

q
Dk

Dt
¼ r � lþ gk lt½ �rkð Þ þ P� qClx k; ðA3Þ

q
Dx
Dt

¼ r � lþ gx lt½ �rxð Þ þ q c
lt

P� qbx2

þ ð1� F1Þ
2 q gx2

x
rk � rx;

ðA4Þ

respectively, with the mechanical turbulence production

defined as

P ¼� qu0u0 : rU ¼ lt 2S : S� 2

3
r � Uð Þ2

� �
� 2

3
q kr � U;

ðA5Þ

which is limited by min P; 10 qCl x k
� �

to prevent exces-

sive turbulence in stagnant regions [46].

The constants c, b and the turbulent Prandtl inverse

numbers, gk and gx, are blended by a function F1, such that

/ ¼ F1/1 þ 1� F1ð Þ/2, where / is any of c, b, gk or gx.
The blending function F1 is given by

F1 ¼ tanhðCÞ4; ðA6Þ

where C is defined as

C ¼ min max

ffiffiffi
k

p

b� xdw
;
500l

qxd2w

 !
;
4 q gx2 k

CDkx d2w

 !
; ðA7Þ

with dw as the distance to the nearest wall, and CDkx

CDkx ¼ max
2 q gx2

x
rk � rx; 10�10

� �
; ðA8Þ

lt is defined as

lt ¼
q a1 k

max a1x;
ffiffiffiffiffiffiffiffiffiffiffiffi
2S : S

p
F2F3

� � ðA9Þ

using two additional blending functions: F2 and F3 defined

as

F2 ¼ tanh max
2
ffiffiffi
k

p

Cl x dw
;
500 l

qxd2w

 !" #20
@

1
A ðA10Þ

F3 ¼1� tanh
150 l

qxd2w

" #40
@

1
A ðA11Þ

F3 is activated for rough-wall flows. The coefficients are

based on Menter et al [44] and defined as Cl ¼ 0:09,

gk1 ¼ 0:85, gk2 ¼ 1, gx1 ¼ 0:5, gx2 ¼ 0:856, b1 ¼ 0:075,

b2 ¼ 0:0828, c1 ¼ 5=9, c2 ¼ 0:44 and a1 ¼ 0:31. More

information about different versions of the k-x SST tur-

bulence model can be found at NASA [47].

Appendix B Model parameters selection

This section holds the selection process of the ML surro-

gate model parameters. For this purpose, the training pro-

cess was employed for 1000 epochs without early stopping.

The error metrics used consisted of the RMSE normalized,

BIAS normalized, and STDE normalized from the ML

surrogate model predictions at multiple temporal frames

with the results from CFD simulations taken as the refer-

ence. The training set here consisted of bi-dimensional

cylinders (N1 dataset) using the Mu model. The best-be-

having parameters here were selected for all the models.

The first and most impactful choice was the architecture

of the model. Alongside the MLP architecture shown in the

body of the article, multiple CNN architectures, repre-

sented in Fig. 12, were tested. The inspiration for the

proposed CNN architectures was the U-Net [48] since it

has been previously applied to fluid dynamics in the form

of standard U-Net’s [49, 50] or even a combination of

those [51].

In Fig. 12, Models 1 (M1), 2 (M2), and 3 (M3) were

schematically illustrated. Model 4 (M4) refers to the MLP

architecture from Fig. 4.

To synthesize the results, in the error chart from Fig. 13

only the best performances of each architecture and block

size combination are presented. The results from M1 were

not shown in Fig. 13 due to its inferior performance, which

would deteriorate the plot. Considering the low computa-

tional effort required by Model 4 and its overall superior

accuracy (c.f. Fig. 13), it was selected.

To select the block size and overlap ratio, the influence

of those was depicted in Fig. 14. From this representation,

a block size of 64 seemed to work significantly worse than

the other options. The best combination found was a block

size of 128 and an overlap ratio of 0.75, thus these were

taken as the default values.

16596 Neural Computing and Applications (2024) 36:16581–16606

123

Selected the most relevant surrogate model parameters,

it was still necessary to optimize the training hyper-pa-

rameters. These included:

• Loss formulation.

• Batch size.

• Learning rate, a, and moving average parameter, b.
These are parameters required by the Adam optimiza-

tion algorithm [52].

The most elementary loss function would be the MSE of

the model prediction as defined in eq. 12, therefore it

constituted L1. To force the NN to better predict the most

important parameters, a modification was applied to the

loss function to weight each component’s importance in the

loss computation, being the weight defined by each PC

contribution to the total variance, L2 and L3, respectively

represented in equations

L2 ¼
1

Npoints

XNpoints

i¼1

ĥ� h
	
2

Explainedvar ðB12Þ

and

L3 ¼
1

Npoints

XNpoints

i¼1

ĥ� h
	
2

Explained2var; ðB13Þ

where Explainedvar is a vector with the total variance

explained by each PC. The influence of this parameter was

analyzed in conjunction with the batch size as shown in

Fig. 15. Since it behaved reasonably well and is concep-

tually simpler, L1 was selected.

Fig. 12 U-net-based modified architectures

Neural Computing and Applications (2024) 36:16581–16606 16597

123

Fig. 13 Error chart for performance comparison. Mx &By represents

the error for model x predictions with a block size of y

Fig. 14 Error chart of Model 4 results, where x &y represents the

error for a block size of x and overlap ratio y

Fig. 15 Batch size and loss function selection study

Fig. 16 The number of truncated principal components from pressure/

output principal component analysis (PCA)

Fig. 17 Learning rate (lr) tuning

16598 Neural Computing and Applications (2024) 36:16581–16606

123

The influence of the number of PCs used (or the total

variance explained) by these was also studied resulting in

the results presented in Fig. 16. A total of 32 principal

components were selected which represented 95% of the

total variance on the output dataset.

To select the most appropriate learning rate range, the

evolution of the loss is plotted for a range of learning rates

as in Fig. 17 allowing to first pick an optimal learning rate

range to further study.

From Fig. 17 the range from 10�5 to 10�4 seemed

optimal, and values in that range were tested resulting in

Fig. 18 Learning rate (lr) and moving average parameter (b1) study

Fig. 19 Accuracy of the surrogate model at multiple MLP depths

Table 10 Description of dataset

sizes before and after pre-

processing for Mu datasets. The

input and output size refers to

the size of each input and output

sample, while the No. of points

refers to the total of points

across all the samples

Training datasets Input size Output size No. of points

N1 N2 N1 N2 N1 N2

Before pre-processing

� (128 x 128) x 3 (128 x 128) 3.28E?10 1.64E?11

h 3.28E?10 1.64E?11

/ 3.28E?10 1.64E?11

/ 3.28E?10 1.64E?11

�, h 6.55E?10 3.28E?11

�, h, / 9.83E?10 4.92E?11

�, h, /, / 1.31E?11 6.55E?11

After pre-processing

� 32 45 32 48 3.20E?7 2.33E?8

h 128 128 128 128 1.28E?8 6.40E?8

/ 35 35 13 13 2.40E?7 1.20E?8

/ 47 46 11 11 2.90E?7 1.43E?8

�, h 32 128 32 128 6.40E?7 1.28E?9

�, h, / 70 48 128 51 2.97E?8 7.43E?8

�, h, /, / 45 46 31 31 1.52E?8 7.70E?8

Table 11 Description of dataset sizes before and after pre-processing

for M fðuÞ datasets. The input and output size refers to the size of each

input and output sample, while the No. of points refers to the total of

points across all the samples

Training datasets Input size Output size No. of points

Before pre-processing

� (128 x 128) x 3 (128 x 128) 3.28E?10

h 3.28E?10

/ 3.28E?10

/ 3.28E?10

After pre-processing

� 116 39 3.88E?8

h 512 11 1.31E?9

/ 512 12 1.31E?9

/ 512 11 1.31E?9

Neural Computing and Applications (2024) 36:16581–16606 16599

123

selecting the learning rate as lr ¼ 10�4 and b ¼ 0:99

accordingly to results from Fig. 18.

The last parameter optimized consisted of the model

depth, defined by the number of hidden layers with a

constant width of 512 neurons as represented in Fig. 4.

Since increased model complexity typically allows for a

better fit of the data, namely in the BIAS of each block field

prediction (note that after assembling this effect can no

longer be analyzed), increasing it could be beneficial only

up to a point. The optimal point was selected from the

results shown in Fig. 19 and the number of hidden layers

was fixed at 3.

Appendix C Datasets description
and Training convergence curves

In Tables 10 and 11 the original and pre-processed datasets

used for training models Mu and M fðuÞ are described. PCA

reduced the dimensionality of the data by considering only

the PCs necessary to represent 99:5% and 95% of the input

variance for Mu and M fðuÞ respectively, and 95% of the

total variance of the output.

Table 12 Mu training specifications

Model N1 N2

Epochs t
epoch ½s� t[h] Epochs t

epoch ½s� t[h]

M � 2623 31 22.59 4621 215 275.98

M h 2239 45 27.50 5000 177 245.83

M / 1915 72 65.78 3953 161 176.79

M = 1916 21 11.18 2860 162 128.70

M �, h 3555 45 44.38 2713 351 264.52

M �, h, / 3289 31 65.78 3046 271 230.30

M �, h, /, / 1773 78 38.42 2279 457 289.31

Bold values indicate the best results

Table 13 Mf ðuÞ training specifications

Model Epochs t
epoch ½s� t[h]

M � 4308 22 26.33

M h 5000 40 55.56

M / 2717 38 28.68

M = 3437 27 25.78

Bold values indicate the best results

Fig. 20 Convergence curves from the training of Model Mu with N1 datasets

16600 Neural Computing and Applications (2024) 36:16581–16606

123

After pre-processing, the data is split as 90% for training

and 10% for validation.

The training of both Mu and MfðuÞ NNs was performed

using 16 CPUs in parallel. The training execution times are

shown in Tables 12 and 13 for Mu and MfðuÞ, respectively.

The training of each NN was characterized by the

convergence curves, i.e. the evolution of the training and

validation losses along the epochs, from Figs. 20, 21, 22

and 23 for the NNs used in Models Mu and Fig. 24 for the

NNs of Models Mf ðuÞ.

Appendix D Surrogate model performance
evaluation

Tables 14, 15, and 16 contain the elapsed time taken to run

the surrogate model for each family of obstacle geometries

at a timestamp, t, as a function of the characteristic time

scale, t�.
Tables 17, 18, and 19 contain the speedup attained by

benchmarking the surrogate model against the OpenFOAM

PISO implementation.

Fig. 21 Convergence curves from the training of Model Mu with N2 datasets

Neural Computing and Applications (2024) 36:16581–16606 16601

123

Fig. 22 Convergence curves from the training of Model Mu with N1 datasets

Fig. 23 Convergence curves from the training of Model Mu with N2 datasets

16602 Neural Computing and Applications (2024) 36:16581–16606

123

Fig. 24 Convergence curves from the training of Model Mf ðuÞ

Table 14 Execution time (in [ms]) when using M �, h, /, / to solve

the pressure Poisson Equation for multiple times defined as a function

of the characteristic time, t�. The characteristic time is defined as

t� ¼ /=U1;c where / is the characteristic length and U1;c is the

centerline velocity at the inlet. Overlap ratio = 0.25

Case t ¼ 0 t ¼ 3t� t ¼ 6t� t ¼ 15t� t ¼ 45t� t ¼ 90t� t ¼ 150t�

� 335 334 335 334 336 333 337

h 641 595 747 666 554 669 673

/ 426 493 635 642 713 748 782

/ 629 887 736 886 933 820 811

Table 15 Execution time (in [ms]) when using M �, h, /, / to solve

the pressure Poisson Equation for multiple times defined as a function

of the characteristic time, t�. The characteristic time is defined as

t� ¼ /=U1;c where / is the characteristic length and U1;c is the

centerline velocity at the inlet. Overlap ratio = 0.50

Case t ¼ 0 t ¼ 3t� t ¼ 6t� t ¼ 15t� t ¼ 45t� t ¼ 90t� t ¼ 150t�

� 671 662 686 542 542 531 531

h 800 874 580 517 518 519 517

/ 758 774 563 547 743 515 546

/ 933 690 690 688 650 965 986

Neural Computing and Applications (2024) 36:16581–16606 16603

123

Acknowledgements We would like to acknowledge the Faculty of

Engineering of the University of Porto (FEUP) and the Transport

Phenomena Research Center (CEFT) for providing all the computa-

tional resources that made this study possible. A. M. Afonso

acknowledges FCT - Fundação para a Ciência e a Tecnologia for

financial support through LA/P/0045/2020 (ALiCE), UIDB/00532/

2020 and UIDP/00532/2020 (CEFT), funded by national funds

through FCT/MCTES (PIDDAC).

Funding Open access funding provided by FCT|FCCN (b-on).

Table 16 Execution time (in [ms]) when using M �, h, /, / to solve

the pressure Poisson Equation for multiple times defined as a function

of the characteristic time, t�. The characteristic time is defined as

t� ¼ /=U1;c where / is the characteristic length and U1;c is the

centerline velocity at the inlet. Overlap ratio = 0.75

Case t ¼ 0 t ¼ 3t� t ¼ 6t� t ¼ 15t� t ¼ 45t� t ¼ 90t� t ¼ 150t�

� 1352 1351 1350 1340 1291 1326 1305

h 2954 2463 2448 2512 2671 2698 2667

/ 2008 2042 2385 2580 2436 2722 2596

/ 2931 2905 3232 3265 3687 3469 3341

Table 17 Acceleration factor obtained by using M �, h, /, / to solve

the pressure Poisson Equation for multiple times defined as a function

of the characteristic time, t�. The characteristic time is defined as

t� ¼ /=U1;c where / is the characteristic length and U1;c is the

centerline velocity at the inlet. Overlap ratio = 0.25

Case t ¼ 0 t ¼ 3t� t ¼ 6t� t ¼ 15t� t ¼ 45t� t ¼ 90t� t ¼ 150t� Average

� 24.3 14.0 13.8 13.9 14.1 13.7 12.2 15.1

h 25.8 5.9 4.8 5.1 6.8 6.0 5.5 8.6

/ 48.7 37.1 24.0 26.1 23.4 22.2 21.2 29.0

/ 49.9 30.2 18.1 29.7 28.3 31.9 29.5 31.1

Table 18 Acceleration factor obtained by using M �, h, /, / to solve

the pressure Poisson Equation for multiple times defined as a function

of the characteristic time, t�. The characteristic time is defined as

t� ¼ /=U1;c where / is the characteristic length and U1;c is the

centerline velocity at the inlet. Overlap ratio = 0.50

Case t ¼ 0 t ¼ 3t� t ¼ 6t� t ¼ 15t� t ¼ 45t� t ¼ 90t� t ¼ 150t� Average

� 12.1 7.1 6.8 8.6 8.7 8.6 7.8 8.5

h 20.7 4.0 6.2 6.6 7.3 7.8 7.2 8.5

/ 27.4 23.6 27.1 30.6 22.5 32.2 30.3 27.7

/ 33.6 38.8 19.3 38.3 40.7 27.1 24.3 31.7

Table 19 Acceleration factor obtained by using M �, h, /, / to solve

the pressure Poisson Equation for multiple times defined as a function

of the characteristic time, t�. The characteristic time is defined as

t� ¼ /=U1;c where / is the characteristic length and U1;c is the

centerline velocity at the inlet. Overlap ratio = 0.7

Case t ¼ 0 t ¼ 3t� t ¼ 6t� t ¼ 15t� t ¼ 45t� t ¼ 90t� t ¼ 150t� Average

� 6.0 3.5 3.4 3.5 3.7 3.5 3.2 3.8

h 5.6 1.4 1.5 1.3 1.4 1.5 1.4 2.0

/ 10.3 9.0 6.4 6.5 6.9 6.1 6.4 7.4

/ 10.7 8.3 4.1 8.1 7.2 7.5 7.2 7.6

16604 Neural Computing and Applications (2024) 36:16581–16606

123

Data availability Not applicable.

Declarations

Conflict of interest Not applicable.

Open Access This article is licensed under a Creative Commons

Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as

long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons licence, and indicate

if changes were made. The images or other third party material in this

article are included in the article’s Creative Commons licence, unless

indicated otherwise in a credit line to the material. If material is not

included in the article’s Creative Commons licence and your intended

use is not permitted by statutory regulation or exceeds the permitted

use, you will need to obtain permission directly from the copyright

holder. To view a copy of this licence, visit http://creativecommons.

org/licenses/by/4.0/.

References

1. Frank M, Drikakis D, Charissis V (2020) Machine-learning

methods for computational science and engineering. Computation

8(1). https://doi.org/10.3390/computation8010015

2. Senior A, Evans R, Jumper J et al (2020) Improved protein

structure prediction using potentials from deep learning. Nature

577:1–5. https://doi.org/10.1038/s41586-019-1923-7

3. Vamathevan J, Clark D, Czodrowski P et al (2019) Applications

of machine learning in drug discovery and development. Nat Rev

Drug Discov 18(6):463–477. https://doi.org/10.1038/s41573-019-

0024-5

4. Dara S, Dhamercherla S, Jadav SS et al (2022) Machine learning

in drug discovery: a review. Artif Intell Rev 55(3):1947–1999.

https://doi.org/10.1007/s10462-021-10058-4. (epub 2021 Aug
11)

5. Pyzer-Knapp EO, Pitera JW, Staar PW et al (2022) Accelerating

materials discovery using artificial intelligence, high performance

computing and robotics. NPJ Comput Mater 8:84. https://doi.org/

10.1038/s41524-022-00765-z

6. Bochenek B, Ustrnul Z (2022) Machine learning in weather

prediction and climate analyses-applications and perspectives.

Atmosphere 13(2):180. https://doi.org/10.3390/atmos13020180

7. de Burgh-Day CO, Leeuwenburg T (2023) Machine learning for

numerical weather and climate modelling: a review. EGUsphere

2023:1–48. https://doi.org/10.5194/egusphere-2023-350

8. Molina MJ, O’Brien TA, Anderson G, et al (2023) A review of

recent and emerging machine learning applications for climate

variability and weather phenomena. Artif Intell Earth Syst

pp 1–46. https://doi.org/10.1175/AIES-D-22-0086.1

9. Brunton SL, Noack BR, Koumoutsakos P (2020) Machine

learning for fluid mechanics. Annual Rev Fluid Mech

52(1):477–508. https://doi.org/10.1146/annurev-fluid-010719-

060214

10. Calzolari G, Liu W (2021) Deep learning to replace, improve, or

aid CFD analysis in built environment applications: a review.

Build Environ 206:108315. https://doi.org/10.1016/j.buildenv.

2021.108315

11. Vinuesa R, Brunton SL (2022) Enhancing computational fluid

dynamics with machine learning. Nat Comput Sci 2(6):358–366.

https://doi.org/10.1038/s43588-022-00264-7

12. Raissi M, Perdikaris P, Karniadakis G (2019) Physics-informed

neural networks: a deep learning framework for solving forward

and inverse problems involving nonlinear partial differential

equations. J Comput Phys 378:686–707. https://doi.org/10.1016/j.

jcp.2018.10.045

13. Beck A, Kurz M (2021) A perspective on machine learning

methods in turbulence modeling. GAMM-Mitteilungen

44(1):e202100002. https://doi.org/10.1002/gamm.202100002

14. Noda K, Yamaguchi Y, Nakadai K et al (2014) Audio-visual

speech recognition using deep learning. Appl Intell. https://doi.

org/10.1007/s10489-014-0629-7

15. Kumar LA, Renuka DK, Rose SL et al (2022) Deep learning

based assistive technology on audio visual speech recognition for

hearing impaired. Int J Cognit Comput Eng 3:24–30. https://doi.

org/10.1016/j.ijcce.2022.01.003

16. Carracedo-Reboredo P, Liñares-Blanco J, Rodrı́guez-Fernández

N, et al (2021) A review on machine learning approaches and

trends in drug discovery. Comput Struct Biotechnol J

19:4538–4558. https://doi.org/10.1016/j.csbj.2021.08.011

17. Wang L, Wang H, Huang Y, et al (2022) Trends in the appli-

cation of deep learning networks in medical image analysis:

evolution between 2012 and 2020. European J Radiol

146:110069. https://doi.org/10.1016/j.ejrad.2021.110069

18. Yang J, Li S, Wang Z et al (2020) Using deep learning to detect

defects in manufacturing: a comprehensive survey and current

challenges. Materials. https://doi.org/10.3390/ma13245755

19. Justesen N, Bontrager P, Togelius J, et al (2017) Deep learning

for video game playing. CoRR abs/1708.07902

20. He K, Zhang X, Ren S, et al (2015) Delving deep into rectifiers:

surpassing human-level performance on imagenet classification.

In: 2015 IEEE international conference on computer vision

(ICCV), pp 1026–1034. https://doi.org/10.1109/ICCV.2015.123

21. Dumoulin V, Visin F (2016). A guide to convolution arithmetic

for deep learning. https://doi.org/10.48550/ARXIV.1603.07285

22. Shan T, Tang W, Dang X, et al (2017) Study on a poisson’s

equation solver based on deep learning technique. arXiv:1712.

05559

23. Aggarwal R, Ugail H (2019) On the solution of poisson’s equa-

tion using deep learning. In: 2019 13th international conference

on software, knowledge, information management and applica-

tions (SKIMA), pp 1–8. https://doi.org/10.1109/SKIMA47702.

2019.8982518

24. Nastorg M, Bucci MA, Faney T, et al (2023) An implicit GNN

solver for poisson-like problems. arXiv:2302.10891

25. Özbay AG, Hamzehloo A, Laizet S et al (2021) Poisson CNN:

convolutional neural networks for the solution of the Poisson

equation on a cartesian mesh. Data-Centric Eng. https://doi.org/

10.1017/dce.2021.7

26. Illarramendi EA, Bauerheim M, Cuenot B (2021) Performance

and accuracy assessments of an incompressible fluid solver

coupled with a deep convolutional neural network. arXiv:2109.

09363

27. Weymouth GD (2022) Data-driven multi-grid solver for accel-

erated pressure projection. Comput Fluids 246:105620. https://

doi.org/10.1016/j.compfluid.2022.105620

28. Foundation TO (2022) OpenFOAM v6 User Guide. The Open-

FOAM Foundation. https://doc.cfd.direct/openfoam/user-guide-

v6/

29. Moukalled F, Mangani L, Darwish M (2015) The finite volume

method in computational fluid dynamics: an advanced introduc-

tion with openFOAM� and Matlab�, vol 113. https://doi.org/10.

1007/978-3-319-16874-6

30. Schlichting H, Gersten K (2017) Boundary-Layer Theory, 9th

edn. Springer. https://doi.org/10.1007/978-3-662-52919-5

31. Issa R (1986) Solution of the implicitly discretised fluid flow

equations by operator-splitting. J Comput Phys 62(1):40–65.

https://doi.org/10.1016/0021-9991(86)90099-9

Neural Computing and Applications (2024) 36:16581–16606 16605

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/computation8010015
https://doi.org/10.1038/s41586-019-1923-7
https://doi.org/10.1038/s41573-019-0024-5
https://doi.org/10.1038/s41573-019-0024-5
https://doi.org/10.1007/s10462-021-10058-4
https://doi.org/10.1038/s41524-022-00765-z
https://doi.org/10.1038/s41524-022-00765-z
https://doi.org/10.3390/atmos13020180
https://doi.org/10.5194/egusphere-2023-350
https://doi.org/10.1175/AIES-D-22-0086.1
https://doi.org/10.1146/annurev-fluid-010719-060214
https://doi.org/10.1146/annurev-fluid-010719-060214
https://doi.org/10.1016/j.buildenv.2021.108315
https://doi.org/10.1016/j.buildenv.2021.108315
https://doi.org/10.1038/s43588-022-00264-7
https://doi.org/10.1016/j.jcp.2018.10.045
https://doi.org/10.1016/j.jcp.2018.10.045
https://doi.org/10.1002/gamm.202100002
https://doi.org/10.1007/s10489-014-0629-7
https://doi.org/10.1007/s10489-014-0629-7
https://doi.org/10.1016/j.ijcce.2022.01.003
https://doi.org/10.1016/j.ijcce.2022.01.003
https://doi.org/10.1016/j.csbj.2021.08.011
https://doi.org/10.1016/j.ejrad.2021.110069
https://doi.org/10.3390/ma13245755
https://doi.org/10.1109/ICCV.2015.123
https://doi.org/10.48550/ARXIV.1603.07285
http://arxiv.org/abs/1712.05559
http://arxiv.org/abs/1712.05559
https://doi.org/10.1109/SKIMA47702.2019.8982518
https://doi.org/10.1109/SKIMA47702.2019.8982518
http://arxiv.org/abs/2302.10891
https://doi.org/10.1017/dce.2021.7
https://doi.org/10.1017/dce.2021.7
http://arxiv.org/abs/2109.09363
http://arxiv.org/abs/2109.09363
https://doi.org/10.1016/j.compfluid.2022.105620
https://doi.org/10.1016/j.compfluid.2022.105620
https://doc.cfd.direct/openfoam/user-guide-v6/
https://doc.cfd.direct/openfoam/user-guide-v6/
https://doi.org/10.1007/978-3-319-16874-6
https://doi.org/10.1007/978-3-319-16874-6
https://doi.org/10.1007/978-3-662-52919-5
https://doi.org/10.1016/0021-9991(86)90099-9

32. Animasaun I, Shah NA, Wakif A et al (2022) Ratio of momentum

diffusivity to thermal diffusivity: introduction. Meta-anal Scru-

tinizat. https://doi.org/10.1201/9781003217374

33. Wang F, Animasaun I, Al-Mdallal Q et al (2023) Dynamics

through three-inlets of t-shaped ducts: Significance of inlet

velocity on transient air and water experiencing cold fronts

subject to turbulence. Int Commun Heat Mass Transfer

148:107034. https://doi.org/10.1016/j.icheatmasstransfer.2023.

107034

34. Issa R, Gosman A, Watkins AP (1986) The computation of

compressible and incompressible recirculating flows by a non-

iterative implicit scheme. J Comput Phys 62:66–82. https://doi.

org/10.1016/0021-9991(86)90100-2

35. Ferziger JH, Perić M (1999) Computational Methods for Fluid

Dynamics, 2nd edn. Springer, Berlin

36. McKay MD, Beckman RJ, Conover WJ (1979) A comparison of

three methods for selecting values of input variables in the

analysis of output from a computer code. Technometrics

21(2):239–245

37. Sousa PAC (2022) Solving Poisson’s equation through deep

learning for CFD applications. Master’s thesis, Faculty of Engi-

neering of the University of Porto. https://hdl.handle.net/10216/

140713

38. Liang L, Liu M, Martin C et al (2018) A deep learning approach

to estimate stress distribution: a fast and accurate surrogate of

finite-element analysis. J R Soc Interf 15(138):20170844. https://

doi.org/10.1098/rsif.2017.0844

39. Versteeg H, Malalasekera W (2007) An introduction to compu-

tational fluid dynamics: the finite volume method. Pearson Educ

Limit. https://books.google.pt/books?id=RvBZ-UMpGzIC

40. OpenCFD (2022) Openfoam user guide: k-omega shear stress

transport (sst). https://www.openfoam.com/documentation/

guides/latest/doc/guide-turbulence-ras-k-omega-sst.html, Acces-

sed: 2022-08-20

41. Menter FR (1994) Two-equation eddy-viscosity turbulence

models for engineering applications. AIAA J 32(8):1598–1605.

https://doi.org/10.2514/3.12149

42. Pope SB (2000) Turbulent Flows. Cambridge Univ Press. https://

doi.org/10.1017/CBO9780511840531

43. Schmitt FG (2007) About Boussinesq’s turbulent viscosity

hypothesis: historical remarks and a direct evaluation of its

validity. Comptes Rendus Mécanique 335(9–10):617–627.

https://doi.org/10.1016/j.crme.2007.08.004

44. Menter FR, Kuntz M, Langtry R (2003) Ten years of industrial

experience with the SST turbulence model

45. Apsley D, Leschziner M (2012) Advanced turbulence modelling

of separated flow in a diffuser. Flow Turbulence Combust

63:81–112. https://doi.org/10.1023/A:1009930107544

46. Menter FR (1993) Zonal two equation k-w turbulence models for

aerodynamic flows

47. NASA LRC (2022) The menter shear stress transport turbulence

model. https://turbmodels.larc.nasa.gov/sst.html, Accessed:

2022-08-20

48. Ronneberger O, Fischer P, Brox T (2015) U-net: Convolutional

networks for biomedical image segmentation. CoRR abs/

1505.04597. http://arxiv.org/abs/1505.04597,

49. Le QT, Ooi C (2021) Surrogate modeling of fluid dynamics with

a multigrid inspired neural network architecture. Mach Learn

Appl 6:100176. https://doi.org/10.1016/j.mlwa.2021.100176

50. Thuerey N, Weißenow K, Prantl L et al (2020) Deep learning

methods for Reynolds-averaged Navier-stokes simulations of

airfoil flows. AIAA J 58(1):25–36. https://doi.org/10.2514/1.

J058291

51. Chen J, Viquerat J, Hachem E (2019) U-net architectures for fast

prediction in fluid mechanics. https://hal.archives-ouvertes.fr/hal-

02401465, working paper or preprint

52. Reddi SJ, Kale S, Kumar S (2019) On the convergence of adam

and beyond. CoRR abs/1904.09237. http://arxiv.org/abs/1904.

09237

Publisher’s Note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

16606 Neural Computing and Applications (2024) 36:16581–16606

123

https://doi.org/10.1201/9781003217374
https://doi.org/10.1016/j.icheatmasstransfer.2023.107034
https://doi.org/10.1016/j.icheatmasstransfer.2023.107034
https://doi.org/10.1016/0021-9991(86)90100-2
https://doi.org/10.1016/0021-9991(86)90100-2
https://hdl.handle.net/10216/140713
https://hdl.handle.net/10216/140713
https://doi.org/10.1098/rsif.2017.0844
https://doi.org/10.1098/rsif.2017.0844
https://books.google.pt/books?id=RvBZ-UMpGzIC
https://www.openfoam.com/documentation/guides/latest/doc/guide-turbulence-ras-k-omega-sst.html
https://www.openfoam.com/documentation/guides/latest/doc/guide-turbulence-ras-k-omega-sst.html
https://doi.org/10.2514/3.12149
https://doi.org/10.1017/CBO9780511840531
https://doi.org/10.1017/CBO9780511840531
https://doi.org/10.1016/j.crme.2007.08.004
https://doi.org/10.1023/A:1009930107544
https://turbmodels.larc.nasa.gov/sst.html
http://arxiv.org/abs/1505.04597
https://doi.org/10.1016/j.mlwa.2021.100176
https://doi.org/10.2514/1.J058291
https://doi.org/10.2514/1.J058291
https://hal.archives-ouvertes.fr/hal-02401465
https://hal.archives-ouvertes.fr/hal-02401465
http://arxiv.org/abs/1904.09237
http://arxiv.org/abs/1904.09237

	Application of machine learning to model the pressure poisson equation for fluid flow on generic geometries
	Abstract
	Introduction
	Methodology | mathematical models
	Fluid-flow solver
	Laminar flow regime
	Turbulent flow regime
	Pressure-momentum coupling

	Surrogate model
	Fundamentals of Deep Learning
	Model input
	Data sampling and normalization

	Blocks assembly into the flow domain
	Neural Network architecture

	Numerical setup
	Training and evaluation method
	Data generation - CFD setup

	Results
	Model {{{\textbf {M}}}}_{{{\rmbf {u}}}}
	Model {{\textbf {M}}}_{\rm{f}\lpar {{\rmbf {u}}})}
	Performance evaluation

	Conclusions
	Appendix A The k-\omega SST turbulence model
	Appendix B Model parameters selection
	Appendix C Datasets description and Training convergence curves
	Appendix D Surrogate model performance evaluation
	Funding
	Data availability
	References

